JPH01139710A - Manufacture of fine granular alloy powder - Google Patents

Manufacture of fine granular alloy powder

Info

Publication number
JPH01139710A
JPH01139710A JP29770187A JP29770187A JPH01139710A JP H01139710 A JPH01139710 A JP H01139710A JP 29770187 A JP29770187 A JP 29770187A JP 29770187 A JP29770187 A JP 29770187A JP H01139710 A JPH01139710 A JP H01139710A
Authority
JP
Japan
Prior art keywords
powder
particle size
silver
alloy powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29770187A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
竹島 鋭樹
Masaki Sato
正樹 佐藤
Yoshihisa Ieguchi
家口 佳久
Akira Sakakura
坂倉 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29770187A priority Critical patent/JPH01139710A/en
Publication of JPH01139710A publication Critical patent/JPH01139710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture alloy powder containing the specific particle size of noble metal more than iron and a little impurities and oxide film by adding fine reduced iron powder into acidic salt mixed solution of metal containing two or more kinds of Sn, Pb, Cu, Ag and Pd. CONSTITUTION:The acidic salt mixed solution of chloride, sulfate, nitrate, etc., of two or more kinds of Sn, Pb, Cu, Ag and Pd is preparated. In this mixed solution, the reduced iron powder having 0.1-3.0mum particle size at the sufficient quantity to precipitate the whole of the component metal in the solution is added, heated, stirred to hold it. Successively, the alloy powder of Sn-Pd, etc., is developed and deposited after leaving as it is. By this method, the alloy powder having 0.1-3.0mum particle size and almost spherical shape can be manufactured without using any pulverizing machine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は安価で、かつ不純物及び酸化膜の少ない3.0
μm以下の鉄より責な金属の合金粉末の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is inexpensive and has less impurities and oxide film.
The present invention relates to a method for producing an alloy powder of a metal smaller than .mu.m in diameter than iron.

〔従来の技術とその問題点〕[Conventional technology and its problems]

電子工業の分野でプリント塗布配線用に銀粉ペーストが
広く使用されている。近年の電子部品の小型化、精密化
および高集積化に伴って、プリント塗布の巾は著しく狭
くなり、銀粉ペーストの銀粉はより微細なものが要求さ
れている。特に、IC用の導電ペーストには、従来銀粉
とガラス質バインダー粉末と塗布接着剤と溶剤との混合
物からなる銀ペーストが用いられてきたが、ICの微細
化に伴う10μm以下の巾のペーストのプリント塗布で
、ペーストの焼成後に途切れのない細線が形成されるた
めには、原料の銀粉もなるべく微細であり、好ましくは
3μm以下であることが必要である。現在、3μm以下
の粒径の銀粉が製造され使用されているが、銀は微粉化
すると粉末の表面積の増大に伴って化学的に活性となり
、その耐酸化性が劣化する。このため、銀微粉末からな
る導電ペーストはその比抵抗が経年的に増大するのを避
けることができなかった0例えば、その対策として銀微
粉末とパラジウム微粉末とを混合する方法が試みられて
いる。しかし、銀とパラジウムとが相互に合金化してい
ない粉末状態では、その混合物は工C性能の経年変化防
止に対して十分な効果を発揮しない。
Silver powder paste is widely used for printed wiring in the electronics industry. In recent years, with the miniaturization, precision, and high integration of electronic components, the width of print application has become significantly narrower, and the silver powder in the silver powder paste is required to be finer. In particular, silver paste consisting of a mixture of silver powder, vitreous binder powder, coating adhesive, and solvent has traditionally been used as a conductive paste for ICs, but with the miniaturization of ICs, pastes with a width of 10 μm or less have been used. In print coating, in order to form an uninterrupted fine line after baking the paste, the raw material silver powder must be as fine as possible, preferably 3 μm or less. Currently, silver powder with a particle size of 3 μm or less is produced and used, but when silver is pulverized, it becomes chemically active as the surface area of the powder increases, and its oxidation resistance deteriorates. For this reason, conductive pastes made of fine silver powder cannot avoid increasing their resistivity over time. For example, as a countermeasure, a method of mixing fine silver powder and fine palladium powder has been attempted. There is. However, when silver and palladium are in a powder state in which they are not alloyed with each other, the mixture does not exhibit a sufficient effect in preventing aging of the C performance.

本発明者は、ICの微細化の要求を満たすべく。The present inventor aimed to meet the demand for miniaturization of ICs.

導電ペースト用の導電粉末を3μm以下の微粉末とし、
かつ耐食性をあげるには単に銀微粉とパラジウム微粉と
をペースト加工時に混合するだけでなく、銀とパラジウ
ムとを合金化して、かつ微粉末を得る必要があると考え
た。
The conductive powder for the conductive paste is a fine powder of 3 μm or less,
In addition, in order to improve corrosion resistance, it was thought that it was necessary not only to simply mix silver fine powder and palladium fine powder during paste processing, but also to alloy silver and palladium and obtain fine powder.

同様の用途に3μm以下の粒径の銅−銀合金粉末なども
十分使用できる可能性がある。少なくとも現在の10μ
m程度のプリント塗布配線用には、銅微粉末だけよりも
より酸化劣化しにくい銅−銀合金粉末のほうが望ましい
。しかし、一方で現在使用されている銀微粉末は3μm
を越える粒径であり、3μm以下の安価な銅微粉末を得
ることは戴しい。
Copper-silver alloy powder having a particle size of 3 μm or less may also be used for similar purposes. At least the current 10μ
Copper-silver alloy powder, which is more resistant to oxidative deterioration, is more desirable than copper fine powder alone for printed coating wiring of about 500 yen. However, on the other hand, the silver fine powder currently used is 3 μm thick.
It is difficult to obtain inexpensive copper fine powder with a particle size of 3 μm or less.

このことはすなわち、従来の製法では3μm以下の銅−
銀合金粉末はさらに製造しがたいものであることを意味
している。
This means that in conventional manufacturing methods, copper particles with a thickness of 3 μm or less
This means that silver alloy powders are even more difficult to manufacture.

また、ICやLSIの面実装化および基板のフレキシブ
ル化に伴って、印刷塗布〜焼付による配線が可能なはん
だペーストの使用が増大している。この方面でも電子部
品の小型化、精密化および高集積化に伴ってリード端子
の微細化が進行しており、より微細な印刷用はんだ粉末
の開発が望まれている。
Further, as ICs and LSIs become surface-mounted and substrates become more flexible, the use of solder pastes that allow wiring by printing and baking is increasing. In this field as well, the miniaturization of lead terminals is progressing with the miniaturization, precision, and high integration of electronic components, and the development of finer printing solder powder is desired.

〔問題解決についての着眼〕[Focus on problem solving]

本発明者らは、安価で不純物及び酸化膜の少ない3μm
以下の微細粒状合金粉の製造技術の研究を重ねた結果、
−次粒子径が0.1μmから3.0μmの範囲の鉄粉を
、鉄イオンよりも電位が責である錫、鉛、銅、銀および
パラジウムの酸性塩の2種以上の混合溶液中に添加する
ことによって、−次粒子径が鉄粉とほぼ同じ0.1μm
から3.0μmの範囲の錫−鉛、鋼−銀または銀−パラ
ジウム合金粉末を置換析出できる現象を見出し本発明を
完成した。
The present inventors have developed a 3 μm film that is inexpensive and has few impurities and oxide films.
As a result of repeated research on the manufacturing technology of the following fine-grained alloy powder,
- Iron powder with a particle size in the range of 0.1 μm to 3.0 μm is added to a mixed solution of two or more acidic salts of tin, lead, copper, silver, and palladium whose electric potential is more important than iron ions. By doing so, the secondary particle size is 0.1 μm, which is almost the same as iron powder.
The present invention was completed by discovering a phenomenon in which tin-lead, steel-silver, or silver-palladium alloy powders having a diameter of 3.0 μm can be precipitated by displacement.

〔発明の構成〕[Structure of the invention]

本発明は成分金属の酸性塩混合溶液に微細還元鉄粉を添
加することからなる鉄より責な金属の合金粉末の製造方
法を提供する。
The present invention provides a method for producing an alloy powder of a metal stronger than iron, which comprises adding fine reduced iron powder to a mixed solution of acid salts of component metals.

具体的に言えば、本発明の方法は錫、鉛、銅。Specifically, the method of the present invention uses tin, lead, and copper.

銀およびパラジウムの2以上からなる粒径0.1〜3.
0μmの範囲の合金粉末の製造方法であって、各成分金
属の酸性塩を目的とする合金の組成と同じ当量関係で含
む混合溶液を調整し、この溶液を溶液中に存在する成分
金属の全量を析出させるに足る量だけの0.1〜3.0
μm粒径の還元鉄粉と接触させることからなる方法を提
供する。
A particle size of 0.1 to 3.0 consisting of two or more of silver and palladium.
A method for producing alloy powder in the range of 0 μm, comprising preparing a mixed solution containing acid salts of each component metal in the same equivalence relationship as the composition of the target alloy, and adding this solution to the total amount of the component metals present in the solution. 0.1 to 3.0 in an amount sufficient to precipitate
A method is provided comprising contacting with reduced iron powder of μm particle size.

即ち、本発明は従来の粉末製造法とは異なり、機械的粉
砕を一切行なわないで、単に金属のイオン化傾向を利用
した湿式反応のみで、−次粒子径が0.1μmから3μ
mの各種合金粉末を得ることができる。
That is, unlike conventional powder manufacturing methods, the present invention does not perform any mechanical pulverization, but merely uses a wet reaction that utilizes the ionization tendency of metals, and the primary particle size can be reduced from 0.1 μm to 3 μm.
Various alloy powders of m can be obtained.

本発明において使用する鉄粉の形態、純度および粒径は
、生成する微細合金粉の形態、純度および粒径に大きく
影響することから、酸化鉄粉、硫酸第一鉄粉または塩化
第一鉄粉を水素ガスや一酸化炭素などで還元した一次粒
子径が0.1μmから3μmの微細な還元鉄粉が、価格
や純度の点から最も好ましい。
The form, purity, and particle size of the iron powder used in the present invention greatly affect the form, purity, and particle size of the fine alloy powder produced, so iron oxide powder, ferrous sulfate powder, or ferrous chloride powder Fine reduced iron powder having a primary particle size of 0.1 μm to 3 μm, which is obtained by reducing iron powder with hydrogen gas, carbon monoxide, etc., is most preferable in terms of cost and purity.

錫、鉛、銅、銀およびパラジウムの酸性塩としては、こ
れらの金属の塩化物、硫酸塩、硝酸塩が一般的であるが
、塩化物が最も好ましい。これらの酸性塩水溶液の作成
にあたっては、「市販の塩化物をそのまま水に溶解する
方法」、「酸化物を塩酸などと反応させて溶解する方法
」および「塩酸などの水溶液中で陽極電解して溶解する
方法」などが可能である。これらの酸性塩混合水溶液中
に、上記の還元鉄粉を、例えば水を溶媒としてアトライ
ターやサンドミルでスラリー状に分散して添加した場合
、微細粒状合金粉が生成沈殿すると共に溶液は第一鉄水
溶液となる。
As acidic salts of tin, lead, copper, silver and palladium, chlorides, sulfates and nitrates of these metals are common, with chlorides being most preferred. When creating these acidic salt aqueous solutions, there are three methods: ``dissolving commercially available chloride in water as it is'', ``reacting the oxide with hydrochloric acid etc. and dissolving it'', and ``anodic electrolysis in an aqueous solution such as hydrochloric acid''. Possible methods include ``dissolving method.'' When the above-mentioned reduced iron powder is dispersed into a slurry using an attritor or a sand mill using water as a solvent and added to an aqueous solution of these acid salt mixtures, fine grained alloy powder is formed and precipitated, and the solution becomes ferrous iron. It becomes an aqueous solution.

当量の鉄の溶解によって溶液中に存在する鉄より責な成
分金属は全量が析出するから、始め溶液中に存在したと
同じ割合の合金粉末ができる。
By dissolving an equivalent amount of iron, all of the component metals present in the solution that are more important than the iron precipitate out, so an alloy powder is formed in the same proportion as was initially present in the solution.

生成する合金は実質的に微視的状態で成分が混合したも
のである。
The resulting alloy is a mixture of components in a substantially microscopic state.

3μm以下の鉄粉が当量以下の量で存在する場合は鉄粉
は生成合金粉のなかに核として残ることはない。
When iron powder of 3 μm or less is present in an amount less than the equivalent amount, the iron powder will not remain as a nucleus in the produced alloy powder.

成分金属の析出速度制御のために錯化剤を加えてもよい
A complexing agent may be added to control the precipitation rate of component metals.

各種微細粒状〆合金粉の置換析出反応においては浴温か
高いほど、酸性塩の濃度がうすいほど、鉄粉の添加速度
が早いほどおよび攪拌が強いほど、より微細な金属粉が
置換析出する傾向がある。ただし使用する鉄粉の一次粒
子径が大きいほど置換析出する合金粉の粒径が大きくな
り、置換析出する速度も遅くなる。この理由としては、
原理的に溶解する鉄イオンと同等のモル数の責な金属が
析出して合金を生成すること、鉄粉の表面に錫、鉛、銅
、銀およびパラジウムなどが析出すればするほど逆に鉄
の溶解速度が低下しやすいことなどが考えられる。また
、還元鉄粉としてはロータリーキルンなどを用いて水素
ガス中で380℃から700℃で還元した還元率が80
〜99%のものを用いるうえ、空気中で取扱うことから
表面は通常うすい酸化膜でおおわれており、溶解反応の
開始時期の遅速に対しては、残留Cf1.SO4などの
酸性基の影響が大きい。このため、塩酸などの微量添加
は、鉄粉の溶解反応を早める点で効果がある。析出する
合金粉は基本的に還元鉄粉の形態に左右される。還元鉄
粉が一粒づつに単分散していれば生成する合金粉も単分
散粒子となり、鉄粉がクラスター状に焼結していれば合
金粉もクラスター状となる6本法による微細粒状合金粉
の製造はきわめて簡単なプロセスからなり1例えばボー
ルミル粉砕などのような工程が不要であるから、不純物
の混入などは極めて少なく、生産コストも安い。
In the displacement precipitation reaction of various fine-grained final alloy powders, the higher the bath temperature, the weaker the acid salt concentration, the faster the addition rate of iron powder, and the stronger the stirring, the more fine metal powder tends to precipitate by displacement. be. However, the larger the primary particle size of the iron powder used, the larger the particle size of the alloy powder that precipitates by displacement, and the slower the rate of displacement precipitation. The reason for this is
In principle, the same number of moles of metals as dissolved iron ions precipitate to form an alloy. This may be due to the fact that the dissolution rate is likely to decrease. In addition, reduced iron powder has a reduction rate of 80% when reduced at 380°C to 700°C in hydrogen gas using a rotary kiln etc.
~99% of Cf is used, and since it is handled in air, the surface is usually covered with a thin oxide film, and due to the slow start of the dissolution reaction, residual Cf1. The influence of acidic groups such as SO4 is large. Therefore, adding a small amount of hydrochloric acid or the like is effective in accelerating the dissolution reaction of iron powder. The alloy powder that precipitates basically depends on the form of the reduced iron powder. If the reduced iron powder is monodispersed one by one, the alloy powder produced will also be monodisperse particles, and if the iron powder is sintered in clusters, the alloy powder will also be clusters. Fine granular alloy using the six-prong method. The production of powder is an extremely simple process and does not require steps such as ball milling, so there is very little contamination with impurities and the production cost is low.

〔発明の具体的例示〕[Specific illustration of the invention]

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

実施例1 日新農鋼株式会社堺製造所の塩酸回収装置より得られた
高純度酸化鉄粉(Fe、 03分として99.9%以上
、粒径0.1〜1.0μm)を、電気抵抗加熱方式のロ
ータリーキルンを用いて500℃で5時間、水素ガス還
元を行い、還元率99%、粒径0.5〜2.0μ履の微
細な還元鉄粉を得た。この還元鉄粉56gと水100c
cとを三井三池化工機(株)製のアトライターで300
rpmで2時間分散処理を行ってスラリー化した。この
スラリーを80〜90℃に昇温保持し、プロペラ攪拌機
で強力に攪拌しつつ、硫酸第一錫(SnSO4・2H,
O) 132g/ Qと硝酸鉛(Pb(NO3)z)1
40g/ nとの混合水溶液(この溶液中のSn : 
Pb=60 : 40(重量))中に添加し、添加後3
0分間加熱、攪拌保持した。その後、攪拌をやめ、静置
して生成した錫−船台金粉を沈殿させ、上澄み液を除去
した。次いで、水洗〜静置〜分離の作業を5回くり返し
行い、その後濾過し、乾燥して錫−鉛合金微粉末154
gを得た。ICPによる分析によれば、この粉末の組成
はSn : Pb =60 : 40(重量)であり、
不純物は1%未満であった。またマイクロトラック分析
による測定ではこの粉末の粒径は0.5〜2.5μmで
あった。
Example 1 High-purity iron oxide powder (Fe, 99.9% or more, particle size 0.1 to 1.0 μm) obtained from the hydrochloric acid recovery equipment of Nisshin Noh Steel Co., Ltd.'s Sakai Works was heated using electricity. Hydrogen gas reduction was performed at 500° C. for 5 hours using a resistance heating type rotary kiln to obtain fine reduced iron powder with a reduction rate of 99% and a particle size of 0.5 to 2.0 μm. 56g of this reduced iron powder and 100c of water
c and 300 with an attritor manufactured by Mitsui Miike Kakoki Co., Ltd.
A dispersion treatment was performed at rpm for 2 hours to form a slurry. This slurry was heated to 80 to 90°C and stirred vigorously using a propeller stirrer, while adding stannous sulfate (SnSO4.2H,
O) 132g/Q and lead nitrate (Pb(NO3)z) 1
Mixed aqueous solution with 40g/n (Sn in this solution:
Pb = 60: 40 (weight)), and after addition 3
The mixture was heated and stirred for 0 minutes. Thereafter, stirring was stopped and the mixture was allowed to stand still to precipitate the produced tin-ship gold powder, and the supernatant liquid was removed. Next, the operations of washing with water, standing still, and separating are repeated five times, followed by filtration and drying to obtain tin-lead alloy fine powder 154.
I got g. According to analysis by ICP, the composition of this powder is Sn: Pb = 60: 40 (weight),
Impurities were less than 1%. Furthermore, the particle size of this powder was determined to be 0.5 to 2.5 μm as measured by microtrack analysis.

実施例2 実施例1で使用したのと同じ還元鉄粉33gと水100
ccとをアトライターでスラリー化した。次に、塩化ア
ンモニウム(NH4CQ)200g/ Qと塩化銀(A
gCQ)120g/Qおよび塩化パラジウム(PdCn
、 )35.5g/ Qの混合液(この溶液中のAg 
: Pd=80 : 20(重量))IQを80〜90
℃に昇温保持し、プロペラ攪拌機で強力に攪拌しつつ、
前記のスラリーを添加した。なお塩化アンモニウムは銀
の錯体形成のために加えた。
Example 2 33 g of reduced iron powder and 100 g of water, the same as used in Example 1
cc was made into a slurry using an attritor. Next, ammonium chloride (NH4CQ) 200g/Q and silver chloride (A
gCQ) 120g/Q and palladium chloride (PdCn
, ) 35.5g/Q mixed solution (Ag in this solution
: Pd=80 : 20 (weight)) IQ 80-90
While maintaining the temperature at ℃ and stirring strongly with a propeller stirrer,
The slurry from above was added. Note that ammonium chloride was added to form a silver complex.

添加後、30分間加熱、攪拌保持して、十分置換反応を
進めた。その後、攪拌をやめ、静置して生成した銀〜パ
ラン94合金粉を沈殿させ、上澄み液を除去した0次い
で、水洗〜静置〜分離の作業を5回くり返し、その後濾
過、乾燥して、銀−パラジウム合金微粉末107gを得
た。実施例1と同じ分析により、Ag: Pd=flO
: 20、不純物1%未満、粒径0.5〜2.5μmで
あった。
After the addition, the mixture was heated and stirred for 30 minutes to sufficiently advance the substitution reaction. After that, stirring was stopped, and the produced silver-Paran 94 alloy powder was allowed to settle, and the supernatant liquid was removed.Then, the steps of washing with water, standing, and separation were repeated 5 times, and then filtered and dried. 107 g of silver-palladium alloy fine powder was obtained. By the same analysis as in Example 1, Ag: Pd=flO
: 20, impurities less than 1%, particle size 0.5-2.5 μm.

実施例3 実施例1と同じ還元鉄粉50gと水100ccとをアト
ライターでスラリー化した。次に、チオ硫酸ナトリウム
(Na2SzOa)100g/+2と塩化第二銅(Cu
CQ、 ・2H,O)144gおよび塩化銀(Ag(、
Q)30gの混合液(この溶液中のCu : Ag=8
0 : 20(重量))IQを80〜90℃に昇温保持
し、プロペラ攪拌機にて強力に攪拌しつつ、前記のスラ
リーを添加した。なおチオ硫酸ナトリウムは銀の錯体形
成のために加えた。添加熱、加熱。
Example 3 50 g of the same reduced iron powder as in Example 1 and 100 cc of water were made into a slurry using an attritor. Next, 100g/+2 of sodium thiosulfate (Na2SzOa) and cupric chloride (Cu
CQ, 2H,O) 144g and silver chloride (Ag(,
Q) 30g of mixed solution (Cu:Ag=8 in this solution)
0:20 (weight)) IQ was heated and maintained at 80 to 90°C, and the slurry was added while stirring strongly with a propeller stirrer. Note that sodium thiosulfate was added to form a silver complex. Added heat, heating.

攪拌保持して十分置換反応を進めた。その後攪拌をやめ
、静置して生成した銅−銀金金粉を沈殿させ、上澄み液
を除去した0次いで、水洗〜静置〜分離の作業を5回く
り返し、その後、濾過、乾燥して銅−銀合金微粉末72
gを得た。実施例1と同じ分析によりCu : Ag=
80 : 20(重量)、不純物17%未満、粒径0.
5〜2.5μmであった。
While stirring, the substitution reaction proceeded sufficiently. After that, stirring was stopped and the copper-silver-gold powder was allowed to settle, and the supernatant liquid was removed.Next, the process of washing with water, standing still, and separating was repeated 5 times, followed by filtration, drying, and copper-silver gold powder. Silver alloy fine powder 72
I got g. According to the same analysis as in Example 1, Cu:Ag=
80: 20 (weight), impurities less than 17%, particle size 0.
It was 5 to 2.5 μm.

〔発明の作用・効果〕[Action/effect of the invention]

以上、詳細に説明したように本発明の製造方法によれば
、粒径が0.1μmから3.0μmで、はぼ球形をした
各種合金微粉末をボールミルなどの粉砕機を用いないで
も、比較的簡単な装置で安価に製造できる。なお1本法
は高温での作業を伴わないことから、比較的酸化膜も少
なく、かつ粉砕機からの不純物の混入も少ないという利
点を有する。
As explained in detail above, according to the manufacturing method of the present invention, various alloy fine powders with a particle size of 0.1 μm to 3.0 μm and a spherical shape can be produced in a comparative manner without using a crusher such as a ball mill. It can be manufactured at low cost using simple equipment. Note that this method does not involve work at high temperatures, so it has the advantage of having a relatively small amount of oxide film and less contamination of impurities from the crusher.

したがって、酸化膜の少ないことが要求される導電ペー
スト、導電接着剤およびはんだペースト用の材料として
使用可能である。
Therefore, it can be used as a material for conductive pastes, conductive adhesives, and solder pastes that require a small oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1、錫、鉛、銅、銀およびパラジウムの2以上からなる
粒径0.1〜3.0μmの範囲の合金粉末の製造方法で
あって、各成分金属の酸性塩を目的とする合金の組成と
同じ当量関係で含む混合溶液を調整し、この溶液を溶液
中に存在する成分金属の全量を析出させるに足る量だけ
の0.1〜3.0μm粒径の還元鉄粉と接触させること
からなる方法。
1. A method for producing an alloy powder consisting of two or more of tin, lead, copper, silver, and palladium and having a particle size in the range of 0.1 to 3.0 μm, the composition of the alloy aiming at acid salts of each component metal. By preparing a mixed solution containing in the same equivalence relationship as and bringing this solution into contact with reduced iron powder with a particle size of 0.1 to 3.0 μm in an amount sufficient to precipitate the entire amount of component metals present in the solution. How to become.
JP29770187A 1987-11-27 1987-11-27 Manufacture of fine granular alloy powder Pending JPH01139710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29770187A JPH01139710A (en) 1987-11-27 1987-11-27 Manufacture of fine granular alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29770187A JPH01139710A (en) 1987-11-27 1987-11-27 Manufacture of fine granular alloy powder

Publications (1)

Publication Number Publication Date
JPH01139710A true JPH01139710A (en) 1989-06-01

Family

ID=17850041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29770187A Pending JPH01139710A (en) 1987-11-27 1987-11-27 Manufacture of fine granular alloy powder

Country Status (1)

Country Link
JP (1) JPH01139710A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126805A (en) * 1989-10-12 1991-05-30 Kojundo Chem Lab Co Ltd Manufacture of ag-pd alloy powder for thick film paste
JP2009202032A (en) * 2003-04-24 2009-09-10 Asics Corp Sports shoes having upper with improved fitting property
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
US8272148B2 (en) 2006-10-19 2012-09-25 Asics Corporation Sports shoes having upper part with improved fitting property
US8555525B2 (en) 2011-01-18 2013-10-15 Saucony Ip Holdings Llc Footwear
US8732982B2 (en) 2011-01-18 2014-05-27 Saucony IP Holdings, LLC Footwear
US8839531B2 (en) 2011-07-19 2014-09-23 Saucony Ip Holdings Llc Footwear
US9132514B2 (en) 2010-11-18 2015-09-15 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
CN107498063A (en) * 2017-08-03 2017-12-22 昆明贵金属研究所 A kind of preparation method of the spherical silver powder of high dispersive micron order
WO2020129117A1 (en) 2018-12-17 2020-06-25 株式会社アシックス Lacing structure for shoe upper and shoe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126805A (en) * 1989-10-12 1991-05-30 Kojundo Chem Lab Co Ltd Manufacture of ag-pd alloy powder for thick film paste
JP2009202032A (en) * 2003-04-24 2009-09-10 Asics Corp Sports shoes having upper with improved fitting property
US7823298B2 (en) 2003-04-24 2010-11-02 Asics Corporation Athletic shoes having an upper whose fitting property is improved
US8713821B2 (en) 2003-04-24 2014-05-06 Asics Corporation Athletic shoes having an upper whose fitting property is improved
US8272148B2 (en) 2006-10-19 2012-09-25 Asics Corporation Sports shoes having upper part with improved fitting property
JP2011088198A (en) * 2009-09-01 2011-05-06 Dowa Holdings Co Ltd Solder powder and method for producing the solder powder
US9132514B2 (en) 2010-11-18 2015-09-15 Dowa Holdings Co., Ltd. Solder powder and method of producing solder powder
US8555525B2 (en) 2011-01-18 2013-10-15 Saucony Ip Holdings Llc Footwear
US8732982B2 (en) 2011-01-18 2014-05-27 Saucony IP Holdings, LLC Footwear
US8839531B2 (en) 2011-07-19 2014-09-23 Saucony Ip Holdings Llc Footwear
CN107498063A (en) * 2017-08-03 2017-12-22 昆明贵金属研究所 A kind of preparation method of the spherical silver powder of high dispersive micron order
WO2020129117A1 (en) 2018-12-17 2020-06-25 株式会社アシックス Lacing structure for shoe upper and shoe

Similar Documents

Publication Publication Date Title
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
US4450188A (en) Process for the preparation of precious metal-coated particles
CN101011747B (en) Method of producing copper powder and copper powder
EP1151815B1 (en) Method for preparation of nickel powder
KR20180047529A (en) Silver powder and manufacturing method of the same
TWI680470B (en) Silver-coated copper powder, method for producing same, electrically conductive paste using the silver-coated copper powder, and method for producing electrode for solar cell using the electrically conductive paste
JPH01139710A (en) Manufacture of fine granular alloy powder
US4678505A (en) Process for forming solid solutions
US3816097A (en) Powders of metal, silver and gold
JP2900650B2 (en) Method for producing nickel fine powder
EP1542239A1 (en) Metal paste and film formation method using the same
JP4100244B2 (en) Nickel powder and method for producing the same
JPH0557324B2 (en)
WO2016031210A1 (en) Silver-coated copper powder and production method for same
KR100567444B1 (en) Composite metal powder manufaturing method of silver and copper
JP5576319B2 (en) Copper particles
JPH05221637A (en) Production of cuprous oxide powder and copper powder
US3539114A (en) Milling process for preparing flake gold
JPH01136910A (en) Manufacture of granular fine metal powder
Demopoulos et al. Hydrochemical preparation of fine precious metal powders
US3717453A (en) Powders of metal silver and gold and processes for making same
JP2017066476A (en) Copper powder for conductive paste and manufacturing method therefor
JPS6122028B2 (en)
JP2003034801A (en) Metal powder and manufacturing method therefor
JPH032302A (en) Manufacture of high purity copper fine powder