JPH0198302A - Reflection type rectangular waveguide line - Google Patents

Reflection type rectangular waveguide line

Info

Publication number
JPH0198302A
JPH0198302A JP25599687A JP25599687A JPH0198302A JP H0198302 A JPH0198302 A JP H0198302A JP 25599687 A JP25599687 A JP 25599687A JP 25599687 A JP25599687 A JP 25599687A JP H0198302 A JPH0198302 A JP H0198302A
Authority
JP
Japan
Prior art keywords
rectangular waveguide
feeding
space
power
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25599687A
Other languages
Japanese (ja)
Inventor
Kunimitsu Arimura
有村 國光
Akira Tsukada
章 塚田
Hiroshi Kasuga
春日 博志
Fumihisa Takenaga
武永 文央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arimura Giken KK
Original Assignee
Arimura Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arimura Giken KK filed Critical Arimura Giken KK
Priority to JP25599687A priority Critical patent/JPH0198302A/en
Publication of JPH0198302A publication Critical patent/JPH0198302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To effectively radiate feeding power by devising the feeding such that it is fed from a horn type waveguide into a rectangular waveguide space via a reflecting face so as to obtain a desired equi-potential face in the rectangular waveguide space. CONSTITUTION:A couple of metallic plates 1, 2 are arranged in the rectangular waveguide line so as to be opposed to each other at a mutual interval and plural slots 1a are formed linearly to one metallic plate 1 as a power radiation aperture. Then the metallic plates 1, 2 are connected by a metal-made side wall 3 except the feeding aperture and the rectangular waveguide space S is formed in the inside by the metallic plates 1, 2 and the metal-made side wall 3. Moreover, a reflecting face C while leaving a gap D is arranged so as to bypass a radio wave propagated through the feeding horn waveguide space A into the space S. Since the cross section shape of the reflecting face C is semi-circular, the reverse traveling of the radio wave due to the reflection on the reflecting face C is prevented sufficiently and effective feeding is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通信用アンテナ・放送用アンテナ等として用
いた場合に好適の、反射型方形導波管線路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reflective rectangular waveguide line suitable for use as a communication antenna, broadcasting antenna, etc.

〔従来の技術〕[Conventional technology]

第11図は従来の同軸型円形導波線路の中央縦断斜視図
、第12図は同軸型円形導波線路の円柱座標系における
電波伝播の説明図である。
FIG. 11 is a central vertical perspective view of a conventional coaxial circular waveguide, and FIG. 12 is an explanatory diagram of radio wave propagation in a cylindrical coordinate system of the coaxial circular waveguide.

従来の導波線路には、第11図に示すような同軸型など
の円形導波線路があり、同円形導波線路の導波空間内に
おける給電電力は、第12図に示すような円柱座標で表
される変形TEM同軸モードである。したがって、給電
電力は中央給電用開口を中心とする同心円状に広がるた
めに、同心円状あるいは渦巻状に電力放射用スロットが
形成されている。
Conventional waveguides include circular waveguides such as coaxial type as shown in Fig. 11, and the feeding power within the waveguide space of the circular waveguide is expressed in cylindrical coordinates as shown in Fig. 12. This is the modified TEM coaxial mode expressed by . Therefore, since the feeding power spreads concentrically around the central feeding opening, the power radiation slots are formed concentrically or spirally.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述のような従来の円形導波線路は、円偏波
用アンテナとしては好適ではあるが直線偏波を放射する
場合は円偏波を放射する場合に比ベサイドローブが大き
くなったり、利得が減少してしまうなどといった問題点
がある。
By the way, although the conventional circular waveguide as described above is suitable as a circularly polarized wave antenna, when radiating a linearly polarized wave, the relative side lobe becomes large when radiating a circularly polarized wave, and the gain is low. There are problems such as a decrease in

本発明は、このような問題点の解決をはかろうとするも
ので、円偏波だけでなく直線偏波も高効率で放射できる
ようにし、かつ、上記方形導波管空間内の電界の等位相
面を補償した反射型方形導波管線路を提供することを目
的とする。
The present invention attempts to solve these problems by making it possible to radiate not only circularly polarized waves but also linearly polarized waves with high efficiency, and to improve the equality of the electric field within the rectangular waveguide space. The purpose of this invention is to provide a reflective rectangular waveguide line with phase front compensation.

〔問題点を解決するための手段〕[Means for solving problems]

このため、本発明の反射型方形導波管線路は、金属板で
囲まれた方形導波管空間と、同方形導波管空間に形成さ
れた少なくとも1箇所以上の給電用開口と、同給電用開
口に接続された給電用ホーン型導波管とをそなえ、上記
ホーン型導波管から上記方形導波管空間内へ至る給電経
路に、給電電力を反射させることにより上記方形導波管
空間の電界の等位相面を調整しうる反射面が介設された
ことを特徴としている。
Therefore, the reflective rectangular waveguide line of the present invention includes a rectangular waveguide space surrounded by a metal plate, at least one power feeding opening formed in the rectangular waveguide space, and a power feeding opening formed in the rectangular waveguide space. a horn-shaped waveguide for feeding power connected to the opening for power supply, and the feeding power is reflected to the feeding path from the horn-shaped waveguide to the inside of the rectangular waveguide space. It is characterized by the interposition of a reflective surface that can adjust the equiphase front of the electric field.

〔作  用〕[For production]

上述の本発明の反射型方形導波管線路では、ホーン型導
波管から電力供給用開口を介し方形導波管空間へ電力が
供給されると、反射面により等位相面が補償され、電力
放射用スロットを通じて、はぼ同位相の電力が放射され
る。
In the above-described reflective rectangular waveguide line of the present invention, when power is supplied from the horn waveguide to the rectangular waveguide space through the power supply opening, the equal phase front is compensated by the reflective surface, and the power is Power that is approximately in phase is radiated through the radiation slot.

〔実 施 例〕〔Example〕

以下、図面により本発明の反射型方形導波管線路につい
て説明すると、第1〜7図は本発明の一実施例としての
反射型方形導波管線路を示すもので、第1図(a)はそ
の斜視図、第1図(b)はその中央縦断斜視図、第2図
はそのホーン型導波管部の電波伝播の説明図、第3図は
その直交座標系における電波伝播の説明図、第4〜7図
はその電力放射用スロットの形成方法を示す平面図であ
り、第8図は本発明の第2実施例としての反射を方形導
波管線路を示す直交座標系における電波伝播の説明図で
あり、第9図は本発明の第3実施例としての反射型方形
導波管線路を示す直交座標系における電波伝播の説明図
であり、第10図は上述の各実施例における反射面Cを
示す反射型方形導波管線路の部分縦断面図であり、各図
中向じ符号はほぼ同様の部分を示している。
Hereinafter, the reflective rectangular waveguide line of the present invention will be explained with reference to the drawings. Figs. 1 to 7 show a reflective rectangular waveguide line as an embodiment of the present invention, and Fig. 1(a) 1(b) is a perspective view of the central longitudinal section, FIG. 2 is an explanatory diagram of radio wave propagation in the horn-shaped waveguide section, and FIG. 3 is an explanatory diagram of radio wave propagation in the orthogonal coordinate system. , FIGS. 4 to 7 are plan views showing the method of forming the power radiation slot, and FIG. 8 is a plan view showing the method of forming the power radiation slot, and FIG. FIG. 9 is an explanatory diagram of radio wave propagation in an orthogonal coordinate system showing a reflective rectangular waveguide line as a third embodiment of the present invention, and FIG. 10 is an explanatory diagram of radio wave propagation in each of the above embodiments. It is a partial vertical cross-sectional view of a reflective rectangular waveguide line showing a reflective surface C, and the upward reference numerals in each figure indicate substantially the same parts.

まず、本発明の第1実施例について説明すると、第1図
は本発明の反射型方形導波管線路の斜視図であり、相互
に離隔して対向するように一対の金属板1.2が配設さ
れており、一方の金属板lには電力放射用開口としての
複数のスロット(または溝穴)laが直線上に形成され
ている。これにより金属板1は電力放射面をもつことに
なる。
First, a first embodiment of the present invention will be described. FIG. 1 is a perspective view of a reflective rectangular waveguide line of the present invention, in which a pair of metal plates 1.2 are spaced apart from each other and face each other. One metal plate l has a plurality of slots (or slots) la formed in a straight line as openings for power radiation. As a result, the metal plate 1 has a power radiation surface.

そして金属板1.2は給電用開口を除いて金属製側壁3
で連結され、これらの金属板1.2および金属製側壁3
でその内部に方形導波管空間Sが形成される。
The metal plate 1.2 has a metal side wall 3 except for the power supply opening.
These metal plates 1.2 and metal side walls 3
A rectangular waveguide space S is formed inside the waveguide.

また、給電用ホーン型導波管空間Aを伝播した電波が方
形導波管空間Sに迂回するよう隙間りを残して反射面C
が配設されている。
In addition, a gap is left so that the radio waves propagated through the feeding horn-shaped waveguide space A can be detoured to the rectangular waveguide space S.
is installed.

反射面Cはその断面形状が半円で形成されているので、
この反射面Cでの反射による電波の逆行を充分に防止で
き、給電を効果的に行なうことができる。
Since the reflective surface C has a semicircular cross-sectional shape,
It is possible to sufficiently prevent the radio waves from going backwards due to reflection on the reflecting surface C, and power can be supplied effectively.

また、ホーン型導波管空間Aを伝播して反射面Cに近づ
く電波における電界の等位相面は、第2図に示すような
仮想給電点0を中心とするほぼ円筒状(点線)に分布し
、電界に位相差が生じる。
In addition, the equiphase front of the electric field in the radio wave propagating through the horn-shaped waveguide space A and approaching the reflecting surface C is distributed in an almost cylindrical shape (dotted line) centered on the virtual feeding point 0 as shown in Fig. 2. However, a phase difference occurs in the electric field.

しかし、本実施例における反射面Cは放物線状に彎曲す
るよう形成されており、第3図(a)に示す直交座標系
の2方向からみた電波の様子は第3図(b)のようにx
y平面上の放物線による反射とほぼ等価で、仮想給電点
0から放物線で折り返しX軸に到達する各方向の電波の
路程は等しくなる。また、第3図(c)に示す1回目の
反射から2回目の反射までの各方向の電波の路程もほぼ
等しいので、隙間りを迂回して方形導波管空間Sに現れ
る電波における電界の等位相面は平面となる。
However, the reflecting surface C in this embodiment is formed to be curved in a parabolic shape, and the appearance of the radio waves as seen from the two directions of the orthogonal coordinate system shown in FIG. 3(a) is as shown in FIG. 3(b). x
This is almost equivalent to reflection by a parabola on the y-plane, and the path length of the radio wave in each direction from the virtual feeding point 0 to the parabola and reaching the X-axis is equal. Furthermore, since the path lengths of the radio waves in each direction from the first reflection to the second reflection shown in FIG. The equiphase surface becomes a plane.

従って、スロットlaは平面波に位相が合うよう直線上
に配設することができ給電電力を有効に利用できる。
Therefore, the slots la can be arranged on a straight line so that the phase matches the plane wave, and the supplied power can be used effectively.

なお、この反射面Cはパラボラアンテナやホーンレフレ
クタアンテナに使われるような回転放物面の一部を用い
ず放物線を半円周上に平行移動させたような面で構成さ
れている。また、パラボラアンテナが空間でTEM波の
等位相面を平面にするのに対し、本実施例では上述した
とおり方形導波管空間内部でのTE波の電界の等位相面
を平面にするという点が異なり、ホーンレフレクタアン
テナが1回の反射で球面波を平面波にするのに対し同方
形導波管線路は電界の等位相面が円筒状である円筒波を
2回の反射で平面にするという点が異なる。
Note that this reflecting surface C is constituted by a surface obtained by translating a parabola on a semicircle, without using a part of a paraboloid of revolution as used in a parabolic antenna or a horn reflector antenna. Additionally, while a parabolic antenna makes the equiphase plane of the TEM wave plane in space, in this embodiment, as mentioned above, the equiphase plane of the electric field of the TE wave inside the rectangular waveguide space is made a plane. The difference is that a horn reflector antenna turns a spherical wave into a plane wave with one reflection, whereas an isotropic waveguide turns a cylindrical wave whose electric field has a cylindrical equiphase plane into a plane with two reflections. The difference is that.

さらに、第1図の反射型方形導波管線路の導波管終端部
には終端抵抗体5が配設されており、この終端抵抗体5
によって導波管終端部へ至った余剰電力が消費される。
Furthermore, a terminating resistor 5 is disposed at the waveguide terminal end of the reflective rectangular waveguide line in FIG.
The surplus power reaching the end of the waveguide is consumed.

また、本実施例におけるスロット1aの形成方法の実施
例を第4〜7図に示す。第5〜7図のような形成方法は
、スロットlaが電界の等位相面に平行ではなくTの字
を45°傾けたようなもの、あるいはくの字をに設定し
たものである。このような種々のスロット1aの形成方
法によって、スロット密度を増やすことができ開口能率
が向上し、かつ、アンテナとしての本発明の反射型方形
導波管線路の偏波特性をも変えることが可能である。
Further, an example of the method of forming the slot 1a in this embodiment is shown in FIGS. 4 to 7. In the forming method shown in FIGS. 5 to 7, the slots la are not parallel to the equiphase plane of the electric field, but are shaped like a T shape tilted by 45 degrees, or a dogleg shape. By using these various methods of forming the slots 1a, the slot density can be increased, the aperture efficiency can be improved, and the polarization characteristics of the reflective rectangular waveguide line of the present invention as an antenna can also be changed. It is possible.

例えば、第4.6.7図のようにスロット1aを形成す
ると直線偏波、第5図のようにスロット1aを形成する
と円偏波を放射することができる。なお、第6図では図
中で囲んだ4つのスロットla−組で直線偏波を発生し
、これを縦横に配置したものである。また、スロットl
aの長さはほぼ半波長、幅は波長に比べ小さいものとす
る。
For example, if slots 1a are formed as shown in FIG. 4.6.7, linearly polarized waves can be emitted, and if slots 1a are formed as shown in FIG. 5, circularly polarized waves can be emitted. In addition, in FIG. 6, linearly polarized waves are generated in the four slots la-sets enclosed in the figure, and these are arranged vertically and horizontally. Also, slot l
The length of a is approximately half a wavelength, and the width is smaller than the wavelength.

次に、本発明の第2実施例について説明すると、第8図
に示すように反射面Cは2方向からみた形が円の一部、
すなわち弧であり、電波の様子はXy平面上の弧による
反射と等価で、方形導波管空間内に現れる電波における
電界の等位相面は第8図に示すようになる。その他の作
用効果は上述の第1実施例の場合と同様である。
Next, to explain the second embodiment of the present invention, as shown in FIG.
That is, it is an arc, and the state of the radio wave is equivalent to reflection by an arc on the Xy plane, and the equiphase front of the electric field in the radio wave appearing in the rectangular waveguide space is as shown in FIG. Other effects are the same as in the first embodiment described above.

次に、本発明の第3実施例について説明すると、第9図
に示すように反射面Cは2方向からみた形が直線であり
、電波の様子はxy平面上の直線による反射と等価で、
方形導波管空間内に現れる電波における電界の等位相面
は第9図に示すようになる。その他の作用効果は前述の
第1実施例の場合と同様である。
Next, to explain the third embodiment of the present invention, as shown in FIG. 9, the reflecting surface C has a straight line shape when viewed from two directions, and the appearance of the radio waves is equivalent to reflection by a straight line on the xy plane.
The equiphase front of the electric field in the radio waves appearing in the rectangular waveguide space is as shown in FIG. Other effects are the same as in the first embodiment described above.

また、上述の各実施例において、反射面Cはy2平面で
の垂直断面形状は半円ではなく第10図に示すような半
多角形状でもよい。
Furthermore, in each of the above-described embodiments, the vertical cross-sectional shape of the reflecting surface C on the y2 plane may not be a semicircle but may be a semi-polygon as shown in FIG. 10.

さらに反射面Cの水平断面の形状としては、楕円形や双
曲線の弯曲形状をもつものでもよい。
Furthermore, the shape of the horizontal cross section of the reflective surface C may be an ellipse or a hyperbolically curved shape.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の反射型方形導波管線路に
よれば、ホーン型導波管による方形導波管空間内への給
電が反射面を介して行なわれるので、上記方形導波管空
間内の等位相面は、反射面を適宜設計することで所望の
ものが得られ、給電電力を有効に放射することができる
As described in detail above, according to the reflective rectangular waveguide line of the present invention, power is fed into the rectangular waveguide space by the horn-shaped waveguide via the reflective surface, so that the rectangular waveguide A desired equiphase surface within the tube space can be obtained by appropriately designing the reflecting surface, and the feeding power can be effectively radiated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜7図は本発明の一実施例としての反射を方形導波
管線路を示すもので、第1図(a)はその斜視図、第1
図(b)はその中央縦断斜視図、第2図はそのホーン型
導波管部の電波伝播の説明図、′第3図はその直交座標
系における電波伝播の説明図、第4〜7図はその電力放
射用スロットの形成方法を示す平面図であり、第8図は
本発明の第2実施例としての反射型方形導波管線路を示
す直交座標系における電波伝播の説明図であり、第9図
は本発明の第3実施例としての反射を方形導波管線路を
示す直交座標系における電波伝播の説明図であり、第1
0図は上述の各実施例における反射面Cを示す反射型方
形導波管線路の部分縦断面図であり、第11図は従来の
同軸型円形導波線路の中央縦断斜視図、第12図は同軸
型円形導波線路の円柱座標系における電波伝播の説明図
である。 1・・金属板、1a・・電力放射用スロット、2・・金
属板、3・・側壁、4・・ホーン型導波管、5・・終端
抵抗体、A・・ホーン型導波管空間、C・・反射面、D
・・隙間、S・・方形導波管空間、0・・仮想給電点、
λ・・自由空間波長。 代理人 弁理士 飯 沼 義 彦 (b) 第3図 デ (b) 第4図 λ 第5図 ■ 第6図 第7図 第8図 第9図 y 第10図
1 to 7 show a rectangular waveguide line for reflection as an embodiment of the present invention, and FIG. 1(a) is a perspective view thereof, and FIG.
Figure (b) is a central vertical perspective view of the same, Figure 2 is an explanatory diagram of radio wave propagation in the horn-shaped waveguide section, Figure 3 is an explanatory diagram of radio wave propagation in the orthogonal coordinate system, and Figures 4 to 7. is a plan view showing a method of forming the power radiation slot, and FIG. 8 is an explanatory diagram of radio wave propagation in an orthogonal coordinate system showing a reflective rectangular waveguide line as a second embodiment of the present invention. FIG. 9 is an explanatory diagram of radio wave propagation in an orthogonal coordinate system showing reflection and a rectangular waveguide line as a third embodiment of the present invention;
FIG. 0 is a partial vertical cross-sectional view of a reflective rectangular waveguide line showing the reflective surface C in each of the above embodiments, FIG. 11 is a central vertical cross-sectional perspective view of a conventional coaxial circular waveguide line, and FIG. is an explanatory diagram of radio wave propagation in a cylindrical coordinate system of a coaxial circular waveguide. 1...Metal plate, 1a...Slot for power radiation, 2...Metal plate, 3...Side wall, 4...Horn type waveguide, 5...Terminal resistor, A...Horn type waveguide space , C... reflective surface, D
...Gap, S...Square waveguide space, 0...Virtual feeding point,
λ・Free space wavelength. Agent Patent Attorney Yoshihiko Iinuma (b) Figure 3 D (b) Figure 4 λ Figure 5 ■ Figure 6 Figure 7 Figure 8 Figure 9 y Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)金属板で囲まれた方形導波管空間と、同方形導波
管空間に形成された少なくとも1箇所以上の給電用開口
と、同給電用開口に接続された給電用ホーン型導波管と
をそなえ、上記ホーン型導波管から上記方形導波管空間
内へ至る給電経路に、給電電力を反射させることにより
上記方形導波管空間の電界の等位相面を調整しうる反射
面が介設されたことを特徴とする、反射型方形導波管線
路。
(1) A rectangular waveguide space surrounded by a metal plate, at least one power feeding opening formed in the rectangular waveguide space, and a power feeding horn-shaped waveguide connected to the power feeding opening a reflecting surface capable of adjusting the equiphase front of the electric field in the rectangular waveguide space by reflecting the feeding power to a feeding path from the horn-shaped waveguide to the rectangular waveguide space; A reflection type rectangular waveguide line characterized by having an interposed.
(2)上記金属板に電力放射用スロットが形成された、
特許請求の範囲第1項に記載の反射型方形導波管線路。
(2) a power radiation slot is formed in the metal plate;
A reflective rectangular waveguide line according to claim 1.
JP25599687A 1987-10-09 1987-10-09 Reflection type rectangular waveguide line Pending JPH0198302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25599687A JPH0198302A (en) 1987-10-09 1987-10-09 Reflection type rectangular waveguide line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25599687A JPH0198302A (en) 1987-10-09 1987-10-09 Reflection type rectangular waveguide line

Publications (1)

Publication Number Publication Date
JPH0198302A true JPH0198302A (en) 1989-04-17

Family

ID=17286453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25599687A Pending JPH0198302A (en) 1987-10-09 1987-10-09 Reflection type rectangular waveguide line

Country Status (1)

Country Link
JP (1) JPH0198302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813230B1 (en) 1999-11-03 2004-11-02 Samsung Electronics Co., Ltd. Physical identification data addressing method using wobble signal, wobble address encoding circuit, method and circuit for detecting wobble address, and recording medium therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813230B1 (en) 1999-11-03 2004-11-02 Samsung Electronics Co., Ltd. Physical identification data addressing method using wobble signal, wobble address encoding circuit, method and circuit for detecting wobble address, and recording medium therefor

Similar Documents

Publication Publication Date Title
US5173714A (en) Slot array antenna
GB2208969A (en) Slot antenna
JPS61264804A (en) Plane antenna shared for two frequencies
JPH0246004A (en) Square waveguide slot array antenna
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
US4349827A (en) Parabolic antenna with horn feed array
US5177496A (en) Flat slot array antenna for te mode wave
JP2000341030A (en) Waveguide array antenna system
JPH0246006A (en) Divided power supply type square waveguide line
US5903241A (en) Waveguide horn with restricted-length septums
JPS63296402A (en) Planar antenna
JP3364829B2 (en) Antenna device
JPH0198302A (en) Reflection type rectangular waveguide line
JP3822818B2 (en) Dielectric Leaky Wave Antenna
JPH0722833A (en) Crossing-slot microwave antenna
JPH02280504A (en) Leakage type waveguide slot array antenna
JP2595260B2 (en) Rectangular waveguide line using parabolic mirror
JP4108246B2 (en) Loop antenna
JP3275716B2 (en) Antenna device
JPH06260834A (en) Antenna device
JPH03195105A (en) Rectangular waveguide slot array antenna
JPH05226927A (en) Slot array antenna
JPH01165207A (en) Square waveguide line utilizing paraboloid of revolution mirror
JP4249378B2 (en) antenna
JPH0246005A (en) Square waveguide line with power supplying parabolic reflector