JPH0196960A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0196960A
JPH0196960A JP25364987A JP25364987A JPH0196960A JP H0196960 A JPH0196960 A JP H0196960A JP 25364987 A JP25364987 A JP 25364987A JP 25364987 A JP25364987 A JP 25364987A JP H0196960 A JPH0196960 A JP H0196960A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
insulating film
gate insulating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25364987A
Other languages
Japanese (ja)
Inventor
Koji Hashimoto
孝司 橋本
Yoshifumi Kawamoto
川本 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25364987A priority Critical patent/JPH0196960A/en
Publication of JPH0196960A publication Critical patent/JPH0196960A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a polycrystalline Si MOS field effect transistor having the high breakdown strength of a gate insulating film and less leakage current from its gate electrode by forming the gate insulating film by chemical vapor depositing (CVD) or chemical vapor depositing and then heat treating in an oxidative atmosphere. CONSTITUTION:A thermal oxide film 32 and a polycrystalline Si pattern 33 are formed on a P-type Si substrate 31. Then, an Si3N4 film is deposited 25nm by a CVD method with the thermal decomposition of SiH4 gas and NH3 gas, and then thermally oxidized to form a gate insulating film 34. Thereafter, a gate electrode 35, a PSG film 36 and aluminum wirings 37 are formed. Thus, a polycrystalline Si MOS transistor in which its insulating breakdown strength is improved is obtained as compared with the case that an oxide film having the same thickness as that is employed as the gate insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置およびその製造方法に係り、特に
多結晶S i M OS型電界効果トランジスタのゲー
ト絶縁膜耐圧を向上させるのに好適な半導体装置および
その製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a semiconductor device suitable for improving the gate insulating film breakdown voltage of a polycrystalline SiM OS field effect transistor. The present invention relates to a semiconductor device and its manufacturing method.

〔従来の技術〕[Conventional technology]

アイ・イー・イー・イー、エレクトロン デバイス レ
ター イーデイ−エル−5(1984年)゛第468頁
から第470頁(IEEE IIElectronDe
vice 1etty  EDL−5,p、468  
(1984))において論じられている様に、従来より
多結晶51MO8型電界効果トランジスタのゲート絶縁
膜には、熱酸化膜が広く用いられている。
IEE, Electron Device Letter ED-L-5 (1984) pp. 468-470 (IEEE II ElectronDe
vice 1etti EDL-5, p, 468
(1984), a thermal oxide film has conventionally been widely used as a gate insulating film of a polycrystalline 51MO8 field effect transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、多結晶51MO8型電界効果トランジ
スタのゲート絶縁膜の耐圧について配慮されておらず、
多結晶Si上の熱酸化膜をゲート絶縁膜とするとその絶
縁耐圧が低いという問題があった。そのためlMOSト
ランジスタの相互コンダクタンスを大きくするのにゲー
ト絶縁膜を薄くするとゲート電極からのリーク電流が増
大してしまう問題があった。また、高濃度に不純物を含
む多結晶Siからなるゲート電極上にゲート絶縁膜を熱
酸化により形成するとゲート絶縁膜の劣化はさらに大き
くなる。
The above conventional technology does not consider the withstand voltage of the gate insulating film of the polycrystalline 51MO8 field effect transistor.
When a thermal oxide film on polycrystalline Si is used as a gate insulating film, there is a problem in that its dielectric strength is low. Therefore, if the gate insulating film is made thinner in order to increase the mutual conductance of the IMOS transistor, there is a problem in that leakage current from the gate electrode increases. Further, if a gate insulating film is formed by thermal oxidation on a gate electrode made of polycrystalline Si containing a high concentration of impurities, the deterioration of the gate insulating film becomes even greater.

本発明の目的は、ゲート絶縁膜耐圧が高く、ゲート電極
からのリーク電流の極めて少ない多結晶51MO8型電
界効果トランジスタおよびその製遣方法を提供すること
にある。
An object of the present invention is to provide a polycrystalline 51MO8 field effect transistor with a high gate insulating film breakdown voltage and extremely low leakage current from the gate electrode, and a method for manufacturing the same.

〔間層点を解決するための手段〕[Means for solving interlayer points]

上記目的は、多結晶Siと絶縁膜界面の凹凸をなくし、
かつ多結晶Siパターンの上面、側面や角の部分に−様
な厚さの絶縁膜を形成し、電界の集中を抑えることによ
って達成される。
The above purpose is to eliminate unevenness at the interface between polycrystalline Si and the insulating film,
This is achieved by forming an insulating film of varying thickness on the top surface, side surfaces, and corner portions of the polycrystalline Si pattern to suppress concentration of the electric field.

そのために、本発明においては従来の熱酸化膜を代えて
、化学気相蒸着(CVD)膜あるいはCVD膜堆積後熱
酸化を行う2層膜にてゲート絶縁膜を形成したものであ
る。
To this end, in the present invention, instead of the conventional thermal oxidation film, the gate insulating film is formed of a chemical vapor deposition (CVD) film or a two-layer film in which thermal oxidation is performed after CVD film deposition.

〔作用〕[Effect]

多結晶Siの熱酸化においては、 ■酸素が多結晶Siの粒界中を拡散し酸化が進むために
多結晶Siと酸化膜の界面は凹凸が多い。
In thermal oxidation of polycrystalline Si, (1) Since oxygen diffuses through the grain boundaries of polycrystalline Si and oxidation progresses, the interface between polycrystalline Si and the oxide film has many irregularities.

■酸化速度は面方位依存性があるために、面方位によっ
て膜厚に差が生じる。
■Since the oxidation rate is plane orientation dependent, the film thickness varies depending on the plane orientation.

■多結晶Siパターンの角の部分の膜厚が薄くなる。■The film thickness at the corners of the polycrystalline Si pattern becomes thinner.

以上の理由で、絶縁耐圧が劣化する。For the above reasons, the dielectric strength deteriorates.

そこで、熱酸化膜に代えてCVD膜を用いれば、粒界の
酸化が起こらないために多結晶Siと絶縁膜との界面は
平滑である。又、面方位による影響もなく、角の部分の
膜厚が薄くなるということもない。従って極めて均一な
膜厚が得られる。
Therefore, if a CVD film is used instead of a thermal oxide film, the interface between the polycrystalline Si and the insulating film is smooth because oxidation of grain boundaries does not occur. Furthermore, there is no effect of surface orientation, and the film thickness does not become thinner at the corner portions. Therefore, an extremely uniform film thickness can be obtained.

以上の効果により、絶縁耐圧は向上する。Due to the above effects, the dielectric strength voltage is improved.

さらに、CVD法で絶縁膜を堆積した後に、酸化性雰囲
気中で熱処理を行うことにより、欠陥が低減でき、耐圧
の落ちこぼれを減少できる。
Further, by performing heat treatment in an oxidizing atmosphere after depositing the insulating film by the CVD method, defects can be reduced and the drop in breakdown voltage can be reduced.

〔実施例〕〔Example〕

以下に、本発明の実施例を第1図から第4図を用いて説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

実施例1 p型Si基板11を用意し、熱酸化し300nmの5i
ft膜12を形成する。その上に減圧気相化学成長(L
PGVD)法により1100nの多結晶Si膜13を形
成し、ホトレジストパターンをマスクとしてCCQ a
ガスを用いたドライエツチング法で多結晶Siパターン
を形成する。5illaガスとN z Oガスの熱分解
を用いたCVD法により5ins膜14を30nm堆積
する。続いて、多結晶Si中にBを20KeVでドーズ
量1×10 LZC,−2のイオン打込みを行う(第1
図A)。
Example 1 A p-type Si substrate 11 is prepared and thermally oxidized to form a 300 nm 5i
ft film 12 is formed. On top of that, low pressure vapor phase chemical growth (L
A polycrystalline Si film 13 of 1100n is formed by the PGVD method, and CCQ a is formed using a photoresist pattern as a mask.
A polycrystalline Si pattern is formed by dry etching using gas. A 5ins film 14 is deposited to a thickness of 30 nm by a CVD method using thermal decomposition of 5illa gas and NzO gas. Subsequently, B ions are implanted into the polycrystalline Si at 20 KeV with a dose of 1×10 LZC,-2 (first
Figure A).

次に、LPGVD法により350nmの多結晶Sj膜を
形成し、875℃でPOCQδによるリン拡散を行う。
Next, a 350 nm polycrystalline Sj film is formed by the LPGVD method, and phosphorus diffusion is performed at 875° C. using POCQδ.

ホトレジストパターンをマスクとしてCCU 4ガスを
用いるドライエツチング法によりゲート電極15を形成
する。続いて、ゲート電極をマスクとする自己整合法で
、Asを70KeVでドーズ量5 X 10工5cm″
″!イオン打込みを行いソース、ドレインのn型高濃度
不純物層を形成する(第1図B)。
Gate electrode 15 is formed by dry etching using CCU 4 gas using the photoresist pattern as a mask. Next, using the self-alignment method using the gate electrode as a mask, As was applied at a dose of 5 x 10 steps at 5 cm at 70 KeV.
''!Ion implantation is performed to form n-type high concentration impurity layers for the source and drain (FIG. 1B).

N2ガス雰囲気中、900’C,60分間の熱処理を行
った後に、CVD法でPSG膜(リン硅酸ガラス)16
を0.5μmの厚さ形成し、ホトレ・シストパターンを
マスクとしてCHF aガスを用いるドライエツチング
法でコンタクト穴を形成する。さらに、膜厚0.9μm
のAQ17を堆積し、ホトレジストパターンをマスクに
B(l1gおよびCCQ aガスを用いるドライエツチ
ング法で配線のパターンを形成後、水素雰囲気中、45
0℃。
After heat treatment at 900'C for 60 minutes in a N2 gas atmosphere, a PSG film (phosphosilicate glass) 16 was formed using the CVD method.
A contact hole is formed with a thickness of 0.5 μm by a dry etching method using CHFa gas using the photoresist pattern as a mask. Furthermore, the film thickness is 0.9 μm
After depositing AQ17 of
0℃.

30分の熱処理を行う(第1図C)。Heat treatment is performed for 30 minutes (FIG. 1C).

本実施例により製造した多結晶51MO8型トランジス
タにおいて、ソースおよびドレインを接地し、ゲート電
極に電圧を印加しゲート酸化膜のリーク電流を測定した
ところ、電流10nAの時の電圧は20Vであった。ゲ
ート酸化膜に同じ膜厚の900℃の熱酸化膜を用いた場
合、同様のtIす定で得られた耐圧は10vであり、C
VD酸化膜を用いることにより2倍に耐圧を向上させる
ことができた。
In the polycrystalline 51MO8 type transistor manufactured according to this example, the source and drain were grounded, a voltage was applied to the gate electrode, and the leakage current of the gate oxide film was measured, and the voltage was 20 V when the current was 10 nA. When a thermal oxide film of the same thickness at 900°C is used as the gate oxide film, the withstand voltage obtained with the same tI setting is 10V, and C
By using the VD oxide film, we were able to double the breakdown voltage.

実施例2 まず、実施例1と同じ製造方法により、P型Si基板2
1上に、熱酸化膜22.多結晶Siパターン23を形成
する。次に、CVD法により5iOz膜を25nm堆積
し、続いて900℃において熱酸化を行いSi○2膜2
4の膜厚を30nmとする。
Example 2 First, a P-type Si substrate 2 was manufactured using the same manufacturing method as in Example 1.
1, a thermal oxide film 22. A polycrystalline Si pattern 23 is formed. Next, a 25 nm thick 5iOz film was deposited by CVD, followed by thermal oxidation at 900°C to form a Si○2 film 2.
The film thickness of No. 4 is 30 nm.

以下、実施例1と同じ製造方法により、ゲート電極25
.PSG膜26.Afl配線27を形成して多結晶S 
i M OS型゛トランジスタを製造した。
Hereinafter, the gate electrode 25 is manufactured using the same manufacturing method as in Example 1.
.. PSG film 26. Afl wiring 27 is formed and polycrystalline S
An iMOS type transistor was manufactured.

本実施例では、実施例1と同様にゲート酸化膜の高耐圧
化が達成できた。さらに、キャパシタ面積を0.01c
m”とした時に、耐圧の落ちこぼれは実施例1の5%に
比べて1%以下に減少できた。
In this example, as in Example 1, a high breakdown voltage of the gate oxide film was achieved. Furthermore, the capacitor area is 0.01c
m'', the drop in withstand pressure was reduced to 1% or less compared to 5% in Example 1.

実施例3 まず、実施例1および実施例2と同じ製造方法により、
p型Si基板31上に熱酸化膜32.多結晶Siパター
ン33を形成する。次に、S i H4ガスとN Ha
ガスの熱分解を用いたCVD法により5iaNa膜を2
5nm堆積し、続いて900℃。
Example 3 First, by the same manufacturing method as Example 1 and Example 2,
A thermal oxide film 32 is formed on a p-type Si substrate 31. A polycrystalline Si pattern 33 is formed. Next, S i H4 gas and N Ha
A 5iaNa film was formed by a CVD method using gas thermal decomposition.
5 nm deposited followed by 900°C.

20分の熱酸化を行いゲート絶縁膜34を形成する。A gate insulating film 34 is formed by thermal oxidation for 20 minutes.

以下、実施例1および実施例2と同じ製造方法によりゲ
ート電極35.PSG膜36.AQ配線37を形成して
多結晶51MO8型トランジスタを製造した。
Hereinafter, the gate electrode 35. PSG film 36. AQ wiring 37 was formed to manufacture a polycrystalline 51MO8 type transistor.

本実施例では、ゲート絶縁膜の耐圧は15Vであった。In this example, the breakdown voltage of the gate insulating film was 15V.

又、ドレイン電圧0.IV 、チャネル長およびチャネ
ル幅をそれぞれ2μmおよび15μmとした時の相互コ
ンダクタンスは5 X 10””(mhos)であった
、ゲート絶縁膜に同じ膜厚の酸化膜を用いた場合は2 
、5 X 10 ”−8(mhos)であり、約2倍に
増大できた。
Also, the drain voltage is 0. IV, the mutual conductance was 5 x 10" (mhos) when the channel length and channel width were 2 μm and 15 μm, respectively. When an oxide film of the same thickness was used as the gate insulating film, the mutual conductance was 2
, 5 x 10''-8 (mhos), which was approximately twice as large.

実施例4 以上述べた実施例1から実施例3はすべて、ゲート絶縁
膜上にゲート電極を有した構造である。
Example 4 Examples 1 to 3 described above all have a structure in which a gate electrode is provided on a gate insulating film.

この構造に対し、高濃度の不純物を含む多結晶Siゲー
ト電極上にゲート絶縁膜を形成した構造がある0本実施
例は、そのような構造に対して。
In contrast to this structure, this embodiment has a structure in which a gate insulating film is formed on a polycrystalline Si gate electrode containing a high concentration of impurities.

絶縁耐圧の向上を図った例であり、第4図を用いて説明
する。
This is an example in which the dielectric strength is improved, and will be explained using FIG. 4.

まず、p型Si基板41を用意し、熱酸化し300nm
の5iOz膜42を形成する。その上にLPCVD法に
より350nmの多結晶Si膜を堆積し、875℃でP
 OCQ aによるリン拡散を行い、ホトレジストパタ
ーンをマスクとしてCCQ4ガスを用いるドライエツチ
ング法によりゲート電極43を形成する(第4図A)。
First, a p-type Si substrate 41 is prepared and thermally oxidized to a thickness of 300 nm.
5iOz film 42 is formed. A 350 nm polycrystalline Si film was deposited on top of it by the LPCVD method, and P
Phosphorus is diffused using OCQ a, and a gate electrode 43 is formed by dry etching using CCQ4 gas using a photoresist pattern as a mask (FIG. 4A).

次に、SiH4ガスの熱分解を用いたCVD法により5
iOz膜を25nm堆積し、続いて900℃において熱
酸化を行い5iOz膜44の膜厚を30nmとする。そ
の上にL P CV D法により1100nの多結晶S
i膜45を堆積し、ホトレジストパターンをマスクとC
CQ aガスを用いるドライエツチング法により多結晶
Si[を所定の形状に加工する。次にCVD法によりS
 x O2膜46を30nm堆積し、多結晶Si中にB
を20K e VでI X 10 ”co+−”イオン
打込みを行う(第4図B)。
Next, 5
A 25 nm thick iOz film is deposited, and then thermal oxidation is performed at 900° C. to make the 5iOz film 44 30 nm thick. On top of that, 1100n polycrystalline S is applied by L P CV D method.
Deposit an i film 45 and use a photoresist pattern as a mask
Polycrystalline Si is processed into a predetermined shape by a dry etching method using CQ a gas. Next, by CVD method, S
x O2 film 46 is deposited to a thickness of 30 nm, and B is deposited in polycrystalline Si.
I x 10 "co+-" ion implantation is performed at 20 K e V (FIG. 4B).

次にホトレジストパターン47をマスクとして、Asを
70KsVで5 X I Q ”am−”イオン打込み
し、ソース・ドレインのn型高濃度不純物層を形成する
(第4図C)。
Next, using the photoresist pattern 47 as a mask, 5.times.I.sub.Q "am-" ions of As are implanted at 70 KsV to form source/drain n-type high concentration impurity layers (FIG. 4C).

N2ガス雰囲気中、900℃、60分間の熱処理を行っ
た後に、CVD法でPSG膜48 tO,5μmの厚さ
形成し、ホトレジス!−パターンをマスクとしてCHF
 sガスを用いるドライエツチング法でコンタクト穴を
形成する。さらに、膜n0.9μmのAl249を堆積
し、ホトレジストパターンをマスクにBCQsおよびC
CQ 4ガスを用いるドライエツチング法で配線のパタ
ーンを形成後、水素雰囲気中、450℃、30分の熱処
理を行う(第4図D)。
After heat treatment at 900° C. for 60 minutes in a N2 gas atmosphere, a PSG film of 48 tO, 5 μm thick was formed by CVD, and photoresist! - CHF using pattern as mask
Contact holes are formed by dry etching using s gas. Furthermore, a film of Al249 with a thickness of 0.9 μm was deposited, and BCQs and C were deposited using the photoresist pattern as a mask.
After forming a wiring pattern by dry etching using CQ 4 gas, heat treatment is performed at 450° C. for 30 minutes in a hydrogen atmosphere (FIG. 4D).

本実施例においてもゲート酸化膜の絶縁耐圧は熱酸化膜
のみの場合に比べて2倍に向上させることができた。し
かも高濃度多結晶Si上に30nm以下の薄いゲート酸
化膜を形成する本実施例のような構造では、熱酸化膜で
は膜厚の制御が困難であるがCVD法を利用した本法で
は膜厚の制御が容易となる。
In this example as well, the dielectric breakdown voltage of the gate oxide film was able to be improved twice as compared to the case of using only a thermal oxide film. Moreover, in a structure like this example in which a thin gate oxide film of 30 nm or less is formed on high-concentration polycrystalline Si, it is difficult to control the film thickness with a thermal oxide film, but with this method using the CVD method, the film thickness can be reduced. control becomes easier.

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、本発明によれば多結晶5
1MO8型トランジスタのゲート絶縁膜をCVD膜を堆
積した後に酸化性雰囲気で熱処理することによって形成
し、絶縁耐圧を2倍に向上できた。さらに、このように
して形成したゲート絶縁膜は欠陥密度が小さく、耐圧の
落ちひぼれの少ないものとなる。
As is clear from the above description, according to the present invention, polycrystalline 5
The gate insulating film of a 1MO8 type transistor was formed by depositing a CVD film and then heat-treating it in an oxidizing atmosphere, thereby making it possible to double the dielectric strength. Furthermore, the gate insulating film formed in this manner has a low defect density and has less breakdown voltage.

本実施例ではnチャネル型電界効果トランジスタを示し
たが、本発明はそれに限定されるものではなく、pチャ
ンネル型電界効果トランジスタにも適用可能である。ま
た多結晶SiMOSトランジスタはS j、 02膜上
に形成したが、それに限定されるものではなく、本発明
は他の導体、半導体。
Although this embodiment shows an n-channel field effect transistor, the present invention is not limited thereto, and can also be applied to a p-channel field effect transistor. Further, although the polycrystalline SiMOS transistor is formed on the Sj,02 film, it is not limited thereto, and the present invention can be applied to other conductors and semiconductors.

絶縁物上に形成する場合も適用可能である。It is also applicable when formed on an insulator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1の製造工程の断面図である
。 第2図および第3図はそれぞれ実施例2および実施例3
の断面図である。 第4図は、本発明の実施例4の製造工程の断面図である
。 11.21,31,41・・・p型Si基板、12゜2
2.32,42,47・・・SiO2,13,23゜3
3.45・・・多結晶Si(能動層)、14,24゜3
4.44・・・ゲート絶縁膜、15,25,35゜43
・・・多結晶Siゲート、16,26,36゜48・・
・PSGパシベーション膜、17,27,37.49・
・・Afl。 皐 l 口 +++   +  ψ 第 4  Σ
FIG. 1 is a sectional view of the manufacturing process of Example 1 of the present invention. Figures 2 and 3 are Example 2 and Example 3, respectively.
FIG. FIG. 4 is a sectional view of the manufacturing process of Example 4 of the present invention. 11.21,31,41...p-type Si substrate, 12°2
2.32,42,47...SiO2,13,23゜3
3.45...Polycrystalline Si (active layer), 14,24°3
4.44...Gate insulating film, 15, 25, 35°43
...Polycrystalline Si gate, 16, 26, 36°48...
・PSG passivation film, 17, 27, 37.49・
...Afl.琐 l 口+++ +ψ 4th Σ

Claims (1)

【特許請求の範囲】[Claims] 1、多結晶Si中にソースおよびドレイン領域を形成し
、電流経路を多結晶Siとする多結晶SiMOS型電界
効果トランジスタにおいて、ゲート絶縁膜が化学気相蒸
着で、あるいは化学気相蒸着で絶縁膜を形成した後酸化
性雰囲気中で熱処理して形成されたことを特徴とする半
導体装置。
1. In a polycrystalline SiMOS field effect transistor in which the source and drain regions are formed in polycrystalline Si and the current path is made of polycrystalline Si, the gate insulating film is formed by chemical vapor deposition or chemical vapor deposition. What is claimed is: 1. A semiconductor device characterized in that the semiconductor device is formed by heat-treating in an oxidizing atmosphere after forming a semiconductor device.
JP25364987A 1987-10-09 1987-10-09 Semiconductor device Pending JPH0196960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25364987A JPH0196960A (en) 1987-10-09 1987-10-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25364987A JPH0196960A (en) 1987-10-09 1987-10-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0196960A true JPH0196960A (en) 1989-04-14

Family

ID=17254262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25364987A Pending JPH0196960A (en) 1987-10-09 1987-10-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0196960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174282A (en) * 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device
US6849872B1 (en) 1991-08-26 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US7019385B1 (en) 1996-04-12 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
JP2009065187A (en) * 2008-10-29 2009-03-26 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849872B1 (en) 1991-08-26 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US7855106B2 (en) 1991-08-26 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7019385B1 (en) 1996-04-12 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7838968B2 (en) 1996-04-12 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
JP2000174282A (en) * 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009065187A (en) * 2008-10-29 2009-03-26 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP4489823B2 (en) * 2008-10-29 2010-06-23 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6656804B2 (en) Semiconductor device and production method thereof
JPS6312168A (en) Ldd mis type field effect transistor
JPH01268064A (en) Formation of polycrystalline silicon thin film
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JP2816192B2 (en) Method for manufacturing semiconductor device
JPH0348459A (en) Semiconductor device and manufacture thereof
JPH0196960A (en) Semiconductor device
JPH04116869A (en) Semiconductor element and its manufacture
JP2002299613A (en) Vertical field effect transistor and method for manufacturing semiconductor device
JPS59231864A (en) Semiconductor device
JPH05243264A (en) Manufacture of transistor
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JPH03239368A (en) Semiconductor device
JP2844963B2 (en) Semiconductor device and manufacturing method thereof
JPS5892268A (en) Manufacture of semiconductor device
JPS582071A (en) Manufacture of semiconductor device
JP2637860B2 (en) Method for manufacturing semiconductor device
JPS6341063A (en) Manufacture of mos integrated circuit
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPH01125977A (en) Mos semiconductor device
JPH03102875A (en) Semiconductor device and manufacture thereof
JPS61239671A (en) Manufacture of semiconductor memory device
JPS6154661A (en) Manufacture of semiconductor device
JPH06275839A (en) Manufacture of vertical semiconductor element