JPH02188576A - Epoxidized (meth)acrylate composition - Google Patents

Epoxidized (meth)acrylate composition

Info

Publication number
JPH02188576A
JPH02188576A JP581689A JP581689A JPH02188576A JP H02188576 A JPH02188576 A JP H02188576A JP 581689 A JP581689 A JP 581689A JP 581689 A JP581689 A JP 581689A JP H02188576 A JPH02188576 A JP H02188576A
Authority
JP
Japan
Prior art keywords
meth
group
acid
reaction
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP581689A
Other languages
Japanese (ja)
Other versions
JP2704284B2 (en
Inventor
Kazuaki Fukuya
福家 一昭
Akihiro Kuwana
章博 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1005816A priority Critical patent/JP2704284B2/en
Publication of JPH02188576A publication Critical patent/JPH02188576A/en
Application granted granted Critical
Publication of JP2704284B2 publication Critical patent/JP2704284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To obtain the title high-quality composition useful as an intermediate raw material for resin for coating compound without problems of admixture of polymers, white clouding, etc., by blending a (meth)acrylic ester with a combination of at least two specific polymerization inhibitors. CONSTITUTION:A cyclohexenylmethyl (meth)acrylate compound shown by formula I (R is H or methyl) is epoxidized with an oxidizing agent to give a compound shown by formula II, which is blended with (A) hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t- butylphenol, etc., and (B) phosphoric acid, potassium phosphate, sodium ammonium hydrogenphosphate, pyrophosphoric acid, pyrophosphoric acid 2-ethylhexyl ester, tripolyphosphate, etc., in the ratio of 0.001-0.1wt.% component A and 0.01-0.2wt.% component B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ化された(メタ)アクリレート組成物
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to epoxidized (meth)acrylate compositions.

(メタ)アクリレート化合物は熱、紫外線、イオン化放
射線、ラジカル重合開始剤の存在下で容易に単独重合ま
たは他の不飽和基含有化合物と共重合することが可能で
、また塗料用樹脂の中間原料としても有用である。
(Meth)acrylate compounds can be easily homopolymerized or copolymerized with other unsaturated group-containing compounds in the presence of heat, ultraviolet rays, ionizing radiation, and radical polymerization initiators, and can also be used as intermediate raw materials for paint resins. is also useful.

(従来の技術) 従来より各種のアクリル酸エステル類モノマーが知られ
ている。
(Prior Art) Various acrylic acid ester monomers have been known.

例えばアクリル酸メチル、アクリル酸エチル。For example, methyl acrylate, ethyl acrylate.

アクリル酸2−エチルヘキシル等の単官能モノマーおよ
びトリメチロールプロパントリアクリレート、ペンタエ
リスリトールトリアクリレート等の多官能モノマーが一
般的に知られている。
Monofunctional monomers such as 2-ethylhexyl acrylate and polyfunctional monomers such as trimethylolpropane triacrylate and pentaerythritol triacrylate are generally known.

しかしながら、単官能モノマーは印刷インキお・よび塗
料に用いた場合には硬化後の未反応モノマーの臭気がは
なはだしく問題となる。
However, when monofunctional monomers are used in printing inks and paints, the odor of unreacted monomers after curing becomes a serious problem.

また多官能モノマーは塗料および印刷インキの希釈剤と
して用いる場合には、樹脂に対して多量に使用する必要
があり、したがって樹脂が有する特性が失われるという
欠点を有している。
Furthermore, when polyfunctional monomers are used as diluents for paints and printing inks, they have to be used in large amounts relative to resins, which has the disadvantage that the properties of the resins are lost.

その点 (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロへキセニル(メタ)アクリレート化合物を酸
化剤でエポキシ化して得られる(式中Rは水素原子また
はメチル基を表わす)は低粘度で、かつ、低臭気で広範
囲に亘る樹脂への溶解性を有しており、このものはイン
キ、塗料、接着剤、被覆剤、成型用樹脂の原料あるいは
改質剤として有用である。
In this respect, the cyclohexenyl (meth)acrylate compound represented by the formula (R represents a hydrogen atom or a methyl group) obtained by epoxidizing it with an oxidizing agent (in the formula, R represents a hydrogen atom or a methyl group) has a low It has high viscosity, low odor, and solubility in a wide range of resins, and is useful as a raw material or modifier for inks, paints, adhesives, coatings, and molding resins.

しかし、この一般式(11)で示されるエポキシ化され
た(メタ)アクリル酸エステル(以下Rが水素原子の時
はAETHB、Rがメチル基の時はMETHBと略す)
は極めて重合し易く製造工程。
However, the epoxidized (meth)acrylic acid ester represented by this general formula (11) (hereinafter abbreviated as AETHB when R is a hydrogen atom, and METHB when R is a methyl group)
is extremely easy to polymerize during the manufacturing process.

貯蔵及び輸送中に熱、光およびその他の要因によってし
ばしば重合することが知られている。
It is known that during storage and transportation they often polymerize due to heat, light and other factors.

これを防ぐために特願昭62−10083号出願におい
ては、アクリルモノマーの一般的な禁止剤では当該(メ
タ)アクリル酸エステル、すなわちAETHB (ME
THB)に対しては重合禁止能は十分ではないとした上
で、アミン顕、とりわけとへリジンが好ましいというこ
とが開示されている。また特願昭62−252217号
出願においても重合禁止剤についての記載はあるが、そ
の効果については全く触れられてないため、前記特願昭
63−10083号出願がAETHB (METHB)
の重合防止方法に関す′る実質的に唯一の従来技術であ
った。
In order to prevent this, in Japanese Patent Application No. 10083/1983, it was proposed that the (meth)acrylic acid ester, that is, AETHB (ME
It is disclosed that amines, especially helysine, are preferred, although their ability to inhibit polymerization is insufficient for THB). In addition, although there is a description of a polymerization inhibitor in Japanese Patent Application No. 62-252217, there is no mention of its effect at all, so the application of Japanese Patent Application No. 1983-10083 is classified as AETHB (METHB).
This is essentially the only prior art related to a method for preventing polymerization.

(発明が解決しようとする課題) これに対して、本発明者らは、前記特願昭63−100
83号出願において述べられているピペリジン単独ある
いはとへリジンとハイドロキノン等のいわゆる通常の禁
止剤との併用ではAETHB(M、ETHB)の重合防
止効果は、まだ十分とは言えないことを確かめた。
(Problems to be Solved by the Invention) In response to this, the present inventors have
It was confirmed that the effect of inhibiting the polymerization of AETHB (M, ETHB) by using piperidine alone or in combination with so-called ordinary inhibitors such as heridine and hydroquinone as described in the No. 83 application was not yet sufficient.

この理由の一つは特願昭63−10083号が出願され
た当時においては、AETHB (METHB)が未だ
工業的規模で生産されていなかったため製品として具備
すべき品質が十分予見できなかったことにある。
One of the reasons for this is that at the time when Japanese Patent Application No. 10083/1983 was filed, AETHB (METHB) had not yet been produced on an industrial scale, so the quality that the product should have could not be fully predicted. be.

すなわち、j1金防止効果をある程度有しているとして
も工業的規模で生産するためには、得られた製品が目的
とする品質に合致するかどうかが重要になるのである。
In other words, even if the product has a certain degree of J1 gold prevention effect, in order to produce it on an industrial scale, it is important whether the obtained product meets the desired quality.

この点に関してその後開発が進み、製品中に微量の重合
物が含まれると問題があることが明らかになっている。
Developments in this regard have progressed since then, and it has become clear that there is a problem if trace amounts of polymers are included in the product.

例えば塗料用樹脂の中間原料を合成する際に、重合物を
含むAETHB (METHB>を使うと・重合物が粘
着性の不溶解物として析出し、プロセス上程々の問題を
生じるとともに塗料の商品価値を著しく低下せしめてし
まう。
For example, when synthesizing an intermediate raw material for paint resin, if AETHB (METHB) containing a polymer is used, the polymer will precipitate as a sticky insoluble substance, causing some problems in the process and reducing the commercial value of the paint. This results in a significant decrease in

製品AETHB (METHB)中に含まれる微量の重
合物はAETHB (MBTHB)自体の低分子量重合
物が主成分と考えられるが、これらの重合物の含有量は
n−ヘキサンあるいはn−へブタンに製品を少量溶解し
た時に白濁するかどうかで明瞭に確認することができる
(n−へブタンを使ったこのような溶解性試験を以下H
Tと呼ぶ)。
The trace amounts of polymers contained in the product AETHB (METHB) are thought to be mainly composed of low molecular weight polymers of AETHB (MBTHB) itself, but the content of these polymers is higher than that of n-hexane or n-hebutane in the product. This can be clearly confirmed by whether or not it becomes cloudy when a small amount of n-hebutane is dissolved.
).

製品として使えるAETHB (ME、THB)はHT
が透明あるいはわずかに白濁する程度でなければならな
いことがわかっている。
AETHB (ME, THB) that can be used as a product is HT
It is known that the liquid must be transparent or slightly cloudy.

旧って、特願昭63−10083号出願の方法を追試し
て得られたAETHB (METHB>のHTt!−調
べると白濁もしくは沈殿物が析出する程の強い白濁であ
るため、品質的には十分ではないと判断される。
AETHB (METHB>HTt!), which was obtained by re-testing the method of the old Japanese Patent Application No. 10083/1983, was found to be cloudy or cloudy so strong that a precipitate was deposited, so the quality was poor. judged not to be sufficient.

すなわち、AETHB (METHB)を工業的に生産
するためには、さらに効果的な重合抑制力′法を確立す
る必要があり、本発明者らが出願した当時は依然として
、それを可能にする技術は存在しなかったのである。
In other words, in order to industrially produce AETHB (METHB), it is necessary to establish a more effective method for inhibiting polymerization, and at the time the present inventors filed the application, there was still no technology that would make this possible. It didn't exist.

本発明者らは、このような課題に対して鋭意研究を行い
、特定の重合防止剤を組み合わせてAETHB (ME
THB)組成物として用いれば上記目的に極めて合致す
ることを見い出し本発明を完成するに至った。
The present inventors have conducted intensive research to address these issues, and have combined specific polymerization inhibitors to create AETHB (ME
The present inventors have discovered that the above-mentioned object can be achieved by using the present invention as a THB) composition, and have completed the present invention.

(発明の構成) すなわち1本発明は 「一般式(I) (式中Rは水素原子またはメチル基を表わす→で表わさ
れるシクロへキセニル(メタ)アクリレート化合物を酸
化剤でエポキシ化して 一般式(II) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物および下記の[A群]および[B群]から選
ばれる各々少くとも1種の化合物を共存せしめたことを
特徴とするエポキシ化された(メタ)アクリレート組成
物: [A群] ハイドロキノン、ハイドロキノンモノメチルエーテル、
P−ベンゾキノン、クレゾール、t−ブチルカテコール
、2,4−ジメチル−6−t−ブチルフェノール、2−
t−ブチル−4−メトキシフェノール、3−t−ブチル
−4−メトキシフェノール、2,6−ジーt−ブチル−
P−クレゾール、2.5−ジヒドロキシ−P−キノン、
ピペリジン、エタノールアミン、α−ニトロソ−β−ナ
フトール、ジフェニルアミン、フェノチアジン、N−ニ
トロンフェニルヒドロキシルアミン、N、N−ジエチル
ヒドロキシルアミン [B群] リン酸、リン酸カリウム、リン酸ナトリウム、す・ン酸
水素アンモニウム、ピロリン酸、ピロリン酸カリウム、
ピロリン酸ナトリウム、ビロリン酸2−エチルヘキシル
エステル、ビロリン酸カリウム2−エチルヘキシルエス
テル、ビロリン酸ナトリウム−2−エチルヘキシルエス
テル、トリポリリン酸、トリポリリン酸カリウム、トリ
ポリリン酸ナトリウム」 である。
(Structure of the Invention) That is, 1 the present invention is to epoxidize a cyclohexenyl (meth)acrylate compound represented by the general formula (I) (in which R represents a hydrogen atom or a methyl group) with an oxidizing agent to obtain a compound of the general formula ( II) A compound represented by (wherein R represents a hydrogen atom or a methyl group) and at least one compound each selected from the following [Group A] and [Group B] are coexisting. Epoxidized (meth)acrylate composition: [Group A] Hydroquinone, hydroquinone monomethyl ether,
P-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, 2-
t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-
P-cresol, 2,5-dihydroxy-P-quinone,
Piperidine, ethanolamine, α-nitroso-β-naphthol, diphenylamine, phenothiazine, N-nitronphenylhydroxylamine, N,N-diethylhydroxylamine [group B] phosphoric acid, potassium phosphate, sodium phosphate, sulfuric acid Ammonium hydrogen, pyrophosphate, potassium pyrophosphate,
sodium pyrophosphate, birophosphate 2-ethylhexyl ester, potassium birophosphate 2-ethylhexyl ester, sodium birophosphate-2-ethylhexyl ester, tripolyphosphoric acid, potassium tripolyphosphate, and sodium tripolyphosphate.

以下に本発明のAETHB (METHB)組成物につ
いて詳しく説明する。
The AETHB (METHB) composition of the present invention will be explained in detail below.

先ずAETHB (MBTHB)組成物中の主成物であ
るエポキシ化合物を製造する反応工程について説明する
First, the reaction process for producing the epoxy compound which is the main component in the AETHB (MBTHB) composition will be explained.

すなわち、一般式(I)で表わされる(メタ)アクリレ
ート化合物を酸化剤でエポキシ化することにより一般式
(II)で表わされるAETHB< M E T’ H
B )が得られる。
That is, by epoxidizing the (meth)acrylate compound represented by general formula (I) with an oxidizing agent, AETHB<M ET' H represented by general formula (II) is obtained.
B) is obtained.

この除用いる酸化剤は不飽和結合をエポキシ化できるも
のなら何でもよく過ギ酸、過酢酸、過プロピオン酸、m
−クロロ過安息香酸、トリフルオロ過酢酸、過安息香酸
、ターシャリブチルハイドロパーオキサイド、クミルハ
イド・ロバ−オキサイド、テトラリルハイドロバーオキ
サイド、ジイソプロピルベンゼンハイドロバーオキサイ
ドなどの各種ハイドロパーオキサイド類、過酸化水素な
どを例として挙げることができる。
The oxidizing agent used for this removal may be any oxidizing agent that can epoxidize unsaturated bonds, such as performic acid, peracetic acid, perpropionic acid, m
-Various hydroperoxides such as chloroperbenzoic acid, trifluoroperacetic acid, perbenzoic acid, tert-butyl hydroperoxide, cumylhydroperoxide, tetralyl hydroperoxide, diisopropylbenzene hydroperoxide, hydrogen peroxide For example,

酸化剤は触媒と併用してもよく、例えば、有機過酸を用
いる場合なら炭酸ソーダなどのアルカリや[Mなどの酸
を触媒として併用しうる。
The oxidizing agent may be used in combination with a catalyst. For example, when an organic peracid is used, an alkali such as soda carbonate or an acid such as [M] may be used in combination as a catalyst.

同じく上記各種のハイドロパーオキサ、イド類を用いる
場合ならモリブデンヘキサカルボニルなど公知の触媒能
を有するものを、また、過酸化水素を用いる場合ならタ
ングステン酸と苛性ソーダの混合物を併用することがで
きる。
Similarly, when using the above-mentioned various hydroperoxas and ides, those having known catalytic ability such as molybdenum hexacarbonyl can be used, and when hydrogen peroxide is used, a mixture of tungstic acid and caustic soda can be used in combination.

反応をバッチで行なう場合は先ず1反応容器内にシクロ
へキセニル(メタ)アクリレートを所定量仕込み、この
中に必要に応じて触媒、安定剤を溶解させ、この中に前
記酸化剤を滴下して行なう・。
When carrying out the reaction in batches, first a predetermined amount of cyclohexenyl (meth)acrylate is charged into one reaction vessel, a catalyst and a stabilizer are dissolved therein as required, and the oxidizing agent is dropped into this. Let's do it.

酸化剤とシクロへキセニル(メタ)アクリレートとの反
応モル比は理論的には1/1であるが、本発明の方法で
は0.1〜10の範囲、好ましくは、0.5〜10の範
囲、さらに好ましくは0゜8〜1.5の範囲である。
The reaction molar ratio between the oxidizing agent and cyclohexenyl (meth)acrylate is theoretically 1/1, but in the method of the present invention, it is in the range of 0.1 to 10, preferably in the range of 0.5 to 10. , more preferably in the range of 0°8 to 1.5°.

酸化剤とシクロへキセニル(メタ)アクリレートとのモ
ル比が10を越える場合はシクロへキセニル(メタ)ア
クリレートの転化率および反応時間短縮、(メタ)アク
リレートの重合によるロスの減少という点で好ましいが
、過剰の酸化剤による副反応や酸化剤の選択率および未
反応の酸化剤を回収回収する場合に多大の費用を要する
。などの欠点がある。
When the molar ratio of the oxidizing agent and cyclohexenyl (meth)acrylate exceeds 10, it is preferable in terms of the conversion rate of cyclohexenyl (meth)acrylate, shortening the reaction time, and reducing loss due to polymerization of (meth)acrylate. However, a large amount of cost is required due to side reactions caused by excess oxidizing agent, selectivity of oxidizing agent, and recovery of unreacted oxidizing agent. There are drawbacks such as.

逆に酸化剤とシクロへキセニル(メタ)アクリレートと
の反応のモル比が0.1以下の場合は酸化剤の選択率、
転化率、酸化剤による副反応を抑制するという点で好ま
しいが、(メタ)アクリレートの重合によるロス、未反
応のシクロへキセニル(メタ)アクリレートを回収する
場合に多大の費用を要する。などの欠点がある。
Conversely, if the molar ratio of the reaction between the oxidizing agent and cyclohexenyl (meth)acrylate is 0.1 or less, the selectivity of the oxidizing agent,
Although it is preferable in terms of conversion rate and suppressing side reactions caused by oxidizing agents, it requires loss due to polymerization of (meth)acrylate and a large amount of cost when recovering unreacted cyclohexenyl (meth)acrylate. There are drawbacks such as.

反応温度はエポキシ化反応が酸化剤の分解反応に優先す
るような上限値以下で行ない、たとえば、。
The reaction temperature is carried out below an upper limit such that the epoxidation reaction has priority over the decomposition reaction of the oxidizing agent, for example.

過酢酸を用いる場合なら70℃以下で、ターシャリブチ
ルハイドロパーオキサイドを用いる場合なら150℃以
下が好ましい。
When peracetic acid is used, the temperature is preferably 70°C or lower, and when tert-butyl hydroperoxide is used, the temperature is preferably 150°C or lower.

反応温度が低いと反応の完結までに長時間を要するので
、過酢酸を用いる場合なら0℃、ターシャリブチルハイ
ドロパーオキサイドを用いる場合なら20℃という下限
値以上で行うことが好ましい。
If the reaction temperature is low, it will take a long time to complete the reaction, so it is preferable to carry out the reaction at a temperature higher than the lower limit of 0° C. if peracetic acid is used and 20° C. if tert-butyl hydroperoxide is used.

また、エポキシ化反応の際、酸化剤からの副生などによ
る有機酸、アルコール、水でエポキシ基が開環してしま
う副反応が生じるので、副反応量が少なくなるような温
度を前記したような温度領域から選定して実施する。
In addition, during the epoxidation reaction, a side reaction occurs in which the epoxy group is ring-opened with organic acids, alcohols, and water due to by-products from the oxidizing agent, so the temperature that reduces the amount of side reactions is set as described above. Select and implement from a temperature range.

反応圧力は一般的には常圧下で操作されるが、加圧また
は低圧下でも実施できる。
The reaction pressure is generally operated at normal pressure, but it can also be carried out under elevated or low pressure.

また1反応は溶媒存在下でも実施できる。One reaction can also be carried out in the presence of a solvent.

溶媒存在下での反応は反応粗液の粘度低下、酸化剤を希
しやくすることによる安定化などの効果があるなめ好ま
しい。
Reaction in the presence of a solvent is preferred because it has effects such as lowering the viscosity of the reaction crude liquid and stabilizing it by making the oxidizing agent more diluted.

使用される溶媒としてはベンゼン、トルエン、キシレン
など芳香族化合物、クロロフォルム、ジメチルクロライ
ド、四塩化炭素、クロルベンゼンなどのハロゲン化物、
酢酸エチル、酢酸ブチル、などのエステル化物、アセト
ン、メチルエチルゲトンなどのケトン化合物、1.2−
ジメトキシエタンなどのエーテル化合物などを用いるこ
とができる。
Solvents used include aromatic compounds such as benzene, toluene, and xylene; halides such as chloroform, dimethyl chloride, carbon tetrachloride, and chlorobenzene;
Esterified products such as ethyl acetate and butyl acetate, ketone compounds such as acetone and methyl ethyl getone, 1.2-
Ether compounds such as dimethoxyethane can be used.

溶媒の使用量はシクロへキセニル(メタ)アクリレート
に対して0.5〜5倍量が好ましい。
The amount of solvent used is preferably 0.5 to 5 times the amount of cyclohexenyl (meth)acrylate.

0.5倍量より少ない場合は酸化剤を希しやくすること
による安定化などの効果が少なく、逆に5倍量より多く
しても安定化効果はそれ程アップせず溶媒の回収に多大
の費用を要するので無駄となる。
If the amount is less than 0.5 times, there will be little stabilizing effect by diluting the oxidizing agent, and conversely, if the amount is more than 5 times, the stabilizing effect will not improve much and it will take a lot of time to recover the solvent. It is wasteful because it costs money.

本発明のポイントは特定の重合防止剤を混合した組成物
としたことにある。
The key point of the present invention is that the composition contains a specific polymerization inhibitor.

ところでエポキシ化反応時に特願昭63−10083号
出願に記載された禁止剤を添加しただけ・ではHTで白
濁する。
By the way, if the inhibitor described in Japanese Patent Application No. 63-10083 is simply added during the epoxidation reaction, HT will result in cloudiness.

これはわずかではあるが反応中に重合が起きる。Polymerization occurs during the reaction, albeit to a small extent.

ためであると考えられている。It is believed that this is for the purpose of

しかしながら、このような現象は軽微であるため、例え
ば液体クロマトグラフィーのような分析機器でも明瞭に
検知できないため見逃してしまう。
However, since such a phenomenon is so slight that it cannot be clearly detected even with analytical equipment such as liquid chromatography, it is overlooked.

HTで白濁した反応粗液は後の精製工程を経て製品化さ
れる間にさらに重合が進み、製品のHTは沈殿物を伴う
程の濁りとなる。
While the reaction crude liquid, which becomes cloudy due to HT, undergoes a subsequent purification process and is turned into a product, polymerization proceeds further, and the HT of the product becomes cloudy to the extent that it is accompanied by a precipitate.

このような現象に対し、て本発明者らは前記[A。In response to such a phenomenon, the present inventors have developed the above-mentioned [A.

B群]から選ばれた少くとも1種以上の化合物を共存せ
しめた組成物として製造工程、保管、流通過程に供する
ことにより解決できることを見出した。このとき組成物
に分子状酸素を共存させることにより効果を十分に発揮
させることができるが。
It has been found that the problem can be solved by using a composition in which at least one compound selected from Group B] is present in the manufacturing process, storage, and distribution process. At this time, the effect can be fully exerted by allowing molecular oxygen to coexist in the composition.

具体的には、運搬または保管中のタンクに空気を存在さ
せていればよい。
Specifically, air may be present in the tank during transportation or storage.

通常、液体を容器中に5A、管する場合には特に意識し
なくても容器の上部の空間に空気が存在する状態になる
ので共存状態が必然的に形成される。
Normally, when a liquid is piped into a container at 5A, air exists in the space above the container without being particularly conscious of it, so a coexistence state is inevitably formed.

但し、事前に空気を吹き込む操作を行なっておいてもて
もよい。
However, an operation for blowing air may be performed in advance.

吹込量は任意に選べるが、多過ぎると、溶媒ロスとなる
ので好ましくない。
The amount of blowing can be selected arbitrarily, but if it is too large, it is not preferable because it will result in solvent loss.

また、系内での爆発混合気形成を回避するため空気とと
もに系内に窒素を共存させるのが通常であるが、その場
合の吹込みガス中の酸素濃度は0゜01%(容量)以上
、好ましくは3%(容量)以上である。酸素濃度は高い
程効果があるが上限値は系での爆発下限界酸素濃度とな
り、その値は使用溶媒により興なるものである。
In addition, in order to avoid the formation of an explosive mixture in the system, it is normal to have nitrogen coexist with air in the system, but in that case, the oxygen concentration in the blown gas is 0°01% (volume) or more, Preferably it is 3% (capacity) or more. The higher the oxygen concentration, the more effective it is, but the upper limit is the lower explosive limit oxygen concentration in the system, and that value depends on the solvent used.

特に本発明で規程する2種以上の化合物の絹合わせで使
用した場合は各群の化合物の単独使用あるいは各群から
の2種のみによる併用にかがる効果よりはるかに優れ、
その相乗効果も極めて大きいことは特筆すべきものであ
る。
In particular, when two or more compounds prescribed in the present invention are used in combination, the effect is far superior to that obtained when each group of compounds is used alone or when only two compounds from each group are used in combination.
It is noteworthy that the synergistic effect is extremely large.

次に本発明のエポキシ化された(メタ)アクリレート組
成物を製造する際の情況を具体的に説明する。
Next, the situation when producing the epoxidized (meth)acrylate composition of the present invention will be specifically explained.

本発明のエポキシ化された(メタ)アクリレート組成物
に対して用いられる[A群]の化合物の一部、例えばハ
イドロキノン、ハイドロキノンモノメチルエーテルと分
子状酸素の組合わせが、いわゆるアクリル酸やアクリル
酸エステルの重合防止に効果があることは公知であり、
特願昭63−10083号出願の実施例でも空気雰囲気
下で禁止効果を比較している。
Some of the [Group A] compounds used for the epoxidized (meth)acrylate composition of the present invention, such as hydroquinone, a combination of hydroquinone monomethyl ether and molecular oxygen, are so-called acrylic acid or acrylic ester. It is known that it is effective in preventing the polymerization of
The example of Japanese Patent Application No. 10083/1983 also compares the inhibition effect in an air atmosphere.

本発明のエポキシ化された(メタ)アクリレート組成物
に対して[B群]の少くとも1種の化合物を必須の成分
として添加する理由は用いる酸化剤が微量とはいえ分解
しラジカル源を発生するのを抑制することに効果がある
と考えられるためである。
The reason why at least one compound of [Group B] is added as an essential component to the epoxidized (meth)acrylate composition of the present invention is that the oxidizing agent used decomposes, albeit in a small amount, and generates a radical source. This is because it is thought to be effective in suppressing people's behavior.

次に重合防止剤の使用量は対象とする化合物の種類、製
造工程上の条件によって任意に変えられるが、[A群〕
の化合物としては反応原料であるシクロへキセニルメチ
ル(メタ)アクリレートに対して0.005〜5重量%
、より好ましくは0゜001〜O,1ffi量%、[B
r1]の化合物とじてo、ooi〜1重量%、より好ま
しくは0.01〜0.2重量%の範囲で添加するのがよ
い。
Next, the amount of polymerization inhibitor used can be arbitrarily changed depending on the type of target compound and manufacturing process conditions, but [Group A]
The compound is 0.005 to 5% by weight based on the reaction raw material cyclohexenylmethyl (meth)acrylate.
, more preferably 0°001 to O,1ffi amount%, [B
r1] is preferably added in an amount of o, ooi to 1% by weight, more preferably 0.01 to 0.2% by weight.

添加方法は粉末のままでも良いし、溶媒に溶解し、て添
加してもよい。
The addition method may be as a powder, or it may be added after being dissolved in a solvent.

反応は連続もしくはバッチで行うが、連続の場合はピス
トンフロー型式が好ましい。
The reaction is carried out continuously or batchwise, and in the case of continuous reaction, a piston flow type is preferred.

この時用いる重合防止剤は各々単独で仕込んでも良いが
粉末状のものの場合は溶媒に溶解してから仕込むのが良
い。
The polymerization inhibitors used at this time may be added individually, but if they are in powder form, they are preferably dissolved in a solvent before being added.

また2M料エステルに溶解して仕込んでも良い。Alternatively, it may be dissolved in 2M ester and charged.

また、バッチ方式の場合も同様であるが、酸化剤は逐次
的に仕込むセミバッチ方式が望ましい。
Further, although the same applies to the case of a batch method, a semi-batch method in which the oxidizing agent is added sequentially is preferable.

本発明のポイントは、[A群]および[B群]から選ば
れる各々少くとも1種を共存せしめて重合を防止する点
にあるが、本発明はそのまま精製1看にも有効に活用で
きるのである。
The key point of the present invention is to prevent polymerization by allowing at least one of each selected from [Group A] and [Group B] to coexist, but the present invention can also be effectively used for purification as is. be.

反応終了後のエポキシ化反応粗液は溶媒、低沸点物質、
未反応原料、触媒などの除去、中和、吸着剤やイオン交
換樹脂処理などによってW製することができる。
After the reaction is completed, the epoxidation reaction crude liquid contains a solvent, a low boiling point substance,
W can be produced by removing unreacted raw materials, catalysts, etc., neutralizing them, and treating them with adsorbents and ion exchange resins.

特に酸化剤として有機過酸を用いる場合は反応粗液の中
和水洗を行うのが好ましい。
Particularly when an organic peracid is used as the oxidizing agent, it is preferable to neutralize and wash the reaction crude solution with water.

これは、中和せずに溶媒等の低沸点成分を除去しようと
すると極めて重合し易いためである。
This is because if low-boiling components such as solvents are removed without neutralization, they are extremely likely to polymerize.

中和に用いるアルカリ水溶液としては例えば、N aO
H%KOH、K  CO、N a2 CO3、NaHC
O3、KHCO3、NH3などのようなアルカリ性物質
の水溶液を使用することができる。
Examples of alkaline aqueous solutions used for neutralization include NaO
H%KOH, KCO, Na2CO3, NaHC
Aqueous solutions of alkaline substances such as O3, KHCO3, NH3, etc. can be used.

使用する際の濃度はひろい範囲で自由に泗択することが
できる。
The concentration used can be freely selected from a wide range.

N a HCO3水溶液を用いるのが好ましい。It is preferable to use an aqueous N a HCO3 solution.

中和および水洗は10〜90℃、好ましくは10〜50
°Cの温度範囲で行うのが良い。
Neutralization and water washing at 10-90°C, preferably 10-50°C
It is best to carry out in the temperature range of °C.

中和あるいは水洗を行った反応粗液から低沸点成分を除
去するには重合禁止剤を添加した後薄膜式蒸発器などを
用いるのが良い。
In order to remove low-boiling components from the reaction crude liquid that has been neutralized or washed with water, it is preferable to use a thin film evaporator or the like after adding a polymerization inhibitor.

特に反応粗液中に含まれる[A、B群]から選ばれた化
合物が下層水中に抽出され中和上層液中の含量が減少す
る場合もあるが、その際は、中和終了後各群の化合物を
適当量補充するのが好ましい、また、中和水洗時にも分
子状酸素を系内に吹込むことが望ましい。
In particular, there are cases where compounds selected from [groups A and B] contained in the crude reaction solution are extracted into the lower layer water and the content in the neutralized upper layer decreases. It is preferable to replenish an appropriate amount of the compound, and it is also desirable to blow molecular oxygen into the system during neutralization and washing with water.

中和水洗工程では、有機酸の中和除去とともに残存有機
過酸を除去することが重要である0次の低沸点成分除去
工程を安定に操作するためには、中和上層液中の残存有
機過酸含量を0.1%以下。
In the neutralization water washing process, it is important to neutralize and remove residual organic peracids as well as remove residual organic peracids. Peracid content below 0.1%.

、好ましくは0.01%以下になるまで繰り返し中和水
洗する必要がある。
It is necessary to repeat neutralization and washing with water until the concentration is preferably 0.01% or less.

従って連続式に中和水洗する場合は多段式になるが、通
常3〜5段にすれば有機過酸濃度を規定値以下に下げる
ことができる。
Therefore, in the case of continuous neutralization washing, a multi-stage method is required, but if the number of stages is usually 3 to 5, the organic peracid concentration can be lowered to below the specified value.

多段式の場合は最終段階は完全な水洗もしくはせいぜい
1%程度のアルカリ水溶液を使うのが好ましい。
In the case of a multi-stage method, it is preferable to completely wash with water or use an alkaline aqueous solution of about 1% at most in the final stage.

これは低沸点成分を除去したのちの塔底液をそのまま製
品にするよ、うな場合にはアルカリ金属が製品に混入し
品質に影響を及ぼすためである。
This is because if the bottom liquid after removing low-boiling components is used as a product as it is, alkali metals will be mixed into the product and affect its quality.

これはバッチで繰返し中和する場合も同様である。なお
、連続式で中和水洗した場合、下層水を向流式に前中和
に使うことは何ら問題なく、またその方が経済的である
This also applies to repeated batch neutralizations. In addition, when the neutralization water washing is carried out in a continuous manner, there is no problem in using the lower layer water in a countercurrent manner for pre-neutralization, and it is more economical.

中和水洗に使用するアルカリ量は反応粗液中の有機過酸
と有機酸の合計量に対して当量比で0゜5〜3倍量、好
ましくは1.1”1.5ft!を量使用するのがよく必
要以上に量を増やすのは経済的ではない、また当量比を
必要以上に下げた場合有機過酸あるいは有機酸を除去す
るのに多量の水を要するため、得策ではないし、また、
溶媒等の下層水中への溶解ロスも増加する。
The amount of alkali used for neutralization washing with water is 0.5 to 3 times the equivalent amount of the total amount of organic peracid and organic acid in the crude reaction solution, preferably 1.1" and 1.5 ft!. It is often not economical to increase the amount more than necessary, and if the equivalence ratio is lowered more than necessary, it is not a good idea because a large amount of water is required to remove the organic peracid or organic acid. ,
Dissolution loss of solvent etc. into the lower water also increases.

中和水洗工程の次に溶媒を除去する。Following the neutralization water wash step, the solvent is removed.

(脱低沸工程) 脱低沸には通常薄膜式蒸発器を用いるが、加熱温度は重
合防止の点から50〜180℃、好ましくは、60〜1
00℃で行うのがよい。
(Low-boiling removal process) A thin film evaporator is usually used for low-boiling removal, and the heating temperature is 50 to 180°C, preferably 60 to 180°C in order to prevent polymerization.
It is best to carry out the test at 00°C.

圧力は低沸点成分の物性によって任意に選べるが加熱温
度との関係で減圧で操作するのが一般的である。
Although the pressure can be arbitrarily selected depending on the physical properties of the low boiling point component, it is common to operate under reduced pressure in relation to the heating temperature.

分子状酸素を蒸発器に導入する場所は任意に運べるが塔
底液が留出するラインから吹込むのが普通である。
Molecular oxygen can be introduced into the evaporator at any location, but it is usually blown into the evaporator from the line where the bottom liquid is distilled.

吹込み量は任意に選べるが上限量は真空系の能力、ある
いは塔底液が安定に流下するかどうか、あるいは留出し
た低沸点成分をコンデンサーで補集する際の回収ロスを
いう観点から自ずと制限される。脱低沸工程で得られる
塔底液は純度的には94〜96%までしか達していない
が、本発明の成果として、HTが透明もしくはわずかに
白濁する程度の品質である。
The amount of injection can be selected arbitrarily, but the upper limit is determined by the capacity of the vacuum system, whether the bottom liquid flows down stably, and the recovery loss when collecting the distilled low-boiling components with a condenser. limited. Although the bottom liquid obtained in the low-boiling removal step has a purity of only 94 to 96%, as a result of the present invention, the quality is such that the HT is transparent or slightly cloudy.

したがって1通常の用途ではこのまま製品として十分通
用するものである。
Therefore, it can be used as a product for normal purposes.

さらに高純度の製品を得るためには次に製品化工程を行
う、製品化工程は、残存低沸点成分を完全に除去するも
ので脱低沸工程と同様に行うが、更に減圧度を増して高
真空下で行うのが一般的である。
In order to obtain a product with even higher purity, a productization step is performed next.The productization step completely removes the remaining low-boiling components and is carried out in the same way as the de-low-boiling step, but the degree of pressure reduction is further increased. It is generally carried out under high vacuum.

以下実施例をさらに詳しく説明する。Examples will be described in more detail below.

実施例−1 攪拌機および冷却用ジャケットが付いた内容量200j
のガラス反応器にシクロへキセニルメチルメタクリレー
ト14.4kg、酢酸エチル52−18kg、ハイドロ
キノンモノメチルエーテル12gr、ピロリン酸12g
を加え、かつ反応器に挿入管から酸素/チッ素(10/
90容量%)の混合ガスを100Nj/Hrで吹込んだ
Example-1 Inner capacity 200j with stirrer and cooling jacket
14.4 kg of cyclohexenyl methyl methacrylate, 52-18 kg of ethyl acetate, 12 gr of hydroquinone monomethyl ether, and 12 g of pyrophosphoric acid in a glass reactor.
and oxygen/nitrogen (10/nitrogen) from the insertion tube into the reactor.
A mixed gas of 90% by volume) was blown in at 100 Nj/Hr.

次いで反応温度を50゛Cに保ち、30%過酢酸溶液2
4.8kgを定量ポンプで4時間かけて仕込んだ、仕込
み終了後、更に4時間熟成後反応を終了させた0反応粗
液1gを採取しn−へブタンLogに溶解したところ透
明であった。
Next, the reaction temperature was kept at 50°C, and 30% peracetic acid solution 2
4.8 kg was charged over 4 hours using a metering pump. After completion of the charging, 1 g of the 0-reaction crude liquid was collected from which the reaction was completed after aging for an additional 4 hours, and dissolved in n-hebutane Log, which was transparent.

反応粗液を室温まで冷却後10%Na2CO350kg
を加え30分攪拌後、30分間静置して分液させる。下
層水を除去後更に10%N a 2 C0350kgを
加え同様な操作を行う。
After cooling the reaction crude liquid to room temperature, 10% Na2CO350kg
was added and stirred for 30 minutes, then left to stand for 30 minutes to separate the liquids. After removing the lower layer water, 350 kg of 10% Na 2 C was added and the same operation was performed.

この時上層液中の残存過酢酸濃度は0.02%で酢酸は
完全に消失していた。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.02%, and acetic acid had completely disappeared.

次いで、1%Na  CO350k gを加え同様な操
作を行ったところ過酢酸濃度は0.01%以下であった
Next, when 50 kg of 1% Na CO 3 was added and the same operation was performed, the peracetic acid concentration was 0.01% or less.

次に、中和上層液、70.5kgにハイドロキノンモノ
メチルエーテル12gビロリン酸12 gを加え、ガラ
ス製スミス式薄膜蒸発器で脱低沸処理した。操作条件は
加熱温度80℃、圧力150mmHgで、塔底液留出ラ
インから酸素/窒素< 10/90容量%)の混合ガス
を100Nj/Hrで吹込んだ。
Next, 12 g of hydroquinone monomethyl ether and 12 g of birophosphoric acid were added to 70.5 kg of the neutralized upper layer liquid, and the mixture was subjected to low boiling treatment using a glass Smith type thin film evaporator. The operating conditions were a heating temperature of 80° C. and a pressure of 150 mmHg, and a mixed gas of oxygen/nitrogen (<10/90% by volume) was blown in from the bottom liquid distillation line at 100 Nj/Hr.

塔底液の取得量は14.2kgであった。The amount of bottom liquid obtained was 14.2 kg.

またガスクロマトグラフィー分析で組成を調べたところ
METH894,7%、酢酸エチル1.8%、シクロへ
キセニルメチルメタクリレート1゜0%、その他2.5
%であった。
In addition, the composition was investigated by gas chromatography analysis and found to be 894.7% METH, 1.8% ethyl acetate, 1.0% cyclohexenyl methyl methacrylate, and 2.5% others.
%Met.

塔底液1gをn−へブタン10gに溶かしなところ、透
明であった。
When 1 g of the bottom liquid was dissolved in 10 g of n-hebutane, the solution was transparent.

実施例−2 攪拌機および冷却用ジャケットが付いた内容量200J
のガラス反応器にシクロへキセニルメチルメタクリレー
ト14.4kg、酢酸エチル52゜8kg、ハイドロキ
ノン12g、2−エチルヘキシルトリポリリン酸ナトリ
ウムi2gを加え、かつ反応器に挿入管から酸素/チッ
素(10/90容量%)の混合ガスを100NJ/Hr
で吹込ん−だ0次いで反応温度を40°Cに保ち、30
%過酢酸溶液24.8kgを定量ポンプで4時間かけて
仕込んだ。
Example-2 Inner capacity 200J with stirrer and cooling jacket
14.4 kg of cyclohexenyl methyl methacrylate, 52.8 kg of ethyl acetate, 12 g of hydroquinone, and 2 g of sodium 2-ethylhexyl tripolyphosphate were added to a glass reactor, and oxygen/nitrogen (10/90 volume) was added to the reactor from an insertion tube. %) mixed gas at 100NJ/Hr
Then, the reaction temperature was kept at 40 °C and 30
% peracetic acid solution was charged over 4 hours using a metering pump.

仕込み終了後、更に6時間熟成後反応を終了させた0反
応粗液1gを採取しn−へブタン10gに溶解したとこ
ろ透明であった。
After the completion of the preparation, 1 g of the 0-reaction crude liquid after the reaction was further aged for 6 hours was collected and dissolved in 10 g of n-hebutane, and the resultant mixture was transparent.

反応粗液を室温まで冷却後、10%NaOH40kgを
加え30分攪拌後、30分間静置して分液させる。下層
水を除去後更に10%N a 2 C0340kgを加
え同様な操作を行う。
After cooling the reaction crude liquid to room temperature, 40 kg of 10% NaOH was added, stirred for 30 minutes, and then allowed to stand for 30 minutes to separate the liquid. After removing the lower layer water, 340 kg of 10% Na 2 C was added and the same operation was performed.

この時上層液中の残存過酢酸濃度は0.03%で酢酸は
完全に消失していた8次いで、1%NaOH40k g
を加え同様な操作を行ったところ過酢酸濃度は0.01
%以下であった。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.03%, and acetic acid had completely disappeared.8 Next, 40 kg of 1% NaOH was added.
When the same operation was performed with the addition of
% or less.

次に、中和上NJ液69.6kgにハイドロキノン12
g、2−エチルヘキシルトリポリリン酸ナトリウム12
gを加え、ガラス製スミス式薄膜蒸発器で脱低沸処理し
た。
Next, add 12% of hydroquinone to 69.6kg of the neutralized NJ solution.
g, 2-ethylhexyl sodium tripolyphosphate 12
g was added thereto, and low boiling temperature was removed using a glass Smith type thin film evaporator.

操作条件は加熱温度100℃、圧力150mmHgで塔
底液留出ラインから、酸素/窒素(1〇−/9090容
量の混合ガスを100Nj/Hrで吹込んだ、塔底液の
取得量は13.9kgであった。またガスクロマトグラ
フィー分析で組成を調べたところMETH895,5%
、酢酸エチル1゜7%、シクロへキセニルメチルメタク
リレート1゜2%、そのfl!!1.6%であった。
The operating conditions were a heating temperature of 100°C, a pressure of 150 mmHg, and a mixed gas of oxygen/nitrogen (10-/9090 volume) was blown in from the bottom liquid distillation line at 100 Nj/Hr. The amount of bottom liquid obtained was 13. 9 kg.The composition was also investigated by gas chromatography analysis and found to be METH895.5%.
, ethyl acetate 1°7%, cyclohexenylmethyl methacrylate 1°2%, the fl! ! It was 1.6%.

塔底液1grをn−ヘプタン10gに溶かしたところわ
ずかに白濁したが沈殿物は認められなかった。続いて、
同じ装置で加熱温度80℃、圧力2〜3mmHHの条件
下でさらに脱低沸して高純度品を得た。
When 1g of the bottom liquid was dissolved in 10g of n-heptane, it became slightly cloudy, but no precipitate was observed. continue,
A high-purity product was obtained by further removing the low boiling point in the same apparatus under conditions of a heating temperature of 80° C. and a pressure of 2 to 3 mmHH.

この時塔底からは微量の空気を系内に導入した。At this time, a small amount of air was introduced into the system from the bottom of the tower.

塔底液の取得量は9.6kgであった。The amount of bottom liquid obtained was 9.6 kg.

ガスクロマトグラフィー分析したところM E ’I’
HB純度は98.1%であった0、− 塔底液1grをn−へブタン10gに溶かしなどこる白
濁したが、製品として使えるものであった。
Gas chromatography analysis revealed M E 'I'
The HB purity was 98.1%. 1g of the bottom liquid was dissolved in 10g of n-hebutane.Although it became cloudy, it could be used as a product.

比鮫例 攪拌機および冷却用ジャケットが付いた内容量−200
jのガラス反応器にシクロへキセニルメチルメタクリレ
ート14.4kg、酢酸エチル52.。
Contents: 200 with stirrer and cooling jacket
14.4 kg of cyclohexenyl methyl methacrylate and 52 kg of ethyl acetate were placed in a glass reactor. .

8kg、ハイドロキノンモノメチルエーテル12g、ピ
ロリン酸12gを加え、かつ反応器に挿入管から酸素/
チッ素(10/90容量%)の混合ガスを100Nj/
Hrで吹込んだ。
8 kg, 12 g of hydroquinone monomethyl ether, and 12 g of pyrophosphoric acid, and oxygen/oxygen was added to the reactor from the insertion tube.
Mixed gas of nitrogen (10/90% by volume) at 100Nj/
I injected it with HR.

次いで反応温度を50℃に保ち、30%過酢酸溶液24
.8kgを定量ポンプで4時間かけて仕込んだ。
Next, the reaction temperature was maintained at 50°C, and a 30% peracetic acid solution was added at 24°C.
.. 8 kg was charged over 4 hours using a metering pump.

仕込み終了後、さらに4時間熟成後反応を終了させた9
反応粗液1gを採取しn−へブタン10gに溶解したと
ころ透明であった。
After the preparation was completed, the reaction was terminated after further aging for 4 hours.9
When 1 g of the crude reaction solution was collected and dissolved in 10 g of n-hebutane, it was clear.

反応粗液を室温まで冷却後、10%N a 2 C03
50kgを加え30分撹拌後、30分間静置して分液さ
せる。
After cooling the reaction crude liquid to room temperature, 10% Na 2 C03
Add 50 kg, stir for 30 minutes, and leave to separate for 30 minutes.

下層水を除去後更に10%Na2CO350kgを加え
同様な操作を行う。
After removing the lower layer water, 50 kg of 10% Na2CO3 was added and the same operation was performed.

この時上層液中の残存過酢酸濃度は0.02%で酢酸は
完全に消失していた。
At this time, the residual peracetic acid concentration in the upper layer liquid was 0.02%, and acetic acid had completely disappeared.

次いで、1%N a  CO350k gを加え同様な
操作を行ったところ過酢酸濃度は0.01%以下であり
な。
Next, when 350 kg of 1% Na CO was added and the same operation was performed, the peracetic acid concentration was 0.01% or less.

次に、中和上層液71.1kgをガラス製スミス式薄膜
蒸発器で脱低沸処理した。
Next, 71.1 kg of the neutralized upper layer liquid was subjected to low boiling treatment using a glass Smith type thin film evaporator.

操作条件は加熱温度100℃圧力150mmHgで塔底
液ラインから酸素/窒素(10/90容量%)の混合ガ
スを100Nj/Hrで吹き込んだ、塔底液を3.3k
g取得したが蒸発器の振動異音が発生したため、操作を
中断した。
The operating conditions were a heating temperature of 100°C, a pressure of 150 mmHg, a mixed gas of oxygen/nitrogen (10/90% by volume) blown from the bottom liquid line at 100 Nj/Hr, and a bottom liquid of 3.3 k.
However, the operation was interrupted due to abnormal vibration noise of the evaporator.

蒸゛発器を解体したところ樹脂状の重合物が壁面および
攪拌羽根に付着していた。得られた塔底液1gをn−へ
ブタン10grに溶解したところ多量の白色沈殿物が析
出した。
When the evaporator was disassembled, resin-like polymers were found adhering to the walls and stirring blades. When 1 g of the obtained tower bottom liquid was dissolved in 10 g of n-hebutane, a large amount of white precipitate was deposited.

特許出願人 ダイセル化学工業株式会社1゜ 2゜ 手続補正書(自発) 事件の表示 平成1年特許願第581、 発明の名称 エポキシ化された (メタ)アクリレート組成物 名  称 (290)ダイセル化学工業株式会社 5、補正の内容 (1)特許請求の範囲を添付別紙の通りに補正する。Patent applicant: Daicel Chemical Industries, Ltd. 1゜ 2゜ Procedural amendment (voluntary) Display of incidents 1999 Patent Application No. 581, name of invention epoxidized (meth)acrylate composition Name (290) Daicel Chemical Industries, Ltd. 5. Contents of correction (1) Amend the claims as per the attached appendix.

(2)明細書の第4ページ13行目、第8ページ下から
2行目、第11ページ下から2行目、第12ページ2行
目、第12ページ7行目、第12ページ8〜9行目、第
12ページ15行目、第12ページ19〜20行目 「−・−へキセニル(メタ)・・・」 を r会・・ヘキセニルメチル(メタ)−@−Jに修正する
(2) Line 13 of page 4 of the specification, line 2 from the bottom of page 8, line 2 from the bottom of page 11, line 2 of page 12, line 7 of page 12, line 8 of page 12 Line 9, page 12, line 15, page 12, lines 19-20, "--hexenyl (meth)..." is corrected to r-kai...hexenylmethyl (meth)-@-J.

(3)明細書の第10ページ4行目 「・や・水素アンモニウム・・・」 を 「φ・・水素アンモニウムナトリウム・・・」に修正す
る。(以下余白) 明細書の特許請求の範囲の欄および 発明の詳細な説明の欄 (4)明細書の第10ページ9行目 「ン酸、トリポリリン酸カリウム トリポリリン酸」 を 「ン酸、2−エチルヘキシルトリポリリン酸カリウム、
2−エチルヘキシルトリポリリン酸」に修正する。(以
下余白) 別紙 2、特許請求の範囲 一般式(I) (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロへキセニルメチル(メタ)アクリレート化合
物を酸化剤でエポキシ化して一般式(11) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物および下記の[A群]および[B群]から選
ばれる各々少くとも1種の化合物を共存せしめたことを
特徴とするエポキシ化された(メタ)アクリレート組成
物: [A群] ハイドロキノン、ハイドロキノンモノメチルエーテル、
P−ベンゾキノン、クレゾール、t−ブチルカテコール
、2,4−ジメチル−6−t−ブチルフェノール、2−
t−ブチル−4−メトキシフェノール、3−t−ブチル
−4−メトキシフェノール、2,6−ジーt−ブチル−
P−クレゾール、2.5−ジヒドロキシ−P−キノン、
ピペリジン、エタノールアミン、α−ニトロソ−β−ナ
フトール、ジフェニルアミン、フェノチアジン、N−ニ
トロソフェニルヒドロキシルアミン、N、N−ジエチル
ヒドロキシルアミン [B群] リン酸、リン酸カリウム、リン酸ナトリウム、リン酸水
素アンモニウムナトリウム、ピロリン酸、ピロリン酸カ
リウム、ピロリン酸ナトリウム、ビロリン酸2−エチル
ヘキシルエステル、ビロリン酸カリウム2−エチルヘキ
シルエステル、ピロリン酸ナトリウム−2−エチルヘキ
シルエステル、トリポIJ リン酸、2−エチルヘキシ
ルトリポリリン酸カリウム、2−エチルヘキシルトリポ
リリン酸ナトリウム、2−エチルへキシルテトラポリリ
ン酸ナトリウム、2−エチルへキシルテトラポリリン酸
カリウム。(以下余白)
(3) On page 10, line 4 of the specification, "...ammonium hydrogen..." is amended to "φ...ammonium sodium hydrogen...". (White space below) Claims column and Detailed description of the invention column (4) On page 10, line 9 of the specification, "phosphoric acid, potassium tripolyphosphate tripolyphosphoric acid" was replaced with "phosphoric acid, potassium tripolyphosphate". Potassium ethylhexyl tripolyphosphate,
2-Ethylhexyltripolyphosphate". (Space below) Attachment 2, Claims A cyclohexenyl methyl (meth)acrylate compound represented by the general formula (I) (wherein R represents a hydrogen atom or a methyl group) is epoxidized with an oxidizing agent and the general formula ( 11) A compound represented by (wherein R represents a hydrogen atom or a methyl group) and at least one compound each selected from the following [Group A] and [Group B] are coexisting. Epoxidized (meth)acrylate composition: [Group A] Hydroquinone, hydroquinone monomethyl ether,
P-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, 2-
t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-
P-cresol, 2,5-dihydroxy-P-quinone,
Piperidine, ethanolamine, α-nitroso-β-naphthol, diphenylamine, phenothiazine, N-nitrosophenylhydroxylamine, N,N-diethylhydroxylamine [group B] phosphoric acid, potassium phosphate, sodium phosphate, ammonium hydrogen phosphate Sodium, pyrophosphoric acid, potassium pyrophosphate, sodium pyrophosphate, birophosphate 2-ethylhexyl ester, potassium birophosphate 2-ethylhexyl ester, sodium pyrophosphate-2-ethylhexyl ester, tripo IJ phosphoric acid, 2-ethylhexyl potassium tripolyphosphate, 2 - Sodium ethylhexyl tripolyphosphate, sodium 2-ethylhexyltetrapolyphosphate, potassium 2-ethylhexyltetrapolyphosphate. (Margin below)

Claims (1)

【特許請求の範囲】 一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中Rは水素原子またはメチル基を表わす)で表わさ
れるシクロヘキセニル(メタ)アクリレート化合物を酸
化剤でエポキシ化して 一般式(II) ▲数式、化学式、表等があります▼(II) (式中Rは水素原子またはメチル基を表わす)で表わさ
れる化合物および下記の[A群]および[B群]から選
ばれる各々少くとも1種の化合物を共存せしめたことを
特徴とするエポキシ化された(メタ)アクリレート組成
物: [A群] ハイドロキノン、ハイドロキノンモノメチルエーテル、
P−ベンゾキノン、クレゾール、t−ブチルカテコール
、2,4−ジメチル−6−t−ブチルフェノール、2−
t−ブチル−4−メトキシフェノール、3−t−ブチル
−4−メトキシフェノール、2,6−ジ−t−ブチル−
P−クレゾール、2,5−ジヒドロキシ−P−キノン、
ピペリジン、エタノールアミン、α−ニトロソ−β−ナ
フトール、ジフェニルアミン、フェノチアジン、N−ニ
トロソフェニルヒドロキシルアミン、N,N−ジエチル
ヒドロキシルアミン [B群] リン酸、リン酸カリウム、リン酸ナトリウム、リン酸水
素アンモニウム、ピロリン酸、ピロリン酸カリウム、ピ
ロリン酸ナトリウム、ピロリン酸2−エチルヘキシルエ
ステル、ピロリン酸カリウム2−エチルヘキシルエステ
ル、ピロリン酸ナトリウム−2−エチルヘキシルエステ
ル、トリポリリン酸、トリポリリン酸カリウム、トリポ
リリン酸ナトリウム。
[Claims] General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R represents a hydrogen atom or a methyl group) A cyclohexenyl (meth)acrylate compound represented by an oxidizing agent Epoxidized with the general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, R represents a hydrogen atom or a methyl group) and the following [Group A] and [Group B] ] An epoxidized (meth)acrylate composition characterized by the coexistence of at least one compound selected from the following: [Group A] Hydroquinone, hydroquinone monomethyl ether,
P-benzoquinone, cresol, t-butylcatechol, 2,4-dimethyl-6-t-butylphenol, 2-
t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-
P-cresol, 2,5-dihydroxy-P-quinone,
Piperidine, ethanolamine, α-nitroso-β-naphthol, diphenylamine, phenothiazine, N-nitrosophenylhydroxylamine, N,N-diethylhydroxylamine [group B] phosphoric acid, potassium phosphate, sodium phosphate, ammonium hydrogen phosphate , pyrophosphoric acid, potassium pyrophosphate, sodium pyrophosphate, 2-ethylhexyl pyrophosphate, potassium 2-ethylhexyl pyrophosphate, sodium 2-ethylhexyl pyrophosphate, tripolyphosphoric acid, potassium tripolyphosphate, sodium tripolyphosphate.
JP1005816A 1989-01-12 1989-01-12 Composition containing epoxidized (meth) acrylate compound Expired - Fee Related JP2704284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005816A JP2704284B2 (en) 1989-01-12 1989-01-12 Composition containing epoxidized (meth) acrylate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005816A JP2704284B2 (en) 1989-01-12 1989-01-12 Composition containing epoxidized (meth) acrylate compound

Publications (2)

Publication Number Publication Date
JPH02188576A true JPH02188576A (en) 1990-07-24
JP2704284B2 JP2704284B2 (en) 1998-01-26

Family

ID=11621610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005816A Expired - Fee Related JP2704284B2 (en) 1989-01-12 1989-01-12 Composition containing epoxidized (meth) acrylate compound

Country Status (1)

Country Link
JP (1) JP2704284B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117205A (en) * 1990-09-28 1993-05-14 Union Carbide Chem & Plast Co Inc Unsaturated polylactone acrylate and its derivative
US5382676A (en) * 1991-08-28 1995-01-17 Daicel Chemical Industries, Ltd. Purified 3,4-epoxycyclohexyl methyl(meth)acrylate, a process for the preparation thereof and a 3,4-epoxycyclohexyl methyl(meth)acrylate composition
GB2330837A (en) * 1995-09-01 1999-05-05 Daicel Chem A stabilised 3,4-epoxycyclohexyl methyl (meth)acrylate
GB2306957B (en) * 1995-09-01 1999-12-22 Daicel Chem Preparation of a purified 3,4-epoxycyclohexyl methyl(meth)acrylate & a process for preparing a stabilized 3,4-epoxycyclohexyl methyl(meth)acrylate composition
WO2020138052A1 (en) * 2018-12-28 2020-07-02 株式会社ダイセル High-purity 3,4-epoxycyclohexylmethyl methacrylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112670A (en) * 1986-10-29 1988-05-17 Kansai Paint Co Ltd Water-based covering composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112670A (en) * 1986-10-29 1988-05-17 Kansai Paint Co Ltd Water-based covering composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117205A (en) * 1990-09-28 1993-05-14 Union Carbide Chem & Plast Co Inc Unsaturated polylactone acrylate and its derivative
US5382676A (en) * 1991-08-28 1995-01-17 Daicel Chemical Industries, Ltd. Purified 3,4-epoxycyclohexyl methyl(meth)acrylate, a process for the preparation thereof and a 3,4-epoxycyclohexyl methyl(meth)acrylate composition
GB2330837A (en) * 1995-09-01 1999-05-05 Daicel Chem A stabilised 3,4-epoxycyclohexyl methyl (meth)acrylate
GB2306957B (en) * 1995-09-01 1999-12-22 Daicel Chem Preparation of a purified 3,4-epoxycyclohexyl methyl(meth)acrylate & a process for preparing a stabilized 3,4-epoxycyclohexyl methyl(meth)acrylate composition
GB2330837B (en) * 1995-09-01 1999-12-29 Daicel Chem A stabilized 3,4-epoxycyclohexyl methyl(meth)acrylate
WO2020138052A1 (en) * 2018-12-28 2020-07-02 株式会社ダイセル High-purity 3,4-epoxycyclohexylmethyl methacrylate
JP2020105440A (en) * 2018-12-28 2020-07-09 株式会社ダイセル High-purity 3,4-epoxycyclohexylmethyl methacrylate

Also Published As

Publication number Publication date
JP2704284B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP2546124B2 (en) Method for producing polyfunctional (meth) acrylate
JPH02188576A (en) Epoxidized (meth)acrylate composition
US5380884A (en) Method for producing glycidyl methacrylate
JP2852673B2 (en) Method for producing epoxidized (meth) acrylate
JP2906276B2 (en) Method for producing epoxidized (meth) acrylate
JP3018109B2 (en) Epoxidized (meth) acrylate and its production method
JP3029147B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2941036B2 (en) Method for preventing coloration of epoxidized (meth) acrylate
EP0487305B1 (en) Method of purifying crude glycidyl (meth)acrylate
JP3602620B2 (en) Purification method of 3,4-epoxycyclohexylmethyl (meth) acrylate
EP0741135B1 (en) 6H-Dibenz(c,e)(1,2)oxaphosphorin-6-oxide derivatives for the stabilisation of 3,4-epoxycyclohexylmethyl (meth)acrylate
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JPH0959268A (en) Production of acrylic acid or methacrylic acid glycidyl ester
JP2819061B2 (en) Method for purifying epoxidized (meth) acrylate
JP2941044B2 (en) Novel (Nata) acrylate compound and method for producing the same
JPH08245511A (en) Purification of (meth)acrylate compound
JP3760391B2 (en) Purification method of crude epoxidation reaction liquid
JP2562620B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2000154182A (en) Production of epoxy compound having (meth)acryloyl group
JP4862323B2 (en) Method for producing high purity adamantyl (meth) acrylates
JPH01186876A (en) Production of epoxidized (meth)acrylate
JP2869753B2 (en) Polymerizable vinyl compound
JPH0881452A (en) Alicyclic epoxy-containing (meth)acrylate composition and its production
JP3016428B2 (en) Composition comprising novel alicyclic compound and method for producing the same
JP2006257138A (en) Side-chain acryloyl group-containing epoxy resin and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees