JPH01241502A - Polarizing element for optical isolator - Google Patents
Polarizing element for optical isolatorInfo
- Publication number
- JPH01241502A JPH01241502A JP63069128A JP6912888A JPH01241502A JP H01241502 A JPH01241502 A JP H01241502A JP 63069128 A JP63069128 A JP 63069128A JP 6912888 A JP6912888 A JP 6912888A JP H01241502 A JPH01241502 A JP H01241502A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- polarizing element
- optical
- birefringent
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 60
- 239000011521 glass Substances 0.000 claims abstract description 11
- 230000010287 polarization Effects 0.000 claims description 10
- 238000009738 saturating Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 claims 1
- 238000010791 quenching Methods 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 abstract 1
- 230000008033 biological extinction Effects 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910021532 Calcite Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000006716 Broussonetia kazinoki Nutrition 0.000 description 1
- 240000006248 Broussonetia kazinoki Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Polarising Elements (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は方解石やルチル(TiOz )を用いた光アイ
ソレータ、光サーキュレータ、光スイッチ等光回路用デ
バイスにJ3いて、S波成分を光軸路から発散さけ消光
比を改善させた偏光素子の構成に関づるものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention uses calcite or rutile (TiOz) in optical circuit devices such as optical isolators, optical circulators, and optical switches, and converts the S-wave component into an optical axis path. This invention relates to the structure of a polarizing element that improves the extinction ratio of divergence.
[従来の技術]
光アイソレータは半導体レーザを用いた高速光通信、高
精度光計測等において、その光回路系からの反射戻り光
による半導体レーザ発揚の誤動作を防止するものであり
、光回路内bb<は半導体レーザ直前部分に配置し、順
方向(入射側)からの光信号は損失なく透過させ、逆方
向(出射側)からの反射戻り光は透過を阻止する機能を
有する光デバイスで、近年特にその重要性が認識される
ようになった。[Prior Art] Optical isolators are used in high-speed optical communication using semiconductor lasers, high-precision optical measurements, etc., to prevent malfunctions in the semiconductor laser due to reflected return light from the optical circuit system. < is an optical device that is placed in front of the semiconductor laser and has the function of allowing optical signals from the forward direction (incidence side) to pass through without loss, and blocking reflected return light from the reverse direction (output side). In particular, its importance has come to be recognized.
その−殻内な動作原理は、入射した光を偏光子により直
線偏光とし、次にファラデー回転子を配することにより
その偏光面を45°回転させ、回転された直線偏光を次
の検光子へ導入し透過させる。このとき偏光子と検光子
はその光軸が45°回転している関係なので、順方向か
ら45゜回転して出射された光のみが透過できる。逆に
戻り光の場合は検光子面と合致した光のみが検光子を透
過でき、ざらにファラデー回転子により再び45°偏光
面が回転するので、結局偏光子部分まできたとき、初期
の偏光面に対して90゜ずれるのでその光は偏光子を透
過できない。これを消光特性という。Its operating principle is that the incident light is linearly polarized by a polarizer, then the plane of polarization is rotated by 45 degrees by placing a Faraday rotator, and the rotated linearly polarized light is sent to the next analyzer. Introduce and make it permeable. At this time, since the optical axes of the polarizer and analyzer are rotated by 45 degrees, only light emitted after being rotated by 45 degrees from the forward direction can be transmitted. Conversely, in the case of returning light, only the light that matches the analyzer surface can pass through the analyzer, and the plane of polarization is roughly rotated by 45 degrees again by the Faraday rotator, so when it finally reaches the polarizer, the initial plane of polarization is Since the light is shifted by 90 degrees from the polarizer, the light cannot pass through the polarizer. This is called extinction property.
[発明が解決しようとする課題]
これまで各種多様な光アイソレータが提案されたが下記
の点で制約があった。たどえば光アイソレータの近端反
射がレーザに戻ることを防止するため、光アイソレータ
を傾斜して使うものは、入射光と出射光とが同一直線上
にはなくしかも平行直線でもないため、光線の軸合Uが
難しい。[Problems to be Solved by the Invention] Various types of optical isolators have been proposed so far, but they have been limited by the following points. In order to prevent reflections from the near end of the optical isolator from returning to the laser, optical isolators that are tilted are used because the incident light and the outgoing light are not on the same straight line, nor are they parallel. It is difficult to align the axis U.
ロションプリズムやウォラストンプリズムは安価な偏光
ビームスプリッタ(PBS) 、もしくはルチルプリズ
ムに対して偏光素子としての性能は高いが、光アイソレ
ータに組込んだとき異常光線の分離角度が大きくとれな
いため、実効光線路内に侵入して光アイソレータとして
の消光特性を劣化させる要因になっていた。Rochon prisms and Wollaston prisms have high performance as polarizing elements compared to inexpensive polarizing beam splitters (PBS) or rutile prisms, but when incorporated into optical isolators, the separation angle of extraordinary rays cannot be set large. It invades the effective optical path and becomes a factor that deteriorates the extinction characteristics of the optical isolator.
これに対してPBSは、方解石やルチルを用いた複屈折
偏光プリズムに比較し価格的な優位性はあるが、30層
以上の誘電体多層膜の形成工程が複雑であり、40dB
以上の高い消光特性は望めない。また複屈折偏光素子の
中でもグラントムソン型プリズムは常光線を全反則させ
光路外へ回折するため、50dB以上の高い消光特性が
19られ、かつ光アイソレータとして用いても常光線が
実効光線路内に侵入してこないので、高いアイソレーシ
ョンが望めるが、寸法的に長くなると同時に素子単体の
価格も高くなるので、今後の光通信等における多品使用
を考慮したとぎ価格的に対応できない。On the other hand, PBS has a price advantage over birefringent polarizing prisms using calcite or rutile, but the process of forming a dielectric multilayer film of 30 or more layers is complicated, and the
A higher extinction characteristic cannot be expected. Furthermore, among birefringent polarizing elements, the Glan-Thompson prism completely refracts the ordinary ray and diffracts it out of the optical path, so it has a high extinction characteristic of 50 dB or more19, and even when used as an optical isolator, the ordinary ray does not fall within the effective optical path. Since there is no intrusion, high isolation can be expected, but as the dimensions become longer and the cost of the element itself also increases, it cannot be accommodated in terms of cost considering the use of many products in future optical communications and the like.
本発明者等は先に特願昭62−185662において、
特に光アイソレータ用偏光素子としてすぐれた効果を有
する偏光プリズムを開示した。上記特許出願に基づく偏
光プリズムにJ、って前述の従来プリズムの欠点は大幅
に改善することができた。すなわち第2図(a)に示づ
一つォラストン型プリズムでは第一の複屈折プリズム1
の頂角βを調節することから入射光と出射光を平行な光
軸にでき、かつ第二の複屈折プリズム2の頂角αを45
°以上にしても入射時のS偏光分を充分な角度だIt
Wれるので、偏光素子の光線方向の厚みを短縮できるし
のである。さらに価格的により安価な偏光素子とするた
め(b)の1]ジヨン型プリズムの第一のプリズム3を
等方向なガラスとし、第二のプリズム4を複屈折物?1
とすれば高価な複屈折性材料は゛に分の使用でよいため
経済的な素子となる。以上の構成は前述の従来技術を大
+i+に改善する手法を示唆するものである。しかしな
がらこれらの構成の偏光素子はいずれも不必要な偏光成
分を光軸からずら1ことににす、半導体レーザへ反射し
ないように提案されたもので、分離された不用偏光成分
が光アイソレータを構成する部品(例えばホルダケース
の4通孔)から回折して半導体レーザへ復帰する可能性
が存在りる。The present inventors previously disclosed in Japanese Patent Application No. 62-185662,
In particular, a polarizing prism that has excellent effects as a polarizing element for an optical isolator has been disclosed. The polarizing prism based on the above patent application was able to significantly improve the drawbacks of the conventional prism described above. In other words, in the case of one Wollaston prism shown in FIG. 2(a), the first birefringent prism 1
By adjusting the apex angle β of
Even if the angle is more than °, it is still a sufficient angle to capture the S-polarized light at the time of incidence.
Since the thickness of the polarizing element can be reduced in the direction of the light beam, the thickness of the polarizing element can be reduced. Furthermore, in order to obtain a cheaper polarizing element, the first prism 3 of the John type prism (1) of (b) is made of isotropic glass, and the second prism 4 is made of birefringent material. 1
If this is the case, only a small amount of expensive birefringent material can be used, resulting in an economical element. The above configuration suggests a method for greatly improving the prior art described above. However, all of these configurations of polarizing elements were proposed in order to shift the unnecessary polarized light component from the optical axis so that it would not be reflected to the semiconductor laser, and the separated unnecessary polarized light component constitutes an optical isolator. There is a possibility that the light will be diffracted from the parts (for example, the four holes of the holder case) and returned to the semiconductor laser.
[課題を解決するための手段]
本発明は第2図(a) 、 (b)の複屈折体偏光素子
の第一のプリズムと第二のプリズムの接合部分に少なく
とも六層の誘電体膜を形成し、不用偏光成分を接合部分
で反射させることから光回路内への侵入を阻止Uんとす
るものである。すなわち複屈折効果とブリュースター反
射を利用りるPBSの性質を兼有させ、消光特性を面上
させることによって、光アイソレークなどの光デバイス
としての性能を改善することが本発明の主たる目的であ
る。[Means for Solving the Problems] The present invention provides at least six dielectric films at the junction between the first prism and the second prism of the birefringent polarizing element shown in FIGS. 2(a) and 2(b). The unnecessary polarized light components are reflected at the junction, thereby preventing them from entering the optical circuit. In other words, the main purpose of the present invention is to improve the performance of optical devices such as optical isolake by combining the properties of PBS that utilizes birefringence effect and Brewster reflection, and improving the extinction property on the surface. .
本発明は、ファラデー回転子とファラデー回転子を磁気
的に飽和させるためのIa場光発生用永久磁石中央部分
に配置し、かつファラデー回転子の両側に互いの光軸が
45°ずれた偏光素子を配置することからなる光学系で
構成された光アイソレータにおいて、1つは偏光素子が
エバの複屈折体プリズムから構成され、第一のN屈折体
プリズムと第二のN屈折体プリズムの光軸が共に光の入
用方向に対し直角であり、かつ該第一の複屈折体プリズ
ムの光軸と第二の複屈折体プリズムの光軸とのなづ角度
が直角であり、ざらに入射光と出射光が平行となるよう
な角度に両方の複屈折体プリズムのプリズム角度が設定
されている偏光素子用複屈折プリズムの接合部分に、誘
電体多層膜を形成することであり、他の1つは偏光素子
が一片の複屈折体プリズムおよび光学的に等方向なガラ
スプリズムから構成され、複屈折体プリズムは入射光に
対してその光軸が直角であり、かつ入射光と出射光が平
行になるようにガラスプリズムのプリズム角度が設定さ
れている偏光素子用プリズムの接合部分に、誘電体多層
膜を形成することである。さらに誘電体多層膜は、中心
波長において吸収の少ない、少なくとも六層を形成する
ことが好ましい。The present invention provides a Faraday rotator and a polarizing element disposed in the central part of a permanent magnet for generating Ia field light for magnetically saturating the Faraday rotator, and on both sides of the Faraday rotator, polarizing elements whose optical axes are shifted by 45 degrees from each other. In the optical isolator, one is composed of an EVA birefringent prism as a polarizing element, and the optical axes of the first N-refractive prism and the second N-refractive prism are arranged. are both perpendicular to the direction of light entry, and the angle between the optical axis of the first birefringent prism and the optical axis of the second birefringent prism is a right angle, and the incident light is roughly A dielectric multilayer film is formed at the joint part of a birefringent prism for a polarizing element, in which the prism angles of both birefringent prisms are set at an angle such that the output light becomes parallel to the other one. One is that the polarizing element consists of a birefringent prism and an optically isotropic glass prism, and the birefringent prism has its optical axis perpendicular to the incident light, and the incident light and the output light are parallel. A dielectric multilayer film is formed at the joint portion of the prism for a polarizing element, in which the prism angle of the glass prism is set so that Further, it is preferable that the dielectric multilayer film has at least six layers that have low absorption at the center wavelength.
一般に2種の誘電体の境界に入(ト)角θで入った光は
、振幅反射係数をP偏光、S偏光でそれぞれRp 、R
sとした場合、ψを2番目の誘電体内の屈折角とすれば
、
jan(θ−ψ) 5in(θ−Φ)Rp−
−111口ロー・ −一百m璽1丁S
したがって(θ+ψ)=90’のときRp =Oとなり
反射されるのがR3のみで、2種の偏光を分離すること
ができる。この条件のときのθをブリュースター角とい
う。実際にこの種の膜により偏光成分を分l111する
には、高低2種類の屈折率を有する誘電体を利用づる場
合、波長をλとすると、λ/4の膜厚で交互に積層する
。高屈折率層を1−1.低屈折率層をLとしてRp=0
とするには、
l−Lm
(Ll−1) 、 (+−1> 、(すLすがとし
て、mを3以上にとれば、S偏光の除去帯すなわ’5
S偏光成分の反射率は90%以、Fになることが知られ
ている(たとえば石黒浩三著「光学博膜」共存出版)。Generally, light entering the boundary between two types of dielectrics at an angle θ has an amplitude reflection coefficient of Rp and R for P-polarized light and S-polarized light, respectively.
s, and if ψ is the refraction angle in the second dielectric, then jan(θ-ψ) 5in(θ-Φ)Rp-
-111 rows -100 meters 1 piece S Therefore, when (θ+ψ)=90', Rp=O, and only R3 is reflected, making it possible to separate two types of polarized light. θ under this condition is called Brewster's angle. In order to actually separate the polarized light components using this type of film, if a dielectric material having two types of high and low refractive indexes is used, the films are alternately laminated with a film thickness of λ/4, where λ is the wavelength. High refractive index layer 1-1. Rp=0, where L is the low refractive index layer
To do this, l-Lm (Ll-1) , (+-1> , (Assuming that m is 3 or more, the removal band for S polarization is '5
It is known that the reflectance of the S-polarized light component is 90% or more, which is F (for example, Kozo Ishiguro's ``Optical Hakumei'', published by Kozo).
[実施例1]
第1図(a)に示すようにつAラストン型偏光素子の第
一プリズム1.第ニブリズム2接合部分MにAj20z
および1r02の積層膜を真空蒸着により、以Fのパタ
ーンで積層した。[Example 1] As shown in FIG. 1(a), a first prism 1 of a Ruston type polarizing element was prepared. Aj20z on the 2nd nib rhythm 2nd joint part M
The laminated films of 1r02 and 1r02 were laminated in the following pattern by vacuum evaporation.
(L Hし )([−HL )(L Hし ) →
1− FI L HL l−(’−’2”’l”
2Y’Z7 ’l”2’ここでH:1rO2で膜厚
λ/4. L :AJ203で膜厚λ/ 4 、 L/
2:AJ 703で膜厚λ/8を示すもので、この蒸着
多層膜を第一、第ニブリズムの一方の接合面に形成した
後、第一、第二のプリズムを接合し、偏光特性を分光光
度計によって測定したところ、接合面に多層膜を形成し
ない素子に比較して波長13IIIRにおいて消光特性
が、 多層膜形成なし: 38dB
七層多層膜形成: 41dB
と3dBの向上を得た。本発明名等の測定した分光光度
計の感電は40dBが−L限であったため、それ以上の
計測が不可能なことから、実際にはより高い消光特性と
考えられる。次にこれら偏光素子を用いて光アイソレー
タを組立てたところ、消光比が38dBと大幅に改善さ
れた。(L H shi) ([-HL) (L H shi) →
1- FI L HL l-('-'2"'l"
2Y'Z7 'l''2' where H: 1rO2 and film thickness λ/4. L: AJ203 and film thickness λ/4, L/
2: AJ 703 with a film thickness of λ/8. After forming this vapor-deposited multilayer film on the bonding surface of one of the first and second prisms, the first and second prisms were bonded and the polarization characteristics were measured by spectroscopy. When measured with a photometer, the extinction characteristics at wavelength 13IIIR were improved by 3 dB: 38 dB without multilayer film formation and 41 dB with 7-layer multilayer film formation, compared to an element in which no multilayer film was formed on the bonding surface. Since the electric shock measured by the spectrophotometer of the present invention was at -L limit of 40 dB, it is impossible to measure more than that, so it is considered that the extinction characteristic is actually higher. Next, when an optical isolator was assembled using these polarizing elements, the extinction ratio was significantly improved to 38 dB.
[実施例2]
次に第1図(b)に示すようにガラスロションプリズム
の構成において、ガラスプリズム3との接合面Nに実施
例1と同様にAj203および7rO2の上層膜を形成
した。そして膜を形成しない素子と形成した偏光素子の
消光特性は、多層膜形成なし: 36dB
七層多層躾形成: 40dB
であった。次にこれら偏光素子を用いて光アイソレータ
を組立てたところ、消光比が35dBと大幅に改善され
た。[Example 2] Next, in the structure of a glass Rochon prism as shown in FIG. 1(b), an upper layer film of Aj203 and 7rO2 was formed on the joint surface N with the glass prism 3 in the same manner as in Example 1. The extinction characteristics of the element without a film and the polarizing element formed thereon were 36 dB without multilayer film formation and 40 dB with seven-layer multilayer film formation. Next, when an optical isolator was assembled using these polarizing elements, the extinction ratio was significantly improved to 35 dB.
すなわち光アイソレータ内の光路から充分な反射分離が
実現化されたものと考えられる。これは(b)で示すよ
うにS偏光分の90%以上が接合面Nでカットされ高消
光特性が得られるものである。第1図の膜構成は第1表
で与えられ、(以下余白)
方解石プリズム4に第1表の構成で多層膜を形成し、ガ
ラスプリズム3と樹脂で接着接合し作成した。この素子
の消光特性およびS偏光分離効果を確認するため、八か
ら光線を入射しB。In other words, it is considered that sufficient reflection separation from the optical path within the optical isolator has been realized. As shown in (b), more than 90% of the S-polarized light is cut off at the bonding surface N, resulting in high extinction characteristics. The film structure shown in FIG. 1 is given in Table 1 (the following is a blank space).A multilayer film was formed on the calcite prism 4 according to the structure shown in Table 1, and was bonded to the glass prism 3 with resin. In order to confirm the extinction characteristics and S-polarization separation effect of this element, a light beam was incident from 8 B.
C,D方向の出射光の強度を測定したところ、B方向の
P成分の透過率は99.98%、C方向の反射強度は9
712%、D方向の偏光分離力は2.8%であった。す
なわち第1表の構成から97%の不用偏光弁が分離でき
ることになる。When the intensity of the emitted light in the C and D directions was measured, the transmittance of the P component in the B direction was 99.98%, and the reflection intensity in the C direction was 99.98%.
712%, and the polarization separation power in the D direction was 2.8%. That is, from the configuration shown in Table 1, 97% of unnecessary polarizing valves can be separated.
[発明の効!!!]
一般に光アイソレータを必要とする光通信光計測用半導
体レーザはそれ自身かなり強い直線偏光を示すので、S
偏光成分自体少ないが、さらに光アイソレータに内蔵さ
れる2つの偏光索子が本発明のような多層膜を有するな
らば、複屈折効果とブリュースター反射を利用するPB
Sの性質を兼有させることにより消光特性を面上させる
ため、分離光が光路内で侵入することをほとんど阻止す
ることができ、半導体レーザの安定動作を維持でさ・、
本発明の偏光素子により今後の光通信用デバイスとして
アイソレータの信頼性を大幅に改善することができるよ
うになった。[Efficacy of invention! ! ! ] Semiconductor lasers for optical communication and measurement, which generally require an optical isolator, exhibit fairly strong linear polarization, so S
Although the polarization component itself is small, if the two polarization cables built into the optical isolator have a multilayer film as in the present invention, a PB that utilizes the birefringence effect and Brewster reflection can be used.
By combining the properties of S, the extinction property is made on the surface, so it is possible to almost prevent the separated light from entering the optical path, and maintain stable operation of the semiconductor laser.
The polarizing element of the present invention has made it possible to significantly improve the reliability of isolators as future optical communication devices.
第1図は本発明の偏光素子の構成図。
第2図は従来の偏光素子の構成図。
1.2.4:複屈折体プリズム 3;ガラスプリズム特
許出願人 並木精密宝石株式会社
(a) ” (b)
第1図
第2図FIG. 1 is a configuration diagram of a polarizing element of the present invention. FIG. 2 is a configuration diagram of a conventional polarizing element. 1.2.4: Birefringent prism 3; Glass prism patent applicant Namiki Precision Jewel Co., Ltd. (a) ” (b) Figure 1 Figure 2
Claims (4)
飽和させるための磁場発生用永久磁石を中央部分に配置
し、かつファラデー回転子の両側に互いの光軸が45°
ずれた偏光索子を配置することからなる光学系で構成さ
れた光アイソレータにおいて、偏光素子が二片の複屈折
体プリズムから構成され、第一の複屈折体プリズムと第
二の複屈折体プリズムの光軸が共に光の入射方向に対し
直角であり、かつ該第一の複屈折体プリズムの光軸と第
二の複屈折体プリズムの光軸とのなす角度が直角であり
、さらに入射光と出射光が平行となるような角度に両方
の複屈折体プリズムのプリズム角度が設定されている偏
光素子用複屈折プリズムの接合部分に、誘電体多層膜を
形成することを特徴とした光アイソレータ用偏光素子。(1) A Faraday rotator and a permanent magnet for generating a magnetic field to magnetically saturate the Faraday rotator are arranged in the center, and the optical axes are set at 45 degrees on both sides of the Faraday rotator.
In an optical isolator configured with an optical system consisting of shifted polarization probes, the polarizing element is configured of two birefringent prisms, a first birefringent prism and a second birefringent prism. are both perpendicular to the direction of incidence of the light, and the angle between the optical axis of the first birefringent prism and the optical axis of the second birefringent prism is perpendicular, and An optical isolator characterized in that a dielectric multilayer film is formed at the junction of a birefringent prism for a polarizing element, in which the prism angles of both birefringent prisms are set at an angle such that the output light becomes parallel to the birefringent prism. Polarizing element for use.
の範囲第(1)項記載の光アイソレータ用偏光素子。(2) A polarizing element for an optical isolator according to claim (1), comprising at least six dielectric multilayer films.
飽和させるための磁場発生用永久磁石を中央部分に配置
し、かつファラデー回転子の両側に互いの光軸が45°
ずれた偏光素子を配置することからなる光学系で構成さ
れた光アイソレータにおいて、偏光素子が一片の複屈折
体プリズムおよび光学的に等方的なガラスプリズムから
構成され、複屈折体プリズムは入射光に対してその光軸
が直角であり、かつ入射光と出射光が平行になるように
ガラスプリズムのプリズム角度が設定されている偏光素
子用プリズムの接合部分に、誘電体多層膜を形成するこ
とを特徴とした光アイソレータ用偏光素子。(3) A Faraday rotator and a permanent magnet for generating a magnetic field for magnetically saturating the Faraday rotator are arranged in the center, and the optical axes are set at 45 degrees on both sides of the Faraday rotator.
In an optical isolator configured with an optical system consisting of shifted polarizing elements, the polarizing element consists of a birefringent prism and an optically isotropic glass prism, and the birefringent prism A dielectric multilayer film is formed at the joint part of a prism for a polarizing element, whose optical axis is perpendicular to the polarizing element, and the prism angle of the glass prism is set so that the incident light and the outgoing light are parallel to each other. A polarizing element for optical isolators featuring:
の範囲第(3)項記載の光アイソレータ用偏光素子。(4) A polarizing element for an optical isolator according to claim (3), comprising at least six dielectric multilayer films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069128A JPH01241502A (en) | 1988-03-23 | 1988-03-23 | Polarizing element for optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069128A JPH01241502A (en) | 1988-03-23 | 1988-03-23 | Polarizing element for optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01241502A true JPH01241502A (en) | 1989-09-26 |
Family
ID=13393693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63069128A Pending JPH01241502A (en) | 1988-03-23 | 1988-03-23 | Polarizing element for optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01241502A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990015357A1 (en) * | 1989-05-30 | 1990-12-13 | Raymond Hesline | Birefringent polarizing device |
US5377040A (en) * | 1990-11-27 | 1994-12-27 | Fujitsu Limited | Polarization independent optical device |
JPH08201176A (en) * | 1994-12-28 | 1996-08-09 | Internatl Business Mach Corp <Ibm> | Micro-polarimeter,microsensor system and method for measuring characteristic of thin film |
US5579159A (en) * | 1992-02-18 | 1996-11-26 | Asahi Kogaku Kogyo Kabushiki Kaisha | Optical multilayer thin film and beam splitter |
JP2011232481A (en) * | 2010-04-27 | 2011-11-17 | Disco Abrasive Syst Ltd | Optical element |
WO2013026200A1 (en) * | 2011-08-24 | 2013-02-28 | Ruan Zhizhan | Polarizing beam splitter |
WO2014073535A1 (en) * | 2012-11-06 | 2014-05-15 | 株式会社ニコン | Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method |
WO2014161824A1 (en) * | 2013-04-02 | 2014-10-09 | Carl Zeiss Laser Optics Gmbh | Polarizer assembly for spatially separating polarization states of a light beam |
-
1988
- 1988-03-23 JP JP63069128A patent/JPH01241502A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990015357A1 (en) * | 1989-05-30 | 1990-12-13 | Raymond Hesline | Birefringent polarizing device |
US5377040A (en) * | 1990-11-27 | 1994-12-27 | Fujitsu Limited | Polarization independent optical device |
US5739951A (en) * | 1990-11-27 | 1998-04-14 | Fujitsu Limited | Polarization independent optical device |
US5579159A (en) * | 1992-02-18 | 1996-11-26 | Asahi Kogaku Kogyo Kabushiki Kaisha | Optical multilayer thin film and beam splitter |
JPH08201176A (en) * | 1994-12-28 | 1996-08-09 | Internatl Business Mach Corp <Ibm> | Micro-polarimeter,microsensor system and method for measuring characteristic of thin film |
JP2011232481A (en) * | 2010-04-27 | 2011-11-17 | Disco Abrasive Syst Ltd | Optical element |
WO2013026200A1 (en) * | 2011-08-24 | 2013-02-28 | Ruan Zhizhan | Polarizing beam splitter |
WO2014073535A1 (en) * | 2012-11-06 | 2014-05-15 | 株式会社ニコン | Polarization beam splitter, substrate processing apparatus, device manufacturing system, and device manufacturing method |
JP2018025810A (en) * | 2012-11-06 | 2018-02-15 | 株式会社ニコン | Polarization beam splitter, substrate processing apparatus, system for manufacturing device, and method for manufacturing device |
WO2014161824A1 (en) * | 2013-04-02 | 2014-10-09 | Carl Zeiss Laser Optics Gmbh | Polarizer assembly for spatially separating polarization states of a light beam |
JP2016517040A (en) * | 2013-04-02 | 2016-06-09 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Polarizer assembly for spatially separating the polarization state of a light beam |
US10394041B2 (en) | 2013-04-02 | 2019-08-27 | Carl Zeiss Smt Gmbh | Polarizer assembly for spatially separation polarization states of a light beam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0610440B1 (en) | An improved optical isolator | |
US4966438A (en) | Dielectric layer polarizer | |
US4556292A (en) | Optical polarizer having a prism | |
US4548478A (en) | Optical device | |
US5682446A (en) | Polarization mode dispersion-free circulator | |
EP0383923B1 (en) | Polarizing isolation apparatus and optical isolator using the same | |
JPS6049297B2 (en) | optical isolator | |
EP0552783B1 (en) | Optical isolator device | |
US4553822A (en) | Optical polarizer having a dielectric multiple layer system | |
JPH01134424A (en) | Optical system having thin film polarization rotor and manufacture thereof | |
JPH01241502A (en) | Polarizing element for optical isolator | |
JPH07191280A (en) | Optical isolator | |
Baur | A new type of beam-splitting polarizer cube | |
JPH0477713A (en) | Optical isolator independent of polarization | |
JP2516463B2 (en) | Polarization-independent optical isolator | |
US6549686B2 (en) | Reflective optical circulator | |
JPS6257012B2 (en) | ||
CN111552099A (en) | Polarization-dependent reflective optical isolator | |
JPS6230607B2 (en) | ||
JPH04221922A (en) | Polarization independent type optical isolator | |
JP2002296544A (en) | 3-port miniaturized optical circulator | |
JP2686453B2 (en) | Optical isolator | |
JPS6111683Y2 (en) | ||
JPH06317703A (en) | Polarization-independent beam splitter and optical parts formed by using the same | |
JP2002250897A (en) | Optical device |