JPH01115068A - Operation of redox-flow cell - Google Patents
Operation of redox-flow cellInfo
- Publication number
- JPH01115068A JPH01115068A JP62273790A JP27379087A JPH01115068A JP H01115068 A JPH01115068 A JP H01115068A JP 62273790 A JP62273790 A JP 62273790A JP 27379087 A JP27379087 A JP 27379087A JP H01115068 A JPH01115068 A JP H01115068A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- positive
- cell
- amount
- overcharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 11
- 150000001845 chromium compounds Chemical class 0.000 claims description 10
- 238000003869 coulometry Methods 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 8
- 150000002506 iron compounds Chemical class 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 abstract description 26
- 230000005611 electricity Effects 0.000 abstract description 7
- 239000011259 mixed solution Substances 0.000 abstract description 4
- 230000033116 oxidation-reduction process Effects 0.000 abstract 2
- 239000000203 mixture Substances 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000007599 discharging Methods 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- -1 hydrogen ions Chemical class 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910001430 chromium ion Inorganic materials 0.000 description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- LJAOOBNHPFKCDR-UHFFFAOYSA-K chromium(3+) trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Cr+3] LJAOOBNHPFKCDR-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- XZQOHYZUWTWZBL-UHFFFAOYSA-L chromium(ii) bromide Chemical compound [Cr+2].[Br-].[Br-] XZQOHYZUWTWZBL-UHFFFAOYSA-L 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電力貯蔵用2次電池であるレドックスフロー電
池の運転方法に関し、更に詳しくは両極液を均等な充電
状態に維持するに最適な運転方法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of operating a redox flow battery, which is a secondary battery for power storage, and more specifically, to an operation method that is optimal for maintaining bipolar fluids in an even state of charge. It is about the method.
(従来の技術)
電力貯蔵用2次電池であるレドックスフロー電池は鉄及
びクロムイオンが酸化還元により原子価が変化すること
を利用し、電気エネルギーを化学エネルギーに可逆的に
変換する常温作動型電池である。(Prior technology) A redox flow battery, which is a secondary battery for power storage, is a room-temperature battery that reversibly converts electrical energy into chemical energy by utilizing the change in valence of iron and chromium ions due to redox. It is.
第1図に示すように、このレドックスフロー電池では、
鉄化合物、クロム化合物からそれぞれ成る正極液及び負
極液をポンプ8.9で流通型電解槽2に送入すると、電
極上で充放電過程に応じ次式で示される反応が起り、エ
ネルギー変換される。As shown in Figure 1, in this redox flow battery,
When the positive and negative electrode liquids, each consisting of an iron compound and a chromium compound, are fed into the flow-through electrolytic cell 2 by a pump 8.9, the reaction shown by the following formula occurs on the electrodes according to the charging and discharging process, and energy is converted. .
すなわち夜間になって余ってきた電力はインバータ1を
通して交直変換した後、レドックスフロー電池に供給さ
れ、正極では(1)式の充電方向の反応により第一鉄化
合物が第二鉄化合物に、又負極では(2)式の充電方向
の反応により第二クロム化合物が第一クロム化合物にそ
れぞれ電解される。In other words, the electricity left over at night is converted into AC/DC through the inverter 1, and then supplied to the redox flow battery. At the positive electrode, ferrous compounds become ferric compounds through the reaction in the charging direction of equation (1), and at the negative electrode. Then, the secondary chromium compound is electrolyzed into the primary chromium compound by the reaction in the charging direction of equation (2).
同時に水素イオン等のカチオン又は塩素イオン等のアニ
オンがイオン交換膜等の隔膜5を透過して両極間を移動
する。この充電により得られた第二鉄化合物及び第一ク
ロム化合物はタンク6.7にそれぞれ貯蔵される。At the same time, cations such as hydrogen ions or anions such as chloride ions pass through the diaphragm 5 such as an ion exchange membrane and move between the two electrodes. The ferric compounds and chromium compounds obtained by this charging are stored in tanks 6.7, respectively.
次に昼間に電力が足りなくなってくると、前記(1)
(2)式の放電方向の反応によって放電させ、インバー
タで直交変換した後、電力系統へ供給される。これがレ
ドックスフロー電池を用いた電力貯蔵システムである。Next, when there is a shortage of electricity during the day, the above (1)
It is discharged according to the reaction in the discharge direction of equation (2), and after orthogonal conversion is performed by an inverter, it is supplied to the power system. This is a power storage system using redox flow batteries.
このレドックスフロー電池が二次電池として長い間安定
に作動するためには、両極液の充放電反応クーロン効率
が一致している必要がある。しかし、正極反応である鉄
化合物の充放電反応はクーロン効率はぼ100%で進行
するが、負極反応であるクロム化合物の充電反応は下記
(3)式に示される水素イオンの還元副反応を伴う。In order for this redox flow battery to operate stably as a secondary battery for a long time, the coulombic efficiencies of the charging and discharging reactions of both electrolytes must be the same. However, the charging and discharging reaction of iron compounds, which is a positive electrode reaction, proceeds with a coulombic efficiency of approximately 100%, but the charging reaction of chromium compounds, which is a negative electrode reaction, involves a reduction side reaction of hydrogen ions as shown in equation (3) below. .
2H” + 2e−+H,↑ (3
)このため充電終了時には正極液中に生成した第二鉄化
合物に比べ負極液中に生成した第一クロム化合物が相対
的に少なくなり、いわゆる正極液が負極液に対して過充
電の状態を引き起す、又、電極のような電子導電体の存
在下では、(4)式の酸化還元反応も進行し、いっそう
の正極液過充電状態となる。2H" + 2e-+H, ↑ (3
) Therefore, at the end of charging, the amount of chromium compounds formed in the negative electrode liquid is relatively smaller than the ferric compounds formed in the positive electrode liquid, causing the so-called positive electrode liquid to overcharge the negative electrode liquid. In addition, in the presence of an electron conductor such as an electrode, the oxidation-reduction reaction of formula (4) also proceeds, resulting in a further overcharged state of the catholyte.
2Cr” + 2H” −42Cr” + H,↑
(4)従って、このまま充放電を繰り返せば正極液
の過充電による電力貯蔵容量の低下を起し、ついには充
放電が不可能な状態を招く。2Cr" + 2H"-42Cr" + H, ↑
(4) Therefore, if charging and discharging are repeated in this state, the power storage capacity will decrease due to overcharging of the positive electrode liquid, and eventually a state will arise in which charging and discharging are impossible.
このようなことにより、レドックスフロー電池では正極
液を電池反応ではなく別の系で還元して両極液の充電状
態を均等な状態に維持するリバランシングという操作が
必要となる。For this reason, in a redox flow battery, an operation called rebalancing is required in which the catholyte is reduced in a separate system rather than in a battery reaction to maintain an even state of charge of both electrolytes.
このための従来法としては、両極液の充電状態の検出を
電池の開路電圧や充放電電圧で行ない、正極液過充電を
解消するために、負極から発生した水素や必要に応じ水
素ガスボンベなどで外部水素を供給して正極液中の第二
鉄化合物を還元する方法、又、特開昭60−70672
号に示されるような正極液中の第−鉄及び第二鉄化合物
の濃度を測定し、該測定値と電池の開路電圧とから正極
液の過充電状態を検出し、正極液中の第二鉄化合物を水
素ガス等の還元剤で第一鉄化合物に還元する方法等が提
案されている。The conventional method for this purpose is to detect the state of charge of both electrodes using the open circuit voltage or charge/discharge voltage of the battery, and to eliminate overcharging of the catholyte, use hydrogen generated from the negative electrode or, if necessary, a hydrogen gas cylinder, etc. Method for reducing ferric compounds in catholyte by supplying external hydrogen, and JP-A-60-70672
The concentration of ferric and ferric compounds in the catholyte is measured, and the overcharge state of the cathode is detected from the measured value and the open circuit voltage of the battery, A method of reducing an iron compound to a ferrous compound using a reducing agent such as hydrogen gas has been proposed.
しかし、レドックスフa−電池では正負極間をイオン交
換膜等の隔膜で仕切った構造としているため、充放電サ
イクルを繰り返すと、この隔膜を通して正極液中の鉄イ
オンが負極液へ、負極液中のクロムイオンが正極液中へ
徐々に移動し、正極液及び負極液中の活物質の濃度が次
第に低下してくるという現象を起す。However, since the redox a-battery has a structure in which the positive and negative electrodes are separated by a diaphragm such as an ion exchange membrane, when charging and discharging cycles are repeated, iron ions in the catholyte pass through this diaphragm and transfer to the anode solution. Chromium ions gradually move into the positive electrode solution, causing a phenomenon in which the concentration of the active material in the positive and negative electrode solutions gradually decreases.
このため、従来法のうち、前者の方法では長期に亘って
運転し、活物質の濃度低下が起ってくると開路電圧や充
放電電圧の測定では両極液の充電状態の検出は精度上困
難である。For this reason, among the conventional methods, when the former method is operated for a long time and the concentration of the active material decreases, it is difficult to accurately detect the state of charge of the bipolar liquid by measuring the open circuit voltage or charge/discharge voltage. It is.
又、後者の方法では測定値より正極液の深度(全鉄濃度
に対する第二鉄濃度の割合)と負極液の深度を求め、ど
れが一致するように正極液中の第二鉄を還元しているが
、先にも示したように、正極液、負極液中の活物質濃度
は徐々に低下し、又。In addition, in the latter method, the depth of the positive electrode solution (the ratio of ferric iron concentration to the total iron concentration) and the depth of the negative electrode solution are determined from the measured values, and the ferric iron in the positive electrode solution is reduced so that they match. However, as shown above, the active material concentration in the positive and negative electrode fluids gradually decreases.
低下速度も異なる場合が有り、水素発生以外の理由でも
深度が変化する。このため深度を一致させるには、発生
水素以外に外部から水素等の還元剤の導入が必要である
という欠点がある。又、活物質濃度が異った場合1両極
液の深度の測定は充電開始前或いは充電終了後等のきま
った充電状態で行なう必要があるが、電池が不規則パタ
ーンで運転された場合など、このきまった充電状態にな
るのに長い運転時間が費されることもあり、この期間過
充電状態の検出はできないという欠点も有る。The rate of decline may also vary, and the depth changes for reasons other than hydrogen generation. Therefore, in order to match the depths, there is a drawback that in addition to the generated hydrogen, it is necessary to introduce a reducing agent such as hydrogen from the outside. In addition, when the active material concentration differs, the depth of the bipolar liquid must be measured in a fixed state of charge, such as before the start of charging or after the end of charging, but when the battery is operated in an irregular pattern, etc. It may take a long operating time to reach this fixed state of charge, and there is also the drawback that overcharged state cannot be detected during this period.
(発明の目的)
本発明の目的は上述した従来技術の欠点を解消し、充放
電サイクルを長期間繰り返しても両極液の充電状態を均
等に維持できるレドックスフロー電池の運転方法を提供
することにある。(Objective of the Invention) The object of the present invention is to provide a method for operating a redox flow battery that eliminates the above-mentioned drawbacks of the prior art and maintains the charged state of the bipolar liquid evenly even after repeated charging and discharging cycles for a long period of time. be.
(発明の構成)
本発明は、電池活物質として鉄化合物及びクロム化合物
を使用し充放電するレドックスフロー電池において、一
定量の正極液及び負極液をそれぞれ抜き出して混合した
後、混合液の酸化還元状態をクーロメトリにて測定する
ことにより正極液又は負極液の過充電量を検出し、該検
出結果に基づき正極液中の第二鉄化合物の還元量をma
t、て両極液を均等な充電状態に維持することを特徴と
するレドックスフロー電池の運転方法である。(Structure of the Invention) The present invention relates to a redox flow battery that uses an iron compound and a chromium compound as battery active materials for charging and discharging. The overcharge amount of the positive electrode liquid or negative electrode liquid is detected by measuring the state using coulometry, and the amount of reduction of the ferric compound in the positive electrode liquid is determined based on the detection result.
This is a method of operating a redox flow battery characterized by maintaining both electrolytes in a uniform state of charge.
本発明に用いられる電池活物質は正極液については塩化
鉄、臭化鉄、硫酸鉄等第一鉄化合物及び第二鉄化合物が
、負極については塩化クロム、臭化クロム、硫酸クロム
等の第一クロム化合物及び第ニクロム化合物が用いられ
る0本発明においては、これら両極液の一定量をそれぞ
れ抜き出して混合し、混合液の醸化還元状態をクーロメ
トリにて測定する。測定方法としては混合液を0.IV
(対NHE)の電位で定電位電解する。ここで0.I
V(対NHE)は鉄及びクロム化合物の完全放電の電位
である。The battery active materials used in the present invention include ferrous compounds and ferric compounds such as iron chloride, iron bromide, and ferrous sulfate for the positive electrode, and ferrous compounds such as chromium chloride, chromium bromide, and chromium sulfate for the negative electrode. In the present invention, in which a chromium compound and a nichrome compound are used, certain amounts of these two electrolytes are extracted and mixed, and the fermentation and reduction state of the mixed solution is measured by coulometry. The measurement method is to measure the mixed liquid at 0. IV
Constant potential electrolysis is performed at a potential of (vs. NHE). Here 0. I
V (vs. NHE) is the potential of complete discharge of iron and chromium compounds.
この場合、混合により混合液中の第二鉄及び第一クロム
は(5)式の反応によって放電状態である第−鉄及び第
ニクロムとなり正極液が過充電なら第二鉄が、又負極液
が過充電なら第一クロムが過充電量分残存する。In this case, the ferric and ferrous chromium in the mixed solution become ferrous and nichrome in a discharged state through the reaction of equation (5), and if the positive electrode is overcharged, ferric and ferrous chromium are present in the mixed solution. In the case of overcharging, the amount of chromium chloride remaining in the battery remains as much as the amount of overcharging.
Fe” + Cr” →Fe” + Cr”
(5)この残存した第二鉄又は第一クロムをO,tV
(対NHE)の電位で定電位電解し、正極液が過充電な
らプラスの電気量が得られ、負極液が過充電ならマイナ
スの電気量が得られるので、この電気量から極液の過充
電量を求めることができる。このようにして検出した過
充電量を用い、正極液中の第二鉄化合物の還元量を調整
することによって極めて容易に両極液を均等な充電状態
に維持することが可能となる。この場合、正極液中の第
二鉄化合物の還元量の調整は、例えば、リバランスセル
の電流値を変化させる等の方法で行うことができる。Fe” + Cr” →Fe” + Cr”
(5) This remaining ferric iron or ferrous chromium is removed at O, tV.
Constant potential electrolysis is performed at a potential of You can find the quantity. By adjusting the amount of reduction of the ferric compound in the positive electrode liquid using the overcharge amount detected in this way, it becomes possible to maintain the bipolar liquid in an evenly charged state very easily. In this case, the amount of reduction of the ferric compound in the positive electrode solution can be adjusted by, for example, changing the current value of the rebalance cell.
(発明の効果)
本発明の運転方法は、一定量の正極液及び負極液をそれ
ぞれ抜き出して混合し、混合液の酸化還元電気量の測定
に基づき、極液の過充電量を検出し、該検出結果に基づ
き、正極液中の第二鉄化合物の還元量を!11w1する
という構成であるため、従来法に比べ長期間の充放電サ
イクルを実施して正極液及び負極液の活物質濃度が低下
した場合でも。(Effect of the invention) The operating method of the present invention extracts and mixes a certain amount of positive and negative electrode liquids, detects the amount of overcharge of the electrode liquid based on the measurement of the amount of redox electricity of the mixed liquid, and detects the amount of overcharge of the electrode liquid. Based on the detection results, calculate the reduction amount of ferric compounds in the catholyte! 11w1, even if the active material concentration in the positive and negative electrode liquids decreases due to a longer charge/discharge cycle compared to conventional methods.
(1)電池の運転状態にかかわりなく、極液の過充電量
を精度良く把握でき、これに基づき正極液中の第二鉄化
合物を還元することによって両極液の充電量を一致させ
ることができる。(2)負極より発生した水素ガスを正
極液中の第二鉄化合物の還元に最大限利用できる1等の
効果を有し、均等な充電状態での安定運転が可能になる
。(1) Regardless of the operating state of the battery, the amount of overcharge of the electrolyte can be accurately determined, and based on this, the ferric compound in the catholyte can be reduced to match the amount of charge of both electrolytes. . (2) It has the first effect of making maximum use of the hydrogen gas generated from the negative electrode for reducing the ferric compound in the positive electrode liquid, and enables stable operation in an evenly charged state.
(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.
実施例
正極液として塩化鉄1モルIQ及び塩酸4モル/Ωを含
む溶液、負極液として塩化クロム1モル/Q及び塩酸4
モル/Qを含む溶液を使用し、第2図に示す100w級
電池装置にて充放電運転を行った。第2図に示す装置は
、正極及び負極の電極にカーボンクロス、両極を仕切る
隔膜に陽イオン交換膜を用いた電極面積216iのセル
をカーボンプラスチック製のバイポーラ板で13セル積
層した電池本体10と、正極液タンク12.負極液タン
ク11と、電池本体へ送液するための循環ポンプI3、
I4と、正極液過充電を解消するりバランスセル15と
1本発明に従い設けられた後記第3図の検出器17及び
開路電圧測定セル18とから主に構成される。尚、図中
。Example A solution containing 1 mol IQ of iron chloride and 4 mol/Ω of hydrochloric acid as the positive electrode liquid, 1 mol/Q of chromium chloride and 4 mol/Q of hydrochloric acid as the negative electrode liquid.
Using a solution containing mol/Q, charging/discharging operation was performed in a 100 W class battery device shown in FIG. The device shown in FIG. 2 includes a battery main body 10 in which 13 cells with an electrode area of 216i are stacked with bipolar plates made of carbon plastic, and carbon cloth is used as the positive and negative electrodes, and a cation exchange membrane is used as the diaphragm that partitions the two electrodes. , catholyte tank 12. a negative electrode liquid tank 11, a circulation pump I3 for sending liquid to the battery main body,
14, a balance cell 15 for eliminating overcharge of the positive electrode liquid, a detector 17 and an open circuit voltage measuring cell 18 shown in FIG. In addition, in the figure.
19及び20はそれぞれ負極より発生する水素ガスをリ
バランスセルへ導くライン及び水素ボンベからりバラン
スセルへ導く水素ガスラインである。Reference numerals 19 and 20 are a line that leads hydrogen gas generated from the negative electrode to the rebalance cell, and a hydrogen gas line that leads from the hydrogen cylinder to the balance cell, respectively.
検出器17の1例を第3図に示す。第3図は電極にカー
ボンクロス、隔膜に陽イオン交換膜を用いたクーロメト
リ用セル22、正極液サンプリング用電磁弁25.26
、負極液サンプリング用電磁弁27.28と、クーロメ
トリ用対極液タンク23、セル22へ送液するポンプ2
4とから主に構成されている。正極液ライン30及び負
極液ライン31より、電磁弁によって一定量の正極液及
び負極液をサンプリングした後、ポンプ24によってク
ーロメトリセル内を循環させ、o、iv(対N)IB)
で定電位電解すれば、得られた電気量より過充電量が算
出できる。尚、クーロメトリセル対極液タンクには基準
電位の液として0.5モル/Q塩化第一鉄、0.5モル
/Ω塩化第二鉄及び塩酸4Nを含む液を用いた。An example of the detector 17 is shown in FIG. Figure 3 shows a coulometry cell 22 using carbon cloth as an electrode and a cation exchange membrane as a diaphragm, and electromagnetic valves 25 and 26 for positive electrode liquid sampling.
, a solenoid valve 27, 28 for sampling the negative electrode liquid, a counter electrode liquid tank 23 for coulometry, and a pump 2 for sending liquid to the cell 22.
It is mainly composed of 4. After sampling a certain amount of positive electrode liquid and negative electrode liquid from the positive electrode liquid line 30 and negative electrode liquid line 31 using electromagnetic valves, the pump 24 circulates them in the coulometric cell, o, iv (vs. N) IB).
If constant potential electrolysis is carried out, the amount of overcharge can be calculated from the amount of electricity obtained. In addition, a solution containing 0.5 mol/Q ferrous chloride, 0.5 mol/Ω ferric chloride, and 4N hydrochloric acid was used as a reference potential solution in the Coulometry cell counter-electrode tank.
この検出器17で得られた正極液又は負極液の過充電量
に従い、リバランスセル15での正極液の還元量が調整
される。According to the overcharge amount of the positive electrode liquid or negative electrode liquid obtained by this detector 17, the amount of reduction of the positive electrode liquid in the rebalance cell 15 is adjusted.
このような構成の10011級電池装置において、まず
リバランスセル15を止めたまま、8.6Aの電流で充
放電を1回行い、負極より発生する水素ガスを測定した
ところ、充電電気量の約1%であることがわかった0次
に電池本体10とリバランスセル15を同時に動作させ
て連続の充放電実験を行った。この場合、リバランスセ
ル15の電流は初め充電電気量の1%に対応する量とし
て設定した。充放電サイクルを2回行うごとに1回の割
で検出器17を動作し、その結果を基にリバランスセル
の電流の調整を行った。100サイクルにわたる充放電
テストの結果。In the 10011 class battery device with such a configuration, charging and discharging was performed once with a current of 8.6 A with the rebalance cell 15 stopped, and hydrogen gas generated from the negative electrode was measured. A continuous charge/discharge experiment was conducted by operating the battery main body 10 and the rebalance cell 15 at the same time, which was found to be 1%. In this case, the current of the rebalance cell 15 was initially set as an amount corresponding to 1% of the amount of charged electricity. The detector 17 was operated once every two charge/discharge cycles, and the current of the rebalance cell was adjusted based on the results. Results of a charge/discharge test over 100 cycles.
正極液中の鉄イオン濃度は0.7モル/Ω、負極液中の
クロムイオン濃度は0.8モル/Ωと低下したが、正極
液又は負極液の過充電量は常に充電電気量の2%以下を
推移し、正常な充電状態で運転された。The iron ion concentration in the positive electrode solution decreased to 0.7 mol/Ω, and the chromium ion concentration in the negative electrode solution decreased to 0.8 mol/Ω, but the amount of overcharge of the positive or negative electrode solution was always 2 of the amount of charged electricity. % or less, and the battery was operated in a normal state of charge.
第1図はレドックスフロー電池の原理説明図、第2図は
本発明の実施例に係るレドックスフロー電池装置の構成
説明図、第3図は第2図の過充電量検出器の構成説明図
である。
1・・・インバータ、2・・・電解槽、3,4・・・電
極、5・・・隔膜、10・・・電池本体、11・・・負
極液タンク、12・・・正極液タンク、15・・・リバ
ランスセル、17・・・過充電量検出器、18・・・開
路電圧測定セル、22・・・クーロメトリ用セル、23
・・・クーロメトリ用対極液タンク。
特許出願人 千代田化工建設株式会社FIG. 1 is an explanatory diagram of the principle of a redox flow battery, FIG. 2 is an explanatory diagram of the configuration of a redox flow battery device according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the configuration of the overcharge amount detector shown in FIG. 2. be. DESCRIPTION OF SYMBOLS 1... Inverter, 2... Electrolytic cell, 3, 4... Electrode, 5... Diaphragm, 10... Battery body, 11... Negative electrode liquid tank, 12... Positive electrode liquid tank, 15... Rebalance cell, 17... Overcharge amount detector, 18... Open circuit voltage measurement cell, 22... Coulometry cell, 23
...Counter electrode tank for coulometry. Patent applicant Chiyoda Corporation
Claims (1)
用し充放電するレドックスフロー電池において、一定量
の正極液及び負極液をそれぞれ抜き出して混合した後、
混合液の酸化還元状態をクーロメトリにて測定すること
により正極液又は負極液の過充電量を検出し、該検出結
果に基づき、正極液中の第二鉄化合物の還元量を調整し
て両極液を均等な充電状態に維持することを特徴とする
レドックスフロー電池の運転法。(1) In a redox flow battery that uses iron compounds and chromium compounds as battery active materials and charges and discharges, after extracting and mixing a certain amount of positive and negative electrode fluids,
By measuring the redox state of the mixed liquid using coulometry, the amount of overcharge of the positive or negative electrode liquid is detected, and based on the detection result, the amount of reduction of the ferric compound in the positive electrode liquid is adjusted to reduce the amount of ferric compound in the positive electrode liquid. A method of operating a redox flow battery characterized by maintaining the cells in an even state of charge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273790A JPH01115068A (en) | 1987-10-29 | 1987-10-29 | Operation of redox-flow cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273790A JPH01115068A (en) | 1987-10-29 | 1987-10-29 | Operation of redox-flow cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01115068A true JPH01115068A (en) | 1989-05-08 |
Family
ID=17532615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62273790A Pending JPH01115068A (en) | 1987-10-29 | 1987-10-29 | Operation of redox-flow cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01115068A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538420A (en) * | 2010-08-16 | 2013-10-10 | ファウンデーション オブ スンシル ユニヴァーシティー−インダストリー コーポレーション | Fuel cell with cathode electrode using iron redox couple |
JP2016524789A (en) * | 2013-05-16 | 2016-08-18 | ハイドラレドックス テクノロジーズ ホールディングス リミテッド | Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode |
CN107195943A (en) * | 2016-03-14 | 2017-09-22 | 大连融科储能技术发展有限公司 | Flow battery charge/discharge control method and its system, flow battery |
JP2017174541A (en) * | 2016-03-22 | 2017-09-28 | 国立研究開発法人産業技術総合研究所 | Cathode/anode overvoltage measurement method for redox flow cell, and device for implementing the method |
WO2022122158A1 (en) * | 2020-12-10 | 2022-06-16 | Cmblu Energy Ag | Electrode for a redox flow battery, redox flow battery and hydrogen generation with a redox flow battery |
EP3849940A4 (en) * | 2018-09-10 | 2022-07-20 | Asgari, Majid | Discovering the method of extracting hydrogen gas from water and saving hydrogen gas with high energy efficiency |
-
1987
- 1987-10-29 JP JP62273790A patent/JPH01115068A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538420A (en) * | 2010-08-16 | 2013-10-10 | ファウンデーション オブ スンシル ユニヴァーシティー−インダストリー コーポレーション | Fuel cell with cathode electrode using iron redox couple |
JP2016524789A (en) * | 2013-05-16 | 2016-08-18 | ハイドラレドックス テクノロジーズ ホールディングス リミテッド | Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode |
CN107195943A (en) * | 2016-03-14 | 2017-09-22 | 大连融科储能技术发展有限公司 | Flow battery charge/discharge control method and its system, flow battery |
CN107195943B (en) * | 2016-03-14 | 2020-05-29 | 大连融科储能技术发展有限公司 | Flow battery charging and discharging control method and system and flow battery |
JP2017174541A (en) * | 2016-03-22 | 2017-09-28 | 国立研究開発法人産業技術総合研究所 | Cathode/anode overvoltage measurement method for redox flow cell, and device for implementing the method |
EP3849940A4 (en) * | 2018-09-10 | 2022-07-20 | Asgari, Majid | Discovering the method of extracting hydrogen gas from water and saving hydrogen gas with high energy efficiency |
WO2022122158A1 (en) * | 2020-12-10 | 2022-06-16 | Cmblu Energy Ag | Electrode for a redox flow battery, redox flow battery and hydrogen generation with a redox flow battery |
WO2022122984A3 (en) * | 2020-12-10 | 2022-08-11 | Cmblu Energy Ag | Electrode for a redox flow battery, redox flow battery and hydrogen generation with a redox flow battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105794021B (en) | Method and apparatus for measuring transient state of charge using inlet/outlet potentials | |
CN101839964B (en) | Method and device for measuring charge state of all-vanadium redox flow battery in real time | |
CN101614794B (en) | Method for online detecting charge state of flow battery based on potential difference parameter | |
JPH0437551B2 (en) | ||
US11876270B2 (en) | Redox-flow battery for energy storage | |
JPS6070672A (en) | Method of operating redox-flow secondary battery | |
WO2010138943A2 (en) | Electrolyte compositions | |
CN109417184B (en) | Redox flow battery, electric quantity measuring system and electric quantity measuring method | |
CN108511779A (en) | A kind of redox flow battery energy storage system | |
JP3193991B2 (en) | Electrolyte flow battery | |
JPH0419966A (en) | Redox battery | |
CN113820610B (en) | Method and system for detecting health state of mixed liquid of all-vanadium redox flow battery | |
Noack et al. | Aging studies of vanadium redox flow batteries | |
KR20160085113A (en) | Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same | |
JPH02195657A (en) | Electrolyte circulation type secondary battery | |
JPH01115068A (en) | Operation of redox-flow cell | |
Yamamura et al. | Energy efficiency of neptunium redox battery in comparison with vanadium battery | |
JPH03192662A (en) | Cell capacity recovery method for redox-flow cell | |
KR20110092860A (en) | Sn or ce ion-added electrolytes for soluble lead acid redox flow battery and batteries comprising the same | |
JP2003257467A (en) | Method of operating redox flow battery | |
JPS61211960A (en) | Secondary cell | |
Gasteiger et al. | Electrochemical cells: basics | |
WO2023120449A1 (en) | Redox flow battery | |
US11735789B2 (en) | Device for managing the state of health of an electrolyte in a redox flow battery system | |
Mishra et al. | Zinc‐Cerium Hybrid Redox Flow Batteries |