JPH0122128B2 - - Google Patents
Info
- Publication number
- JPH0122128B2 JPH0122128B2 JP55077866A JP7786680A JPH0122128B2 JP H0122128 B2 JPH0122128 B2 JP H0122128B2 JP 55077866 A JP55077866 A JP 55077866A JP 7786680 A JP7786680 A JP 7786680A JP H0122128 B2 JPH0122128 B2 JP H0122128B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- resin
- inductor
- molded product
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 46
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 238000001746 injection moulding Methods 0.000 claims description 24
- 229920005992 thermoplastic resin Polymers 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 230000006698 induction Effects 0.000 claims description 19
- 230000010355 oscillation Effects 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 10
- 239000012779 reinforcing material Substances 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 239000012763 reinforcing filler Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 229920005669 high impact polystyrene Polymers 0.000 description 4
- 239000004797 high-impact polystyrene Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BZDKYAZTCWRUDZ-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;prop-2-enenitrile;styrene Chemical compound C=CC=C.C=CC#N.COC(=O)C(C)=C.C=CC1=CC=CC=C1 BZDKYAZTCWRUDZ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
本発明は、熱可塑性樹脂射出成形品に金型表面
の転写性に優れた表面、特に金型表面光沢に実質
的に対応した優れた表面光沢を付与することので
きる射出成形装置に関する。
一般的に従来は熱可塑性樹脂成形品の射出成形
においては熱可塑性樹脂の可塑性を利用し、換言
すればスクリユー等を利用して熱可塑性樹脂を加
熱流動成形し、然るのち金型内で冷却固化するこ
とにより成形品を得る事を基本原理としている。
すなわち固化、成形品を金型より離型、取り出す
ためには熱可塑性樹脂の加熱変形温度より冷却し
金型外に取り出す。そのため一般的には金型は加
熱変形温度より低く保持する。更に生産性を上げ
るために結露寸前の温度まで冷媒を利用して金型
を冷却することが行なわれている。金型を冷却
し、溶融樹脂の温度等で加熱、蓄熱する場合でも
その原理上金型温度は熱可塑性樹脂の加熱変形温
度を上まわらない様に制御し成形する。換言する
と金型表面と熱可塑性樹脂が接触するとその接触
面で熱可塑性樹脂が急速に冷却され熱可塑性樹脂
の流動性が著しく乏しくなるため、金型表面に熱
可塑性樹脂の密着が悪く、成形品表面の凸凹が激
しい。また補強材及び/又は充填材入の場合、補
強材及び/又は充填材と熱可塑性樹脂が総じて相
溶性が良くないため補強材及び/又は充填材と熱
可塑性樹脂の界面に微少な空隙ができこれを射出
成形した場合シルバーストリークになると考えら
れる。即ち成形品表面に補強材及び/又は充填材
が現出し凸凹が激しく、シルバーストリーク等が
有る、いわゆる外観が良くない成形品しか得られ
ない。
このように、射出成形法によつて熱可塑性樹
脂、特に補強材及び/又は充填剤を含有する熱可
塑性樹脂組成物の成形品を生産する場合、溶融原
料が金型内を流動する過程で冷却固化するのを防
ぐことが大切である。このような冷却固化を防止
する方法として一般的に金型温度を上昇させるこ
とが提案されている。ところが金型温度を上げる
と当然冷却時間は長びき、更に金型から取り出し
た成形品が未だ軟かくして寸法安定性に欠ける等
の欠点がある。従つて、実際にはこれらの矛盾し
た条件に対し適当に折合つた温度で金型の温度調
節が行われているのが実状である。
従来技術の代表例について述べれば、例えば特
公昭45−22020号には金型内に高温の加熱流体を
流入して金型表層を予備加熱させた後に溶融原料
を型内に射出注入する方法が提案されている。し
かしながら、この方法においては金型内に流体を
流入させて加熱を行うために、残存流体により成
形品表面に種々の痕跡が生じたり、また成形品形
状によつては加熱流体を使用するため金型が凸部
(例えばリブ形状やピン部)のところは平坦部よ
り加熱され金型表面の均熱性がそこなわれ該部分
が成形品のヒケや光沢ムラを生じる。またはなは
だしい時は樹脂が金型にくつつき、離型不良のた
め、成形品が離型時に割れる等の不都合が生じ満
足できる外観を有する成形品を得ることが出来な
い。
他方、射出成形品の表面光沢は、種々の商品に
おいてその商品価値を左右する極めて重要な特性
である。この表面光沢という特性は、いはば平滑
な金型表面の転写特性ともいうべきものであり、
同一成形条件下において金型表面の研摩処理精度
に依存する。すなわち、表面光沢は完全鏡面を有
する金型を用いた場合に最良である。しかるに、
その得られる最良の結果たる光沢度は樹脂組成に
依存し、一般的に補強材及び/又は充填材のよう
な添加剤の増加と共に低下する。特に、充分な補
強効果又は充填効果を付与する量の添加剤を含有
する樹脂組成物の射出成形品は通常の射出条件に
おいては光沢に欠け、樹脂単独の成形品より著る
しく劣る光沢しか有しない。
本発明の目的は、前記の如きシルバーストリー
クのような表面欠陥がなく、且優れた表面光沢を
付与された熱可塑性樹脂の射出成形品を提供する
にある。
本発明の他の目的は、上記の如き優れた表面特
性を有する熱可塑性樹脂組成物を短い成形サイク
ルで製造し得る射出成形方法を提供するにある。
更に、本発明の目的は上記射出成形方法を実施
するに適した射出成形装置を提供するにある。
上記本発明の諸目的は、下記構成よりなる射出
成形装置において達成される:
(a) 樹脂を溶融、計量及び射出する手段を備えた
樹脂射出装置;及び
(b) 成形樹脂を冷却固化する手段を備えた樹脂成
形金型を含む熱可塑性樹脂の射出成形装置にお
いて、
(c) 高周波発振装置及びこれに接続されたインダ
クターよりなる高周波誘導加熱装置を有し、且
該インダクターが前記金型の近傍に配置され、
且つ高周波発振装置の出力が成形品の単位表面
積当り0.01〜10KW/cm2であつて、該金型の内
部表面を選択的に加熱可能に設けられているこ
とを特徴とする射出成形装置である。
本発明において、「表面選択的加熱」とは、高
周波誘導加熱を用いて金型の表層部のみを瞬間的
に加熱することを意味する。かゝる瞬間的加熱は
高周波誘導加熱という特殊の加熱方法を用いるこ
とにより可能となつたものであり、本発明の目的
を達成するためには金型表層部近傍の温度が短時
間に昇温(好ましくは樹脂の熱変形温度以上)さ
れることが必要である。具体的な昇温速度は用い
られる樹脂材料の熱変形温度、これに対応して適
宜定められる離型時の金型温度等を樹脂毎に勘案
して定められるが、通常80℃/分以上、好ましく
は480℃/分以上、更に好ましくは1200℃/分以
上の昇温速度で所定の温度に加熱するのがよい。
このような瞬間加熱方法によれば、金型内部に熱
が伝導することにより金型全体が高温となること
なく、表面付近のみが樹脂変形温度以上に昇温さ
れるので除熱に際しては極めて短時間でこれを行
うことができ、射出成形サイクルを短時間にする
ことができる。更に又、高周波誘導加熱において
は加熱流体のような金型汚染の原因となる物質を
用いることなく完全にドライな状態で加熱が行わ
れるので、かゝる物質による成形品及び成形金型
の汚染がないので有利である。高周波誘導加熱に
よる他の利点としては次のものを挙げることがで
きる:
(a) 温度制御が容易である。
(b) 選択加熱(表面選択の他に、更に表面の特定
箇所を指定して加熱する意味も含む)が可能で
あり、金型の必要部分のみを加熱することが可
能である。
(c) 作業者に温度的苦痛を与えない。
(d) ボタン1つで自動操作可能である。
以下、本発明の原理を容易に理解させることを
目的として図面を参照しながら説明を行うが、添
付図面中、
第1図は本発明の射出成形を行うために用いら
れる装置の一例の概略模式図を示す;
第2図は、他の装置の一例の概略模式図を示
す;
第3図は、インダクターはさみ込み方式の金型
部分の垂直断面図を示す;
第4図はインダクター内蔵方式の金型部分の垂
直断面図を示す。
第5図は、第3図に示す装置での金型の温度分
布の一例を示す。
第1図及び第2図に示されるように、本発明の
装置は樹脂を溶融して射出を行う射出シリンダー
部分3と金型部分4(固定側金型)及び5(移動
側金型)により構成される射出成形機と、高周波
発振装置1とこれに接続されて金型表面近傍に配
置されてなるコイル(インダクター)2とよりな
る高周波誘導加熱機とによつて構成される。第1
図に示す例においては、インダクター2は金型が
開かれた際に固定側金型と移動側金型の間に狭み
込まれて加熱が行われる方式のものであるのに対
し、第2図に示す例においてはインダクター2は
金型内部に内蔵されている。
第3図は第1図の金型部分とインダクターの拡
大図である。熱可塑性樹脂の射出成形において、
第3図に示す様に固定側金型4と移動側金型5と
の中間に高周波誘導加熱のインダクター2を設置
する。移動側金型と固定側金型との間にインダク
ターをはさみこみ、はさみこまれた状態で高周波
が発振させたところ第5図に示す様に、金型表面
(A点やB点)のみ急激に温度が上昇し、金型内
部(C点やD点)の温度は高周波誘導加熱によつ
ては温度上昇がほとんどない事が確認できる。第
5図の例の場合は金型の冷却水による冷却は行な
つておらず、単純に高周波誘導加熱による金型の
温度分布の経時変化の例を示したものである。金
型温度が所定温度に達した時に金型を一度開きイ
ンダクター2を固定側金型4及び移動側金型5の
間より抜き出し、再度金型を閉じ通常の射出成形
と同じ要領で熱可塑性樹脂の射出成形を行う。
第4図はインダクターを金型内に内蔵した本発
明の装置の実施態様の一例を示す。第4図に示す
のは直径約10cmの皿状の成形品金型の断面図であ
る。本場合はセンター・ダイレクトゲート、2つ
の割金型である。A、A′は射出成形品形状及び
外観を形成させるべき部分で通常の金型材、S―
45C、S―55C等のSC材およびこれらにメツキを
ほどこしたもの、超硬金型材(合金工具鋼)、例
えばNAK材、SKD11等の金型鋼材等を使用す
る。
B、B′は高周波誘導加熱するためのインダク
ターであり、銅管を渦巻状にし、該形状を固定す
るためエポキシ樹脂等で注形固化したものであ
る。
C、C′は後に詳述する高周波遮蔽層であり非磁
性金属材料で作成されている。D、D′は射出成
形に必要なその他機能部品を組み込む母型であ
る。該母型にガイド・ピン、金型取付のためのツ
バや穴、突き出しピン、等を装備してもよい。該
母材は金型材なら何でも良く、金型耐久性からは
S―45C、S―55C等SC材の一般鋼材が普通使用
できる。金型冷却水孔は母型に穿孔しても良く、
より冷却効果を上げるためにはA、A′部に穿孔
通水しても良い。
また成形品形状によつてはC、C′とD、D′を合
体し、C、C′材と同種材料例えばBe―Cu等を使
用してもよい。
単純にインダクターを金型に内蔵(埋設)した
場合、インダクターに近接る金型全てが加熱され
金型内部が加熱される。又は、高周波発振機の出
力容量にもよるが、金型大きさに比較し不必要な
部分(金型内部)も加熱するために発振機が過負
荷(オーバー・ロード)になり、オーバーロード
遮断機が作動し、高周波発振が停止するため、金
型の必要部分も加熱できない事態になる。そこで
本発明者達は高周波誘導加熱により加熱されるも
のは選択性が有ることに着目各種検討した結果非
磁性金属材料を金型材料に応用することに着目し
た。即ち射出成形品表面部を形成する部分を高周
波誘導加熱される鋼材(S―45C、S―55C、
NAK材等を主成分とする金型材)を利用し、加
熱不用部分を非磁性金属材料で製造することを発
見した。更に非磁性金属材料はBe―Cu材等のベ
リリユーム鋼以外の材料はやわらかく母型材とし
て耐久性の点から、必ずしも適正な金型材とはい
えず、本点に関しても各種検討した結果、インダ
クターと加熱不用金型材部との間に上記非磁性金
属材料の薄層を設置することにより高周波を遮蔽
することも発見した。
本発明における薄層とは0.5mm厚以上の厚さが
あれば本目的上充分の遮蔽効果が有り、0.5mm以
下の薄層、例えば0.1mmのAl箔であればAl箔が加
熱溶融し高周波の遮蔽層を形成しない。
換言すると、高周波誘導加熱する金型において
インダクターを金型内に内蔵せしめ、該金型にお
ける射出成形品表面を形成させるべき金型面付近
のみを選択的に加熱可能ならしめるため該インダ
クターに接する金型材において加熱不用方向の金
型材とインダクターとの間に高周波遮蔽層をもう
けた金型を用い、高周波誘導加熱を利用し金型を
急加熱急冷却可能ならしめた射出成形方法および
該装置が有効である。
非磁性金属材料とはCu、Al、Be、もしくはこ
れら金属を主成分とする合金をいい、黄銅、ベリ
リユーム銅等の合金も含まれる。非磁性材料とし
て陶器、ガラス、木材等もあるがいずれも金型材
として耐久性、熱伝導性が良くなること等より本
発明の金型材としてはかならずしも有利ではな
い。
本発明において用いられることのできる高周波
発振装置の発振方式は電動発電機式、電子管式、
サイリスターインバータ式発振器である。周波数
は50Hz〜10MHzのものが利用できるが、実用的に
は1〜1000KHzのものが便利である。高周波発振
器の出力は1〜5000KW程度のものが利用でき加
熱する金型の大きさ、加熱したい温度、加熱スピ
ードにより応じて適宜決定される。尚、高周波誘
導加熱による発熱量Pは次式により計算される。
P=8π5a4f2μS 2n2I2/ρ×10-4
(P:発熱量;a:コイル半径;f:周波数;
μs:比透磁率;n:コイル巻数/m;I:
コイルに流れる電流;ρ:固有抵抗)
例えば、S―45Cの金型及び5mm径の銅パイプ
を5mm間隔で渦巻状に巻いたインダクターを利用
し、金型とインダクターとの間隔を1cmに保ち、
400KHzの発振器を利用し、加熱温度を通常成形
時の金型温度(約40〜90℃)より40℃〜50℃高温
に昇温させ、且加熱時間を10〜15secに設定する
場合の発振器の出力は、成形品の単位表面当り
0.01〜10KW/cm2である。
0.01KW/cm2以下の場合は、金型昇温スピード
が遅く実用的でなく、また場合によつては過負荷
になるため過負荷防止装置の作動により実質的に
加熱出来ないことがある。10KW/cm2を越える場
合は、昇温スピードが急激すぎ金型温度のコント
ロールが困難となり、かつ金型が大面積の場合に
は均一加熱ができなくなる。金型表面に50℃以上
の温度ムラがある場合は成形品表面に光沢ムラ、
ヒケ等が発生するおそれがある。
本発明の射出成形装置を用いて優れた光沢を有
する射出成形品が得られるのは、前記予備加熱処
理操作によつて熱可塑性樹脂が金型表面上で充分
に流動化され、よつて表面に充填材等を含まない
実質的に樹脂成分のみよりなる平滑な表皮層を形
成して充填材等に起因する凸凹部分を完全にカバ
ーするものと思われる。
更に又、本発明の予備加熱処理により金型全面
を均一に熱変形温度以上に加熱できるため、樹脂
が金型内に流入する際に冷却固化が起らず、全表
面に均一に流動化が行われるので、樹脂の存在場
所の如何に拘らず、すなわち、金型のゲート部分
と流動末端部(デツド・エンド部)において実質
的に同一程度の光沢を得ることができる。ゲート
部分からデツト・エンド部までの単位長さ当りの
光沢度の差を光沢度勾配と称すると、この勾配は
本発明の射出成形品にあつては、0〜0.5%/cm、
好ましくは0〜0.2%/cm、更に好ましくは0〜
0.1%/cmと極めて小さい。特にこの光沢度勾配
は樹脂流動距離Lと成形品肉厚tとの比L/t=
20〜30以上の成形品にあつては1〜5%/cmある
場合が多い。これに対し、本発明の射出成形品が
従来の射出成形品では考えられないほど光沢ムラ
のない均一かつ高光沢度を有する射出成形品であ
ることがわかる。
本発明でいう熱可塑性樹脂とはポリスチレン、
ゴム補強ポリスチレン(以下総称しPSと略す)
AS樹脂、アクリロニトリル―ブタジエン―スチ
レン重合体、アクリロニトリル―ブタジエン―ス
チレン―α―メチルスチレン、アクリロニトリル
―メチルメタクリレート―ブタジエン―スチレン
(以下総称しABS樹脂と略す)、ポリエチレン、
ポリプロピレン、ポリカーボネート、ポリフエニ
レンエーテル、ポリオキシメチレン、ナイロン等
のいわゆる熱可塑性樹脂を全て包含する。
本発明でいう充填材とはガラス繊維、ガラス球
炭酸カルシウム、雲母、アスベスト、等の無機物
や鉄、銅、亜鉛、アルミニウムおよびそれらの酸
化物等の金属の粉末及び中空体をいいその主粒度
が5メツシユ以下の小粒径のものを云う。
本発明でいう補強材とはゴムを中心とするタフ
ネス補強材をいい、HIPSやABS樹脂にみられる
各種モノマーをグラフト重合したポリブタジエン
ゴムやSBブロツクポリマー、ニトリルゴム、
EPDM等のゴムも含まれる。
本発明の射出成形装置は、特に通常の射出成形
装置では良好な外観を得ることのできない補強材
及び/又は充填材を含有する熱可塑性樹脂組成物
の成形に極めて有効に適用可能である。例えば5
〜20重量%のゴム(例、ポリブタジエン)で補強
された、いわゆるハイインパクトポリスチレン
(HIPS)の場合には、約90〜105%程度の光沢を
実現することが可能であり、かつ成形品における
ゲート部とデツドエンド部の光沢がほとんど同じ
でありいわゆる光沢勾配がなく、均一、高光沢の
射出成形品を得る。
以下、実施例により本発明を更に詳細に説明す
るが、本発明はこれらの限定されるものではな
い。
実施例 1
第4図において、A、A′は10〜25mm厚のNAK
材を使用、成形品表面を形成さす部分をいわゆる
鏡面仕上げにした。本射出成形品形状は直径10
cm、深さ2cm、平均肉厚3.5mmの皿状の成形品を
成形できる金型になつており、ゲートはセンター
ダイレクトゲートである。
B、B′は5mm径の銅管を15mmの間隔で渦巻状
に配置し15mm厚さになるようにエポキシ樹脂で注
形した。
C、C′は3mm厚の黄銅を使用した。
D、D′はS―45C金型鋼を使用した。
該金型を通常のインライン型射出成形機に取付
け、熱可塑性樹脂として通常市販されているガラ
ス繊維20重量%添加AS樹脂を成形した。
射出成形条件は該ガラス繊維添加AS樹脂の温
度が240℃になる様にシリンダー温度を設定した。
該ガラス繊維強化AS樹脂を金型に射出する前に
上述のインダクターに4KHz、8KWの能力を有す
る高周波発振器を利用、10秒間発振し、然る後、
引続き通常の射出成形と同様、金型内に該充填材
入り樹脂を60Kg/cm2の射出圧で10秒間射出ししか
るのち、20秒間冷却後、成形品を取り出した。全
サイクル時間は45秒であつた。
この成形品の表面はAS樹脂成形品と同様の外
観を示し、シルバーストリークやガラス繊維の成
形品表面への突き出し等が見られず、非常に外観
の良い成形品を得た。該成形品の光沢度Gs(60°)
は102%であつた。
比較例 1
比較のため、実施例1における高周波発振によ
る金型表面の加熱のない場合、換言すれば本実施
例における4KHz、8KW、10秒間の高周波発振が
なく他の金型、射出する樹脂、他の成形条件等が
同じ場合の成形品は充填材入り樹脂特有の白らつ
ちやけた、シルバーストリークだらけの外観を有
する成形品であり、ちなみに光沢度Gs(60゜)%は
45%であつた。
実施例 2
実施例1と同じ金型、高周波発振器、射出成形
機を利用射出成形する樹脂のみをHIPS、ABS、
PPE、とかえ、各々の樹脂に適する樹脂温度で
成形した。いずれの樹脂の場合も射出成形品の外
観は美麗であり、従来の射出成形品の概念をくつ
がえすものであつた。
換言すると、いずれの成形品も成形品光沢度
Gs(60゜)%が100%をこえ、かつ光沢ムラもなく
どこも均一に光沢度100%以上であり、かつ、フ
ローマーク、ジエツテイング、等の外観上の欠点
が見あたらない。
各々の樹脂の場合における成形条件等で実施例
1と異なる条件をピツクアツプし表示したのが次
表である。また実施例1の場合と同様高周波発振
のない場合の比較例2もあわせ表示した。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of imparting a thermoplastic resin injection-molded product with a surface that has excellent transferability on the mold surface, and in particular, an excellent surface gloss that substantially corresponds to the mold surface gloss. Related to injection molding equipment. Conventionally, in injection molding of thermoplastic resin molded products, the plasticity of the thermoplastic resin is utilized, in other words, the thermoplastic resin is heated and flow-molded using a screw etc., and then cooled in a mold. The basic principle is to obtain molded products through solidification.
That is, in order to solidify and release the molded product from the mold, it is cooled below the heating deformation temperature of the thermoplastic resin and taken out of the mold. Therefore, the mold is generally maintained at a temperature lower than the heating deformation temperature. Furthermore, in order to increase productivity, the mold is cooled to a temperature on the verge of condensation using a refrigerant. Even when the mold is cooled and heated and stored at the temperature of the molten resin, in principle the mold temperature is controlled so as not to exceed the heating deformation temperature of the thermoplastic resin. In other words, when the mold surface and thermoplastic resin come into contact, the thermoplastic resin is rapidly cooled at the contact surface and the fluidity of the thermoplastic resin becomes extremely poor, resulting in poor adhesion of the thermoplastic resin to the mold surface and the molded product. The surface is extremely uneven. In addition, when reinforcing materials and/or fillers are included, the reinforcing materials and/or fillers and the thermoplastic resin generally have poor compatibility, resulting in the formation of minute voids at the interface between the reinforcing materials and/or fillers and the thermoplastic resin. It is thought that if this is injection molded, it will become a silver streak. That is, the reinforcing material and/or filler material appears on the surface of the molded product, resulting in severe unevenness and silver streaks, resulting in a molded product with an unsatisfactory appearance. In this way, when producing molded articles of thermoplastic resin, especially thermoplastic resin compositions containing reinforcing materials and/or fillers, by injection molding, the molten raw material is cooled while flowing in the mold. It is important to prevent it from solidifying. As a method of preventing such cooling solidification, it has generally been proposed to increase the mold temperature. However, when the mold temperature is raised, the cooling time naturally becomes longer, and furthermore, the molded product removed from the mold is still soft and lacks dimensional stability. Therefore, in reality, the temperature of the mold is adjusted to a temperature that appropriately balances these contradictory conditions. To talk about typical examples of the prior art, for example, Japanese Patent Publication No. 45-22020 discloses a method in which a high-temperature heating fluid is flowed into the mold to preheat the surface layer of the mold, and then molten raw material is injected into the mold. Proposed. However, since this method heats the mold by flowing fluid into the mold, the residual fluid may cause various marks on the surface of the molded product, and depending on the shape of the molded product, the use of heating fluid may cause the mold to be heated. Convex portions (for example, rib-shaped or pin portions) of the mold are heated more than the flat portions, and the heat uniformity of the mold surface is impaired, causing sink marks and uneven gloss of the molded product. Or, in severe cases, the resin sticks to the mold, resulting in poor mold release, resulting in inconveniences such as the molded product cracking during release, making it impossible to obtain a molded product with a satisfactory appearance. On the other hand, the surface gloss of injection molded products is an extremely important characteristic that influences the commercial value of various products. This characteristic of surface gloss can also be called a transfer characteristic of the smooth mold surface.
It depends on the polishing accuracy of the mold surface under the same molding conditions. That is, the surface gloss is best when a mold with a completely mirror surface is used. However,
The best result, gloss, depends on the resin composition and generally decreases with increasing additives such as reinforcing materials and/or fillers. In particular, injection molded products made of resin compositions that contain additives in amounts that provide a sufficient reinforcing or filling effect lack gloss under normal injection conditions, and have significantly lower gloss than molded products made from resin alone. do not. An object of the present invention is to provide an injection molded thermoplastic resin product that is free from surface defects such as silver streaks and has excellent surface gloss. Another object of the present invention is to provide an injection molding method capable of producing a thermoplastic resin composition having the above-mentioned excellent surface properties in a short molding cycle. A further object of the present invention is to provide an injection molding apparatus suitable for carrying out the above injection molding method. The above objects of the present invention are achieved in an injection molding apparatus having the following configuration: (a) a resin injection apparatus equipped with means for melting, measuring and injecting resin; and (b) means for cooling and solidifying the molded resin. (c) a high-frequency induction heating device comprising a high-frequency oscillation device and an inductor connected to the high-frequency induction heating device, and the inductor is located near the mold; placed in
The injection molding device is characterized in that the output of the high frequency oscillator is 0.01 to 10 KW/cm 2 per unit surface area of the molded product, and the device is installed to be able to selectively heat the inner surface of the mold. . In the present invention, "surface selective heating" means instantaneously heating only the surface layer of the mold using high frequency induction heating. Such instantaneous heating is made possible by using a special heating method called high-frequency induction heating, and in order to achieve the purpose of the present invention, it is necessary to raise the temperature near the surface of the mold in a short period of time. (preferably above the heat deformation temperature of the resin). The specific heating rate is determined by taking into consideration the thermal deformation temperature of the resin material used, the mold temperature at the time of mold release, etc., which is appropriately determined correspondingly, for each resin, but it is usually 80°C/min or more. It is preferable to heat to a predetermined temperature at a heating rate of preferably 480° C./min or more, more preferably 1200° C./min or more.
According to this instantaneous heating method, heat is conducted inside the mold so that the entire mold does not reach a high temperature, and only the area near the surface is heated above the resin deformation temperature, so heat removal is extremely quick. This can be done in a matter of hours, making the injection molding cycle short. Furthermore, in high-frequency induction heating, heating is performed in a completely dry state without using substances that cause mold contamination, such as heating fluids, so there is no possibility of contamination of molded products and molds by such substances. It is advantageous because there is no Other advantages of high frequency induction heating include: (a) Temperature control is easy. (b) Selective heating (in addition to surface selection, this also includes heating specific points on the surface) is possible, and it is possible to heat only the necessary parts of the mold. (c) Do not cause thermal distress to workers. (d) Automatic operation is possible with a single button. In the following, the principles of the present invention will be explained with reference to the drawings in order to make it easier to understand the principles of the present invention. Fig. 2 shows a schematic diagram of an example of another device; Fig. 3 shows a vertical sectional view of the mold part of the inductor inserting method; Fig. 4 shows the mold part of the inductor built-in method. Figure 3 shows a vertical cross-sectional view of the mold part. FIG. 5 shows an example of the temperature distribution of the mold in the apparatus shown in FIG. 3. As shown in FIGS. 1 and 2, the apparatus of the present invention includes an injection cylinder portion 3 for melting and injecting resin, and mold portions 4 (stationary mold) and 5 (movable mold). and a high-frequency induction heating machine including a high-frequency oscillation device 1 and a coil (inductor) 2 connected to the high-frequency oscillation device 1 and arranged near the surface of the mold. 1st
In the example shown in the figure, the inductor 2 is of a type in which heating is performed by being squeezed between the stationary mold and the movable mold when the mold is opened, while the inductor 2 In the example shown in the figure, the inductor 2 is built inside the mold. FIG. 3 is an enlarged view of the mold part and inductor in FIG. 1. In injection molding of thermoplastic resin,
As shown in FIG. 3, an inductor 2 for high-frequency induction heating is installed between the stationary mold 4 and the movable mold 5. When an inductor is sandwiched between the movable mold and the stationary mold, and high-frequency waves are oscillated in the sandwiched state, only the mold surface (points A and B) suddenly oscillates, as shown in Figure 5. It can be confirmed that the temperature increases, and the temperature inside the mold (point C and point D) hardly increases due to high-frequency induction heating. In the example shown in FIG. 5, the mold is not cooled with cooling water, but simply shows an example of the change over time in the temperature distribution of the mold due to high-frequency induction heating. When the mold temperature reaches a predetermined temperature, open the mold once, pull out the inductor 2 from between the stationary mold 4 and the movable mold 5, close the mold again, and inject the thermoplastic resin in the same manner as normal injection molding. Performs injection molding. FIG. 4 shows an example of an embodiment of the device of the present invention in which an inductor is built into a mold. FIG. 4 is a cross-sectional view of a dish-shaped mold for a molded product with a diameter of about 10 cm. In this case, it is a center direct gate and two split metal types. A and A' are the parts where the shape and appearance of the injection molded product are to be formed, and are ordinary mold materials, S-
Use SC materials such as 45C and S-55C, plated versions thereof, carbide mold materials (alloy tool steel), such as NAK materials, mold steel materials such as SKD11, etc. B and B' are inductors for high-frequency induction heating, which are made by spirally forming a copper tube and casting and solidifying it with epoxy resin or the like to fix the shape. C and C' are high frequency shielding layers which will be described in detail later and are made of non-magnetic metal material. D and D' are master molds into which other functional parts necessary for injection molding are installed. The mother die may be equipped with guide pins, collars and holes for attaching the mold, ejector pins, etc. The base material may be any mold material, and general steel materials such as SC materials such as S-45C and S-55C can usually be used in terms of mold durability. Mold cooling water holes may be drilled in the mother mold,
In order to further increase the cooling effect, water may be passed through holes in the A and A' sections. Further, depending on the shape of the molded product, C, C' and D, D' may be combined and the same material as the C and C' materials, such as Be--Cu, may be used. If an inductor is simply built into a mold (buried), all the molds near the inductor are heated, and the inside of the mold is heated. Or, depending on the output capacity of the high-frequency oscillator, the oscillator may become overloaded due to heating unnecessary parts (inside the mold) compared to the size of the mold, resulting in overload cutoff. The machine starts operating and the high-frequency oscillation stops, making it impossible to heat the necessary parts of the mold. Therefore, the present inventors focused on the fact that materials heated by high-frequency induction heating have selectivity, and after various studies, they focused on applying non-magnetic metal materials to mold materials. In other words, steel materials (S-45C, S-55C, S-55C,
We discovered that the parts that do not require heating can be manufactured using non-magnetic metal materials by using mold materials whose main component is NAK material. Furthermore, non-magnetic metal materials other than beryllium steel, such as Be-Cu materials, are soft and cannot necessarily be considered suitable mold materials from the viewpoint of durability as a matrix material.As a result of various studies regarding this point, we found that materials other than beryllium steel such as Be-Cu materials It was also discovered that high frequencies can be shielded by installing a thin layer of the above-mentioned non-magnetic metal material between the unused mold material. In the present invention, a thin layer is defined as a thickness of 0.5 mm or more, which has a sufficient shielding effect for this purpose, and a thin layer of 0.5 mm or less, for example, 0.1 mm of Al foil, the Al foil is heated and melted and high frequency Does not form a shielding layer. In other words, in a mold for high-frequency induction heating, an inductor is built into the mold, and in order to selectively heat only the vicinity of the mold surface where the surface of the injection molded product is to be formed, the inductor is placed in contact with the inductor. Effective injection molding method and device that uses a mold with a high-frequency shielding layer between the mold material and the inductor in the direction where heating is not required, and enables the mold to be rapidly heated and rapidly cooled using high-frequency induction heating. It is. Non-magnetic metal materials refer to Cu, Al, Be, or alloys containing these metals as main components, and also include alloys such as brass and beryllium copper. Although there are ceramics, glass, wood, etc. as non-magnetic materials, they are not necessarily advantageous as mold materials of the present invention because they have good durability and thermal conductivity. The oscillation method of the high frequency oscillator that can be used in the present invention is a motor generator type, an electron tube type,
It is a thyristor inverter type oscillator. Frequencies of 50Hz to 10MHz can be used, but frequencies of 1 to 1000KHz are convenient for practical use. The output of the high frequency oscillator can be approximately 1 to 5,000 kW, and is appropriately determined depending on the size of the mold to be heated, the temperature to be heated, and the heating speed. Note that the amount of heat generated by high-frequency induction heating P is calculated by the following equation. P=8π 5 a 4 f 2 μ S 2 n 2 I 2 /ρ×10 -4 (P: calorific value; a: coil radius; f: frequency; μ s : relative magnetic permeability; n: number of coil turns/m; I: Current flowing in the coil; ρ: Specific resistance) For example, using an S-45C mold and an inductor made of a 5 mm diameter copper pipe spirally wound at 5 mm intervals, the distance between the mold and the inductor is set to 1 cm. keep,
When using a 400KHz oscillator, raising the heating temperature to 40℃ to 50℃ higher than the mold temperature during normal molding (approximately 40 to 90℃), and setting the heating time to 10 to 15 seconds. The output is per unit surface of the molded product.
It is 0.01~10KW/ cm2 . If it is less than 0.01 KW/cm 2 , the temperature rise speed of the mold is slow and impractical, and in some cases overload may occur, so heating may not be possible due to activation of the overload prevention device. If it exceeds 10 KW/cm 2 , the temperature increase speed is too rapid, making it difficult to control the mold temperature, and if the mold has a large area, uniform heating will not be possible. If there is temperature unevenness of 50℃ or more on the mold surface, the surface of the molded product will have uneven gloss,
There is a risk of sink marks etc. The reason why an injection molded product with excellent gloss can be obtained using the injection molding apparatus of the present invention is that the thermoplastic resin is sufficiently fluidized on the mold surface by the preheating treatment operation, and thus It is thought that a smooth skin layer consisting essentially only of the resin component, containing no filler or the like, is formed to completely cover the uneven portions caused by the filler or the like. Furthermore, because the preheating treatment of the present invention allows the entire surface of the mold to be uniformly heated above the heat distortion temperature, the resin does not cool and solidify when it flows into the mold, and fluidization occurs uniformly over the entire surface. Therefore, substantially the same level of gloss can be obtained regardless of where the resin is present, that is, at the gate portion and the dead end portion of the mold. The difference in gloss per unit length from the gate part to the dead end part is called the gloss gradient, and in the case of the injection molded product of the present invention, this gradient is 0 to 0.5%/cm.
Preferably 0-0.2%/cm, more preferably 0-0.2%/cm
It is extremely small at 0.1%/cm. In particular, this glossiness gradient is the ratio L/t of the resin flow distance L and the molded product wall thickness t=
For molded products of 20 to 30 or more, it is often 1 to 5%/cm. On the other hand, it can be seen that the injection molded product of the present invention is an injection molded product that has a uniform and high gloss level with no gloss unevenness, which is unimaginable for conventional injection molded products. The thermoplastic resin referred to in the present invention is polystyrene,
Rubber reinforced polystyrene (hereinafter collectively abbreviated as PS)
AS resin, acrylonitrile-butadiene-styrene polymer, acrylonitrile-butadiene-styrene-α-methylstyrene, acrylonitrile-methyl methacrylate-butadiene-styrene (hereinafter collectively referred to as ABS resin), polyethylene,
It includes all so-called thermoplastic resins such as polypropylene, polycarbonate, polyphenylene ether, polyoxymethylene, and nylon. The filler used in the present invention refers to powders and hollow bodies of inorganic materials such as glass fiber, glass bulb calcium carbonate, mica, and asbestos, and metals such as iron, copper, zinc, aluminum, and their oxides. It refers to particles with a small particle size of 5 mesh or less. The reinforcing material used in the present invention refers to toughness reinforcing materials mainly made of rubber, such as polybutadiene rubber, SB block polymer, nitrile rubber, etc., which are graft polymerized with various monomers found in HIPS and ABS resins.
Also includes rubber such as EPDM. The injection molding apparatus of the present invention can be particularly effectively applied to molding thermoplastic resin compositions containing reinforcing materials and/or fillers, which cannot be obtained with good appearance using ordinary injection molding apparatuses. For example 5
In the case of so-called high-impact polystyrene (HIPS) reinforced with ~20% by weight of rubber (e.g. polybutadiene), it is possible to achieve a gloss of about 90-105%, and the gate in the molded product To obtain a uniform, high-gloss injection molded product with almost the same gloss at the dead end portion and the dead end portion and without a so-called gloss gradient. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 In Figure 4, A and A' are NAK with a thickness of 10 to 25 mm.
The part that forms the surface of the molded product has a so-called mirror finish. This injection molded product has a diameter of 10
The mold is capable of molding plate-shaped products with a depth of 2 cm and an average wall thickness of 3.5 mm, and the gate is a center direct gate. For B and B', 5 mm diameter copper tubes were spirally arranged at 15 mm intervals and cast with epoxy resin to a thickness of 15 mm. Brass with a thickness of 3 mm was used for C and C'. D and D' used S-45C mold steel. The mold was attached to a normal in-line injection molding machine, and an AS resin containing 20% by weight of glass fiber, which is commonly commercially available as a thermoplastic resin, was molded. As for the injection molding conditions, the cylinder temperature was set so that the temperature of the glass fiber-added AS resin was 240°C.
Before injecting the glass fiber reinforced AS resin into the mold, use a high frequency oscillator with a capacity of 4KHz and 8KW in the above-mentioned inductor to oscillate for 10 seconds, and then
Subsequently, in the same manner as normal injection molding, the filled resin was injected into the mold at an injection pressure of 60 kg/cm 2 for 10 seconds, and after cooling for 20 seconds, the molded product was taken out. The total cycle time was 45 seconds. The surface of this molded product had an appearance similar to that of an AS resin molded product, with no silver streaks or protrusion of glass fibers on the surface of the molded product, and a molded product with a very good appearance. Glossiness of the molded product G s (60°)
was 102%. Comparative Example 1 For comparison, when there is no heating of the mold surface due to high frequency oscillation in Example 1, in other words, there is no high frequency oscillation of 4 KHz, 8 KW, and 10 seconds in this example, and other molds, resin to be injected, When other molding conditions are the same, the molded product has a white, dull, and silver streaky appearance that is typical of filled resin, and the gloss level G s (60°)% is
It was 45%. Example 2 Using the same mold, high-frequency oscillator, and injection molding machine as in Example 1, only the resin to be injection molded was HIPS, ABS,
PPE and other resins were molded at the appropriate resin temperature. In the case of any resin, the appearance of the injection molded products was beautiful, overturning the concept of conventional injection molded products. In other words, all molded products have molded product glossiness.
G s (60°)% exceeds 100%, the gloss is uniformly 100% or more everywhere without uneven gloss, and there are no visible defects such as flow marks or jetting. The following table picks up and displays the molding conditions for each resin that differ from Example 1. In addition, as in the case of Example 1, Comparative Example 2 in which there is no high-frequency oscillation is also displayed. 【table】
第1図は本発明の射出成形装置の一例(インダ
クターはさみ込み方式)の概略模式図を示す。第
2図は本発明を射出成形装置の他の一例(インダ
クター内蔵方式)の概略模式図を示す。第3図は
インダクターはさみ込み方式の金型部分の垂直断
面図を示す。第4図はインダクター内蔵方式の金
型部分の垂直断面図を示す。第5図は、第3図に
示す装置での金型の温度分布の一例を示す。
1:高周波発振装置;2:インダクター;3:
射出装置;4:固定側金型;5:移動側金型。
FIG. 1 shows a schematic diagram of an example of an injection molding apparatus (inductor sandwiching method) according to the present invention. FIG. 2 shows a schematic diagram of another example of an injection molding apparatus (inductor built-in type) according to the present invention. FIG. 3 shows a vertical sectional view of the mold part of the inductor inserting method. FIG. 4 shows a vertical sectional view of the mold part of the built-in inductor type. FIG. 5 shows an example of the temperature distribution of the mold in the apparatus shown in FIG. 3. 1: High frequency oscillator; 2: Inductor; 3:
Injection device; 4: Fixed side mold; 5: Moving side mold.
Claims (1)
えた樹脂射出装置;及び (b) 成形樹脂を冷却固化する手段を備えた樹脂成
形金型を含む熱可塑性樹脂の射出成形装置にお
いて、 (c) 高周波発振装置及びこれに接続されたインダ
クターよりなる高周波誘導加熱装置を有し、且
該インダクターが前記金型の近傍に配置され、
該金型の内部表面を選択的に加熱可能に設けら
れており、 (d) 金型構成部材内部には高周波誘導加熱遮蔽層
が設けられていることを特徴とする射出成形装
置。 2 インダクターが金型開放時に金型構成部材間
にはさみ込まれる方式の特許請求の範囲第1項記
載の装置。 3 インダクターが金型構成部材内部に埋込まれ
且つ埋込まれたインダクターの金型表面の反対側
に上記高周波誘導加熱遮蔽層が設けられている特
許請求の範囲第1項記載の装置。[Scope of Claims] 1. (a) A resin injection device equipped with means for melting, metering and injecting resin; and (b) A thermoplastic resin mold including a resin molding die equipped with means for cooling and solidifying the molded resin. (c) a high-frequency induction heating device comprising a high-frequency oscillation device and an inductor connected to the high-frequency induction heating device, and the inductor is disposed near the mold;
An injection molding apparatus, which is capable of selectively heating the inner surface of the mold, and (d) a high-frequency induction heating shielding layer is provided inside the mold component. 2. The device according to claim 1, in which the inductor is sandwiched between mold constituent members when the mold is opened. 3. The device according to claim 1, wherein the inductor is embedded within a mold component, and the high frequency induction heating shielding layer is provided on the opposite side of the mold surface of the embedded inductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7786680A JPS574748A (en) | 1980-06-11 | 1980-06-11 | Injection molding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7786680A JPS574748A (en) | 1980-06-11 | 1980-06-11 | Injection molding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS574748A JPS574748A (en) | 1982-01-11 |
JPH0122128B2 true JPH0122128B2 (en) | 1989-04-25 |
Family
ID=13645967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7786680A Granted JPS574748A (en) | 1980-06-11 | 1980-06-11 | Injection molding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS574748A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2662969A1 (en) * | 1990-06-08 | 1991-12-13 | Anver | Apparatus for the high-frequency moulding of plastic |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002000415A1 (en) * | 2000-06-27 | 2002-01-03 | Ju-Oh Inc. | Metal mold for injection molding machine and method for mold injection molding using the metal mold |
JP5107417B2 (en) | 2010-12-24 | 2012-12-26 | 株式会社キャップ | Molding apparatus and molding method using the molding apparatus |
-
1980
- 1980-06-11 JP JP7786680A patent/JPS574748A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2662969A1 (en) * | 1990-06-08 | 1991-12-13 | Anver | Apparatus for the high-frequency moulding of plastic |
Also Published As
Publication number | Publication date |
---|---|
JPS574748A (en) | 1982-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4225109A (en) | Insulated metal mold | |
US4285901A (en) | Method of making an insulated metal mold | |
US6564856B1 (en) | Method of making precision castings using thixotropic materials | |
US5837183A (en) | Golf ball molding method and apparatus | |
JP2826553B2 (en) | Decorative molding method and apparatus | |
JP4014232B2 (en) | Electromagnetic induction heating mold for resin molding | |
JPS5840504B2 (en) | Injection molding method | |
JPS62117716A (en) | Mold and temperature controlling thereof | |
JPH0122128B2 (en) | ||
TWI235087B (en) | A mold and a method for manufacturing the same | |
EP1235674B1 (en) | A method for obtaining a thermoplastic resin injection-molded product having a high-quality appearance | |
KR20080036624A (en) | Process for producing metal-containing castings, and associated apparatus | |
JP3400344B2 (en) | Injection molding of plastic products | |
CA2435983C (en) | Mold and method for molding metallic product | |
WO2000070114A1 (en) | Production method for magnesium alloy member | |
JP4725906B2 (en) | Mold for thermoplastic resin injection molding | |
JP4255045B2 (en) | Manufacturing method of molded products | |
JPH04173313A (en) | Mold for injection molding and injection molding method using said mold | |
CN115156556A (en) | 3D printing device based on medium-frequency or high-frequency induction heating technology and using method thereof | |
JPS63280612A (en) | Method of improving quality of injection molded form | |
JP2000000865A (en) | Method for injection molding plastic | |
JP3552593B2 (en) | Metal integrated resin molding method | |
JP3058613B2 (en) | Mold for plastic product molding | |
JPH01288412A (en) | Die apparatus for synthetic resin molding and manufacture thereof | |
JP3535939B2 (en) | Molding method to obtain plastic molded products with high quality appearance |