JPH01309939A - Spheroidal graphite cast iron and its manufacture - Google Patents

Spheroidal graphite cast iron and its manufacture

Info

Publication number
JPH01309939A
JPH01309939A JP5807889A JP5807889A JPH01309939A JP H01309939 A JPH01309939 A JP H01309939A JP 5807889 A JP5807889 A JP 5807889A JP 5807889 A JP5807889 A JP 5807889A JP H01309939 A JPH01309939 A JP H01309939A
Authority
JP
Japan
Prior art keywords
cast iron
weight
spheroidal graphite
graphite
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5807889A
Other languages
Japanese (ja)
Other versions
JP2730959B2 (en
Inventor
Yasuoki Ishihara
石原 安興
Fumio Obata
文雄 小幡
Jun Sakai
潤 酒井
Takeshi Natsume
夏目 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Proterial Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22600835&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01309939(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US07/165,873 external-priority patent/US4889687A/en
Application filed by Honda Motor Co Ltd, Hitachi Metals Ltd filed Critical Honda Motor Co Ltd
Publication of JPH01309939A publication Critical patent/JPH01309939A/en
Application granted granted Critical
Publication of JP2730959B2 publication Critical patent/JP2730959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To manufacture the present cast iron having excellent tensile strength, elongation and impact value as cast by incorporating specific ratios of C, Si, Mn, P, Cr, Mg and Bi into Fe and specifying its carbon equivalent. CONSTITUTION:Spheroidal graphite cast iron contg., by weight, 3.0m-4.0% C, 1.5-2.3% Si, <0.3% Mn, <0.03% P, <0.10% Cr, 0.02-0.06% Mg, 0.0015-0.008% Bi and the balance iron with inevitable impurities and satisfying 3.9-4.6% CE value (carbon equivalent) is prepd. The CE value is furthermore found by total C%+(Si%+P%)/3 and the grain number of graphite is regulated to >=300 pieces/mm<2>. By this method, spheroidal graphite cast iron having improved impact value at a low temp. can be obtd.

Description

【発明の詳細な説明】 [発明の目的] 〈産業−Lの利用分野〉 本発明は高靭性の球状黒鉛鋳鉄に関する。[Detailed description of the invention] [Purpose of the invention] <Industry-L usage field> The present invention relates to high toughness spheroidal graphite cast iron.

〈従来の技術〉 従来のフェライト地を有する球状黒鉛鋳鉄FCD37或
いはFCD40は伸び及び低温時以外の衝撃値は比較的
高いが低温時の衝撃値が低いため、−40℃程度の低温
下でも使用される自動車用或いは産業用鋳物部品等に用
いるのに適当ではない。
<Prior art> Conventional spheroidal graphite cast iron FCD37 or FCD40 having a ferritic base has a relatively high elongation and impact value at temperatures other than low temperatures, but its impact value at low temperatures is low, so it can be used even at temperatures as low as -40°C. It is not suitable for use in automotive or industrial casting parts.

そこで、例えば特公昭61−33897号公報には、低
温時に於ける衝撃値を向上するべくニッケル(Ni)を
添加し、フェライト化焼なましを行った球状黒鉛鋳鉄が
開示されているが、実際にはニッケルを添加し、焼なま
しを行うのみでは、−15℃で最低1. 7kgf’−
m/crlの衝撃値しか得ることができない。これは、
低温時の衝撃値にはニッケルの含有量以外に珪素(Si
)の含有量が影響するためであり、上記公報に於ける実
施例ではこの珪素の含有量が2.0重量%以上となって
いることによる。また、製造上好ましくは工数の削減及
び製造コストを低減するべく焼なましを行わす鋳放しの
状態で使用可能とすると良い。
Therefore, for example, Japanese Patent Publication No. 61-33897 discloses spheroidal graphite cast iron to which nickel (Ni) is added and annealed to ferrite in order to improve the impact value at low temperatures. If only nickel is added and annealing is performed, the temperature at -15°C will be at least 1. 7kgf'-
Only an impact value of m/crl can be obtained. this is,
In addition to the nickel content, the impact value at low temperatures also depends on silicon (Si).
) is affected, and in the examples in the above publication, the silicon content is 2.0% by weight or more. In addition, in order to reduce the number of man-hours and manufacturing costs, it is preferable to allow the product to be used in an as-cast state after annealing.

そこで、特公昭59−17183号公報に開示されてい
るように、本発明者らは球状黒鉛鋳鉄にニッケルを添加
することにより引張り強さ及び耐力を向上させ、かつ珪
素の含有量を低くすることにより伸びと衝撃値を向上さ
せるに至ったが、特に低温時に於ける衝撃値を更に改善
することが望まれる。
Therefore, as disclosed in Japanese Patent Publication No. 59-17183, the present inventors added nickel to spheroidal graphite cast iron to improve its tensile strength and yield strength, and to lower the silicon content. Although the elongation and impact value have been improved, it is desired to further improve the impact value, especially at low temperatures.

〈発明が解決しようとする課題〉 このような従来技術の問題点と本発明者らの知見に鑑み
、本発明の主な目的は、伸び及び特に低温に於ける衝撃
値を向上し、また熱処理を省略或いは容易とすることで
製造コストが低減化された球状黒鉛鋳鉄及びその製造方
法を提供することにある。
<Problems to be Solved by the Invention> In view of the problems of the prior art and the knowledge of the present inventors, the main purpose of the present invention is to improve the elongation and especially the impact value at low temperatures, and to An object of the present invention is to provide a spheroidal graphite cast iron whose manufacturing cost is reduced by omitting or simplifying the process, and a method for manufacturing the same.

[発明の構成] 〈課題を解決するための手段〉 このような目的は本発明によれば、炭素(C)3.0重
量%〜4.0重量%、珪素(Si)1゜5重量%〜2.
3重量%、マンガン(Mn)0゜3重量%未満、燐(P
)0.03重量%未満、クロム(Cr)0.10重量%
未満、マグネシウム(Mg)0.02重量%〜0.06
重量%、ビスマス0.0015重量%〜0.008重量
%、残余鉄及び不可避的不純物からなり、かつCE値(
炭素当量)3.9〜4.6重量%であることを特徴とす
る球状黒鉛鋳鉄を提供することによって達成される。特
に前記ビスマスの含有重量%を0゜0015重量%〜0
.004重量%とし、黒鉛粒数が300個/lll11
2以上であると良い。またニッケル(Ni)を0. 5
重量%〜2.0重量%含むと良い。
[Structure of the Invention] <Means for Solving the Problems> According to the present invention, such an object is achieved by using 3.0% to 4.0% by weight of carbon (C) and 1.5% by weight of silicon (Si). ~2.
3% by weight, manganese (Mn) 0° less than 3% by weight, phosphorus (P
) less than 0.03% by weight, chromium (Cr) 0.10% by weight
Less than 0.02% by weight of magnesium (Mg) to 0.06%
% by weight, bismuth from 0.0015% to 0.008% by weight, residual iron and unavoidable impurities, and has a CE value (
This is achieved by providing a spheroidal graphite cast iron characterized by a carbon equivalent content of 3.9 to 4.6% by weight. In particular, the content of bismuth is 0°0015% by weight to 0% by weight.
.. 004% by weight, and the number of graphite particles is 300/ll11
It is good if it is 2 or more. Also, nickel (Ni) was added to 0. 5
It is preferable to include 2.0% by weight.

〈作用〉 このように、適量のビスマスを添加することにより黒鉛
粒数を300個/mm2以上とすることでパーライトを
減少させ、低温かつ短時間の熱処理或いは熱処理するこ
となしに充分な伸び及び高い衝撃値を有し、かつ適量の
ニッケルを添加することにより高い引張り強さ及び耐力
を有する球状黒鉛鋳鉄を容易に得ることができる。云う
までもなくこの球状黒鉛鋳鉄に焼なましを行うことによ
りフェライト組織とすれば更に高い伸びや靭性が得られ
る。
<Effect> In this way, by adding an appropriate amount of bismuth, the number of graphite grains is increased to 300 pieces/mm2 or more, thereby reducing pearlite and achieving sufficient elongation and high strength without heat treatment at low temperature and short time. Spheroidal graphite cast iron having a high impact value and high tensile strength and proof stress can be easily obtained by adding an appropriate amount of nickel. Needless to say, if this spheroidal graphite cast iron is annealed to form a ferritic structure, even higher elongation and toughness can be obtained.

以下に、各添加物の数値限定の理由について説明する。The reasons for limiting the numerical values of each additive will be explained below.

炭素は、3.0重量%(以下wt%と記す)未満では鋳
造性が悪くなり、かつ黒鉛粒数が減少することからパー
ライトが多くなる。また、4. 0wt%を超えるとキ
ッシュ黒鉛が出易くなり強度が低下する。
If the carbon content is less than 3.0% by weight (hereinafter referred to as wt%), castability deteriorates and the number of graphite grains decreases, so pearlite increases. Also, 4. If it exceeds 0 wt%, quiche graphite tends to come out and the strength decreases.

珪素は、1. 5wt%未満では炭化物が析出し易くな
り、衝撃値及び伸びが共に低下する。また、2、 3w
t%を超えるとシリコフェライトの影響で衝撃値及び伸
びが低下する。
Silicon is 1. If it is less than 5 wt%, carbides tend to precipitate, and both impact value and elongation decrease. Also, 2, 3w
If it exceeds t%, the impact value and elongation will decrease due to the influence of silicoferrite.

マンガンは、0.3wt%を超えるとパーライトが多く
なり衝撃値及び伸びが低下する。
When manganese exceeds 0.3 wt%, pearlite increases and impact value and elongation decrease.

燐は、0. 03wt%を超えるとステダイトの影響で
衝撃値及び伸びが低下する。
Phosphorus is 0. If it exceeds 0.3 wt%, the impact value and elongation will decrease due to the influence of steadite.

ニッケルは、0. 5wt%未満では強度が得られない
。また、2. 0wt%を超えるとパーライトが多くな
り衝撃値及び伸びが低下する。
Nickel is 0. If it is less than 5 wt%, no strength can be obtained. Also, 2. If it exceeds 0 wt%, the amount of pearlite increases and the impact value and elongation decrease.

クロムは、0. 1wt%を超えると炭化物が析出し易
くなり衝撃値及び伸びが低下する。
Chromium is 0. When it exceeds 1 wt%, carbides tend to precipitate, resulting in a decrease in impact value and elongation.

マグネシウムは、0.02wt%未満では黒鉛が球状化
しない。また、0. 06wt%を超えるとひけ巣及び
炭化物が出易くなるばかりでなく製造コストも高騰化す
る。
When the amount of magnesium is less than 0.02 wt%, graphite does not become spheroidized. Also, 0. If it exceeds 0.06 wt%, not only shrinkage cavities and carbides are likely to appear, but also manufacturing costs will increase.

CE値は、3. 9wL%未満では炭化物が出易くなり
鋳造性も悪くなる。また、4. 6wt%を超えるとキ
ッシュ黒鉛が出易くなる。ここで、CE値は、 CE=総炭素wt%÷(珪素wL%十燐wt%)/3に
より求められる。
The CE value is 3. If it is less than 9 wL%, carbides tend to appear and castability deteriorates. Also, 4. If it exceeds 6 wt%, quiche graphite tends to appear. Here, the CE value is determined by CE=total carbon wt%/(silicon wL% ten phosphorus wt%)/3.

ビスマスは、その残留含有量が0.0015wL%未満
では黒鉛粒数の増大効果が低下し、鋳放し組織中にセメ
ンタイトが発生するようになる。また、残留含有量が0
.008wt%を超えると黒鉛球状化の阻害効果が現れ
、黒鉛の球状化率が80%以下となり機械的諸性質が劣
化する。好ましくはビスマス残留含有率を0. 004
wt%以下とし、黒鉛球状化率を90%以上とすると良
い。尚、ビスマスは球状黒鉛鋳鉄溶湯に対する溶は込み
歩留り率が悪く、歩留り率の変動も大きいことから残留
含有量を0.0015wt%〜0.008wt%の範囲
にするためには、溶湯に対するビスマスの添加歯を0.
005wt%〜0.025wL%の範囲に設定する必要
がある。
If the residual content of bismuth is less than 0.0015 wL%, the effect of increasing the number of graphite grains will be reduced, and cementite will occur in the as-cast structure. Also, the residual content is 0
.. If it exceeds 0.008 wt%, the effect of inhibiting graphite spheroidization appears, and the spheroidization rate of graphite becomes 80% or less, resulting in deterioration of various mechanical properties. Preferably, the bismuth residual content is 0. 004
It is preferable to make the graphite spheroidization rate 90% or more. In addition, since bismuth has a poor melt penetration yield rate in molten spheroidal graphite cast iron and large fluctuations in yield rate, in order to keep the residual content in the range of 0.0015 wt% to 0.008 wt%, Added tooth 0.
It is necessary to set it within the range of 0.005wt% to 0.025wL%.

黒鉛粒数は、30000mm2未満では、黒鉛粒間の距
離が大きくなりパーライトの析出が多くなることから衝
撃値及び伸びが低下する。
If the number of graphite grains is less than 30,000 mm2, the distance between the graphite grains becomes large and pearlite precipitation increases, resulting in a decrease in impact value and elongation.

〈実施例〉 第1表は、本発明に基づく第1の実施例に於ける球状黒
鉛鋳鉄の成分表である。
<Example> Table 1 is a composition table of spheroidal graphite cast iron in a first example based on the present invention.

(以下余白) 本実施例の鋳型は厚さ25mm、長さ250mmのYブ
ロック(JIS  G  5502)の鋳型を二酸化炭
素(CO2)鋳型にて造型した。
(The following is a blank space) The mold of this example was a Y block (JIS G 5502) mold having a thickness of 25 mm and a length of 250 mm, and was molded using a carbon dioxide (CO2) mold.

この鋳型に第1表の成分からなる各溶湯を注入し、Fe
−Si合金(Si70wL%〜75wL%)からなる粘
度20〜100メツシユの接種剤をこの溶湯に対して0
.10wt%の割合で接種してテストピースを作成した
。ここで、実際には上記接種剤を0 、 05 wL%
 〜0 、 30 wL%の割合で接種すれば良く、0
.30wL%よりも多いと鋳鉄中の珪素の含有■が過多
となり、0. 05wc%よりも少ないと黒鉛生成効果
が低下する。尚、本実施例ではビスマスを高さ15mm
、底面の直径25mm〜30mmの円錐形をなす塊状で
溶湯に添加したために比較的歩留りが悪かったが、例え
ば、直径1 mm〜3mmの粒状にし、紙等に包み溶湯
に添加することにより添加率0.025w[%に対して
含有率0゜008wt%、添加率0.O15wL%に対
して含有率0.004wt%、添加率0. 005wL
%に対して含有率0.0015wt%とすることができ
る。
Each molten metal consisting of the components listed in Table 1 was poured into this mold, and Fe
- An inoculant made of Si alloy (70 wL% to 75 wL% Si) with a viscosity of 20 to 100 mesh is applied to this molten metal at zero
.. A test piece was prepared by inoculating at a rate of 10 wt%. Here, the above inoculant was actually added to 0.05 wL%.
It is sufficient to inoculate at a rate of 0 to 30 wL%, and 0
.. If it is more than 30wL%, the silicon content in the cast iron will be excessive, and the silicon content will be 0. If it is less than 0.05wc%, the graphite generation effect will be reduced. In this example, the bismuth is 15 mm in height.
However, the yield was relatively low because it was added to the molten metal in the form of a conical lump with a bottom diameter of 25 mm to 30 mm. Content rate is 0°008wt%, addition rate is 0.025w[%]. Content rate is 0.004 wt% with respect to O15wL%, addition rate is 0. 005wL
%, the content can be set to 0.0015 wt%.

このように作成したテストピースについて第1図(a)
、(b)、(C)、(d)及び(e)に顕微鏡組織写真
を示す。第1図(a)に示す鋳鉄(1)、第1図(b)
に示す鋳鉄(2)及び第1図(c)に示す鋳鉄(3)は
本発明に基づく球状黒鉛鋳鉄であり、第1図(d)及び
(e)は各々従来の球状黒鉛鋳鉄FCD40及びFCD
60を示す。
Figure 1 (a) shows the test piece created in this way.
, (b), (C), (d) and (e) show microscopic structural photographs. Cast iron (1) shown in Figure 1(a), Figure 1(b)
Cast iron (2) shown in Figure 1(c) and cast iron (3) shown in Figure 1(c) are spheroidal graphite cast irons based on the present invention, and Figures 1(d) and (e) are conventional spheroidal graphite cast irons FCD40 and FCD, respectively.
60 is shown.

第1図(a)、(b)及び(C)に良く示すように、ニ
ッケルの添加量が多くなるに従い、パーライト量が増加
していく。また、従来のFCD40及びFCD60に比
較して本発明に基づく鋳鉄(1)〜(3)は黒鉛粒数が
黒鉛粒数が多くなっている。これは、各鋳鉄(1)〜(
3)に適量のビスマスが添加されていることによる。
As clearly shown in FIGS. 1(a), (b), and (C), as the amount of nickel added increases, the amount of pearlite increases. Furthermore, compared to the conventional FCD40 and FCD60, the cast irons (1) to (3) based on the present invention have a larger number of graphite grains. This is for each cast iron (1) ~ (
This is due to the addition of an appropriate amount of bismuth to 3).

第2図及び第3図にこれら各鋳鉄の機械的性質を示す。Figures 2 and 3 show the mechanical properties of each of these cast irons.

両図に良く示すように、本発明に基づく鋳鉄(1)は引
張り強さ及び耐力はFCD40に比較してやや劣るもの
の伸び及び衝撃値が極めて優れている。また、鋳鉄(2
)は、引張り強さ、耐力及び伸びが共にFCD40と路
間等であるが、衝撃値が著しく優れている。ここで、云
うまでもなく: FCD60に比較するとより高い伸び
及び衝撃値を示している。更に、本発明に基づく鋳鉄(
3)は、FCD40に比較して引張り強さに優れ、伸び
がやや劣り衝撃値が路間等である。また、FCD60に
比較すると、引張り強さ及び耐力はやや低いが伸び及び
衝撃値が優れている。
As clearly shown in both figures, the cast iron (1) based on the present invention has slightly inferior tensile strength and yield strength compared to FCD40, but is extremely superior in elongation and impact value. Also, cast iron (2
) has tensile strength, yield strength, and elongation that are all on par with FCD40, but the impact value is significantly superior. Here, it goes without saying: Compared to FCD60, it exhibits higher elongation and impact values. Furthermore, cast iron according to the present invention (
3) is superior in tensile strength to FCD40, has slightly inferior elongation, and has a low impact value. Also, compared to FCD60, the tensile strength and yield strength are slightly lower, but the elongation and impact value are excellent.

このように本発明に基づく鋳鉄(1)〜(3)は従来の
鋳鉄(FCD40、FCD60)に比較して極めて優れ
ている。
As described above, cast irons (1) to (3) according to the present invention are extremely superior to conventional cast irons (FCD40, FCD60).

第4図(a)、(b)、(C)及び(d)は本発明に基
づく第2の実施例に於ける第1の実施例と同様の顕微鏡
組織写真である。第4図(a)に示す鋳鉄(4)は第1
の実施例の鋳鉄(1)、第4図(b)に示す鋳鉄(5)
は鋳鉄(2)、第4図(c)に示す鋳鉄(6)は鋳鉄(
3)、第4図(d)i、l:示tFcD40 (熱処理
)4;tFcD4.0に各々以下の熱処理サイクルにて
フェライト化焼なましを行ったものである。
FIGS. 4(a), (b), (C), and (d) are microscopic structural photographs of the second embodiment based on the present invention, similar to those of the first embodiment. The cast iron (4) shown in Fig. 4(a) is
Cast iron (1) of the example shown in Fig. 4(b), cast iron (5) shown in Fig. 4(b)
is cast iron (2), and cast iron (6) shown in Fig. 4(c) is cast iron (
3), FIG. 4(d) i, l: tFcD40 (Heat treatment) 4; tFcD4.0 was annealed to ferrite using the following heat treatment cycle.

900℃×2時間→720℃×2時間→炉冷第4図(a
)、(b)及び(c)に示すように、ニッケルの添加量
を増加し、2.  Qwt%まで含有させても完全にフ
ェライト化している。また、上記熱処理を施した後でも
本発明に基づく鋳鉄(4)〜(6)の黒鉛粒数は第4図
(d)に示すFCD40の熱処理材よりも多い。
900°C x 2 hours → 720°C x 2 hours → Furnace cooling Figure 4 (a
), (b) and (c), the amount of nickel added was increased, and 2. Even if it is contained up to Qwt%, it is completely converted into ferrite. Further, even after the above-mentioned heat treatment, the number of graphite grains in cast irons (4) to (6) based on the present invention is larger than that in the heat-treated material of FCD 40 shown in FIG. 4(d).

第5図及び第6図にこれら各鋳鉄の機械的性質を示す。Figures 5 and 6 show the mechanical properties of each of these cast irons.

両図に良く示すように、鋳鉄(4)は、引張り強さ及び
耐力はFCD40 (熱処理)と略同様であるが、伸び
及び衝撃値が著しく優れている。特に低温(−40℃)
に於ける衝撃値が優れている。また、鋳鉄(5)は、F
CD40 (熱処理)に比較して引張り強さ、耐力、伸
び及び衝撃値が共に優れている。更に、鋳鉄(6)は、
FCD40(熱処理)に比較して伸び及び衝撃値がやや
低いものの引張り強さ及び耐力が著しく優れている。
As clearly shown in both figures, cast iron (4) has approximately the same tensile strength and yield strength as FCD40 (heat treated), but is significantly superior in elongation and impact value. Especially at low temperatures (-40℃)
Excellent impact value. In addition, cast iron (5) is F
It has superior tensile strength, yield strength, elongation, and impact value compared to CD40 (heat treated). Furthermore, cast iron (6) is
Although the elongation and impact value are slightly lower than FCD40 (heat treated), the tensile strength and yield strength are significantly superior.

第2表は、本発明に基づく第3の実施例に於ける球状黒
鉛鋳鉄の成分表である。
Table 2 is a composition table of spheroidal graphite cast iron in the third embodiment of the present invention.

本実施例の鋳型は、第1の実施例と同様に厚さ25mm
、長さ250 mmのYブロックの鋳型を二酸化炭素(
Co□)鋳型にて造型した。
The mold of this example has a thickness of 25 mm as in the first example.
, a Y block mold with a length of 250 mm was heated with carbon dioxide (
Co□) Molded using a mold.

この鋳型に溶湯を注入し、第1の実施例と同様Fe−S
i合金(Si70wt%〜75wt%)からなる粘度2
0〜100メツシユの接種剤をこの溶湯に対して0.1
0wt%の割合で接種して作成したテストピースについ
て第7図(a)、(b)、(C)及び(d)に顕微鏡組
織写真を示す。尚、第1の実施例と同様に本実施例に於
てもビスマスを高さ15mm、底面の直径25mm 〜
30mmの円錐形をなす塊状で溶湯に添加した。
Molten metal was poured into this mold, and Fe-S
Viscosity 2 consisting of i alloy (Si70wt% to 75wt%)
Add 0 to 100 mesh of inoculant to this molten metal at 0.1
FIGS. 7(a), (b), (C), and (d) show microscopic microstructure photographs of test pieces prepared by inoculating at a ratio of 0 wt%. Incidentally, as in the first embodiment, in this embodiment, the bismuth is 15 mm in height and 25 mm in diameter at the bottom.
It was added to the molten metal in the form of a 30 mm cone-shaped block.

第7図(a)に示す鋳鉄(7)は本発明に基づく球状黒
鉛鋳鉄であり、第7図(b)は従来の球状黒鉛鋳鉄FC
D40、第7図(C)は珪素の含有wt%を低く(7た
FCD40、第7図(d)はビスマスを添加し7たFC
D40を示す。
The cast iron (7) shown in FIG. 7(a) is the spheroidal graphite cast iron based on the present invention, and FIG. 7(b) is the conventional spheroidal graphite cast iron FC.
D40, Figure 7(C) is FCD40 with low silicon content (7), Figure 7(d) is FC with added bismuth.
Indicates D40.

第7図(a)、(b)、(C)及び(d)に良く示すよ
うに、FCD40、珪素の含有wt%を低くしたFCD
40及びビスマスを添加したFCC40に比較して本発
明に基づく鋳鉄(7)は、黒鉛粒数が多くかつフェライ
ト組織が多くなっている。これに対してFCD40は黒
鉛粒数が少なくパーライトが多くなっている。また、珪
素の含Y1wt%の低いFCD40にあっては黒鉛粒数
が少なくパーライトが極めて多くなっている。更に、ビ
スマスを添加したFCD40は、黒鉛粒数が比較的多く
、かつフェライト組織も多くなっている。
As clearly shown in Figure 7 (a), (b), (C) and (d), FCD40, FCD with low silicon content wt%
Cast iron (7) based on the present invention has a larger number of graphite grains and a larger ferrite structure than FCC40 containing 40 and bismuth. On the other hand, FCD40 has fewer graphite grains and more pearlite. Furthermore, in FCD40 with a low silicon content of 1 wt %, the number of graphite grains is small and pearlite is extremely large. Furthermore, FCD40 containing bismuth has a relatively large number of graphite grains and a large number of ferrite structures.

第8図及び第9図にこれら各鋳鉄の機械的性質を示す。Figures 8 and 9 show the mechanical properties of each of these cast irons.

両図に良く示すように、鋳鉄(7)は、引張り強さ及び
耐力はFCD40よりも低くなっているが、伸び及び衝
撃値に優れている。特に、低温時(−40℃)に於ける
衝撃値は、1.7kgf’*rn/cm2程度の良好な
値が得られる。また、珪素の含有wL%の低いFCD4
0では、パーライトが多いことにより引張り強さ及び耐
力が高くなっているが、伸び及び衝撃値が著しく低くな
っている。更に、ビスマスを添加したFCD40は黒鉛
が微細化され各フェライト組織が多くなっているが、鋳
鉄(7)に比較すると延び及び衝撃値が低くなっている
。特に−40℃に於ける低温時の衝撃値は鋳鉄(7)の
方が著しく高いことがわかる。
As clearly shown in both figures, cast iron (7) has lower tensile strength and yield strength than FCD40, but is superior in elongation and impact value. In particular, a good impact value at low temperatures (-40°C) of about 1.7 kgf'*rn/cm2 can be obtained. In addition, FCD4 with low silicon content wL%
0, the tensile strength and yield strength are high due to the large amount of pearlite, but the elongation and impact value are significantly low. Furthermore, FCD40 containing bismuth has finer graphite and more ferrite structures, but has lower elongation and impact value than cast iron (7). In particular, it can be seen that the impact value at low temperatures of -40°C is significantly higher for cast iron (7).

このように、本発明に基づく鋳鉄(7)は従来の鋳鉄(
FCD40、珪素低含有FCD40、ビスマス添加FC
D40)に比較して極めて優れている。
In this way, the cast iron (7) based on the present invention is different from the conventional cast iron (
FCD40, low silicon content FCD40, bismuth added FC
D40).

尚、本実施例の鋳鉄(7)は熱処理を行わなくとも優れ
た性質が得られる。
In addition, the cast iron (7) of this example can obtain excellent properties even without heat treatment.

第10図のグラフ及び第11図(a)〜(1)の顕微鏡
組織写真は、球状黒鉛鋳鉄のビスマスの含有率(wL%
)による黒鉛球状化率(%)の変化を示す。ここで本実
施例の球状黒鉛鋳鉄は、炭素3、 55wL%〜3.7
5wt%、珪素2.  OwL%〜2、 3wt%、マ
ンガン0. 3wL%未満、リン0゜33wt%未満、
クロム0.05wt%未満、硫黄0゜005wt%未満
、マグネシウム0.027wt%〜0、 040wL%
及びビスマスを含有し、残余鉄及び不可避的不純物から
なり、ビスマスの添加率を調整してその食台率を0゜0
010wt%〜0.0096wt%の範囲で変化させて
鋳造した。
The graph in Figure 10 and the microscopic structure photographs in Figures 11 (a) to (1) show the bismuth content (wL%) of spheroidal graphite cast iron.
) shows the change in graphite spheroidization rate (%). Here, the spheroidal graphite cast iron of this example contains carbon 3, 55 wL% to 3.7
5wt%, silicon 2. OwL%~2,3wt%, manganese 0. less than 3wL%, phosphorus less than 0°33wt%,
Chromium less than 0.05wt%, sulfur less than 0°005wt%, magnesium 0.027wt%~0, 040wL%
It contains residual iron and unavoidable impurities, and the addition rate of bismuth is adjusted to bring the table rate to 0°0.
Casting was performed by varying the amount from 0.010 wt% to 0.0096 wt%.

第11図(a)〜(1)から求めたビスマス含有率に対
する黒鉛球状化率をグラフ化した第10図に示すように
、ビスマスの含有率が0.0015wt%〜0.008
wL%の範囲にあるときには、各成分を上記した範囲で
含有している場合に於て、黒鉛球状化率が80%以上と
なり、望ましい結果が得られた。特にビスマスの含有率
が0.0015vt%〜0. 004wL%の範囲であ
ると、黒鉛球状化率が90%以上となり、また比較的黒
鉛球状化率のばらつきもなくなる。
As shown in FIG. 10, which is a graph of the graphite nodularization rate against the bismuth content determined from FIG.
When the content of each component was within the range of wL%, the graphite nodularity was 80% or more, and desirable results were obtained. In particular, the bismuth content is between 0.0015vt% and 0.0015vt%. In the range of 0.004 wL%, the graphite nodularity is 90% or more, and there is relatively no variation in the graphite nodularity.

ここで、ビスマス含有率が0.0015wL%未満であ
るとチルの発生が懸念され、また、0.004wt%を
越えると黒鉛球状化率が急激に低下して、特にビスマス
含有率が0.008wt%を越えると黒鉛球状化率が8
0%未満となり所望量の球状黒鉛が得られず鋳鉄の低温
時の衝撃地及び伸びが著しく劣化する。このとき、ビス
マスの食台率を0.0015wt%−”0. 008v
t%の範囲にするためは、鋳造時の溶湯にビスマス0.
 005wt%〜0.025wt%を直径1 mm〜3
 mmの粒状として紙に包んで添加すると良い。また、
ビスマスの含有率を0.0015wt%〜0. 004
wL%の範囲にするためは、鋳造時の溶湯にビスマス0
.005W[%〜0.015wL%を直径1mff1〜
3m111の粒状として紙に包んで添加すると良い。
Here, if the bismuth content is less than 0.0015 wL%, there is a concern that chill will occur, and if it exceeds 0.004 wt%, the graphite nodularity rate will decrease rapidly, especially if the bismuth content is 0.008 wL%. If it exceeds %, the graphite spheroidization rate will be 8.
If it is less than 0%, the desired amount of spheroidal graphite cannot be obtained, and the impact strength and elongation of cast iron at low temperatures are significantly deteriorated. At this time, the table ratio of bismuth is 0.0015wt% - "0.008v
In order to keep it within the t% range, 0.0% bismuth is added to the molten metal during casting.
005wt%~0.025wt% with a diameter of 1mm~3
It is best to add it in the form of millimeter granules wrapped in paper. Also,
The bismuth content is 0.0015wt% to 0.0015wt%. 004
In order to keep the wL% range, bismuth 0 is added to the molten metal during casting.
.. 005W[%~0.015wL% to diameter 1mff1~
It is best to wrap it in paper and add it in the form of granules of 3m111.

尚、成分中のマグネシウムは黒鉛の球状化を促進するが
、硫黄は、MgSやMg25等を形成することによりこ
のマグネシウムを非金属介在物に変化させることにより
黒鉛の形成及び球状化を阻害する元素として知られてい
る。従って、上記鋳鉄のマグネシウムを多くするか或い
は硫黄を少なくすることにより第10図の曲線の傾きが
小さくなり、ビスマスの含有率がやや多くても所望の黒
鉛球状化率が得られるようになる。
In addition, magnesium in the component promotes the spheroidization of graphite, but sulfur is an element that inhibits the formation of graphite and spheroidization by changing this magnesium into nonmetallic inclusions by forming MgS, Mg25, etc. known as. Therefore, by increasing the magnesium content or decreasing the sulfur content in the cast iron, the slope of the curve in FIG. 10 becomes smaller, and the desired graphite nodularity can be obtained even if the bismuth content is slightly higher.

[発明の効果] このように本発明によれば、鋳放し状態で優れた引張り
強さ、延び及び衝撃値を有する球状黒鉛鋳鉄が得られる
ようになることから、熱処理の工数を削減することがで
きる。また、この鋳鉄に熱処理を施することにより一層
優れた延び及び衝撃値が得られ、特に低温に於ける衝撃
値が著しく向上する。従って、本発明は球状黒鉛鋳鉄の
機械的性質の向上及び製造原価の低減化に極めて高い効
果をもたらすものである。
[Effects of the Invention] As described above, according to the present invention, spheroidal graphite cast iron having excellent tensile strength, elongation, and impact value in the as-cast state can be obtained, so that the number of heat treatment steps can be reduced. can. In addition, by subjecting this cast iron to heat treatment, even better elongation and impact values can be obtained, and especially the impact values at low temperatures are significantly improved. Therefore, the present invention is extremely effective in improving the mechanical properties of spheroidal graphite cast iron and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)、(d)及び(e)は、
本発明に基づく第1の実施例を示す金属顕微鏡組織写真
である。 第2図及び第3図は、共に第1図(a)〜(e)に示す
本発明に基づく各鋳鉄及び比較材の機械的性質を示すグ
ラフである。 第4図(a)、(b)、(C)、及び(d)は、本発明
に基づく第2の実施例を示す金属顕微鏡写真である。 第5図及び第6図は、共に第4図(a)〜(d)に示す
本発明に基づく各鋳鉄及び比較材の機械的性質を示すグ
ラフである。 第7図(a)、(b)、(C)、及び(d)は、本発明
に基づく第3の実施例を示す金属顕微鏡写真である。 第8図及び第9図は、共に第7図(a)〜(d)に示す
本発明に基づく鋳鉄及び比較材の機械的性質を示すグラ
フである。 第10図は、球状黒鉛鋳鉄のビスマス含有率と黒鉛球状
化率との関係を示すグラフである。 第11図(a)〜(1)は球状黒鉛鋳鉄のビスマスの含
有率と黒鉛球状化率との関係を示す金属顕微鏡組織写真
である。
Figures 1 (a), (b), (c), (d) and (e) are
1 is a metallurgical microscopic photograph showing a first example based on the present invention. FIGS. 2 and 3 are graphs showing the mechanical properties of each cast iron according to the present invention and comparative materials shown in FIGS. 1(a) to (e). FIGS. 4(a), (b), (C), and (d) are metallurgical micrographs showing a second embodiment based on the present invention. 5 and 6 are graphs showing the mechanical properties of each cast iron according to the present invention and the comparative material shown in FIGS. 4(a) to 4(d). FIGS. 7(a), (b), (C), and (d) are metallurgical micrographs showing a third embodiment based on the present invention. 8 and 9 are graphs showing the mechanical properties of the cast iron according to the present invention and the comparative material shown in FIGS. 7(a) to 7(d). FIG. 10 is a graph showing the relationship between bismuth content and graphite nodularity of spheroidal graphite cast iron. FIGS. 11(a) to 11(1) are metallographic microstructure photographs showing the relationship between bismuth content and graphite nodularity of spheroidal graphite cast iron.

Claims (6)

【特許請求の範囲】[Claims] (1)炭素(C)3.0重量%〜4.0重量%、珪素(
Si)1.5重量%〜2.3重量%、マンガン(Mn)
0.3重量%未満、燐(P)0.03重量%未満、クロ
ム(Cr)0.10重量%未満、マグネシウム(Mg)
0.02重量%〜0.06重量%、ビスマス(Bi)0
.0015重量%〜0.008重量%、残余鉄及び不可
避的不純物からなり、かつCE値(炭素当量)3.9〜
4.6重量%であることを特徴とする球状黒鉛鋳鉄。
(1) Carbon (C) 3.0% to 4.0% by weight, silicon (
Si) 1.5% to 2.3% by weight, manganese (Mn)
less than 0.3% by weight, phosphorus (P) less than 0.03% by weight, chromium (Cr) less than 0.10% by weight, magnesium (Mg)
0.02% to 0.06% by weight, bismuth (Bi) 0
.. 0015% by weight to 0.008% by weight, consisting of residual iron and unavoidable impurities, and CE value (carbon equivalent) 3.9 to
Spheroidal graphite cast iron characterized by having a content of 4.6% by weight.
(2)前記ビスマスの含有重量%を0.0015重量%
〜0.004重量%としたことを特徴とする特許請求の
範囲第1項に記載の球状黒鉛鋳鉄。
(2) The content of bismuth is 0.0015% by weight.
Spheroidal graphite cast iron according to claim 1, characterized in that the content is 0.004% by weight.
(3)黒鉛粒数が300個/mm^2以上であることを
特徴とする特許請求の範囲第1項若しくは第2項に記載
の球状黒鉛鋳鉄。
(3) Spheroidal graphite cast iron according to claim 1 or 2, characterized in that the number of graphite particles is 300 pieces/mm^2 or more.
(4)ニッケル(Ni)を0.5重量%〜2.0重量%
含むことを特徴とする特許請求の範囲第1項乃至第3項
のいずれかに記載の球状黒鉛鋳鉄。
(4) 0.5% to 2.0% by weight of nickel (Ni)
Spheroidal graphite cast iron according to any one of claims 1 to 3, characterized in that the spheroidal graphite cast iron comprises:
(5)炭素(C)3.0重量%〜4.0重量%、珪素(
Si)1.5重量%〜2.3重量%、マンガン(Mn)
0.3重量%未満、燐(P)0.03重量%未満、クロ
ム(Cr)0.10重量%未満、マグネシウム(Mg)
0.02重量%〜0.06重量%、残余鉄及び不可避的
不純物からなり、かつCE値(炭素当量)3.9〜4.
6%である溶湯に、ビスマス(Bi)を0.005重量
%〜0.025重量%添加すると同時にまたは添加後に
接種し、黒鉛粒数を300個/mm^2以上としたこと
を特徴とする球状黒鉛鋳鉄の製造方法。
(5) Carbon (C) 3.0% to 4.0% by weight, silicon (
Si) 1.5% to 2.3% by weight, manganese (Mn)
less than 0.3% by weight, phosphorus (P) less than 0.03% by weight, chromium (Cr) less than 0.10% by weight, magnesium (Mg)
0.02% to 0.06% by weight, consisting of residual iron and unavoidable impurities, and CE value (carbon equivalent) of 3.9 to 4.
It is characterized by adding 0.005% to 0.025% by weight of bismuth (Bi) to a 6% molten metal and inoculating it at the same time or after the addition, so that the number of graphite particles is 300 pieces/mm^2 or more. Method for manufacturing spheroidal graphite cast iron.
(6)前記溶湯がニッケル(Ni)を0.5重量%〜2
.0重量%含むことを特徴とする特許請求の範囲第5項
に記載の球状黒鉛鋳鉄の製造方法。
(6) The molten metal contains 0.5% to 2% by weight of nickel (Ni)
.. The method for producing spheroidal graphite cast iron according to claim 5, characterized in that it contains 0% by weight.
JP1058078A 1988-03-09 1989-03-09 Spheroidal graphite cast iron and method for producing the same Expired - Fee Related JP2730959B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US165873 1988-03-09
US07/165,873 US4889687A (en) 1987-03-09 1988-03-09 Nodular cast iron having a high impact strength and process of treating the same

Publications (2)

Publication Number Publication Date
JPH01309939A true JPH01309939A (en) 1989-12-14
JP2730959B2 JP2730959B2 (en) 1998-03-25

Family

ID=22600835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058078A Expired - Fee Related JP2730959B2 (en) 1988-03-09 1989-03-09 Spheroidal graphite cast iron and method for producing the same

Country Status (1)

Country Link
JP (1) JP2730959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861920A (en) * 2016-06-17 2016-08-17 沈阳铸造研究所 High-dimensional-stability cast iron and preparing method thereof
CN114058937A (en) * 2021-11-19 2022-02-18 襄阳金耐特机械股份有限公司 Low-temperature high-toughness nodular cast iron and application thereof
US11254993B2 (en) 2015-07-15 2022-02-22 I2C Co., Ltd. Method for producing die-cast product of spheroidal graphite cast iron having ultrafine spheroidal graphite, and die-cast product of spheroidal graphite cast iron

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64246A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron
JPS64245A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64246A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron
JPS64245A (en) * 1987-03-09 1989-01-05 Hitachi Metals Ltd Spheroidal graphite cast iron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254993B2 (en) 2015-07-15 2022-02-22 I2C Co., Ltd. Method for producing die-cast product of spheroidal graphite cast iron having ultrafine spheroidal graphite, and die-cast product of spheroidal graphite cast iron
CN105861920A (en) * 2016-06-17 2016-08-17 沈阳铸造研究所 High-dimensional-stability cast iron and preparing method thereof
CN105861920B (en) * 2016-06-17 2018-10-09 沈阳铸造研究所 A kind of high-dimensional stability cast iron and preparation method thereof
CN114058937A (en) * 2021-11-19 2022-02-18 襄阳金耐特机械股份有限公司 Low-temperature high-toughness nodular cast iron and application thereof
CN114058937B (en) * 2021-11-19 2022-07-15 襄阳金耐特机械股份有限公司 Low-temperature high-toughness nodular cast iron and application thereof

Also Published As

Publication number Publication date
JP2730959B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
CN108342640A (en) A kind of high-hardenability pinion steel and its manufacturing method
JPH0239563B2 (en)
KR102542938B1 (en) High strength grey cast iron
JP2019081924A (en) Spheroidal graphite cast iron and method for producing the same
JPH0461047B2 (en)
JP2000256776A (en) Brake disk material for vehicle
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JPH01309939A (en) Spheroidal graphite cast iron and its manufacture
US4166756A (en) Railroad car friction casting metallurgy
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JP2677367B2 (en) Spheroidal graphite cast iron
JPH05140700A (en) Ferritic heat resistant cast steel member and its manufacture
JPH10317093A (en) High rigidity spheroidal graphite cast iron and its production
JPH0987797A (en) High strength ductile cast iron material
JPH0841581A (en) Spheroidal graphite cast iron and its production
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
JPH01246A (en) Spheroidal graphite cast iron
JP2620695B2 (en) Iron-based casting with high strength
JP2775049B2 (en) Manufacturing method of spheroidal graphite cast iron
JPS61143554A (en) Cast iron material for surface hardening
JPS5952931B2 (en) Heat treatment method for spheroidal graphite cast iron rolls for hot rolling
KR102678568B1 (en) Low carbon spherodial alloy steel and method of manufacturing the same
JPS5867844A (en) Spherical graphite cast iron excellent in tenacity and preparation thereof
JPH0270015A (en) Spheroidal graphite cast iron
JPH03130344A (en) Spheroidal graphite cast iron and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees