JPH02133132A - Hot precision forging method - Google Patents

Hot precision forging method

Info

Publication number
JPH02133132A
JPH02133132A JP28610188A JP28610188A JPH02133132A JP H02133132 A JPH02133132 A JP H02133132A JP 28610188 A JP28610188 A JP 28610188A JP 28610188 A JP28610188 A JP 28610188A JP H02133132 A JPH02133132 A JP H02133132A
Authority
JP
Japan
Prior art keywords
forging
die
forged
thickness
bending moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28610188A
Other languages
Japanese (ja)
Inventor
Tomiharu Matsushita
富春 松下
Osamu Tsuda
統 津田
Nobuo Kanamaru
信夫 金丸
Atsushi Hasegawa
淳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28610188A priority Critical patent/JPH02133132A/en
Publication of JPH02133132A publication Critical patent/JPH02133132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To execute forming of a forged part with high precision by supporting a forming die by a supporting member whose contact surface is a convex curved surface and giving positively and adjustably a bending moment standing against an elastic deforming generated in the die by external force. CONSTITUTION:Forging use press loads F, F are loaded to the upper die 1 and the lower die 1' and a forged part 9 is brought to hot precision forging by impressions 4, 4'. Subsequently, jacks 7, 7' interposed between each arm 2, 2' provided on the upper and the lower dies 1, 1' are driven by a hydraulic pump 8, and separting force in the direction as indicated with an arrow (f) is operated. The upper and the lower dies 1, 1' are subjected to a concave are-like elastic deformation by the forging loads F, F of the upper and the lower dies 1, 1' along convex curved surfaces 5, 5' of the contact surface with a supporting base 3. Next, bending moments (m), (m) by which each center part 10, 10' of both the dies 1, 1' in the direction opposite thereto are bent to each adjacent covex arc shape are generated, the deformation quantum of the concave arc shape is suppressed, and a dimensional tolerance of thickness to the forged part 9 becomes small. Also, by adjusting variably the bending moment, a thickness control can also be executed. In such a way, the forged part 9 having the same accuracy can always be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミ合金や鋼材等の金属材を、成形金型を
用いて機械加工不要な最終製品形状に加圧鍛造する熱間
精密鍛造手段において、鍛造品の厚み精度向上と積極的
な厚み制御が可能であるように改善したものに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a hot precision forging process in which metal materials such as aluminum alloys and steel are press-forged into a final product shape that does not require machining using a forming die. The present invention relates to an improved means for improving the thickness accuracy of a forged product and making it possible to proactively control the thickness.

(従来の技術) 既知のように、アルミ合金材による精密鍛造品は、航空
機用各種部材として広く採用されているのであり、これ
らはいずれも鍛造のまま、最少限の機械加工を施して実
機装着されることが多い。
(Prior art) As is known, precision forgings made of aluminum alloy materials are widely used as various parts for aircraft, and these are all forged and installed in actual aircraft with minimal machining. It is often done.

このさい鍛造後の機械加工をより少なくするために、成
形金型による熱間鍛造手段を用い、各部寸法精度を高め
ると同時にメタルフローの制御をも行い、必要な材質付
与も得られるようにするのが通例である。このアルミ合
金材の熱間鍛造技術の全般と最近の技術動向については
、日本塑性加工学会誌である「塑性と加工J Vol、
23、No、253(19822)、P、129〜P、
136所載の[アルミニウム合金の熱間鍛造技術」 (
文献I)に、また、熱間精密鍛造技術の特徴と技術的要
点については同じく「塑性と加工J VOl、29、N
o、271 (1983−8)、P、823〜P、82
9所載の「アルミニウム合金の熱間精密鍛造」 (文献
旧に、それぞれ解説されている通りであり、また両記事
にはこれら鍛造手段における製品精度の向上策、現行技
術の限界等も示されている。
At this time, in order to reduce the amount of machining required after forging, hot forging using a forming die is used to improve the dimensional accuracy of each part, while also controlling the metal flow to obtain the necessary material properties. It is customary. For general information on hot forging technology for aluminum alloy materials and recent technological trends, please refer to "Plasticity and Processing J Vol.
23, No, 253 (19822), P, 129-P,
136 [Hot forging technology for aluminum alloys] (
The characteristics and technical points of hot precision forging technology are also described in Reference I), “Plasticity and Processing J Vol. 29, N.
o, 271 (1983-8), P, 823-P, 82
9, ``Hot Precision Forging of Aluminum Alloys'' (as explained in the old literature), and both articles also show measures to improve product precision in these forging methods, limitations of current technology, etc. ing.

(発明が解決しようとする課題) 従来のアルミニウム合金材の精密鍛造手段には、次の点
において問題がある。即ち、前記文献Iに示された表1
には、鍛造品における投影面積と鍛造方向の厚さ公差1
+mnが各鍛造内容別に、また文献Hにおける図4には
、投影面積とウェブ厚さの最小値の関係がそれぞれ示さ
れているが、現在の処、工業的に要求される精密鍛造品
における厚さ精度は公差で0.2〜0.3Mの範囲であ
り、この要求に対し投影面積の大きな精密鍛造品では、
鍛造のままではこれを達成することができず、事後の機
械加工によって所定公差に仕上げることが行われている
のが実情である。かかる状態を改善するために、大きな
投影面積を有する精密鍛造品の製作に当り、該鍛造品の
ウェブ厚さを精度よく鍛造するために、成形金型におけ
る弾性変形を予め見込んだ上で、金型における形彫りを
行なう手段も知られているが、この手段では鍛造中に厚
み精度を積極的に制御することができない不都合がある
(Problems to be Solved by the Invention) Conventional precision forging means for aluminum alloy materials have the following problems. That is, Table 1 shown in the above-mentioned document I
The projected area of the forged product and the thickness tolerance in the forging direction are 1
+mn is shown for each forging content, and Figure 4 in Document H shows the relationship between the projected area and the minimum web thickness. The precision forging is in the range of 0.2 to 0.3M in terms of tolerance, and in response to this requirement, precision forged products with a large projected area are
The reality is that this cannot be achieved with forging as is, and finishing to specified tolerances is done by subsequent machining. In order to improve this situation, when producing a precision forged product with a large projected area, in order to accurately forge the web thickness of the forged product, the elastic deformation in the forming die is anticipated in advance, and the Means for die-sinking in a mold are also known, but this means has the disadvantage that thickness accuracy cannot be actively controlled during forging.

(課題を解決するための手段) 本発明は従来の精密鍛造における2つの問題点、即ち、
鍛造品におけるウェブ厚みが、投影面積の増大とともに
大きくなり、より高精度の寸法公差内に納まる鍛造品が
得られない点、また成形金型における形彫り形状と鍛造
中の面圧分布とによって当該金型の変形量が決まり、こ
のため鍛造品における厚み寸法の制御ができない点を解
決するためになされたものであって、精密鍛造用の成形
金型に対し、曲げモーメントを外部力によって与え、こ
れにより鍛造中の金型における弾性変形を積極的に制御
し、目標とする鍛造品におけるウェブ厚みが確実かつ容
易に得られるようにしたものであり、具体的には、アル
ミ合金等の金属材を、成形金型を用いて最終製品形状の
鍛造品に、所要加熱温度下に鍛造成形する熱間精密鍛造
に当り、前記成形金型をその接触面を凸曲面とした支持
部材に支持させるとともに、該成形金型に、その加圧鍛
造時に該金型に生じる弾性変形に対抗する曲げモーメン
トを外力により積極的に、かつその曲げ量可調整に付与
することにより、該鍛造品における所要寸法公差下の厚
み制御を可能とすることにある。
(Means for Solving the Problems) The present invention solves two problems in conventional precision forging, namely:
The web thickness of a forged product increases as the projected area increases, making it impossible to obtain a forged product that fits within a more precise dimensional tolerance, and also due to the die-sinking shape of the forming die and the surface pressure distribution during forging. This was done to solve the problem that the amount of deformation of the die is determined and therefore the thickness dimension of forged products cannot be controlled. This actively controls elastic deformation in the die during forging, making it possible to reliably and easily obtain the desired web thickness for forged products. During hot precision forging, a forged product in the final product shape is forged using a forming die at a required heating temperature, and the forming die is supported by a support member whose contact surface is a convex curved surface. , by positively applying a bending moment to the mold by an external force to counter the elastic deformation that occurs in the mold during pressure forging, and by adjusting the amount of bending, the required dimensional tolerance of the forged product can be achieved. The purpose is to enable control of the thickness of the bottom.

(作 用) 本発明は上記した技術的手段によれば一第1図において
、上金型1および下金型1′にそれぞれ鍛造用プレス荷
重F、Fを負荷し、上、下金型1.1の各型面に形成し
たインプレッション4,4゛により、目的の最終製品形
状をもつ鍛造品9を熱間精密鍛造するにさいし、このま
までは鍛造品9の投影面積が大きい場合には、鍛造品9
の中央部と端部とのウェブ厚みに差が生じる。即ち鍛造
荷重F、 Fにより上、下金型1,1°はいずれも凹弧
状に弾性変形し、鍛造品9における中央部のウェブ厚み
は大きく、周辺端部は小さくなる不同を生じるが、本発
明においては、上、下金型1,1°に設けた各アーム2
,2°間に介入させたジヤツキ7.7゛を油圧ポンプ8
により駆動し、第1図に示すように矢印f方向の分離力
を働かせ、上、下金型l、1゛は支持台3との接触面で
ある凸曲面5,5゛に沿って、先に述べた上、下金型1
,1゛の鍛造荷重F、Fによる凹弧状の弾性変形とは逆
方向の、両金型1,1′の各中央部10゜10゛が互い
に近接する凸弧状の曲がる曲げモーメントm、mが発生
することにより、前記凹弧状の変形量を抑制するため、
鍛造品9における厚みの寸法公差は従来よりも小さくす
ることができるのである。更にまたこの曲げモーメント
mを積極的に与え、かつその曲げ量を大小に変更して曲
げモーメントmを可変に調整することによって、鍛造中
の厚み制御も可能となるのである。即ち、目的鍛造品9
の大きさ、ウェブの厚み、鍛造荷重の大小に応じて曲げ
量を調整することにより、常に同一精度の鍛造品9を製
造できるのである。
(Function) According to the above-mentioned technical means, in FIG. 1, the forging press loads F and F are respectively applied to the upper die 1 and the lower die 1', When performing hot precision forging of a forged product 9 having the desired final product shape using the impressions 4 and 4′ formed on each die surface of .1, if the projected area of the forged product 9 is large as it is, the forging Item 9
There is a difference in web thickness between the center and edges of the web. That is, due to the forging loads F and F, both the upper and lower dies 1 and 1° are elastically deformed in a concave arc shape, and the web thickness of the forged product 9 at the center is large and the web thickness at the peripheral edges is small. In the invention, each arm 2 provided at the upper and lower molds 1 and 1°
, the jack 7.7゛ inserted between 2 degrees is
As shown in FIG. As mentioned above, the lower mold 1
, 1゛The bending moment m, m of convex arc-shaped bending when the respective central parts 10゜10゛ of both molds 1 and 1' are close to each other is in the opposite direction to the concave arc-like elastic deformation due to forging loads F and F of 1゛. In order to suppress the amount of concave arc-shaped deformation by causing
The dimensional tolerance of the thickness of the forged product 9 can be made smaller than before. Furthermore, by actively applying this bending moment m and variably adjusting the bending moment m by changing the amount of bending, it is also possible to control the thickness during forging. That is, the purpose forged product 9
By adjusting the amount of bending according to the size of the web, the thickness of the web, and the magnitude of the forging load, a forged product 9 with the same precision can be manufactured at all times.

(実施例) 本発明方法の適切な実施例を、第1図乃至第4図に亘っ
て説示する。
(Example) A suitable example of the method of the present invention will be described with reference to FIGS. 1 to 4.

本発明方法を可能とするためには、精密鍛造用の成形金
型における鍛造時の弾性変形を外力で抑制御するための
手段、即ち、成形金型の面内に曲げモーメントを付与す
る手段を、鍛造中に制御可能に設けることが必要であり
、また曲げモーメントの付与が容易であるようなガイド
手段も必要とされ、このため実施例においては、第1図
および第2図に例示するように、第1図においては上下
金型装置の下金型側のみを示し、第2図に上下金型装置
の全体を示しているが、第1図に例示した成形用の下金
型1′の上面には最終製品形状に即応した目的のインプ
レッション4′が凹刻されるとともに、該下金型1゛の
回倒では左右両側の対称位置にアーム2°、2”が突出
状に設けられる。このアーム2,2゛は図示のように矢
印方向の力fを働かせることによって曲げモーメントm
を生じさせるためのものであり、下金型1′は台座6上
に設置された支持部材である支持台3の上面に接触支持
されるが、このさい下金型1゛の下面を支持する接触面
は、曲げモーメントmの付与が容易であるように、接触
面におけるいずれかの面が中央で高くなる凸曲面5°と
されるのである。第2図は上下金型の組立状態を示すよ
うに、第1図に示した成形用下金型1゛と同様の構造、
即ち、インプレッション4、アーム2.2をもつ上金型
1、凸曲面5を有する支持台3、支持台3の設置される
台座6を、両金型l。
In order to make the method of the present invention possible, a means for suppressing and controlling elastic deformation during forging in a precision forging mold by an external force, that is, a means for applying a bending moment within the plane of the mold is required. , it is necessary to provide a guide means that can be controlled during forging, and it is also necessary to provide a guide means that can easily apply a bending moment. Therefore, in the embodiment, as illustrated in FIGS. FIG. 1 shows only the lower mold side of the upper and lower mold apparatus, and FIG. 2 shows the entire upper and lower mold apparatus. A target impression 4' corresponding to the shape of the final product is engraved on the upper surface, and when the lower mold 1'' is rotated, arms 2° and 2'' are provided in a protruding manner at symmetrical positions on both the left and right sides. As shown in the figure, the arms 2, 2' are bent by applying a force f in the direction of the arrow to create a bending moment m.
The lower mold 1' is supported in contact with the upper surface of the support stand 3 which is a support member installed on the pedestal 6; The contact surface has a convex curved surface of 5 degrees with one of the contact surfaces being higher at the center so that the bending moment m can be easily applied. FIG. 2 shows the assembled state of the upper and lower molds, which have the same structure as the lower mold 1 shown in FIG.
That is, an impression 4, an upper mold 1 having an arm 2.2, a support base 3 having a convex curved surface 5, a base 6 on which the support base 3 is installed, and both molds l.

1°におけるインプレッション4,4゛が対応状に上下
に配設することになる。このさい上下平行して対面する
左右両側の各アーム2,2゛間には矢印方向の力fを働
かせる作動部材として回倒では油圧ジヤツキ7.7を介
入設置し、油圧ポンプ8より両ジヤツキ7.7に駆動油
圧を供給し、それぞれ矢印frで示すように、上金型1
のアーム2,2には上方向に、また下金型1”のアーム
2’ 、2’ には下方向に分離力を働かせることによ
り、それぞれ曲げモーメントm、mを生じさせるように
し、このさい駆動油圧を大小に変化させることにより、
その曲げモーメントm、mを大小可調整とするのである
Impressions 4 and 4' at 1° are arranged one above the other in a corresponding manner. At this time, hydraulic jacks 7.7 are interposed between the left and right arms 2, 2, which face each other vertically in parallel, as actuating members that apply a force f in the direction of the arrow. .7, and as shown by the arrow fr, the upper mold 1
By applying a separating force upwardly to the arms 2, 2 of the lower mold 1'' and downwardly to the arms 2', 2' of the lower mold 1'', bending moments m and m are respectively generated. By varying the drive oil pressure,
The bending moments m and m can be adjusted in size.

また台座6.6′にはそれぞれ鍛造荷重F、Fを上下方
向より矢印のように両金型1.l゛に負荷させるように
設けるのである。
In addition, the forging loads F and F are applied to the pedestals 6 and 6' from both the molds 1 and 6 in the vertical direction as shown by the arrows. It is provided so that the load is applied to l'.

上記した構成をもつ成形用上、下型1,1″によれば、
第2図に示すように上下の台座6,6′側から鍛造荷重
F、Fを加えることにより、両金型1.1゛間に介入さ
れたアルミ合金材等の金属材は、両金型1.1”のイン
プレッション4.4゛に圧縮加工されて、最終製品形状
の鍛造品9として、熱間精密鍛造されることになるが、
従来手段では鍛造荷重F、  Fが加わるとともに、両
金型1,1゛はいずれも凹弧状に弾性変形するため、そ
の鍛造品9における中央部と端部との各ウェブ厚みに大
小不同を生じ、投影面積が大きい場合には所定の寸法公
差内に維持成形することが難しく、事後の機械加工によ
る補正が必要とされ、また鍛造中のウェブ厚みの調整は
もとより不可能である。このさい本発明では、両金型1
,1゛の各アーム2,2゛間に介入した油圧ジヤツキ7
.7を油圧ポンプ8により負荷駆動し、両アーム2.2
”を上下相反方向に離間させることにより、矢印方向の
分離力fにより曲げモーメントm、 mが生じ、両金型
1,1′はその支持接触面がある凸曲面5,5゛に沿っ
て弾性変形し、前記した鍛造時における両金型1.l゛
の凹弧状の変形とは逆方向の凸弧状の変形が得られ、両
金型1,1゛の各中央部10.10’は互いに接近状に
突出されるように曲り、中央部におけるウェブ厚みが大
きくなることを抑制するのである。従って、所望寸法公
差内の成形、従来の寸法公差値よりも小さい値の成形が
確実に得られる。またこの曲げモーメントを単に抑制す
るのみでなく積極的に与え、かつその曲げモーメントを
大小に調整することにより、ウェブ厚みの鍛造中におけ
る制御も可能となるのである。従来かかる精密鍛造にお
いて、その鍛造品精度は成形金型のみに依存するものと
されているが、本発明によれば外力によって成形金型の
変形を自在に制御可能であるため、鍛造品に対する精度
向上は画期的な利点でもあり、目的鍛造品の大小、厚み
、鍛造荷重の大小に応じて曲げ量を制御することにより
、常に同一高精度の鍛造品を製造することができる。
According to the upper and lower molding molds 1 and 1″ having the above-described configuration,
As shown in Fig. 2, by applying forging loads F and F from the upper and lower pedestals 6 and 6' sides, the metal material such as aluminum alloy material inserted between both molds 1.1 It will be compressed to 1.1" impression 4.4" and hot precision forged as a forged product 9 in the final product shape.
In the conventional method, as the forging loads F and F are applied, both the dies 1 and 1'' are elastically deformed in a concave arc shape, resulting in a size difference in the thickness of each web between the center and end portions of the forged product 9. When the projected area is large, it is difficult to maintain and form the web within a predetermined dimensional tolerance, requiring subsequent correction by machining, and it is of course impossible to adjust the web thickness during forging. At this time, in the present invention, both molds 1
Hydraulic jack 7 interposed between each arm 2, 2 of , 1.
.. 7 is load-driven by a hydraulic pump 8, and both arms 2.2
By separating the molds 1 and 1' in opposite directions, bending moments m and m are generated due to the separation force f in the direction of the arrow, and both molds 1 and 1' are elastically moved along the convex curved surfaces 5 and 5' with their supporting contact surfaces. deformation, and a convex arc-shaped deformation in the opposite direction to the concave arc-shaped deformation of both molds 1.l'' during forging as described above is obtained, and each center portion 10.10' of both molds 1, 1'' is mutually This bends the web so that it protrudes close to each other, and prevents the web thickness from increasing at the center.Therefore, it is possible to reliably obtain molding within the desired dimensional tolerance and with a value smaller than the conventional dimensional tolerance. In addition, by not only suppressing this bending moment but also actively applying it, and adjusting the bending moment in size, it is also possible to control the web thickness during forging. It is said that the accuracy of forged products depends only on the forming die, but according to the present invention, the deformation of the forming die can be freely controlled by external force, so the improved accuracy of forged products is a revolutionary advantage. However, by controlling the amount of bending according to the size and thickness of the intended forged product and the magnitude of the forging load, it is possible to always manufacture forged products with the same high precision.

実施例においては、その曲げモーメント付与のための構
造として、油圧ジヤツキ7と油圧ポンプ8とによるもの
を例示したが、これは回倒以外の駆動機構を用いること
ができる。また曲げモーメントの付与に当り、第3図に
例示するように、曲げモーメントを4つの方向から与え
ることも可能である。即ち、同図に示す通り、両金型1
.loの周側面における対称4点位置にそれぞれアーム
2 a +3a、 4a、 laを対称に突出形成した
ものであり、このさい各アーム1a〜4aに作用させる
曲げモーメント付与の力は、全てを同しにすることも、
また全てを異なるようにすることも可能であり、目的鋳
造品の形状によって自由に制御すればよく、またこの場
合の支持台3,3゛における凸曲面5a + 5a ’
は周辺から中央部が高くなる饅頭形の凸曲面が好適であ
る。
In the embodiment, a structure using the hydraulic jack 7 and the hydraulic pump 8 was exemplified as a structure for applying the bending moment, but a drive mechanism other than rotation can be used. Furthermore, when applying the bending moment, it is also possible to apply the bending moment from four directions, as illustrated in FIG. That is, as shown in the figure, both molds 1
.. Arms 2a + 3a, 4a, and la are symmetrically formed at four symmetrical positions on the circumferential surface of lo, and the bending moment imparting force acting on each arm 1a to 4a at this time is the same for all. You can also
It is also possible to make all of them different, and it is sufficient to freely control them depending on the shape of the target cast product.
It is preferable to have a convex curved surface in the shape of a bun, with the center being higher than the periphery.

また成形金型1.loの支持台3,3゛に凸曲面5,5
°を形成する代わりに、第4図に例示するように両金型
1,1゛と支持台3,3゛とは平面で接触し、支持台3
゜3゛が接触する面において、台座6側の凸曲面5.5
”を形成することもできる。この場合は支持台3の周側
にアーム2.2°を設け、これは分離力fを作用させる
ことで同様の効果を奏することができる。
Also, molding mold 1. Convex curved surfaces 5, 5 on support base 3, 3 of lo
Instead of forming an angle between the two molds 1, 1'' and the supports 3, 3'' on a plane, as illustrated in FIG.
On the surface where ゜3゛ contacts, the convex curved surface 5.5 on the pedestal 6 side
In this case, an arm 2.2° may be provided on the circumferential side of the support base 3, and the same effect can be achieved by applying a separating force f.

また図示省略しであるが、凸曲面5,5゛を支持台3の
台座6側と接触する両側に設けることも勿論同効である
Although not shown, it is of course equally effective to provide convex curved surfaces 5, 5' on both sides of the support base 3 that contact the pedestal 6 side.

(発明の効果) 本発明によれば、従来の熱間精密鍛造法において見られ
る欠点、即ち鍛造品のウェブ厚みが投影面積の増大とと
もに大きくなって、高精度の鍛造品が得られない点、更
には成形金型における形彫り形状と鍛造中の面圧分布に
より金型変形量が決定され、鍛造品の寸法制御ができな
い点を、同時に解消し、より高精度の鍛造品の提供、更
には鍛造中の厚み制御を可能とし、同一精度の鍛造品の
提供を可能とする点においてきわめて有利である。
(Effects of the Invention) According to the present invention, the drawbacks observed in conventional hot precision forging methods, namely, the web thickness of the forged product increases as the projected area increases, making it impossible to obtain a highly accurate forged product, Furthermore, the amount of die deformation is determined by the die sinking shape of the forming die and the surface pressure distribution during forging, which simultaneously eliminates the inability to control the dimensions of the forged product, and provides forged products with higher precision. This method is extremely advantageous in that it enables thickness control during forging and provides forged products with the same precision.

即ち、成形金型に対し、その鍛造時に同金型に生じる凹
弧状の弾性変形と逆方向の凸弧状の変形を生じるように
曲げモーメントを付与することによって、投影面積の増
大にもかかわらず、より高精度の鍛造品の成形が可能と
なり、更にその曲げモーメントの積極的かつ可調整の付
与によって、厚み制御も同時に可能となるのであり、ア
ルミ合金を始めとする各種金属材の熱間精密鍛造に新生
面を開いたものとして優れたものである。
That is, by applying a bending moment to the forming die so as to cause convex arc-shaped deformation in the opposite direction to the concave arc-shaped elastic deformation that occurs in the same mold during forging, despite the increase in the projected area, This makes it possible to form forged products with higher precision, and by actively and adjustablely applying the bending moment, it is also possible to control the thickness at the same time, making it possible to perform hot precision forging of various metal materials including aluminum alloys. This is an excellent product as it opens up new horizons for the world.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法において用いる成形金型要部の斜面
図、第2図は同金型組立状態の全体斜面図、第3図(a
)は同金型変形実施例の斜面図、第3図(b)は支持台
の斜面図、第4図は同金型支持変形実施例の斜面図であ
る。 ■−上金型、1゛−下金型、2.2’−アーム、3.3
゜支持台、4.4’−インプレッション、5.5’、5
a、5a凸曲面、6,6′−・〜台座、7−油圧ジヤツ
キ、8−・油圧ポンプ、la、2a、3a、4a −ア
ーム、9−鍛造品、10、10’ −一金型中央部。 2C 第 図 第 図
Fig. 1 is a perspective view of the main parts of the molding die used in the method of the present invention, Fig. 2 is an overall perspective view of the same mold in the assembled state, and Fig. 3 (a
3(b) is a perspective view of the support base, and FIG. 4 is a perspective view of the same mold support variant. ■-Upper mold, 1゛-Lower mold, 2.2'-Arm, 3.3
゜Support stand, 4.4'-impression, 5.5', 5
a, 5a convex curved surface, 6,6'--pedestal, 7-hydraulic jack, 8-hydraulic pump, la, 2a, 3a, 4a-arm, 9-forged product, 10, 10'-one mold center Department. 2C Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)アルミ合金等の金属材を、成形金型を用いて最終
製品形状の鍛造品に、所要加熱温度下に鍛造成形する熱
間精密鍛造に当り、前記成形金型をその接触面を凸曲面
とした支持部材に支持させるとともに、該成形金型に、
その加圧鍛造時に該金型に生じる弾性変形に対抗する曲
げモーメントを外力により積極的に、かつその曲げ量可
調整に付与することにより、該鍛造品における所要寸法
公差下の厚み制御を可能とすることを特徴とする熱間精
密鍛造法。
(1) During hot precision forging, in which a metal material such as an aluminum alloy is forged into a forged product in the final product shape using a forming die at a required heating temperature, the contact surface of the forming die is convex. Supported by a curved support member, and in the mold,
By positively applying a bending moment using an external force to counter the elastic deformation that occurs in the die during pressure forging, and adjusting the amount of bending, it is possible to control the thickness of the forged product within the required dimensional tolerance. A hot precision forging method characterized by:
JP28610188A 1988-11-11 1988-11-11 Hot precision forging method Pending JPH02133132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28610188A JPH02133132A (en) 1988-11-11 1988-11-11 Hot precision forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28610188A JPH02133132A (en) 1988-11-11 1988-11-11 Hot precision forging method

Publications (1)

Publication Number Publication Date
JPH02133132A true JPH02133132A (en) 1990-05-22

Family

ID=17699951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28610188A Pending JPH02133132A (en) 1988-11-11 1988-11-11 Hot precision forging method

Country Status (1)

Country Link
JP (1) JPH02133132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624890A (en) * 2014-12-03 2015-05-20 鞍钢重型机械有限责任公司 Forging method for lifting ring forged part
CN104707927B (en) * 2013-12-12 2016-09-14 陕西宏远航空锻造有限责任公司 A kind of improve variable cross-section aluminum alloy die forgings tissue and the hot-working method of performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707927B (en) * 2013-12-12 2016-09-14 陕西宏远航空锻造有限责任公司 A kind of improve variable cross-section aluminum alloy die forgings tissue and the hot-working method of performance
CN104624890A (en) * 2014-12-03 2015-05-20 鞍钢重型机械有限责任公司 Forging method for lifting ring forged part

Similar Documents

Publication Publication Date Title
JPH0536133B2 (en)
JP2010023078A (en) Bending method of workpiece and device used for the same
US20190217372A1 (en) Method for producing forged crankshaft
JP3564278B2 (en) Press mold
JPH02133132A (en) Hot precision forging method
US20190224741A1 (en) Method for producing forged crankshaft
JPH0716729B2 (en) Mold forming method using elastic deformation mold
JPH0513740B2 (en)
US3691804A (en) Cold extruded article and method of making the same
RU2545863C2 (en) Multiprocess drawing of box part from sheet blank
JPH0890100A (en) Turret punch press for forming plural curved surfaces
CN2670024Y (en) Sheet hot shaping discrete lap apparatus
US3226967A (en) Apparatus for producing blades
US2702578A (en) Double acting bending dies
CN1554497A (en) Discrete face mold device for plate material heat forming
JPH05200474A (en) Method and device for preliminarily forming die forging
JPH039920Y2 (en)
US2639495A (en) Method for producing a sharply bent corner in a plate
US3603130A (en) Method of forging blanks, notably crankshafts
JPS60191621A (en) Method of press forming metallic plate
RU2684130C1 (en) Forming method of elastic medium sheet components with elements of “undercutting” type
JPH08103825A (en) Method for forming forked member and die therefor
JP2002239631A (en) Bending method and device thereof
CN114160615B (en) Method for using variable-edge-mode double-curvature bending device
US3147539A (en) Method and apparatus for producing blades