JP7310047B2 - Curable composition, cured product, method for producing cured product, and method for using curable composition - Google Patents

Curable composition, cured product, method for producing cured product, and method for using curable composition Download PDF

Info

Publication number
JP7310047B2
JP7310047B2 JP2020506498A JP2020506498A JP7310047B2 JP 7310047 B2 JP7310047 B2 JP 7310047B2 JP 2020506498 A JP2020506498 A JP 2020506498A JP 2020506498 A JP2020506498 A JP 2020506498A JP 7310047 B2 JP7310047 B2 JP 7310047B2
Authority
JP
Japan
Prior art keywords
group
curable composition
component
carbon atoms
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506498A
Other languages
Japanese (ja)
Other versions
JPWO2019176828A1 (en
Inventor
迪 三浦
弘憲 賤機
学 宮脇
秀一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of JPWO2019176828A1 publication Critical patent/JPWO2019176828A1/en
Application granted granted Critical
Publication of JP7310047B2 publication Critical patent/JP7310047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、耐剥離性及び耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、その製造方法、並びに、前記組成物を光素子固定用接着剤又は光素子固定用封止材として使用する方法に関する。 The present invention provides a curable composition that provides a cured product having excellent peel resistance and heat resistance and high adhesive strength, a cured product obtained by curing the composition, a method for producing the same, and the composition. as an adhesive for fixing optical elements or a sealing material for fixing optical elements.

従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されている。
また、硬化性組成物は、光素子封止体を製造する際の、光素子固定用接着剤や光素子固定用封止材等の光素子固定材としても注目を浴びてきている。
Conventionally, curable compositions have been variously improved according to their uses, and are widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like.
In addition, the curable composition is also attracting attention as an optical element fixing material such as an optical element fixing adhesive or an optical element fixing encapsulant when manufacturing an optical element sealing body.

光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。 Optical devices include various lasers such as semiconductor lasers (LD), light emitting devices such as light emitting diodes (LED), light receiving devices, composite optical devices, optical integrated circuits, and the like. In recent years, blue-light and white-light optical elements with shorter peak emission wavelengths have been developed and widely used. The brightness of such light-emitting elements having a short peak wavelength of light emission is rapidly increasing, and accordingly, the amount of heat generated by the optical elements tends to increase further.

ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化して剥離したり、接着力が低下したりするという問題が生じた。 However, as the brightness of optical elements has increased in recent years, the cured product of the optical element fixing composition is exposed to higher energy light and higher temperature heat generated from the optical element for a long time, and deteriorates and peels off. or the adhesive force is lowered.

この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が、特許文献4には、シラン化合物の加水分解・重縮合物を用いる半導体発光デバイス用部材等が提案されている。
しかしながら、特許文献1~4に記載された組成物や部材等の硬化物であっても、十分な接着力を保ちつつ、耐剥離性、耐熱性を得るのは困難な場合があった。
In order to solve this problem, Patent Documents 1 to 3 disclose a composition for an optical element fixing material containing a polysilsesquioxane compound as a main component, and Patent Document 4 discloses a hydrolyzate/polycondensate of a silane compound. Semiconductor light-emitting device members and the like to be used have been proposed.
However, even with the cured products such as the compositions and members described in Patent Documents 1 to 4, it was sometimes difficult to obtain peel resistance and heat resistance while maintaining sufficient adhesive strength.

これに対し、本発明者らは、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物を見出している(特許文献5、6)。
しかしながら、これらの硬化性組成物を硬化させるためには、高温(170℃以上)で2時間ほど加熱する必要があった。そのため、これらの硬化性組成物を光半導体発光デバイス等に用いる場合、硬化の際に高温に晒され、パッケージ周辺部材がダメージを受ける場合があった。
On the other hand, the present inventors have discovered a curable composition that gives a cured product that is excellent in peel resistance and heat resistance and has high adhesive strength (Patent Documents 5 and 6).
However, in order to cure these curable compositions, it was necessary to heat them at a high temperature (170° C. or higher) for about 2 hours. Therefore, when these curable compositions are used in an optical semiconductor light-emitting device or the like, they are exposed to high temperatures during curing, which may damage package peripheral members.

特開2004-359933号公報JP-A-2004-359933 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A 特開2007-112975号公報JP 2007-112975 A WO2012/073988号WO2012/073988 WO2016/031728号(US2017/253781 A1)WO2016/031728 (US2017/253781 A1)

本発明は、上記実情に鑑みてなされたものであり、高い接着力を有する硬化物が得られる硬化性組成物であって、従来のものに比べて低温で加熱硬化させることができる硬化性組成物、該組成物を硬化してなる硬化物、その製造方法、並びに、該組成物を光素子固定用接着剤及び光素子固定用封止材として使用する方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a curable composition that provides a cured product having high adhesive strength, which can be cured by heating at a lower temperature than conventional curable compositions. The object of the present invention is to provide a product, a cured product obtained by curing the composition, a method for producing the same, and a method of using the composition as an adhesive for fixing an optical element and a sealant for fixing an optical element.

本発明者らは上記課題を解決すべく鋭意研究を重ねた。その結果、特定のシラン化合物重合体、並びに、ビスマス化合物、アルミニウム化合物及びジルコニウム化合物からなる群から選ばれる少なくとも一種の金属化合物を、特定の割合で含有する組成物は、低温で加熱硬化させることができ、得られる硬化物は、高い接着力を有することを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to solve the above problems. As a result, a composition containing a specific silane compound polymer and at least one metal compound selected from the group consisting of a bismuth compound, an aluminum compound and a zirconium compound in a specific ratio can be cured by heating at a low temperature. The inventors have found that the resulting cured product has high adhesive strength, and have completed the present invention.

かくして本発明によれば、下記〔1〕~〔7〕の硬化性組成物、〔8〕、〔9〕の硬化物、〔10〕の硬化物の製造方法、〔11〕の光素子固定用接着剤として使用する方法、及び、〔12〕の光素子固定用封止材として使用する方法が提供される。 Thus, according to the present invention, the following [1] to [7] curable compositions, [8] and [9] cured products, [10] method for producing cured products, [11] for fixing optical elements A method of using it as an adhesive and a method of using it as a sealing material for fixing optical elements of [12] are provided.

〔1〕下記(A)成分及び(B)成分を含む硬化性組成物であって、(B)成分の含有量が、(A)成分100質量部に対して、0質量部超、3質量部以下であることを特徴とする硬化性組成物。
(A)成分:下記式(a)
[1] A curable composition containing the following components (A) and (B), wherein the content of component (B) is more than 0 parts by mass and 3 parts by mass with respect to 100 parts by mass of component (A) part or less.
(A) component: the following formula (a)

Figure 0007310047000001
Figure 0007310047000001

(式中、Rは、置換基を有する、若しくは置換基を有さない炭素数1~10のアルキル基、又は、置換基を有する、若しくは置換基を有さないアリール基を表す。複数のR同士は同一であっても相異なっていてもよい。Zは、ヒドロキシ基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。pは正の整数を示し、q、rはそれぞれ独立して、0又は正の整数を示す。)
で示されるシラン化合物重合体
(B)成分:ビスマス化合物、アルミニウム化合物及びジルコニウム化合物からなる群から選ばれる少なくとも一種の金属化合物
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms with or without a substituent, or an aryl group with or without a substituent. R 1 may be the same or different, Z represents a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom, p represents a positive integer, and q and r Each independently represents 0 or a positive integer.)
Silane compound polymer (B) component represented by: at least one metal compound selected from the group consisting of bismuth compounds, aluminum compounds and zirconium compounds

〔2〕前記(A)成分のシラン化合物重合体の質量平均分子量(Mw)が800~50,000である、〔1〕に記載の硬化性組成物。
〔3〕前記シラン化合物重合体が、下記式(1)で示されるシラン化合物の一種又は二種以上の重縮合生成物である、〔1〕又は〔2〕に記載の硬化性組成物。
[2] The curable composition according to [1], wherein the weight average molecular weight (Mw) of the silane compound polymer of component (A) is 800 to 50,000.
[3] The curable composition according to [1] or [2], wherein the silane compound polymer is a polycondensation product of one or more silane compounds represented by the following formula (1).

Figure 0007310047000002
Figure 0007310047000002

(式中、Rは前記と同じ意味を表し、Xはハロゲン原子を表し、sは0~3の整数を表す。複数のR同士、及び複数のX同士は、互いに同一であっても、相異なっていてもよい。
〔4〕さらに、下記(C)成分を含有する、〔1〕~〔3〕のいずれかに記載の硬化性組成物。
(C)成分:分子内に窒素原子を有するシランカップリング剤
〔5〕さらに、下記(D)成分を含有する、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
(D)成分:分子内に酸無水物構造を有するシランカップリング剤
〔6〕さらに、希釈剤を含有する、〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕前記硬化性組成物の固形分濃度が、50質量%以上、100質量%未満である、〔6〕に記載の硬化性組成物。
(In the formula, R 1 has the same meaning as above, X 1 represents a halogen atom, and s represents an integer of 0 to 3. Multiple R 2 and multiple X 1 are identical to each other. may be different.
[4] The curable composition according to any one of [1] to [3], further comprising the following component (C).
Component (C): a silane coupling agent having a nitrogen atom in the molecule [5] The curable composition according to any one of [1] to [4], further comprising the following component (D).
Component (D): The curable composition according to any one of [1] to [5], further comprising a silane coupling agent [6] having an acid anhydride structure in the molecule and a diluent.
[7] The curable composition according to [6], wherein the curable composition has a solid content concentration of 50% by mass or more and less than 100% by mass.

〔8〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。
〔9〕光素子固定材である、〔8〕に記載の硬化物。
〔10〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を、110℃~130℃に加熱して硬化させる硬化物の製造方法。
[8] A cured product obtained by curing the curable composition according to any one of [1] to [7].
[9] The cured product of [8], which is an optical element fixing material.
[10] A method for producing a cured product, wherein the curable composition according to any one of [1] to [7] is heated to 110°C to 130°C to be cured.

〔11〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定用接着剤として使用する方法。
〔12〕〔1〕~〔7〕のいずれかに記載の硬化性組成物を、光素子固定用封止材として使用する方法。
[11] A method of using the curable composition according to any one of [1] to [7] as an adhesive for fixing optical elements.
[12] A method of using the curable composition according to any one of [1] to [7] as a sealing material for fixing an optical element.

本発明の硬化性組成物は、従来のものに比べて低温で加熱硬化させることができるものである。本発明の硬化性組成物を光半導体発光デバイスの光素子の固定材として用いる場合、硬化の際に高温にする必要がないため、パッケージ部材が熱によるダメージを受けることがない。
本発明の硬化性組成物を硬化させて得られる硬化物は優れた接着力を有する。従って、本発明の硬化性組成物は、光素子固定用接着剤、及び光素子固定用封止材として好適に使用することができる。
The curable composition of the present invention can be cured by heating at a lower temperature than conventional compositions. When the curable composition of the present invention is used as a fixing material for an optical element of an optical semiconductor light-emitting device, it is not necessary to set the composition to a high temperature during curing, so that the package member is not damaged by heat.
A cured product obtained by curing the curable composition of the present invention has excellent adhesive strength. Therefore, the curable composition of the present invention can be suitably used as an adhesive for fixing optical elements and a sealant for fixing optical elements.

以下、本発明を、1)硬化性組成物、2)硬化物及びその製造方法、並びに、3)硬化性組成物の使用方法、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing into 1) a curable composition, 2) a cured product and its production method, and 3) a method for using the curable composition.

1)硬化性組成物
本発明の硬化性組成物は、下記(A)成分及び(B)成分を含む硬化性組成物であって、(B)成分の含有量が、(A)成分100質量部に対して、0質量部超、3質量部以下であることを特徴とする。
(A)成分:下記式(a)で示されるシラン化合物重合体
1) Curable composition The curable composition of the present invention is a curable composition containing the following components (A) and (B), wherein the content of component (B) is 100 mass of component (A) It is characterized by being more than 0 parts by mass and 3 parts by mass or less with respect to parts.
(A) component: a silane compound polymer represented by the following formula (a)

Figure 0007310047000003
Figure 0007310047000003

(B)成分:ビスマス化合物、アルミニウム化合物及びジルコニウム化合物からなる群から選ばれる少なくとも一種の金属化合物 Component (B): at least one metal compound selected from the group consisting of bismuth compounds, aluminum compounds and zirconium compounds

(A)成分
本発明の硬化性組成物に用いる(A)成分は、前記式(a)で表されるシラン化合物重合体(以下、「シラン化合物重合体(A)」ということがある。)である。
(A) Component The (A) component used in the curable composition of the present invention is a silane compound polymer represented by the formula (a) (hereinafter sometimes referred to as "silane compound polymer (A)"). is.

上記式(a)において、式:-(RSiO3/2)-で表される繰り返し単位、式:-(RSiZO2/2)-で表される繰り返し単位、及び、式:-(RSiZ1/2)-で表される繰り返し単位は、それぞれ、下記(a1)~(a3)で表すことができる。なお(a1)~(a3)において、「-O-」は、隣接する2つのSi原子に共有されている酸素原子を表す。In the above formula (a), the repeating unit represented by the formula: -(R 1 SiO 3/2 )-, the repeating unit represented by the formula: -(R 1 SiZO 2/2 )-, and the formula: - The repeating units represented by (R 1 SiZ 2 O 1/2 )- can be represented by the following (a1) to (a3) respectively. In (a1) to (a3), “—O—” represents an oxygen atom shared by two adjacent Si atoms.

Figure 0007310047000004
Figure 0007310047000004

本発明に用いるシラン化合物重合体(A)において、前記式(a)中、p、q、rがそれぞれ2以上のとき、前記式(a1)~(a3)で表される繰り返し単位同士はそれぞれ、同一であっても相異なっていてもよい。 In the silane compound polymer (A) used in the present invention, when each of p, q, and r in formula (a) is 2 or more, the repeating units represented by formulas (a1) to (a3) are , may be the same or different.

前記式(a)、(a1)、(a2)及び(a3)中、Rは、置換基を有する、若しくは置換基を有さない炭素数1~10のアルキル基、又は、置換基を有する、若しくは置換基を有さないアリール基を表す。
すなわち、Rは、置換基を有する炭素数1~10のアルキル基、無置換の炭素数1~10のアルキル基、置換基を有するアリール基、及び無置換のアリール基からなる群から選ばれるものである。
なお、「置換基を有する炭素数1~10のアルキル基」の炭素数は、アルキル基の部分の炭素数を意味する。したがって、R全体の炭素数は、10を超える場合もあり得る。
In the above formulas (a), (a1), (a2) and (a3), R 1 is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted , or represents an aryl group having no substituents.
That is, R 1 is selected from the group consisting of a substituted alkyl group having 1 to 10 carbon atoms, an unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group having a substituent, and an unsubstituted aryl group. It is.
The number of carbon atoms in the "substituted alkyl group having 1 to 10 carbon atoms" means the number of carbon atoms in the alkyl group portion. Therefore, the total carbon number of R 1 may exceed 10 in some cases.

の、炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基等が挙げられる。The alkyl group having 1 to 10 carbon atoms for R 1 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and n-pentyl. group, n-hexyl group, n-octyl group, n-nonyl group and the like.

の、置換基を有する炭素数1~10のアルキル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;式:OGで表される
基;が挙げられる。
Gは水酸基の保護基を表す。水酸基の保護基としては、特に制約はなく、水酸基の保護基として知られている公知の保護基が挙げられる。例えば、アシル系の保護基;トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等のシリル系の保護基;メトキシメチル基、メトキシエトキシメチル基、1-エトキシエチル基、テトラヒドロピラン-2-イル基、テトラヒドロフラン-2-イル基等のアセタール系の保護基;t-ブトキシカルボニル基等のアルコキシカルボニル系の保護基;メチル基、エチル基、t-ブチル基、オクチル基、アリル基、トリフェニルメチル基、ベンジル基、p-メトキシベンジル基、フルオレニル基、トリチル基、ベンズヒドリル基等のエーテル系の保護基;等が挙げられる。
Examples of substituents of the substituted alkyl group having 1 to 10 carbon atoms of R 1 include halogen atoms such as fluorine, chlorine, bromine and iodine atoms; cyano group; group represented by formula: OG; is mentioned.
G represents a hydroxyl-protecting group. The hydroxyl-protecting group is not particularly limited, and includes known protecting groups known as hydroxyl-protecting groups. For example, acyl protecting group; silyl protecting group such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; methoxymethyl group, methoxyethoxymethyl group, 1-ethoxyethyl group , tetrahydropyran-2-yl group, acetal protecting group such as tetrahydrofuran-2-yl group; alkoxycarbonyl protecting group such as t-butoxycarbonyl group; methyl group, ethyl group, t-butyl group, octyl group , an allyl group, a triphenylmethyl group, a benzyl group, a p-methoxybenzyl group, a fluorenyl group, a trityl group, a benzhydryl group, and the like.

のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~20のアリール基が挙げられる。
の、置換基を有するアリール基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
The aryl group for R 1 includes aryl groups having 6 to 20 carbon atoms such as phenyl group, 1-naphthyl group and 2-naphthyl group.
Examples of substituents of the aryl group having a substituent for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Alkyl groups such as pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group; be done.

これらの中でも、Rとしては、本発明の効果が得られ易いことから、置換基を有する炭素数1~6のアルキル基、無置換の炭素数1~6のアルキル基、又は無置換のアリール基が好ましく、置換基を有する炭素数1~6のアルキル基、無置換の炭素数1~6のアルキル基、又はフェニル基がより好ましく、シアノ基を有する炭素数1~6のアルキル基、フッ素原子を有する炭素数1~6のアルキル基、無置換の炭素数1~6のアルキル基、又はフェニル基がさらに好ましく、シアノ基を有する炭素数1~3のアルキル基、フッ素原子を有する炭素数1~3のアルキル基、無置換の炭素数1~3のアルキル基、又はフェニル基が特に好ましい。
複数のRはすべて同一であっても相異なっていてもよい。
Among these, R 1 is a substituted alkyl group having 1 to 6 carbon atoms, an unsubstituted alkyl group having 1 to 6 carbon atoms, or an unsubstituted aryl group, more preferably a substituted alkyl group having 1 to 6 carbon atoms, an unsubstituted alkyl group having 1 to 6 carbon atoms, or a phenyl group, an alkyl group having 1 to 6 carbon atoms having a cyano group, fluorine More preferably, an alkyl group having 1 to 6 carbon atoms having an atom, an unsubstituted alkyl group having 1 to 6 carbon atoms, or a phenyl group, an alkyl group having 1 to 3 carbon atoms having a cyano group, and a carbon number having a fluorine atom A 1 to 3 alkyl group, an unsubstituted alkyl group having 1 to 3 carbon atoms, or a phenyl group is particularly preferred.
Plural R 1s may all be the same or different.

Zは、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。
Zの炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基等が挙げられる。ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
これらの中でも、Zは、ヒドロキシル基又は炭素数1~6のアルコキシ基が好ましい。
pは正の整数を示し、q、rはそれぞれ独立して、0又は正の整数を示す。
複数のRはすべて同一であっても相異なっていてもよい。
また、複数のZはすべて同一であっても相異なっていてもよい。
Z represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
The alkoxy group having 1 to 10 carbon atoms for Z includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, t-butoxy, pentyloxy and the like. A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom.
Among these, Z is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
p represents a positive integer, and q and r each independently represents 0 or a positive integer.
Plural R 1s may all be the same or different.
Moreover, all of a plurality of Z's may be the same or different.

シラン化合物重合体(A)の製造方法は特に限定されない。
例えば、下記式(1)で示されるシラン化合物(以下、「シラン化合物(1)」ということがある。)の一種又は二種以上を重縮合させることにより製造することができる。ここで、「重縮合」は、加水分解及び重縮合反応を含む広い概念で用いている。
The method for producing the silane compound polymer (A) is not particularly limited.
For example, it can be produced by polycondensing one or more silane compounds represented by the following formula (1) (hereinafter sometimes referred to as "silane compound (1)"). Here, "polycondensation" is used as a broad concept including hydrolysis and polycondensation reactions.

Figure 0007310047000005
Figure 0007310047000005

式(1)中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、sは0~3の整数を表す。In formula (1), R 1 has the same meaning as above. R 2 represents an alkyl group having 1-10 carbon atoms, X 1 represents a halogen atom, and s represents an integer of 0-3.

の炭素数1~10のアルキル基としては、前記Rの、炭素数1~10のアルキル基として例示したのと同様のものが挙げられる。
のハロゲン原子としては、塩素原子及び臭素原子等が挙げられる。
sが2以上のとき、複数のOR同士は同一であっても相異なっていてもよい。また、(3-s)が2以上のとき、複数のX同士は同一であっても相異なっていてもよい。
Examples of the alkyl group having 1 to 10 carbon atoms for R 2 include those exemplified as the alkyl group having 1 to 10 carbon atoms for R 1 .
A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X1 .
When s is 2 or more, a plurality of OR 2 may be the same or different. Also, when (3-s) is 2 or more, a plurality of X 1s may be the same or different.

シラン化合物(1)の好ましい具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリメトキシシラン、イソオクチルトリエトキシシラン等の、アルキルトリアルコキシシラン化合物類; Preferred specific examples of silane compound (1) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane and n-propyltriethoxysilane. , n-propyltripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltrimethoxysilane, isooctyltri Alkyltrialkoxysilane compounds such as ethoxysilane;

メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン、n-ブチルクロロジメトキシシラン、n-ブチルジクロロメトキシシラン等の、アルキルハロゲノアルコキシシラン化合物類; methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane, n-propylchlorodimethoxysilane, n - alkylhalogenoalkoxysilane compounds such as propyldichloromethoxysilane, n-butylchlorodimethoxysilane, n-butyldichloromethoxysilane;

メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン、n-プロピルトリブロモシラン、n-ブチルトリクロロシラン、イソブチルトリクロロシラン、n-ペンチルトリクロロシラン、n-ヘキシルトリクロロシラン、イソオクチルトリクロロシラン等の、アルキルトリハロゲノシラン化合物類; methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane, n-propyltribromosilane, n-butyltrichlorosilane, isobutyltrichlorosilane, n-pentyltrichlorosilane, n-hexyl Alkyltrihalogenosilane compounds such as trichlorosilane, isooctyltrichlorosilane;

フェニルトリメトキシシラン、4-メチルフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の、置換基を有していてもよいフェニルトリアルコキシシラン化合物類;
フェニルクロロジメトキシシラン、フェニルジクロロメトキシシラン、フェニルクロロメトキシエトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロエトキシシラン等の、置換基を有していてもよいフェニルハロゲノアルコキシシラン化合物類;
フェニルトリクロロシラン、フェニルトリブロモシラン、4-メトキシフェニルトリクロロシラン、フェニルトリクロロシラン、2-エトキシフェニルトリクロロシラン、2-クロロフェニルトリクロロシラン等の、置換基を有していてもよいフェニルトリハロゲノシラン化合物;
phenyltrimethoxysilane, 4-methylphenyltrimethoxysilane, 2-chlorophenyltrimethoxysilane, phenyltriethoxysilane, 2-methoxyphenyltriethoxysilane, phenyldimethoxyethoxysilane, phenyldiethoxymethoxysilane, etc. phenyltrialkoxysilane compounds that may be
optionally substituted phenylhalogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenyldichloromethoxysilane, phenylchloromethoxyethoxysilane, phenylchlorodiethoxysilane, and phenyldichloroethoxysilane;
optionally substituted phenyltrihalogenosilane compounds such as phenyltrichlorosilane, phenyltribromosilane, 4-methoxyphenyltrichlorosilane, phenyltrichlorosilane, 2-ethoxyphenyltrichlorosilane, and 2-chlorophenyltrichlorosilane;

シアノメチルトリメトキシシラン、シアノメチルトリエトキシシラン、1-シアノエチルトリメトキシシラン、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、2-シアノエチルトリプロポキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルトリエトキシシラン、3-シアノプロピルトリプロポキシシラン、3-シアノプロピルトリブトキシシラン、4-シアノブチルトリメトキシシラン、5-シアノペンチルトリメトキシシラン、2-シアノプロピルトリメトキシシラン、2-(シアノメトキシ)エチルトリメトキシシラン、2-(2-シアノエトキシ)エチルトリメトキシシラン、o-(シアノメチル)フェニルトリプロポキシシラン、m-(シアノメチル)フェニルトリメトキシシラン、p-(シアノメチル)フェニルトリエトキシシラン、p-(2-シアノエチル)フェニルトリメトキシシラン等の、シアノアルキルトリアルコキシシラン化合物類; Cyanomethyltrimethoxysilane, Cyanomethyltriethoxysilane, 1-Cyanoethyltrimethoxysilane, 2-Cyanoethyltrimethoxysilane, 2-Cyanoethyltriethoxysilane, 2-Cyanoethyltripropoxysilane, 3-Cyanopropyltrimethoxysilane, 3- Cyanopropyltriethoxysilane, 3-cyanopropyltripropoxysilane, 3-cyanopropyltributoxysilane, 4-cyanobutyltrimethoxysilane, 5-cyanopentyltrimethoxysilane, 2-cyanopropyltrimethoxysilane, 2-(cyano methoxy)ethyltrimethoxysilane, 2-(2-cyanoethoxy)ethyltrimethoxysilane, o-(cyanomethyl)phenyltripropoxysilane, m-(cyanomethyl)phenyltrimethoxysilane, p-(cyanomethyl)phenyltriethoxysilane, Cyanoalkyltrialkoxysilane compounds such as p-(2-cyanoethyl)phenyltrimethoxysilane;

シアノメチルトリクロロシラン、シアノメチルブロモジメトキシシラン、2-シアノエチルジクロロメトキシシラン、2-シアノエチルジクロロエトキシシラン、3-シアノプロピルトリクロロシラン、3-シアノプロピルトリブロモシラン、3-シアノプロピルジクロロメトキシシラン、3-シアノプロピルジクロロエトキシシラン、3-シアノプロピルクロロジメトキシシラン、3-シアノプロピルクロロジエトキシシラン、4-シアノブチルクロロジエトキシシラン、3-シアノ-n-ブチルクロロジエトキシシラン、2-(2-シアノエトキシ)エチルトリクロロシラン、2-(2-シアノエトキシ)エチルブロモジエトキシシラン、2-(2-シアノエトキシ)エチルジクロロプロポキシシラン、o-(2-シアノエチル)フェニルトリクロロシラン、m-(2-シアノエチル)フェニルメトキシジブロモシラン、p-(2-シアノエチル)フェニルジメトキシクロロシラン、p-(2-シアノエチル)フェニルトリブロモシラン等の、シアノアルキルハロゲノシラン化合物類; Cyanomethyltrichlorosilane, cyanomethylbromodimethoxysilane, 2-cyanoethyldichloromethoxysilane, 2-cyanoethyldichloroethoxysilane, 3-cyanopropyltrichlorosilane, 3-cyanopropyltribromosilane, 3-cyanopropyldichloromethoxysilane, 3- Cyanopropyldichloroethoxysilane, 3-cyanopropylchlorodimethoxysilane, 3-cyanopropylchlorodiethoxysilane, 4-cyanobutylchlorodiethoxysilane, 3-cyano-n-butylchlorodiethoxysilane, 2-(2-cyano ethoxy)ethyltrichlorosilane, 2-(2-cyanoethoxy)ethylbromodiethoxysilane, 2-(2-cyanoethoxy)ethyldichloropropoxysilane, o-(2-cyanoethyl)phenyltrichlorosilane, m-(2-cyanoethyl ) cyanoalkylhalogenosilane compounds such as phenylmethoxydibromosilane, p-(2-cyanoethyl)phenyldimethoxychlorosilane, p-(2-cyanoethyl)phenyltribromosilane;

3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン等のフルオロアルキルトリアルコキシシラン化合物類;
3,3,3-トリフルオロプロピルクロロジメトキシシラン、3,3,3-トリフルオロプロピルクロロジエトキシシラン、3,3,3-トリフルオロプロピルジクロロメトキシシラン、3,3,3-トリフルオロプロピルジクロロエトキシシラン等のフルオロアルキルハロゲノアルコキシシラン化合物類;
3,3,3-トリフルオロプロピルトリクロロシラン等のフルオロアルキルトリハロゲノシラン化合物類;等が挙げられる。
シラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
fluoroalkyltrialkoxysilane compounds such as 3,3,3-trifluoropropyltrimethoxysilane and 3,3,3-trifluoropropyltriethoxysilane;
3,3,3-trifluoropropylchlorodimethoxysilane, 3,3,3-trifluoropropylchlorodiethoxysilane, 3,3,3-trifluoropropyldichloromethoxysilane, 3,3,3-trifluoropropyldichloro fluoroalkylhalogenoalkoxysilane compounds such as ethoxysilane;
fluoroalkyltrihalogenosilane compounds such as 3,3,3-trifluoropropyltrichlorosilane; and the like.
The silane compound (1) can be used singly or in combination of two or more.

これらの中でも、シラン化合物(1)としては、より優れた接着性を有する硬化物が得られ易いことから、トリアルコキシシラン化合物類が好ましく、(i)炭素数1~10のアルキルトリアルコキシシラン化合物、(ii)フェニルトリアルコキシシラン化合物と、炭素数1~10のシアノアルキル基を有するトリアルコキシシラン化合物との組み合わせ、又は(iii)炭素数1~10のアルキルトリアルコキシシラン化合物と、炭素数1~10のフルオロアルキル基を有するトリアルコキシシラン化合物との組み合わせがより好ましい。 Among these, the silane compound (1) is preferably a trialkoxysilane compound because a cured product having better adhesiveness can be easily obtained, and (i) an alkyltrialkoxysilane compound having 1 to 10 carbon atoms. , (ii) a combination of a phenyltrialkoxysilane compound and a trialkoxysilane compound having a cyanoalkyl group having 1 to 10 carbon atoms, or (iii) an alkyltrialkoxysilane compound having 1 to 10 carbon atoms and 1 carbon atom. A combination with a trialkoxysilane compound having ˜10 fluoroalkyl groups is more preferred.

フェニルトリアルコキシシラン化合物と炭素数1~10のシアノアルキルトリアルコキシシラン化合物とを組み合わせて用いる場合、フェニルトリアルコキシシラン化合物と炭素数1~10のシアノアルキルトリアルコキシシラン化合物の使用割合は、モル比で、〔フェニルトリアルコキシシラン化合物〕:〔炭素数1~10のシアノアルキルトリアルコキシシラン化合物〕=95:5~50:50が好ましく、90:10~60:40がより好ましい。 When the phenyltrialkoxysilane compound and the cyanoalkyltrialkoxysilane compound having 1 to 10 carbon atoms are used in combination, the ratio of the phenyltrialkoxysilane compound and the cyanoalkyltrialkoxysilane compound having 1 to 10 carbon atoms is the molar ratio. and [phenyltrialkoxysilane compound]:[cyanoalkyltrialkoxysilane compound having 1 to 10 carbon atoms] = 95:5 to 50:50, more preferably 90:10 to 60:40.

炭素数1~10のアルキルトリアルコキシシラン化合物と、炭素数1~10のフルオロアルキル基を有するトリアルコキシシラン化合物とを組み合わせて用いる場合、炭素数1~10のアルキルトリアルコキシシラン化合物と炭素数1~10のフルオロアルキル基を有するトリアルコキシシラン化合物の使用割合は、モル比で、〔炭素数1~10のアルキルトリアルコキシシラン化合物〕:〔炭素数1~10のフルオロアルキル基を有するトリアルコキシシラン化合物〕=95:5~10:90が好ましく、90:10~30:70がより好ましく、85:15~50:50がより更に好ましい。 When an alkyltrialkoxysilane compound having 1 to 10 carbon atoms and a trialkoxysilane compound having a fluoroalkyl group having 1 to 10 carbon atoms are used in combination, the alkyltrialkoxysilane compound having 1 to 10 carbon atoms and the alkyltrialkoxysilane compound having 1 to 10 carbon atoms are combined. The molar ratio of the trialkoxysilane compound having a fluoroalkyl group of up to 10 to be used is [alkyltrialkoxysilane compound having 1 to 10 carbon atoms]:[trialkoxysilane having a fluoroalkyl group having 1 to 10 carbon atoms. compound]=95:5 to 10:90 is preferred, 90:10 to 30:70 is more preferred, and 85:15 to 50:50 is even more preferred.

前記シラン化合物(1)を重縮合させる方法としては、特に限定されないが、溶媒中、又は無溶媒で、シラン化合物(1)に所定量の触媒を添加し、全容を所定温度で撹拌する方法が挙げられる。 The method of polycondensing the silane compound (1) is not particularly limited, but a method of adding a predetermined amount of catalyst to the silane compound (1) in a solvent or without solvent and stirring the whole at a predetermined temperature. mentioned.

用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
また、酸触媒と塩基触媒を組み合わせて用いることもできる。例えば、酸触媒の存在下、シラン化合物の重縮合反応を行った後に、反応液に塩基触媒を添加して塩基性とし、塩基性条件下に、さらに重縮合反応を行ってもよい。
酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
The catalyst used may be either an acid catalyst or a base catalyst.
Also, an acid catalyst and a base catalyst can be used in combination. For example, after conducting the polycondensation reaction of the silane compound in the presence of an acid catalyst, the reaction solution may be made basic by adding a base catalyst, and the polycondensation reaction may be further conducted under basic conditions.
Acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid and trifluoroacetic acid; be done.

塩基触媒としては、アンモニア(水);トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include ammonia (water); trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU), aniline, picoline. , 1,4-diazabicyclo[2.2.2]octane, imidazole and other organic bases; tetramethylammonium hydroxide, tetraethylammonium hydroxide and other organic salt hydroxides; sodium methoxide, sodium ethoxide, sodium t-butoxide , metal alkoxides such as potassium t-butoxide; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; sodium carbonate, potassium carbonate, magnesium carbonate and the like metal carbonates such as sodium hydrogencarbonate and potassium hydrogencarbonate; and the like.

触媒の使用量は、シラン化合物(1)の総モル量に対して、通常、0.1モル%~10モル%、好ましくは1モル%~5モル%の範囲である。 The amount of the catalyst used is usually in the range of 0.1 mol % to 10 mol %, preferably 1 mol % to 5 mol %, relative to the total molar amount of silane compound (1).

用いる溶媒は、シラン化合物(1)の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を組み合わせて用いることができる。 The solvent to be used can be appropriately selected according to the type of silane compound (1) and the like. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more.

溶媒の使用量は特に限定されないが、シラン化合物(1)の総モル量1モル当たり、通常0.1~10リットル、好ましくは0.1~2リットルである。 The amount of the solvent to be used is not particularly limited, but it is usually 0.1 to 10 liters, preferably 0.1 to 2 liters per 1 mol of the total molar amount of the silane compound (1).

シラン化合物(1)を重縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。 The temperature at which the silane compound (1) is polycondensed (reacted) is usually in the range of 0°C to the boiling point of the solvent used, preferably in the range of 20°C to 100°C. If the reaction temperature is too low, the condensation reaction may not progress sufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.

なお、用いるシラン化合物(1)の種類によっては、高分子量化が困難な場合がある。例えば、Rがフルオロアルキル基であるシラン化合物は、Rが通常のアルキル基であるシラン化合物よりも反応性に劣る傾向がある。このような場合、触媒量を減らし、かつ、穏やかな条件で長時間反応を行うことにより、ゲル化を抑制し、目的の分子量のシラン化合物重合体(A)が得られ易くなる。Depending on the type of silane compound (1) used, it may be difficult to increase the molecular weight. For example, silane compounds in which R 1 is a fluoroalkyl group tend to be less reactive than silane compounds in which R 1 is a normal alkyl group. In such a case, by reducing the amount of catalyst and conducting the reaction under mild conditions for a long time, gelation can be suppressed and the silane compound polymer (A) having the desired molecular weight can be easily obtained.

反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物重合体を得ることができる。 After the completion of the reaction, when an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution, and when a base catalyst is used, an acid such as hydrochloric acid is added to the reaction solution. The mixture is combined, and the salt generated at that time is removed by filtration or washing with water to obtain the target silane compound polymer.

上記方法により、シラン化合物重合体(A)を製造する際、シラン化合物(1)のOR又はXのうち、脱水及び/又は脱アルコールされなかった部分は、シラン化合物重合体(A)中に残存する。すなわち、残存するOR又はXが1つである場合は、前記式(a)において、(RSiZO2/2)として残存し、残存するOR又はXが2つである場合は、式(a)において、(RSiZ1/2)として残存する。When the silane compound polymer (A) is produced by the above method, the portion of OR 2 or X 1 of the silane compound (1) that has not been dehydrated and/or dealcoholized is included in the silane compound polymer (A). remain in That is, when there is one remaining OR 2 or X 1 , it remains as (R 1 SiZO 2/2 ) in the formula (a), and when there are two remaining OR 2 or X 1 , in formula (a), remains as (R 1 SiZ 2 O 1/2 ).

シラン化合物重合体(A)は、単独重合体(Rが一種の重合体)であっても、共重合体(Rが二種以上の重合体)であってもよい。
シラン化合物重合体(A)が共重合体(Rが二種以上の重合体)である場合、シラン化合物重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
また、シラン化合物重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
The silane compound polymer (A) may be a homopolymer (a polymer having one type of R 1 ) or a copolymer (a polymer having two or more types of R 1 ).
When the silane compound polymer (A) is a copolymer (a polymer having two or more R1 ), the silane compound polymer (A) may be a random copolymer, a block copolymer, a graft copolymer, Although any copolymer such as an alternating copolymer may be used, a random copolymer is preferable from the viewpoint of ease of production.
Further, the structure of the silane compound polymer (A) may be any of a ladder type structure, a double decker type structure, a cage type structure, a partially cleaved cage type structure, a cyclic type structure and a random type structure.

シラン化合物重合体(A)の質量平均分子量(Mw)は、通常800~50,000、好ましくは3,000~30,000、より好ましくは5,000~15,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。
質量平均分子量(Mw)および数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる(以下にて同じである。)。
The weight average molecular weight (Mw) of the silane compound polymer (A) is usually in the range of 800-50,000, preferably 3,000-30,000, more preferably 5,000-15,000. Within this range, a cured product having excellent handleability of the composition, adhesiveness and heat resistance can be obtained.
The mass average molecular weight (Mw) and number average molecular weight (Mn) can be obtained as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent (same below is.).

シラン化合物重合体(A)の分子量分布(Mw/Mn)は、特に限定されないが、通常1.0~10.0、好ましくは1.1~6.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。
シラン化合物重合体(A)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Although the molecular weight distribution (Mw/Mn) of the silane compound polymer (A) is not particularly limited, it is usually in the range of 1.0-10.0, preferably 1.1-6.0. By being in the said range, the hardened|cured material which is excellent in adhesiveness and heat resistance is obtained.
The silane compound polymer (A) can be used singly or in combination of two or more.

シラン化合物重合体(A)の含有量は、硬化性組成物の固形分中、好ましくは40~95質量%であり、より好ましくは50~90質量%、さらに好ましくは60~85質量%である。 The content of the silane compound polymer (A) is preferably 40 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 85% by mass in the solid content of the curable composition. .

(B)成分
本発明の硬化性組成物は、(B)成分として、ビスマス化合物、アルミニウム化合物及びジルコニウム化合物からなる群から選ばれる少なくとも一種の金属化合物を含有する。
本発明の硬化性組成物は、(B)成分を含有するものであるため、より低温、短時間で、このものを硬化させることができ、しかも、接着性に優れる硬化物を得ることができる。
Component (B) The curable composition of the present invention contains, as component (B), at least one metal compound selected from the group consisting of bismuth compounds, aluminum compounds and zirconium compounds.
Since the curable composition of the present invention contains the component (B), it can be cured at a lower temperature in a short time, and a cured product having excellent adhesion can be obtained. .

(B)成分の金属化合物としては、ビスマス、アルミニウム又はジルコニウムを含有する化合物であれば特に制限はないが、入手容易性等の観点から、3価又は5価のビスマスの化合物、3価のアルミニウムの化合物、4価のジルコニウムの化合物がそれぞれ好ましい。 The metal compound of component (B) is not particularly limited as long as it is a compound containing bismuth, aluminum or zirconium. and compounds of tetravalent zirconium are preferred.

ビスマス化合物、アルミニウム化合物及びジルコニウム化合物としては、例えば、ビスマス、アルミニウム又はジルコニウムの、ハロゲン化物、金属水酸化物、金属酸化物、無機塩(硝酸塩、硫酸塩、炭酸塩、炭酸水素塩、リン酸塩等)、アルコキシド、カルボン酸塩、キレート化合物等が挙げられる。 Bismuth compounds, aluminum compounds and zirconium compounds include, for example, bismuth, aluminum or zirconium halides, metal hydroxides, metal oxides, inorganic salts (nitrates, sulfates, carbonates, hydrogen carbonates, phosphates etc.), alkoxides, carboxylates, chelate compounds and the like.

より具体的には、下記のものが挙げられるが、これらに限定されるものではない。
塩化ビスマス、臭化ビスマス、塩化アルミニウム、臭化アルミニウム、塩化ジルコニウム、臭化ジルコニウム等のハロゲン化物;
酸化ビスマス、酸塩化ビスマス、酸化アルミニウム、二酸化ジルコニウム等の金属酸化物;
水酸化ビスマス、水酸化アルミニウム、水酸化ジルコニウム等の金属水酸化物;
硝酸ビスマス、硝酸アルミニウム、硝酸ジルコニウム等の硝酸塩;
硫酸ビスマス、硫酸アルミニウム、硫酸ジルコニウム等の硫酸塩;
炭酸ビスマス、炭酸アルミニウム、炭酸ジルコニウム等の炭酸塩;
炭酸水素ビスマス、炭酸水素アルミニウム、炭酸水素ジルコニウム等の炭酸水素塩;
リン酸ビスマス、リン酸アルミニウム、リン酸ジルコニウム等のリン酸塩;
More specific examples include, but are not limited to, the following.
Halides such as bismuth chloride, bismuth bromide, aluminum chloride, aluminum bromide, zirconium chloride, zirconium bromide;
metal oxides such as bismuth oxide, bismuth oxide chloride, aluminum oxide, zirconium dioxide;
metal hydroxides such as bismuth hydroxide, aluminum hydroxide, zirconium hydroxide;
Nitrates such as bismuth nitrate, aluminum nitrate, zirconium nitrate;
Sulfates such as bismuth sulfate, aluminum sulfate, and zirconium sulfate;
carbonates such as bismuth carbonate, aluminum carbonate, zirconium carbonate;
Hydrogen carbonates such as bismuth hydrogen carbonate, aluminum hydrogen carbonate, zirconium hydrogen carbonate;
Phosphates such as bismuth phosphate, aluminum phosphate, zirconium phosphate;

式:Bi(OR)で表されるビスマス化合物、式:Al(OR)で表されるアルミニウム化合物、式:Zr(OR)で表されるジルコニウム化合物等の金属アルコキシド(Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基等の炭素数1~20のアルキル基;1-プロペニル基、2-プロペニル基イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~20のアルケニル基;フェニル基等の炭素数6~20の芳香族基;ベンジル基、フェネチル基等の炭素数7~20のアラルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数3~10のシクロアルキル基;等を表す。); A metal alkoxide ( R _ 4 is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, octyl group, 2-ethylhexyl group, decyl group, dodecyl group, etc. Alkyl group having 1 to 20 carbon atoms; Alkenyl group having 2 to 20 carbon atoms such as 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group; Phenyl group, etc. Aromatic groups having 6 to 20 carbon atoms; aralkyl groups having 7 to 20 carbon atoms such as benzyl group and phenethyl group; represents a cycloalkyl group; etc.);

ビスマス、アルミニウム又はジルコニウムの、酢酸塩、プロピオン酸塩、オクタン酸塩、ノナン酸塩、ドデカン酸塩(ラウリン酸塩)、テトラデカン酸塩(ミリスチン酸塩)、ヘキサデカン酸塩(パルミチン酸塩)、オクタデカン酸塩(ステアリン酸塩)、ナフテン酸塩、オクチル酸塩、ネオデカン酸塩、イソステアリン酸塩等の脂肪酸塩;安息香酸塩等の芳香族カルボン酸塩;コハク酸塩等の多価カルボン酸塩;マレイン酸塩、リノレン酸塩、リノール酸塩、オレイン酸塩、アラキドン酸塩等の不飽和カルボン酸塩;ロジン酸塩;等のカルボン酸塩;
ビスマス、アルミニウム又はジルコニウムと、多座配位子(例えば、アセチルアセトン、ベンゾイルアセトン等のβ-ジケトン化合物;アセト酢酸メチル、アセト酢酸エチル等のβ-ケトエステル;カルボナト;エチレンジアミン;等の炭素数1~15の化合物)とのキレート化合物。
Bismuth, aluminum or zirconium acetate, propionate, octanoate, nonanoate, dodecanoate (laurate), tetradecanoate (myristate), hexadecanoate (palmitate), octadecane Fatty acid salts such as acid salts (stearate), naphthenate, octylate, neodecanoate, isostearate; aromatic carboxylates such as benzoates; polyvalent carboxylates such as succinates; Unsaturated carboxylates such as maleates, linolenates, linoleates, oleates, arachidonates; rosinates; carboxylates such as;
Bismuth, aluminum or zirconium and a polydentate ligand (e.g., β-diketone compounds such as acetylacetone and benzoylacetone; β-ketoesters such as methyl acetoacetate and ethyl acetoacetate; carbonato; ethylenediamine; compound) and a chelate compound.

また、(B)成分の金属化合物は、ビスマス、アルミニウム又はジルコニウムに、複数種の配位子が結合した構造を有するものであってもよい。
配位子としては、ハロゲン化物イオン、水素化物イオン(ヒドリド)、酸素原子(オキソ、ペルオキソ)、ヒドロキシ(ヒドロキソ)、水(アクア又はアコ)、一酸化炭素(カルボニル)、炭酸イオン(カルボナト、CO 2-)等の無機配位子;
シュウ酸イオン(オキサラト、C 2-)、アルコキシ基(例えば、メトキシ基、エトキシ基)、アシル基(例えば、アセチル基、プロピオニル基、ベンゾイル基)、カルボキシレート基、アセチルアセトナト、エチルアセトアセテート、シクロアルカジエニル(例えば、シクロペンタジエニル、ジシクロペンタジエニル)、エーテル(例えば、ジエチルエーテル)、炭化水素基(例えば、メチル基、エチル基等のアルキル基;フェニル基、ナフチル基等のアリール基);
アンモニア、ニトロ、ニトリト(NO )、シアノ、シアナト、イソシアナト、アルキルアミド(例えば、ジメチルアミド)、エチレンジアミン、ジエチレントリアミン、ピリジン、フェナントロリン等の窒素含有配位子;
チオシアナト、イソチオシアナト等の硫黄含有配位子;等の有機配位子が挙げられる。
Also, the metal compound of component (B) may have a structure in which multiple types of ligands are bonded to bismuth, aluminum, or zirconium.
Ligands include halide ions, hydride ions (hydride), oxygen atoms (oxo, peroxo), hydroxy (hydroxo), water (aqua or aco), carbon monoxide (carbonyl), carbonate ions (carbonato, CO 3 2- ) and other inorganic ligands;
Oxalate ion (oxalato, C 2 O 4 2- ), alkoxy group (eg methoxy group, ethoxy group), acyl group (eg acetyl group, propionyl group, benzoyl group), carboxylate group, acetylacetonato, ethyl Acetoacetate, cycloalkadienyl (e.g., cyclopentadienyl, dicyclopentadienyl), ether (e.g., diethyl ether), hydrocarbon group (e.g., methyl group, alkyl group such as ethyl group; phenyl group, naphthyl aryl group such as group);
Nitrogen-containing ligands such as ammonia, nitro, nitrite (NO 2 ), cyano, cyanato, isocyanato, alkylamides (e.g. dimethylamide), ethylenediamine, diethylenetriamine, pyridine, phenanthroline;
organic ligands such as sulfur-containing ligands such as thiocyanato and isothiocyanato;

(B)成分の金属化合物の好ましい具体例としては、次のものが挙げられる。
(ビスマス化合物)
塩化酸化ビスマス、塩化ビスマス、臭化ビスマス等のビスマスのハロゲン化物;水酸化ビスマス、硝酸ビスマス、硫酸ビスマス等のビスマスの無機塩;酢酸ビスマス、安息香酸ビスマス、オクチル酸ビスマス、ナフテン酸ビスマス、オキシサリチル酸ビスマス、ネオデカン酸ビスマス、ロジン酸ビスマス、バーサチック酸ビスマス、2-エチルヘキサン酸ビスマス〔ビスマストリス(2-エチルヘキサノエート)〕、ステアリン酸ビスマス等のビスマスのカルボン酸塩;[カルボナト(2-)-O]トリフェニルビスマス;等
Preferable specific examples of the (B) component metal compound include the following.
(bismuth compound)
Bismuth halides such as bismuth chloride oxide, bismuth chloride and bismuth bromide; inorganic salts of bismuth such as bismuth hydroxide, bismuth nitrate and bismuth sulfate; bismuth acetate, bismuth benzoate, bismuth octylate, bismuth naphthenate, oxysalicylic acid Bismuth carboxylates such as bismuth, bismuth neodecanoate, bismuth rosinate, bismuth versate, bismuth 2-ethylhexanoate [bismuth tris (2-ethylhexanoate)], bismuth stearate; -O]triphenylbismuth; etc.

(アルミニウム化合物)
塩化アルミニウム等のアルミニウムのハロゲン化物;アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリsec-ブチレート、アルミニウムトリブチレート等のアルミニウムのアルコキシド;アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムジイソプロポキシアセチルアセトネート等のアルミニウムのキレート化合物;
(aluminum compound)
aluminum halides such as aluminum chloride; aluminum alkoxides such as aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum trisec-butylate, aluminum tributyrate; aluminum tris(acetylacetonate), aluminum aluminum chelate compounds such as tris(ethylacetoacetate), aluminum monoacetylacetonate bis(ethylacetoacetate), aluminum diisopropoxyacetylacetonate;

(ジルコニウム化合物)
酸塩化ジルコニウム等のジルコニウムのハロゲン化物;硫酸ジルコニウム、硝酸ジルコニウム等のジルコニウムの無機塩;酢酸ジルコニウム、オクチル酸ジルコニウム、ステアリン酸ジルコニウム等のジルコニウムのカルボン酸塩;ジルコニウムテトラn-プロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムオクトキシ・トリデコキシド等のジルコニウムのアルコキシド;ジルコニウムテトラキスアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムトリブトキシ・モノアセチルアセトネート等のジルコニウムのキレート化合物;
(zirconium compound)
zirconium halides such as zirconium oxychloride; inorganic zirconium salts such as zirconium sulfate and zirconium nitrate; zirconium carboxylates such as zirconium acetate, zirconium octylate and zirconium stearate; zirconium alkoxides such as n-butoxide and zirconium octoxy/tridecooxide; zirconium chelate compounds such as zirconium tetrakisacetylacetonate, zirconium tributoxy monoacetylacetonate, and zirconium tributoxy/monoacetylacetonate;

これらの中でも、ビスマスのハロゲン化物、ビスマスのカルボン酸塩、[カルボナト(2-)-O]トリフェニルビスマス、アルミニウムのキレート化合物、ジルコニウムのカルボン酸塩がより好ましく、ビスマスのハロゲン化物、ビスマスの炭素数6~20のカルボン酸塩、[カルボナト(2-)-O]トリフェニルビスマス、アルミニウムのキレート化合物、ジルコニウムの炭素数6~20のカルボン酸塩がさらに好ましく、塩化ビスマス、オクチル酸ビスマス、[カルボナト(2-)-O]トリフェニルビスマス、アルミキレート系化合物、オクチル酸ジルコニウムが特に好ましい。 Among these, bismuth halides, bismuth carboxylates, [carbonato(2-)-O]triphenylbismuth, aluminum chelate compounds, and zirconium carboxylates are more preferable, and bismuth halides and bismuth carbon More preferred are carboxylates having 6 to 20 carbon atoms, [carbonato(2-)-O]triphenylbismuth, aluminum chelate compounds, zirconium carboxylates having 6 to 20 carbon atoms, bismuth chloride, bismuth octylate, [ Carbonato(2-)-O]triphenylbismuth, aluminum chelate compounds, and zirconium octylate are particularly preferred.

(B)成分の含有量の下限は、(A)成分100質量部に対して、0質量部超であり、好ましくは0.01質量部以上、より好ましくは0.05質量部以上である。また、(B)成分の含有量の上限は、(A)成分100質量部に対して、3質量部以下であり、好ましくは1質量部以下、より好ましくは0.5質量部以下である。
(B)成分をこのような割合で配合することで、低温(110~130℃)、かつ短時間で硬化させることができる硬化性組成物を得ることができる。
The lower limit of the content of component (B) is more than 0 parts by mass, preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, per 100 parts by mass of component (A). The upper limit of the content of component (B) is 3 parts by mass or less, preferably 1 part by mass or less, more preferably 0.5 parts by mass or less per 100 parts by mass of component (A).
A curable composition that can be cured at a low temperature (110 to 130° C.) in a short time can be obtained by blending the component (B) in such a ratio.

(C)成分
本発明の硬化性組成物においては、さらに、(C)成分:分子内に窒素原子を有するシランカップリング剤(以下、「シランカップリング剤(C)」ということがある。)を含有するのが好ましい。
(C)成分を含有する硬化性組成物は、塗布工程における作業性に優れ、かつ、接着性、耐剥離性、及び耐熱性により優れる硬化物を与える。
Component (C) The curable composition of the present invention further includes component (C): a silane coupling agent having a nitrogen atom in the molecule (hereinafter sometimes referred to as "silane coupling agent (C)"). preferably contains
The curable composition containing the component (C) provides a cured product that is excellent in workability in the coating step and also excellent in adhesiveness, peeling resistance, and heat resistance.

シランカップリング剤(C)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 The silane coupling agent (C) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in its molecule. Examples thereof include a trialkoxysilane compound represented by the following formula (c-1), and a dialkoxyalkylsilane compound or dialkoxyarylsilane compound represented by the formula (c-2).

Figure 0007310047000006
Figure 0007310047000006

上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formula, R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy. A plurality of R a may be the same or different.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- an aryl group with or without a substituent, such as a methylphenyl group;

は、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
の炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. In addition, R c may be further bonded to another silicon atom-containing group.
Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.

前記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。Among the compounds represented by the formula (c-1) or (c-2), the compound in which R c is an organic group bonded to another silicon atom-containing group includes an isocyanurate skeleton. Examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.

これらの中でも、シランカップリング剤(C)としては、より高い接着力を有する硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, the silane coupling agent (C) is preferably an isocyanurate-based silane coupling agent and a urea-based silane coupling agent because a cured product having higher adhesive strength can be easily obtained. Among them, those having 4 or more silicon-bonded alkoxy groups are preferred.
Having 4 or more silicon-bonded alkoxy groups means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.

ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。 As the isocyanurate-based silane coupling agent having 4 or more silicon-bonded alkoxy groups, a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more silicon-bonded alkoxy groups. Ring agents include compounds represented by the following formula (c-4).

Figure 0007310047000007
Figure 0007310047000007

式中、Rは前記と同じ意味を表す。
t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。
In the formula, Ra has the same meaning as above.
Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, particularly preferably 3.

式(c-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリイソプロポキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;1,3,5-N-トリス(3-ジトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジイソプロポキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジイソプロポキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジイソプロポキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジイソプロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジイソプロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシイソプロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。 Specific examples of the compound represented by formula (c-3) include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tri 1, such as ethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-triisopropoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-tributoxysilylpropyl) isocyanurate , 3,5-N-tris[(tri(C1-6)alkoxy)silyl(C1-10)alkyl]isocyanurate; 1,3,5-N-tris(3-dithoxymethylsilylpropyl ) isocyanurate, 1,3,5-N-tris(3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dimethoxyisopropylsilylpropyl) isocyanurate, 1,3,5- N-tris(3-dimethoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dimethoxyphenylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-diethoxy methylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-diethoxyethylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-diethoxyisopropylsilylpropyl)isocyanurate, 1 , 3,5-N-tris(3-diethoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-diethoxyphenylsilylpropyl) isocyanurate, 1,3,5-N- Tris (3-diisopropoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-diisopropoxyethylsilylpropyl) isocyanurate, 1,3,5-N-tris (3-diiso Propoxyisopropylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-diisopropoxyn-propylsilylpropyl)isocyanurate, 1,3,5-N-tris(3-diisopropoxyphenylsilylpropyl) ) isocyanurate, 1,3,5-N-tris(3-dibutoxymethylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dibutoxyethylsilylpropyl) isocyanurate, 1,3, 5-N-tris(3-dibutoxyisopropylsilylpropyl) isocyanurate, 1,3,5-N-tris(3-dibutoxy n-propylsilylpropyl) isocyanurate, 1,3,5-N-tris(3 1,3,5-N-tris[(di(C1-6)alkoxy)silyl(C1-10)alkyl]isocyanurate such as -dibutoxyphenylsilylpropyl)isocyanurate;

式(c-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)ア__ルキル)ウレア;N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。 Specific examples of the compound represented by formula (c-4) include N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea, N , N'-bis(3-tripropoxysilylpropyl)urea, N,N'-bis(3-tributoxysilylpropyl)urea, N,N'-bis(2-trimethoxysilylethyl)urea, etc. N'-bis[(tri(C1-6)alkoxysilyl)(C1-10)alkyl]urea; N,N'-bis(3-dimethoxymethylsilylpropyl)urea, N,N'-bis (3-dimethoxyethylsilylpropyl)urea, N,N'-bis(3-diethoxymethylsilylpropyl)urea and other N,N'-bis[(di(C 1-6) alkoxy (C 1- 6) Alkylsilyl (C1-C10) aryl)urea; N,N'-bis(3-dimethoxyphenylsilylpropyl)urea, N,N'-bis(3-diethoxyphenylsilylpropyl)urea such as N,N'-bis[(di(C1-6)alkoxy(C6-20)arylsilyl(C1-10)alkyl)urea;

これらの中でも、シランカップリング剤(C)としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、前記イソシアヌレート化合物とウレア化合物との組み合わせ、を用いるのが好ましい。 Among these, the silane coupling agent (C) includes 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3-triethoxysilylpropyl) ) Isocyanurate (hereinafter referred to as "isocyanurate compound"), N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea (hereinafter, " urea compound"), and a combination of the isocyanurate compound and the urea compound are preferably used.

前記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましく、100:10~100:110がより好ましい。このような割合で、イソシアヌレート化合物とウレア化合物とを組み合わせて用いることにより、耐熱性及び接着性により優れる硬化物を与える硬化性組成物を得ることができる。
シランカップリング剤(C)は、1種単独で、或いは2種以上を組み合わせて用いることができる。
When the isocyanurate compound and the urea compound are used in combination, the ratio by mass of the (isocyanurate compound) and the (urea compound) is preferably 100:1 to 100:200, preferably 100: 10 to 100:110 is more preferred. By using the isocyanurate compound and the urea compound in combination in such a ratio, it is possible to obtain a curable composition that gives a cured product with excellent heat resistance and adhesiveness.
Silane coupling agents (C) can be used alone or in combination of two or more.

本発明の硬化性組成物が(C)成分を含有する場合、(C)成分の使用量は、前記(A)成分と(C)成分の使用割合が、(A)成分と(C)成分の質量比〔(A)成分:(C)成分〕で、好ましくは100:0.3~100:50、より好ましくは100:1~100:40、さらに好ましくは100:3~100:35となる量である。
このような割合で(A)成分及び(C)成分を用いることにより、本発明の硬化性組成物の硬化物は、耐熱性及び接着性により優れるものとなる。
When the curable composition of the present invention contains component (C), the amount of component (C) used is such that the proportion of component (A) and component (C) used is equal to component (A) and component (C). The mass ratio [(A) component: (C) component] is preferably 100:0.3 to 100:50, more preferably 100:1 to 100:40, and still more preferably 100:3 to 100:35. is the amount.
By using the components (A) and (C) in such proportions, the cured product of the curable composition of the present invention becomes more excellent in heat resistance and adhesiveness.

(D)成分
本発明の硬化性組成物においては、(D)成分:分子内に酸無水物構造を有するシランカップリング剤(以下、「シランカップリング剤(D)」ということがある。)を含有するのが好ましい。
(D)成分を含有する硬化性組成物は、塗布工程における作業性により優れ、かつ、接着性、耐剥離性、及び耐熱性により優れる硬化物を与える。
Component (D) In the curable composition of the present invention, component (D): a silane coupling agent having an acid anhydride structure in the molecule (hereinafter sometimes referred to as "silane coupling agent (D)"). preferably contains
The curable composition containing the component (D) gives a cured product that is superior in workability in the coating step and also superior in adhesiveness, peeling resistance, and heat resistance.

シランカップリング剤(D)は、一つの分子中に、酸無水物構造を有する基(Q)と、加水分解性基(R)の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(d)で表される化合物である。The silane coupling agent (D) is an organosilicon compound having both a group (Q) having an acid anhydride structure and a hydrolyzable group (R e ) in one molecule. Specifically, it is a compound represented by the following formula (d).

Figure 0007310047000008
Figure 0007310047000008

式中、Qは酸無水物構造を有する基を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のRe同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
Qとしては、下記式
In the formula, Q represents a group having an acid anhydride structure, R d represents an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group, and R e represents a carbon represents an alkoxy group of numbers 1 to 6 or a halogen atom, i and k represent integers of 1 to 3, j represents an integer of 0 to 2, and i+j+k=4. When j is 2, Rd 's may be the same or different. When k is 2 or 3, a plurality of R e may be the same or different. When i is 2 or 3, multiple Qs may be the same or different.
As Q, the following formula

Figure 0007310047000009
Figure 0007310047000009

(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。
式(d)中、Rの炭素数1~6のアルキル基としては、前記R1で表される炭素数1~6のアルキル基として例示したのと同様の基が挙げられる。
の置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
の炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基等が挙げられる。
のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
(Wherein, h represents an integer of 0 to 10.) and the like, and the group represented by (Q1) is particularly preferred.
In formula (d), the C1-6 alkyl group for R d includes the same groups as those exemplified as the C1-6 alkyl group for R 1 .
The substituents of the phenyl group having a substituent for R d include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group and n-pentyl. alkyl groups such as groups and n-hexyl groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; alkoxy groups such as methoxy groups and ethoxy groups;
The alkoxy group having 1 to 6 carbon atoms of R e includes a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group and a t-butoxy group.
A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of R e .

これらの中でも、式(d)で表される化合物としては、下記式(d-1) Among these, as the compound represented by formula (d), the following formula (d-1)

Figure 0007310047000010
Figure 0007310047000010

(式中、R、h、i、j、kは前記と同じ意味を表す。)
で表される化合物が好ましい。式中、hは2~8であるのが好ましく、2又は3であるのがより好ましく、3であるのが特に好ましい。
(In the formula, R e , h, i, j, and k have the same meanings as above.)
A compound represented by is preferred. In the formula, h is preferably 2 to 8, more preferably 2 or 3, particularly preferably 3.

前記式(d-1)で表されるシランカップリング剤の具体例としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸; Specific examples of the silane coupling agent represented by the formula (d-1) include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, 3-(trimethoxy Tri(C1-6)alkoxysilyl(C2-8)alkylsuccinic anhydride such as silyl)propylsuccinic anhydride, 3-(triethoxysilyl)propylsuccinic anhydride; 2-(dimethoxymethylsilyl) di(C1-C6) alkoxymethylsilyl (C2-8) alkyl succinic anhydride such as ethyl succinic anhydride; 2-(methoxydimethylsilyl) ethyl succinic anhydride (C1-6 ) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride;

2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
シランカップリング剤(D)は、1種単独で、或いは2種以上を組み合わせて用いることができる。
Trihalogenosilyl (C 2-8) alkyl succinic anhydride such as 2-(trichlorosilyl)ethyl succinic anhydride, 2-(tribromosilyl)ethyl succinic anhydride; 2-(dichloromethylsilyl)ethyl succinic anhydride dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as acid; halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride such as 2-(chlorodimethylsilyl)ethyl succinic anhydride; is mentioned.
Silane coupling agents (D) can be used alone or in combination of two or more.

これらの中でも、シランカップリング剤(D)としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸が特に好しい。 Among these, the silane coupling agent (D) is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl) propyl succinic anhydride, 3-(Triethoxysilyl)propyl succinic anhydride is particularly preferred.

本発明の硬化性組成物が(D)成分を含有する場合、(D)成分の含有量は、特に限定されないが、前記(A)成分と(D)成分の質量比〔(A)成分:(D)成分〕で、好ましくは100:0.01~100:30、より好ましくは100:0.1~100:10である。
このような割合で(A)成分及び(D)成分を含有する硬化性組成物の硬化物は、耐熱性及び接着性により優れたものになる。
When the curable composition of the present invention contains component (D), the content of component (D) is not particularly limited, but the mass ratio of component (A) and component (D) [component (A): (D) component], preferably 100:0.01 to 100:30, more preferably 100:0.1 to 100:10.
A cured product of the curable composition containing the components (A) and (D) in such a ratio has excellent heat resistance and adhesiveness.

(E)希釈剤
本発明の硬化性組成物においては、流動性をもたせる目的で、希釈剤を更に含有していてもよい。
希釈剤としては、前記(A)成分、(B)成分と相溶性の良いものであれば、特に制限されない。例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等の窒素含有化合物;ジメチルスルホキシド等の硫黄含有化合物;ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールフェニルエーテル、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(テキサノール)、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール等の酸素含有化合物;等が挙げられる。
(E) Diluent The curable composition of the invention may further contain a diluent for the purpose of imparting fluidity.
The diluent is not particularly limited as long as it is compatible with the components (A) and (B). For example, N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, nitrogen-containing compounds such as dimethylimidazolidinone; sulfur-containing compounds such as dimethylsulfoxide; diethylene glycol monoethyl ether, diethylene glycol monobutyl ether , dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol-n-butyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl Ether Acetate, Diethylene Glycol Monobutyl Ether Acetate, Dipropylene Glycol Methyl Ether Acetate, Propylene Glycol Phenyl Ether, 2,2,4-Trimethyl-1,3-Pentanediol Monoisobutyrate (Texanol), γ-Butyrolactone, Ethyl Lactate, 1 -oxygen-containing compounds such as methoxy-2-propanol, 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol;

これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
本発明の硬化性組成物が希釈剤を含有する場合、作業性の観点から、希釈剤の使用量は、本発明の硬化性組成物の固形分濃度が50質量%以上、100質量%未満となる量が好ましく、60~90質量%となる量がより好ましく、70~85質量%となる量がさらに好ましい。
These diluents can be used singly or in combination of two or more.
When the curable composition of the present invention contains a diluent, from the viewpoint of workability, the amount of the diluent used is such that the solid content concentration of the curable composition of the present invention is 50% by mass or more and less than 100% by mass. An amount of 60 to 90% by mass is more preferable, and an amount of 70 to 85% by mass is even more preferable.

(F)その他の成分
本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、前記(A)成分~(E)成分以外の「他の成分」を含有させてもよい。
他の成分としては、微粒子、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
(F) Other Components The curable composition of the present invention may contain “other components” other than the components (A) to (E) as long as the objects of the present invention are not hindered.
Other components include fine particles, antioxidants, UV absorbers, light stabilizers, and the like.

微粒子を添加すると、塗布工程における作業性に優れる硬化性組成物を得ることができる場合がある。微粒子の材質としては、シリカ;アクリル、シリコーン等の樹脂;酸化アルミニウム、酸化チタン等の金属酸化物;ベーマイト等の鉱物等が挙げられる。
これらの微粒子は一種単独で、或いは二種以上を組み合わせて用いることができる。微粒子の使用量は、(A)成分に対して、通常、10質量%以下である。
By adding fine particles, it may be possible to obtain a curable composition having excellent workability in the coating process. Materials of the fine particles include silica; resins such as acryl and silicone; metal oxides such as aluminum oxide and titanium oxide; and minerals such as boehmite.
These microparticles|fine-particles can be used individually by 1 type or in combination of 2 or more types. The amount of fine particles to be used is generally 10% by mass or less relative to component (A).

酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 Antioxidants are added to prevent oxidative deterioration during heating. Antioxidants include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.

リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキシド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。 Phosphorus-based antioxidants include phosphites, oxaphosphaphenanthrene oxides, and the like. Phenolic antioxidants include monophenols, bisphenols, polymeric phenols, and the like. Examples of sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.

これらの酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。 These antioxidants can be used singly or in combination of two or more. The amount of antioxidant to be used is generally 10% by mass or less relative to the component (A).

紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
A UV absorber is added for the purpose of improving the light resistance of the resulting cured product.
Examples of ultraviolet absorbers include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
Ultraviolet absorbers can be used singly or in combination of two or more.
The amount of the ultraviolet absorber to be used is generally 10% by mass or less relative to the component (A).

光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
光安定剤の使用量は、(A)成分に対して、通常、10質量%以下である。
A light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
Light stabilizers include, for example, poly[{6-(1,1,3,3,-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2,6 ,6-tetramethyl-4-piperidine)imino}hexamethylene {(2,2,6,6-tetramethyl-4-piperidine)imino}] and other hindered amines.
These light stabilizers can be used singly or in combination of two or more.
The amount of light stabilizer used is usually 10% by mass or less relative to component (A).

本発明の硬化性組成物は、例えば、前記(A)成分、(B)成分、及び、所望により(C)~(F)成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。 The curable composition of the present invention is prepared, for example, by blending the components (A), (B), and optionally (C) to (F) in a predetermined proportion, and mixing and defoaming by a known method. can be obtained by

本発明の硬化性組成物は、従来のものに比べて低温での加熱により硬化させることができ、得られる硬化物は、耐剥離性、耐熱性に優れ、高い接着力を有する。
本発明の硬化性組成物は、光素子デバイスに用いた場合に、硬化性組成物を硬化させる際、高温で加熱する必要がないものであるため、パッケージ周辺部材に熱によるダメージを与えることがない。
したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
The curable composition of the present invention can be cured by heating at a lower temperature than conventional ones, and the resulting cured product has excellent peel resistance, heat resistance, and high adhesive strength.
When the curable composition of the present invention is used in an optical element device, it does not need to be heated at a high temperature when curing the curable composition. do not have.
Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and moldings, an adhesive, a coating agent, and the like.

2)硬化物及びその製造方法
本発明の硬化物は、本発明の硬化性組成物を硬化させることにより得られるものである。
本発明の硬化性組成物を硬化させる方法としては、加熱することにより硬化させる方法が挙げられる。
本発明の硬化物は、本発明の硬化性組成物を、通常、100℃~150℃、好ましくは110℃~140℃、より好ましくは110℃~130℃に加熱して硬化させることにより得ることができる。加熱時間は、通常10分から5時間、好ましくは30分から3時間である。
本発明の硬化物は、このような低い温度で、しかも短時間の加熱により硬化させて得ることができる。そのため、光半導体発光デバイス等に用いる場合、パッケージ周辺部材を高温に晒してダメージを与えるということがない。
2) Cured Product and Production Method Thereof The cured product of the present invention is obtained by curing the curable composition of the present invention.
A method of curing the curable composition of the present invention includes a method of curing by heating.
The cured product of the present invention is obtained by heating the curable composition of the present invention to generally 100° C. to 150° C., preferably 110° C. to 140° C., more preferably 110° C. to 130° C. for curing. can be done. The heating time is usually 10 minutes to 5 hours, preferably 30 minutes to 3 hours.
The cured product of the present invention can be obtained by curing at such a low temperature and by heating for a short period of time. Therefore, when used in an optical semiconductor light-emitting device or the like, there is no possibility of exposing the peripheral members of the package to high temperature and damaging them.

本発明の硬化物が、本発明の硬化性組成物を低温加熱により短時間で得られることは、例えば、次のようにして確認することができる。
すなわち、自動硬化時間測定装置(株式会社サイバー製、商品名「まどか」)を用い、120℃に加熱されたステンレス板上に、硬化性組成物のサンプルを投入して攪拌し、攪拌トルクが上昇して、0.392N・cmとなるまでの時間を測定する。
0.392N・cmとなるまでの時間は、通常8,000秒以下であるのが好ましい。
For example, it can be confirmed as follows that the cured product of the present invention can be obtained in a short time by heating the curable composition of the present invention at a low temperature.
That is, using an automatic curing time measuring device (manufactured by Cyber Co., Ltd., product name "Madoka"), a sample of the curable composition was put on a stainless steel plate heated to 120 ° C. and stirred, and the stirring torque increased. and measure the time until it reaches 0.392 N·cm.
The time required to reach 0.392 N·cm is preferably 8,000 seconds or less.

また、低温加熱により硬化させて得られたものであっても、本発明の硬化物が高い接着力を有することは、例えば、次のようにして確認することができる。
すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せて圧着し、低温(例えば、120℃)で加熱処理して硬化させる。この試験片付被着体を、予め所定温度(例えば、23℃)にしたボンドテスターの測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
このようにして測定された硬化物の接着力は、23℃において50N/4mm以上であることが好ましく、70N/4mm以上であることがより好ましい。
ここで、「N/4mm」は、2mm×2mmの面積あたりの接着力〔N〕である。
In addition, it can be confirmed, for example, in the following manner that the cured product of the present invention has high adhesive strength even if it is obtained by curing by heating at a low temperature.
That is, a curable composition is applied to the mirror surface of a silicon chip, the applied surface is placed on an adherend and pressed, and heat-treated at a low temperature (for example, 120° C.) to cure. This adherend with the test piece is left on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C.) for 30 seconds, and from a position of 100 μm above the adherend, the horizontal direction to the adhesive surface A stress is applied (in the shear direction) to measure the adhesion between the test piece and the adherend.
The adhesive strength of the cured product thus measured is preferably 50 N/4 mm 2 or more, more preferably 70 N/4 mm 2 or more at 23°C.
Here, “N/4 mm 2 ” is the adhesive force [N] per area of 2 mm×2 mm.

3)硬化性組成物の使用方法
本発明の使用方法は、本発明の硬化性組成物を、光素子固定用接着剤又は光素子固定用封止材として使用する方法である。
光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
3) Method of using curable composition The method of using the curable composition of the present invention is a method of using the curable composition of the present invention as an adhesive for fixing optical elements or a sealant for fixing optical elements.
Examples of optical devices include light-emitting devices such as LEDs and LDs, light-receiving devices, composite optical devices, optical integrated circuits, and the like.

〈光素子固定用接着剤〉
本発明の硬化性組成物は、光素子固定用接着剤として好適に使用することができる。
本発明の硬化性組成物を光素子固定用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を所定量塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
<Adhesive for fixing optical elements>
The curable composition of the present invention can be suitably used as an adhesive for fixing optical elements.
As a method of using the curable composition of the present invention as an adhesive for fixing optical elements, a predetermined amount of the composition is applied to one or both bonding surfaces of the materials to be bonded (optical element and its substrate, etc.). Then, after pressure bonding, heat curing is performed to firmly bond the materials to be bonded together.

本発明においては、上述のように、硬化性組成物の加熱硬化を従来のものに比べて低い温度でしかも短時間で行うことができるため、光半導体発光デバイスの周辺部材を高温に晒す必要がなくパッケージ部材にダメージを与えない。 In the present invention, as described above, the heat curing of the curable composition can be performed at a lower temperature and in a shorter time than conventional ones, so that the peripheral members of the optical semiconductor light emitting device do not need to be exposed to high temperatures. It does not damage package materials.

光素子を接着するための基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Glass such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium and alloys of these metals as substrate materials for bonding optical elements , metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone , polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene-based resin, cycloolefin resin, glass epoxy resin, and other synthetic resins;

〈光素子固定用封止材〉
本発明の硬化性組成物は、光素子封止体の封止材として好適に用いることができる。
本発明の硬化性組成物を光素子固定用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、このものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Encapsulant for fixing optical element>
The curable composition of the present invention can be suitably used as a sealing material for an optical element sealing body.
As a method of using the curable composition of the present invention as a sealing material for fixing an optical element, for example, the composition is molded into a desired shape to obtain a molded article enclosing an optical element, and then the molded article is obtained. and a method of manufacturing an optical element encapsulant by heat curing.
A method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a conventional transfer molding method or a known molding method such as a casting method can be employed.

本発明においては、上述のように、硬化性組成物の加熱硬化を従来のものに比べて低い温度でしかも短時間で行うことができるため、光半導体発光デバイスの周辺部材を高温に晒す必要がなくパッケージ部材にダメージを与えない。
得られる光素子封止体は、本発明の硬化性組成物を用いているので、高い接着力を有するものである。
In the present invention, as described above, the heat curing of the curable composition can be performed at a lower temperature and in a shorter time than conventional ones, so that the peripheral members of the optical semiconductor light emitting device do not need to be exposed to high temperatures. It does not damage package materials.
The resulting optical element encapsulant uses the curable composition of the present invention and therefore has high adhesive strength.

次に、本願発明を、実施例及び比較例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」、「部」は質量基準である。 EXAMPLES Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples. Unless otherwise specified, "%" and "parts" are based on mass.

(質量平均分子量測定)
下記製造例で得たシラン化合物重合体の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
装置名:HLC-8220GPC、東ソー株式会社製
カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
溶媒:THF
注入量:80μl
測定温度:40℃
流速:1ml/分
検出器:示差屈折計
(Mass average molecular weight measurement)
The mass-average molecular weight (Mw) and number-average molecular weight (Mn) of the silane compound polymers obtained in the following production examples were converted to standard polystyrene values and measured using the following equipment and conditions.
Apparatus name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially linked Solvent: THF
Injection volume: 80 μl
Measurement temperature: 40°C
Flow rate: 1 ml/min Detector: Differential refractometer

(IRスペクトルの測定)
製造例で得たシラン化合物重合体のIRスペクトルは、フーリエ変換赤外分光光度計(パーキンエルマー社製、Spectrum100)を使用して測定した。
(Measurement of IR spectrum)
The IR spectrum of the silane compound polymer obtained in Production Example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer).

(製造例1)
300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業株式会社製、製品名:KBE-13)71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25モル%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌したのち、酢酸プロピルを140g入れ撹拌した。ここに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5モル%)を撹拌しながら加え、全容を70℃に昇温して3時間さらに撹拌した。反応液に精製水を加え、分液し、水層のpHが7になるまでこの操作を繰り返した。有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、シラン化合物重合体(A1)を55.7g得た。このものの質量平均分子量(MW)は7,800、分子量分布(PDI)は4.52であった。
シラン化合物重合体(A1)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1
(Production example 1)
After charging 71.37 g (400 mmol) of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13) in a 300 ml eggplant-shaped flask, 0.10 g (400 mmol) of 35% hydrochloric acid was added to 21.6 ml of distilled water. 0.25 mol % with respect to the total amount of silane compounds) was added with stirring, and the total volume was stirred at 30°C for 2 hours, then heated to 70°C and stirred for 5 hours, and then propyl acetate was added. 140 g was added and stirred. 0.12 g of 28% aqueous ammonia (0.5 mol % with respect to the total amount of silane compounds) was added thereto while stirring, and the whole volume was heated to 70° C. and further stirred for 3 hours. Purified water was added to the reaction solution, the phases were separated, and this operation was repeated until the pH of the aqueous layer reached 7. The organic layer was concentrated with an evaporator and the concentrate was dried in vacuum to obtain 55.7 g of silane compound polymer (A1). This product had a mass average molecular weight (MW) of 7,800 and a molecular weight distribution (PDI) of 4.52.
IR spectral data of the silane compound polymer (A1) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1

(製造例2)
300mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業株式会社製)20.2g(102mmol)と、2-シアノエチルトリメトキシシラン(アヅマックス株式会社製)3.15g(18mmol)、並びに、溶媒として、アセトン96ml及び蒸留水24mlを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸(関東化学株式会社製)0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌した。
反応終了後、反応液をエバポレーターで50mlまで濃縮し、濃縮物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、得られた濃縮物を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、ポリシルセスキオキサン化合物(A2)を13.5g得た。このものの質量平均分子量(Mw)は1,870、分子量分布(Mw/Mn)は1.42であった。
ポリシルセスキオキサン化合物(A2)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2259cm-1
(Production example 2)
In a 300 ml eggplant-shaped flask, 20.2 g (102 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 3.15 g (18 mmol) of 2-cyanoethyltrimethoxysilane (manufactured by Azumax Co., Ltd.), and as a solvent , 96 ml of acetone and 24 ml of distilled water were charged, and then 0.15 g (1.5 mmol) of phosphoric acid (manufactured by Kanto Kagaku Co., Ltd.) was added as a catalyst while stirring the contents, followed by further stirring at 25° C. for 16 hours.
After completion of the reaction, the reaction solution was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added to the concentrate, and the mixture was neutralized with a saturated aqueous sodium hydrogencarbonate solution. After standing for a while, the organic layer was separated. The organic layer was then washed twice with distilled water and then dried over anhydrous magnesium sulfate. After removing magnesium sulfate by filtration, the filtrate was concentrated to 50 ml by an evaporator, and the obtained concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The resulting precipitate was dissolved in methyl ethyl ketone (MEK) and recovered, and the solvent was distilled off under reduced pressure using an evaporator. By vacuum drying the residue, 13.5 g of polysilsesquioxane compound (A2) was obtained. This product had a mass average molecular weight (Mw) of 1,870 and a molecular weight distribution (Mw/Mn) of 1.42.
IR spectral data of the polysilsesquioxane compound (A2) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , —CN: 2259 cm −1

(実施例1)
(A)成分として製造例1で得たシラン化合物重合体(A1)100部に、(E)成分として、ジエチレングリコールモノブチルエーテルアセテート(BDGAC):トリプロピレングリコール-n-ブチルエーテル(TPnB)=40:60(質量比)の混合溶剤を加え、攪拌した。その後、(C)成分として、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(信越化学工業株式会社製:KBM-9659)30質量部、(D)成分として、3-(トリメトキシシリル)プロピルコハク酸無水物(信越化学工業株式会社製:X-12-967C)3質量部、(B)成分として、プキャット25(日本化学産業株式会社製)0.25質量部を加え、全容を十分に混合、脱泡することにより、硬化性組成物を得た。
(Example 1)
To 100 parts of the silane compound polymer (A1) obtained in Production Example 1 as component (A), diethylene glycol monobutyl ether acetate (BDGAC): tripropylene glycol-n-butyl ether (TPnB) = 40:60 as component (E). (mass ratio) mixed solvent was added and stirred. Thereafter, 30 parts by mass of 1,3,5-N-tris[3-(trimethoxysilyl)propyl]isocyanurate (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-9659) as component (C), and component (D) , 3-(Trimethoxysilyl) propyl succinic anhydride (manufactured by Shin-Etsu Chemical Co., Ltd.: X-12-967C) 3 parts by mass, as the component (B), Pucat 25 (manufactured by Nippon Kagaku Sangyo Co., Ltd.) 0.25 A curable composition was obtained by adding parts by mass and thoroughly mixing and defoaming the entire contents.

(実施例2~12、比較例1~4)
実施例1において、(A)成分の種類、(B)成分の種類、使用量(部)を、下記表1に記載した通りに変更した以外は、実施例1と同様にして、実施例2~12の硬化性組成物、比較例1~4の硬化性組成物を得た。
下記表中、(B)成分又は(B)成分の代わりに使用した下記(b)成分の種類:B1~B5、b1、b2は以下を表す。
また、表中、(B)成分又は(b)成分の使用量[部]は、(A)成分100部に対する質量部を表す。
(Examples 2-12, Comparative Examples 1-4)
In Example 1, Example 2 was prepared in the same manner as in Example 1, except that the type of component (A), the type of component (B), and the amount (parts) used were changed as shown in Table 1 below. 12 curable compositions and comparative examples 1-4 were obtained.
In the table below, the types of the (B) component or the following (b) component used instead of the (B) component: B1 to B5, b1 and b2 represent the following.
In the table, the amount [parts] of component (B) or component (b) used represents parts by mass per 100 parts of component (A).

(B)成分
B1:プキャット25(日本化学産業株式会社製、オクチル酸ビスマス化合物)
B2:オルガチックスZC-200(マツモトファインケミカル株式会社製、オクチル酸ジルコニウム化合物
B3:M-5A(綜研化学株式会社製、アルミキレート系化合物)
B4:塩化ビスマス
B5:[カルボナト(2-)-O]トリフェニルビスマス
(b)成分
b1:オルガチックスTC-750(マツモトファインケミカル株式会社製、チタンジイソプロポキシビス(エチルアセトアセテート))
b2:ジアザビシクロウンデセン(DBU)
(B) Component B1: Pucat 25 (manufactured by Nippon Kagaku Sangyo Co., Ltd., bismuth octylate compound)
B2: Orgatics ZC-200 (manufactured by Matsumoto Fine Chemical Co., Ltd., zirconium octylate compound B3: M-5A (manufactured by Soken Chemical Co., Ltd., aluminum chelate compound)
B4: Bismuth chloride B5: [Carbonato(2-)-O]triphenylbismuth (b) Component b1: ORGATIX TC-750 (manufactured by Matsumoto Fine Chemical Co., Ltd., titanium diisopropoxybis(ethylacetoacetate))
b2: diazabicycloundecene (DBU)

実施例及び比較例で得た硬化性組成物の硬化物につき、下記のようにして、接着強度の測定、及び硬化性の評価を行った。
測定結果及び評価を下記表1に示す。
The cured products of the curable compositions obtained in Examples and Comparative Examples were measured for adhesive strength and evaluated for curability as follows.
The measurement results and evaluation are shown in Table 1 below.

(接着強度の測定)
一辺の長さが2mmである正方形(2mm×2mm=4mm)で、厚さ350μmのシリコンチップのミラー面に、実施例及び比較例で得た硬化性組成物のそれぞれを、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後120℃で2時間加熱して硬化性組成物を硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃)にしたボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃における、試験片と被着体との接着強度〔N/4mm〕を測定した。
(Measurement of adhesive strength)
Each of the curable compositions obtained in Examples and Comparative Examples was applied to the mirror surface of a silicon chip having a square (2 mm × 2 mm = 4 mm 2 ) thickness of 350 µm with a side length of 2 mm and a thickness of about The coating was applied to a thickness of 2 μm, and the coated surface was placed on an adherend (silver-plated copper plate) and pressure-bonded. After that, the curable composition was cured by heating at 120° C. for 2 hours to obtain an adherend with a test piece. This adherend with the test piece is left on the measurement stage of a bond tester (series 4000, manufactured by Daisy) preheated to a predetermined temperature (23 ° C.) for 30 seconds, and from a position at a height of 100 μm from the adherend, Stress was applied horizontally (shear direction) to the adhesive surface at a speed of 200 μm/s, and the adhesive strength [N/4 mm 2 ] between the test piece and the adherend at 23° C. was measured.

(硬化性評価)
自動硬化時間測定装置「まどか」(株式会社サイバー製)を用いて硬化時間を測定した。120℃に加熱されたステンレス板上に、0.30mLのサンプルを投入し、攪拌した。経時的に攪拌トルクが上昇し、0.392N・cmとなるまでの時間(秒)を測定した。撹拌条件は以下のとおりである。
・撹拌翼の自転回転数: 200rpm
・撹拌翼の公転回転数: 80rpm
・ギャップ(加熱板と攪拌翼間の距離): 0.3mm
(Curability evaluation)
The curing time was measured using an automatic curing time measuring device "Madoka" (manufactured by Cyber Co., Ltd.). A 0.30 mL sample was placed on a stainless steel plate heated to 120° C. and stirred. The time (seconds) until the stirring torque increased with time and reached 0.392 N·cm was measured. Stirring conditions are as follows.
・ Rotation speed of stirring blade: 200 rpm
・ Revolution speed of stirring blade: 80 rpm
・Gap (distance between heating plate and stirring blade): 0.3 mm

Figure 0007310047000011
Figure 0007310047000011

(製造例3)
300mLのナス型フラスコに、3,3,3-トリフルオロプロピルトリメトキシシラン(アヅマックス株式会社製)17.0g(77.7mmol)、及び、メチルトリエトキシシラン(信越化学工業株式会社製、製品名「KBE-13」)32.33g(181.3mmol)を仕込んだ後、これを撹拌しながら、蒸留水14.0gに35%塩酸0.0675g(HClの量が0.65mmol,シラン化合物の合計量に対して、0.25mol%)を溶解して得られた水溶液を加え、全容を30℃にて2時間、次いで70℃に昇温して20時間撹拌した。
内容物の撹拌を継続しながら、そこに、28%アンモニア水0.0394g(NHの量が0.65mmol)と酢酸プロピル46.1gの混合溶液を加えて反応液のpHを6.9にし、そのまま70℃で40分間撹拌した。
反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機層を得た。この有機層に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機層をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A3)を得た。このものの質量平均分子量(Mw)は5,500、分子量分布は3.40であった。
硬化性ポリシルセスキオキサン化合物(A3)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1,C-F:1213cm-1
(Production example 3)
In a 300 mL eggplant-shaped flask, 17.0 g (77.7 mmol) of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Azumax Co., Ltd.) and methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name After charging 32.33 g (181.3 mmol) of "KBE-13"), this was stirred while adding 0.0675 g of 35% hydrochloric acid to 14.0 g of distilled water (the amount of HCl was 0.65 mmol, the total amount of silane compounds was 0.25 mol %) was added, and the whole volume was stirred at 30° C. for 2 hours, then heated to 70° C. and stirred for 20 hours.
While continuing to stir the contents, a mixed solution of 0.0394 g of 28% aqueous ammonia (the amount of NH3 is 0.65 mmol) and 46.1 g of propyl acetate was added to adjust the pH of the reaction solution to 6.9. , and stirred at 70° C. for 40 minutes.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto for liquid separation treatment to obtain an organic layer containing a reaction product. Drying treatment was performed by adding magnesium sulfate to this organic layer. After the magnesium sulfate was removed by filtration, the organic layer was concentrated with an evaporator, and the obtained concentrate was vacuum-dried to obtain a polysilsesquioxane compound (A3). This product had a mass average molecular weight (Mw) of 5,500 and a molecular weight distribution of 3.40.
IR spectral data of the curable polysilsesquioxane compound (A3) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1 , CF: 1213 cm −1

(実施例13、14、比較例5)
実施例1において、(A)成分の種類、(B)成分の種類、使用量(部)を、下記表2に記載した通りに変更した以外は、実施例1と同様にして、実施例13、14の硬化性組成物、比較例5の硬化性組成物を得た。
得られた硬化性組成物の硬化物につき、接着強度の測定、及び硬化性の評価を行った。
測定結果及び評価を下記表2に示す。
(Examples 13 and 14, Comparative Example 5)
Example 13 was prepared in the same manner as in Example 1, except that the type of component (A), the type of component (B), and the amount (parts) used were changed as shown in Table 2 below. , 14, and a curable composition of Comparative Example 5 were obtained.
The cured product of the obtained curable composition was measured for adhesive strength and evaluated for curability.
The measurement results and evaluation are shown in Table 2 below.

Figure 0007310047000012
Figure 0007310047000012

表1及び表2から、実施例1~14の硬化性組成物はすべて、硬化性評価試験において、8,000秒以下という短い時間で硬化物が得られており、硬化性に優れることがわかる。
また、120℃2時間で硬化した場合であっても、得られる硬化物は、接着強度は50N/4mm以上であり、接着力に優れることがわかる。
一方、比較例1、4及び5の硬化性組成物は、硬化性評価試験において、実施例の硬化性組成物に対して、硬化性に劣っていることがわかる。
また、比較例1~5の硬化性組成物は、120℃2時間で硬化した場合、得られる硬化物は、接着強度は50N/4mm未満であり、接着力に劣っていることがわかる。
From Tables 1 and 2, all the curable compositions of Examples 1 to 14 were cured in a short time of 8,000 seconds or less in the curability evaluation test, indicating excellent curability. .
Moreover, even when cured at 120° C. for 2 hours, the adhesive strength of the obtained cured product is 50 N/4 mm 2 or more, indicating that the adhesive strength is excellent.
On the other hand, it can be seen that the curable compositions of Comparative Examples 1, 4 and 5 are inferior in curability to the curable compositions of Examples in the curability evaluation test.
Moreover, when the curable compositions of Comparative Examples 1 to 5 were cured at 120° C. for 2 hours, the adhesive strength of the resulting cured products was less than 50 N/4 mm 2 , indicating poor adhesive strength.

Claims (10)

光素子固定用接着剤であって、
下記(A)成分及び(B)成分を含み、(B)成分の含有量が、(A)成分100質量部に対して、0質量部超、3質量部以下であり、かつ、エポキシ樹脂を含有しないことを特徴とする硬化性組成物。
(A)成分:下記式(a)
Figure 0007310047000013
(式中、Rは、置換基を有する、若しくは置換基を有さない炭素数1~10のアルキル基、又は、置換基を有する、若しくは置換基を有さないアリール基を表す。複数のR同士は同一であっても相異なっていてもよい。Zは、ヒドロキシ基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。pは正の整数を示し、q、rはそれぞれ独立して、0又は正の整数を示す。)
で示されるシラン化合物重合体
(B)成分:ビスマスのハロゲン化物、ビスマスのカルボン酸塩、カルボナト[(2-)-O]トリフェニルビスマス、アルミニウムのキレート化合物及びジルコニウムのカルボン酸塩からなる群から選ばれる少なくとも一種の金属化合物
An adhesive for fixing an optical element,
Contains the following components (A) and (B), the content of component (B) is more than 0 parts by mass and 3 parts by mass or less per 100 parts by mass of component (A), and an epoxy resin A curable composition characterized by not containing.
(A) component: the following formula (a)
Figure 0007310047000013
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms with or without a substituent, or an aryl group with or without a substituent. R 1 may be the same or different, Z represents a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom, p represents a positive integer, and q and r Each independently represents 0 or a positive integer.)
Silane compound polymer (B) component represented by: from the group consisting of bismuth halide, bismuth carboxylate, carbonate [(2-)-O] triphenylbismuth, aluminum chelate compound and zirconium carboxylate at least one selected metal compound
前記(A)成分のシラン化合物重合体の質量平均分子量(Mw)が800~50,000である、請求項に記載の硬化性組成物。 2. The curable composition according to claim 1 , wherein the weight average molecular weight (Mw) of the silane compound polymer of component (A) is 800 to 50,000. 前記(A)成分の前記シラン化合物重合体が、下記式(1)で示されるシラン化合物の一種又は二種以上の重縮合生成物である、請求項1又は2に記載の硬化性組成物。
Figure 0007310047000014
(式中、Rは、置換基を有する、若しくは置換基を有さない炭素数1~10のアルキル基、又は、置換基を有する、若しくは置換基を有さないアリール基を表す。複数のR同士は同一であっても相異なっていてもよい。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、sは0~3の整数を表す。複数のR同士、及び複数のX同士は、互いに同一であっても、相異なっていてもよい。
3. The curable composition according to claim 1, wherein the silane compound polymer of component (A) is a polycondensation product of one or more silane compounds represented by the following formula (1).
Figure 0007310047000014
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms with or without a substituent, or an aryl group with or without a substituent. R 1 may be the same or different, R 2 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and s represents an integer of 0 to 3. Multiple R 2 groups and multiple X 1 groups may be the same or different.
さらに、下記(C)成分を含有する、請求項1~のいずれかに記載の硬化性組成物。
(C)成分:分子内に窒素原子を有するシランカップリング剤
4. The curable composition according to any one of claims 1 to 3 , further comprising the following component (C).
(C) component: a silane coupling agent having a nitrogen atom in the molecule
さらに、下記(D)成分を含有する、請求項1~のいずれかに記載の硬化性組成物。
(D)成分:分子内に酸無水物構造を有するシランカップリング剤
5. The curable composition according to any one of claims 1 to 4 , further comprising the following component (D).
(D) component: silane coupling agent having an acid anhydride structure in the molecule
さらに、希釈剤を含有する、請求項1~のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5 , further comprising a diluent. 前記硬化性組成物の固形分濃度が、50質量%以上、100質量%未満である、請求項に記載の硬化性組成物。 The curable composition according to claim 6 , wherein the curable composition has a solid content concentration of 50% by mass or more and less than 100% by mass. 請求項1~のいずれかに記載の硬化性組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 7 . 光素子固定材である請求項に記載の硬化物。 The cured product according to claim 8 , which is an optical element fixing material. 請求項1~のいずれかに記載の硬化性組成物を、110℃~130℃に加熱して硬化させる硬化物の製造方法。 A method for producing a cured product, wherein the curable composition according to any one of claims 1 to 7 is cured by heating at 110°C to 130°C.
JP2020506498A 2018-03-12 2019-03-11 Curable composition, cured product, method for producing cured product, and method for using curable composition Active JP7310047B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018044022 2018-03-12
JP2018044022 2018-03-12
PCT/JP2019/009584 WO2019176828A1 (en) 2018-03-12 2019-03-11 Curable composition, cured product, method for producing cured product, and method for using curable composition

Publications (2)

Publication Number Publication Date
JPWO2019176828A1 JPWO2019176828A1 (en) 2021-03-25
JP7310047B2 true JP7310047B2 (en) 2023-07-19

Family

ID=67906676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506498A Active JP7310047B2 (en) 2018-03-12 2019-03-11 Curable composition, cured product, method for producing cured product, and method for using curable composition

Country Status (5)

Country Link
JP (1) JP7310047B2 (en)
KR (1) KR20200131228A (en)
CN (1) CN111819249A (en)
TW (1) TW201938648A (en)
WO (1) WO2019176828A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202154A (en) 2010-03-01 2011-10-13 Yokohama Rubber Co Ltd:The Heat-curable optical semiconductor-encapsulating silicone resin composition and optical semiconductor-encapsulated product using the same
JP2012238636A (en) 2011-05-10 2012-12-06 Mitsubishi Chemicals Corp Silicone-based sealing material composition
JP2013124324A (en) 2011-12-15 2013-06-24 Mitsubishi Chemicals Corp Curable polyorganosiloxane composition and polyorganosiloxane cured material obtained by curing the composition
JP2014148597A (en) 2013-01-31 2014-08-21 Nippon Shokubai Co Ltd Curable resin composition and cured article
WO2016031731A1 (en) 2014-08-26 2016-03-03 リンテック株式会社 Curable composition, cured product, method for using curable composition, and optical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438860B (en) * 1996-11-20 2001-06-07 Japan Synthetic Rubber Co Ltd Curable resin composition and cured products
JP4734832B2 (en) 2003-05-14 2011-07-27 ナガセケムテックス株式会社 Encapsulant for optical element
JP2005263869A (en) 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
JP5225580B2 (en) * 2004-05-07 2013-07-03 株式会社カネカ Curable composition
JP4882413B2 (en) 2005-02-23 2012-02-22 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP2006328231A (en) 2005-05-26 2006-12-07 Nagase Chemtex Corp Resin composition for encapsulating optical element
WO2012073988A1 (en) 2010-11-30 2012-06-07 リンテック株式会社 Curable composition, cured article, and method for using curable composition
EP3034543B1 (en) * 2013-09-20 2021-03-31 Lintec Corporation Curable composition, curing product, and method for using curable composition
WO2015041344A1 (en) * 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
TWI660010B (en) * 2014-08-26 2019-05-21 日商琳得科股份有限公司 Curable composition, cured product, method of using curable composition, and optical device
TWI690564B (en) 2014-08-26 2020-04-11 日商琳得科股份有限公司 Curable composition, method for producing curable composition, method for using cured material, curable composition, and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202154A (en) 2010-03-01 2011-10-13 Yokohama Rubber Co Ltd:The Heat-curable optical semiconductor-encapsulating silicone resin composition and optical semiconductor-encapsulated product using the same
JP2012238636A (en) 2011-05-10 2012-12-06 Mitsubishi Chemicals Corp Silicone-based sealing material composition
JP2013124324A (en) 2011-12-15 2013-06-24 Mitsubishi Chemicals Corp Curable polyorganosiloxane composition and polyorganosiloxane cured material obtained by curing the composition
JP2014148597A (en) 2013-01-31 2014-08-21 Nippon Shokubai Co Ltd Curable resin composition and cured article
WO2016031731A1 (en) 2014-08-26 2016-03-03 リンテック株式会社 Curable composition, cured product, method for using curable composition, and optical device

Also Published As

Publication number Publication date
WO2019176828A1 (en) 2019-09-19
JPWO2019176828A1 (en) 2021-03-25
KR20200131228A (en) 2020-11-23
TW201938648A (en) 2019-10-01
CN111819249A (en) 2020-10-23

Similar Documents

Publication Publication Date Title
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
JP5550162B1 (en) Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
JPWO2017110948A1 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6009120B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
WO2012073988A1 (en) Curable composition, cured article, and method for using curable composition
JP7310047B2 (en) Curable composition, cured product, method for producing cured product, and method for using curable composition
JP6430388B2 (en) Curable composition, cured product and method of using curable composition
JP6830565B1 (en) Curable composition, cured product, and how to use the curable composition
JP7569793B2 (en) CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
JP7569794B2 (en) CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
JP7420610B2 (en) Curable composition, cured product, and method of using the curable composition
JP7487175B2 (en) CURABLE COMPOSITION, CURED PRODUCT, AND METHOD OF USE OF CURABLE COMPOSITION
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition
WO2021193452A1 (en) Curable composition, cured product, and method for using curable composition
JP2020158609A (en) Curable composition, cured product and method for using curable composition
WO2022202119A1 (en) Curable composition and cured object
WO2015041343A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041340A1 (en) Silane compound polymer, curable composition, cured product, and method for using cured composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7310047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150