JP7220310B2 - Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body - Google Patents

Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body Download PDF

Info

Publication number
JP7220310B2
JP7220310B2 JP2022001819A JP2022001819A JP7220310B2 JP 7220310 B2 JP7220310 B2 JP 7220310B2 JP 2022001819 A JP2022001819 A JP 2022001819A JP 2022001819 A JP2022001819 A JP 2022001819A JP 7220310 B2 JP7220310 B2 JP 7220310B2
Authority
JP
Japan
Prior art keywords
particles
copper
particle size
average particle
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022001819A
Other languages
Japanese (ja)
Other versions
JP2022046765A (en
Inventor
治之 中城
孝之 小川
雅 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Publication of JP2022046765A publication Critical patent/JP2022046765A/en
Application granted granted Critical
Publication of JP7220310B2 publication Critical patent/JP7220310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Description

本発明は、無加圧接合用銅ペースト、ならびにそれを用いた無加圧接合方法および接合体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a copper paste for pressureless bonding , a pressureless bonding method using the same, and a method for manufacturing a bonded body.

従来、金属や半導体等の接合には高融点鉛はんだが広く用いられていたが、環境規制等の観点から、鉛を含有しない接合材が求められている。低温接合が可能な材料として、銀等の金属ナノ粒子を用いる方法が知られている。ナノ粒子は、ナノサイズ効果により、融点よりも低い温度で融着するため、低温の無加圧接合が可能である。しかし、銀ナノ粒子は、材料コストが高価である上に、現状では十分な接合強度は得られていない。 Conventionally, high-melting-point lead solder has been widely used for joining metals, semiconductors, and the like, but from the viewpoint of environmental regulations, etc., there is a demand for a joining material that does not contain lead. As a material capable of low-temperature bonding, a method using metal nanoparticles such as silver is known. Nanoparticles are fused at a temperature lower than their melting point due to the nanosize effect, so low-temperature non-pressure bonding is possible. However, silver nanoparticles are expensive in terms of material cost, and at present, sufficient bonding strength has not been obtained.

より安価な接合材料として、銅粒子を用いた検討がいくつか報告されている。特許文献1では、μmオーダーの粒子径を有する銅粒子を接合材として、その場(in situ)合成により銅粒子の表面を酸化させてナノ粒子を形成した後、還元性雰囲気下で加熱を行う接合方法が開示されている。特許文献2では、有機分子で表面を被覆することにより分散性を高めた被覆ナノ粒子とマイクロ粒子とを含む銅ペーストを用いて無加圧接合を行う方法が提案されている。 Some studies using copper particles as a less expensive bonding material have been reported. In Patent Document 1, copper particles having a particle size on the order of μm are used as a bonding material, and the surfaces of the copper particles are oxidized by in situ synthesis to form nanoparticles, followed by heating in a reducing atmosphere. A joining method is disclosed. Patent Document 2 proposes a method of performing pressureless bonding using a copper paste containing coated nanoparticles and microparticles whose surface is coated with organic molecules to improve dispersibility.

特開2017-074598号公報JP 2017-074598 A 特開2014-167145号公報JP 2014-167145 A

特許文献1および特許文献2の方法では、接合強度が十分とはいえない。かかる課題に鑑み、本発明は、低温接合でも高い接合強度を実現可能な銅ペーストの提供を目的とする。 The methods of Patent Documents 1 and 2 cannot be said to have sufficient bonding strength. In view of such problems, an object of the present invention is to provide a copper paste capable of achieving high bonding strength even at low temperature bonding.

本発明の銅ペーストは、金属粒子および分散媒を含む。金属粒子は、第一種粒子および第二種粒子を含む。第一種粒子は、平均粒子径が1~100μmであり、表面にナノ構造を有する銅粒子である。第二種粒子は、平均粒子径が0.05~5μmの銅粒子である。第一種粒子の平均粒子径D1は、第二種粒子の平均粒子径D2の2~550倍が好ましい。 The copper paste of the present invention contains metal particles and a dispersion medium. The metal particles include first-class particles and second-class particles. The first particles are copper particles having an average particle size of 1 to 100 μm and having a nanostructure on the surface. The second type particles are copper particles having an average particle size of 0.05 to 5 μm. The average particle size D1 of the first type particles is preferably 2 to 550 times the average particle size D2 of the second type particles.

第一種粒子のナノ構造は、例えば銅の加熱酸化物により形成される。ナノ構造としては、凹凸形状、粒子形状、ファイバー形状等が挙げられる。 The nanostructures of the particles of the first kind are formed, for example, by thermal oxidation of copper. Examples of nanostructures include uneven shapes, particle shapes, fiber shapes, and the like.

接合対象の部材間に上記の銅ペーストを設けた積層体を準備し、この積層体を還元性雰囲気下で加熱することにより、銅ペーストが焼結され、部材間を接合できる。 By preparing a laminate in which the copper paste is provided between members to be joined and heating this laminate in a reducing atmosphere, the copper paste is sintered and the members can be joined.

本発明の銅ペーストは低温無加圧接合に適用可能である。本発明の銅ペーストを用いることにより、強度の高い接合を実現できる。 The copper paste of the present invention is applicable to low temperature pressureless bonding. By using the copper paste of the present invention, high-strength bonding can be achieved.

銅粒子の走査型顕微鏡写真である。1 is a scanning micrograph of copper particles; 無加圧接合に用いられる積層体の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of a laminate used for non-pressure bonding. 実施例1および比較例3の接合層断面の走査型顕微鏡写真である。4 is scanning micrographs of cross sections of bonding layers of Example 1 and Comparative Example 3. FIG.

[銅ペースト]
本発明の銅ペーストは、金属粒子および分散媒を含む。金属粒子は、第一種粒子および第二種粒子を含む。第一種粒子の平均粒子径D1は1~100μmであり、第二種粒子の平均粒子径D2は0.05~5μmである。第一種粒子の平均粒子径D1は第二種粒子の平均粒子径D2よりも大きい。D1はD2の2~550倍が好ましい。なお、本願明細書において平均粒子径とは、レーザー回折散乱法により測定した粒子径分布から求められる体積基準の累積中位径(D50)である。
[Copper paste]
The copper paste of the present invention contains metal particles and a dispersion medium. The metal particles include first-class particles and second-class particles. The average particle size D1 of the first type particles is 1 to 100 μm, and the average particle size D2 of the second type particles is 0.05 to 5 μm. The average particle size D1 of the first type particles is larger than the average particle size D2 of the second type particles. D1 is preferably 2 to 550 times D2. In the specification of the present application, the average particle size is a volume-based cumulative median size (D 50 ) obtained from a particle size distribution measured by a laser diffraction scattering method.

第一種粒子は表面にナノ構造を有する。加熱接合時には表面にナノ構造を有する第一種粒子が融着し、その隙間に、粒子径の小さい第二種粒子が充填されるため、接合材における空隙が少なく、高い接合強度を実現できる。 The first particles have a nanostructure on their surface. During heat bonding, the first particles having a nanostructure are fused to the surface, and the gaps between the first particles are filled with the second particles having a small particle diameter, so that there are few gaps in the bonding material and high bonding strength can be achieved.

<金属粒子>
(第一種粒子)
第一種粒子は、表面にナノ構造を有する平均粒子径1~100μmの銅粒子である。銅粒子表面のナノ構造としては、ナノサイズの凹凸、ナノ粒子、ナノファイバー等が挙げられる。例えば、粒子径が1~100μmの銅粒子を加熱酸化させることにより、表面に(亜)酸化銅のナノ構造を有する銅粒子が得られる。
<Metal particles>
(first-class particles)
The particles of the first kind are copper particles having an average particle size of 1 to 100 μm and having a nanostructure on the surface. Nanostructures on the surface of copper particles include nano-sized irregularities, nanoparticles, nanofibers, and the like. For example, copper particles having a particle diameter of 1 to 100 μm are thermally oxidized to obtain copper particles having a nanostructure of cuprous (cuprous) oxide on the surface.

図1(A)は熱処理を行っていない湿式銅粉(三井金属鉱業製「1400YM」、平均粒子径4.2μm)の走査型顕微鏡(SEM)写真である。熱処理前の銅粉の表面は平滑であり、ナノ構造は形成されていない。 FIG. 1(A) is a scanning microscope (SEM) photograph of a wet copper powder (“1400YM” manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size 4.2 μm) that has not been heat-treated. The surface of the copper powder before heat treatment is smooth and no nanostructure is formed.

図1(B1)は、大気下で、100℃で10分、150℃で10分、200℃で10分、250℃で10分、および300℃で10分順次加熱した湿式銅粉のSEM写真である。図1(B2)および図1(B3)は、300℃での加熱時間を、それぞれ30分および120分に変更して加熱処理を行った湿式銅粉のSEM写真である。図1(C1)は、大気下で、100℃で10分、150℃で10分、200℃で10分、250℃で10分、300℃で10分、350℃で10分、および400℃で10分順次加熱した湿式銅粉のSEM写真である。図1(C2)および図1(C3)は、400℃での加熱時間を、それぞれ30分および120分に変更して加熱処理を行った湿式銅粉のSEM写真である。 FIG. 1(B1) is an SEM photograph of the wet copper powder that was sequentially heated in the atmosphere at 100° C. for 10 minutes, 150° C. for 10 minutes, 200° C. for 10 minutes, 250° C. for 10 minutes, and 300° C. for 10 minutes. is. FIG. 1(B2) and FIG. 1(B3) are SEM photographs of wet copper powder that was heat-treated by changing the heating time at 300° C. to 30 minutes and 120 minutes, respectively. FIG. 1(C1) shows 10 minutes at 100° C., 10 minutes at 150° C., 10 minutes at 200° C., 10 minutes at 250° C., 10 minutes at 300° C., 10 minutes at 350° C., and 400° C. in the atmosphere. It is a SEM photograph of the wet copper powder heated sequentially for 10 minutes at. FIG. 1 (C2) and FIG. 1 (C3) are SEM photographs of wet copper powder that was heat-treated by changing the heating time at 400° C. to 30 minutes and 120 minutes, respectively.

(B1)では、粒子表面に微細な凹凸が形成されており、(B2)および(B3)では、300℃での加熱時間が長くなるにしたがって、表面の凹凸が粒子状に成長していることが分かる。400℃で加熱を行った(C1)では、(B1)よりも微細な凹凸が形成されるとともに、微細なファイバー状のナノ構造が形成されている。(C2)および(C3)では、400℃での加熱時間が長くなるにしたがって、ナノファイバーが成長していることが分かる。 In (B1), fine unevenness is formed on the particle surface, and in (B2) and (B3), as the heating time at 300 ° C. increases, the surface unevenness grows into particles. I understand. In (C1) heated at 400° C., finer irregularities are formed than in (B1), and a fine fibrous nanostructure is formed. In (C2) and (C3), it can be seen that the nanofibers grow as the heating time at 400° C. increases.

銅の融点は1085℃であるが、銅粒子の表面に形成されたナノスケールの凹凸、粒子、ファイバー等のナノ構造は、ナノ粒子と同様に、サイズ効果による融点降下を示す。そのため、表面にナノ構造を有する第一種粒子は、銅の融点よりも低い温度(例えば300℃程度)で融着して金属接合を形成可能である。すなわち、第一種粒子はμmオーダーの粒子径を有しながら低温接合が可能である。また、ナノ構造は第一種粒子の表面に固定されているため、金属ナノ粒子にみられる凝集や偏在の問題が生じ難い。 The melting point of copper is 1085° C., but nanostructures such as nanoscale unevenness, particles, fibers, etc. formed on the surface of copper particles exhibit melting point depression due to size effects, similar to nanoparticles. Therefore, the first particles having a nanostructure on the surface can be fused at a temperature lower than the melting point of copper (for example, about 300° C.) to form a metal bond. In other words, the first particles can be bonded at a low temperature while having a particle diameter on the order of μm. In addition, since the nanostructures are fixed on the surface of the first particles, the problems of aggregation and uneven distribution of metal nanoparticles are less likely to occur.

上述のように、μmオーダーの粒子径を有する銅粒子(以下「マイクロ銅粒子」と記載する場合がある)を加熱することにより、表面にナノ構造を形成できる。 As described above, a nanostructure can be formed on the surface by heating copper particles having a particle size on the order of μm (hereinafter sometimes referred to as “microcopper particles”).

第一種粒子の原料となるマイクロ銅粒子の形状は特に限定されず、球状、塊状、針状、フレーク状等が挙げられる。中でも表面にナノ構造が形成されやすく、かつ粒子同士が融着した際の粒子間の空隙(ボイド)の体積を小さくできることから、マイクロ銅粒子の形状は、球状またはフレーク状が好ましい。なお「球状」とは完全な球だけでなく、アスペクト比が3以下の略球状を包含する。「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。 The shape of the micro copper particles as the raw material of the first particles is not particularly limited, and may be spherical, massive, needle-like, flake-like, or the like. Above all, the shape of the micro copper particles is preferably spherical or flaky because a nanostructure can be easily formed on the surface and the volume of voids between particles can be reduced when the particles are fused together. Note that the term "spherical" includes not only perfect spheres but also substantially spherical shapes with an aspect ratio of 3 or less. "Flake-like" includes plate-like shapes such as plate-like and scale-like shapes.

マイクロ銅粒子の粒子径は、1~100μmが好ましい。加熱によるナノ構造の形成前後で銅粒子の粒子径はほとんど変化しないため、マイクロ銅粒子の粒子径は、第一種粒子の粒子径に略等しい。分散性を高めるとともにナノ構造の形成を容易とする観点から、マイクロ銅粒子の粒子径は、2μm以上が好ましく、3μm以上がより好ましく、3.5μm以上がさらに好ましく、4μm以上が特に好ましい。接合の際に粒子間の融着性を高めるとともにボイドを低減する観点から、マイクロ銅粒子の粒子径は、60μm以下が好ましく、50μm以下がより好ましく、40μm以下がさらに好ましく、30μm以下が特に好ましい。マイクロ銅粒子として市販の銅粉をそのまま用いてもよい。 The particle diameter of the microcopper particles is preferably 1 to 100 μm. Since the particle size of the copper particles hardly changes before and after the nanostructure is formed by heating, the particle size of the micro copper particles is substantially equal to the particle size of the first particles. From the viewpoint of enhancing dispersibility and facilitating the formation of a nanostructure, the particle size of the micro copper particles is preferably 2 µm or more, more preferably 3 µm or more, still more preferably 3.5 µm or more, and particularly preferably 4 µm or more. From the viewpoint of enhancing the fusion between particles and reducing voids during bonding, the particle diameter of the micro copper particles is preferably 60 μm or less, more preferably 50 μm or less, even more preferably 40 μm or less, and particularly preferably 30 μm or less. . A commercially available copper powder may be used as it is as the micro copper particles.

マイクロ銅粒子の粒子径を上記範囲とすることにより、第一種粒子の粒子径を1~100μmの範囲内とすることができる。第一種粒子の粒子径は、2~60μmが好ましく、3~50μmがより好ましく、3.5~40μmがさらに好ましく、4~30μmが特に好ましい。 By setting the particle diameter of the micro copper particles within the above range, the particle diameter of the first particles can be within the range of 1 to 100 μm. The particle size of the first particles is preferably 2 to 60 μm, more preferably 3 to 50 μm, still more preferably 3.5 to 40 μm, and particularly preferably 4 to 30 μm.

マイクロ銅粒子を酸化雰囲気下で加熱することにより、表面にナノ構造が形成される。酸化雰囲気とは、銅が酸化可能な酸素濃度雰囲気であり、大気下(酸素濃度約21%)でもよい。加熱温度は200~500℃が好ましい。加熱時間は加熱温度等に応じてマイクロ銅粒子の表面にナノ構造が形成されるように適宜決定すればよく、例えば、5~300分程度である。 Nanostructures are formed on the surface by heating the micro-copper particles in an oxidizing atmosphere. The oxidizing atmosphere is an oxygen concentration atmosphere in which copper can be oxidized, and may be the air (oxygen concentration of about 21%). The heating temperature is preferably 200-500°C. The heating time may be appropriately determined according to the heating temperature and the like so that the nanostructure is formed on the surfaces of the microcopper particles, and is, for example, about 5 to 300 minutes.

加熱によりマイクロ銅粒子の表面にナノ構造が形成される理由は定かではないが、銅と酸化銅(または亜酸化銅)の熱膨張係数の差が関連していると推定される。酸化雰囲気下でマイクロ銅粒子を加熱すると、銅粒子の表面が酸化されて酸化被膜が形成される。この状態でさらに加熱を行うと、粒子の表面から内部に向かって酸化が進行するとともに、温度上昇に伴って粒子表面の(亜)酸化銅および粒子のコア部分の銅がともに熱膨張する。銅は酸化銅よりも熱膨張係数が大きいため、温度上昇に伴って内部の銅が表面の酸化膜の結晶粒界を広げ、広がった粒界に沿って銅が表層に析出し、析出した時点で酸化雰囲気に暴露されることにより銅が酸化され、ナノ粒子やナノファイバーのようなナノ構造が形成されると考えられる。 The reason why nanostructures are formed on the surface of the microcopper particles by heating is not clear, but it is presumed to be related to the difference in thermal expansion coefficient between copper and cuprous oxide (or cuprous oxide). When the micro copper particles are heated in an oxidizing atmosphere, the surfaces of the copper particles are oxidized to form oxide films. When the particles are further heated in this state, oxidation progresses from the surface to the inside of the particles, and both cuprous (sub)oxide on the surface of the particles and copper in the core of the particles thermally expand as the temperature rises. Since copper has a larger coefficient of thermal expansion than copper oxide, as the temperature rises, the copper inside expands the grain boundaries of the oxide film on the surface, and copper precipitates on the surface layer along the expanded grain boundaries. It is thought that copper is oxidized by exposure to an oxidizing atmosphere at , forming nanostructures such as nanoparticles and nanofibers.

図1に示したように、加熱温度が高くなり、加熱時間が長くなるにしたがって、マイクロ銅粒子表面のナノ構造が成長する傾向がある。また、加熱温度の上昇に伴って、ファイバー状のナノ構造(ナノファイバー)が形成される傾向がみられる。第一種粒子の表面にナノファイバーが形成されている場合に、特に銅粒子の融着性が向上する傾向がある。ファイバー状のナノ構造を形成するためには、昇温速度を小さくする(例えば5℃/分以下)か、段階的に温度を上昇させて350℃以上に昇温し、350℃以上の温度で10分以上加熱を行うことが好ましい。緩やかに温度を上昇させることにより、粒子内部から表層への金属の析出速度が制御され、析出物がファイバー状に成長しやすくなると考えられる。 As shown in FIG. 1, as the heating temperature increases and the heating time increases, the nanostructure on the surface of the micro copper particles tends to grow. In addition, there is a tendency to form fibrous nanostructures (nanofibers) as the heating temperature rises. When nanofibers are formed on the surface of the first particles, there is a tendency for the copper particles to be particularly improved in fusion bondability. In order to form a fibrous nanostructure, the heating rate is reduced (for example, 5° C./min or less), or the temperature is raised stepwise to 350° C. or higher, and the temperature is 350° C. or higher. It is preferable to heat for 10 minutes or longer. It is thought that by gently raising the temperature, the deposition rate of the metal from the inside of the particle to the surface layer is controlled, and the deposit tends to grow in the form of fibers.

マイクロ銅粒子の表面に凹凸状または粒子状のナノ構造が形成されている場合、ナノ構造の粒子径は500nm以下が好ましく、200nm以下がより好ましい。マイクロ銅粒子の表面にナノファーバーが形成される場合、ファイバーの径は100nm以下が好ましく、50nm以下がより好ましい。ファイバーの長さは特に限定されないが、例えば10μm以下であり、好ましくは5μm以下である。ナノ構造のサイズが上記範囲であれば、低温(例えば、200~500℃程度)での良好な接合性を担保できる。ナノ構造のサイズは、粒子のSEM像に基づいて実測される。 When an uneven or particulate nanostructure is formed on the surface of the microcopper particles, the particle diameter of the nanostructure is preferably 500 nm or less, more preferably 200 nm or less. When nanofibers are formed on the surfaces of microcopper particles, the fiber diameter is preferably 100 nm or less, more preferably 50 nm or less. Although the length of the fiber is not particularly limited, it is, for example, 10 μm or less, preferably 5 μm or less. If the size of the nanostructure is within the above range, good bondability at low temperatures (for example, about 200 to 500° C.) can be ensured. The size of the nanostructures is measured based on SEM images of the particles.

(第二種粒子)
第二種粒子は、平均粒子径0.05~5μmの銅粒子である。第二種粒子は表面にナノ構造を有していてもよく、ナノ構造を有していなくてもよい。第二種粒子は、第一種粒子が融着した際の粒子間の隙間を埋めて、空隙の体積を小さくする作用を有する。そのため、第二種粒子としては第一種粒子よりも平均粒子径が小さい粒子が用いられる。
(Second-class particles)
The second kind particles are copper particles having an average particle size of 0.05 to 5 μm. The second type particles may or may not have a nanostructure on the surface. The second type particles have the effect of filling the gaps between the particles when the first type particles are fused to reduce the volume of the gaps. Therefore, particles having an average particle diameter smaller than that of the first type particles are used as the second type particles.

融着した第一種粒子間の隙間を有効に埋めるために、第二種粒子の平均粒子径D2と第一種粒子の平均粒子径D1の比D1/D2は、2以上が好ましく、2.5以上がより好ましく、3以上がさらに好ましい。一方、接合時の粒界の比率を小さくして接合強度を確保する観点から、D1/D2は550以下が好ましく、300以下がより好ましく、100以下がさらに好ましく、50以下が特に好ましい。 In order to effectively fill the gaps between the fused first particles, the ratio D1/D2 between the average particle diameter D2 of the second particles and the average particle diameter D1 of the first particles is preferably 2 or more. 5 or more is more preferable, and 3 or more is even more preferable. On the other hand, D1/D2 is preferably 550 or less, more preferably 300 or less, still more preferably 100 or less, and particularly preferably 50 or less, from the viewpoint of reducing the ratio of grain boundaries during bonding to ensure bonding strength.

分散性を確保して凝集を抑制するとともに、接合時の粒界を減少させる観点から、第二種粒子の平均粒子径は0.07μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましい。 From the viewpoint of ensuring dispersibility and suppressing aggregation and reducing grain boundaries during bonding, the average particle size of the second type particles is preferably 0.07 μm or more, more preferably 0.1 μm or more, and 0.2 μm. The above is more preferable.

第二種粒子は、400℃以下の温度範囲で融着性を有することが好ましい。第二種粒子が表面にナノ構造を有していない場合は、サイズ効果により融点を降下させるために、平均粒子径D2は4μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましい。第二種粒子が第一種粒子と同様に表面にナノ構造を有している場合は、ナノ構造により低温融着を実現可能であるため、第二種粒子の平均粒子径D2は、5μm以下であり、かつD1/D2の範囲が上記範囲であればよい。 It is preferable that the second type particles have fusibility in a temperature range of 400° C. or less. When the second type particles do not have a nanostructure on the surface, the average particle diameter D2 is preferably 4 μm or less, more preferably 3 μm or less, and even more preferably 2 μm or less, in order to lower the melting point due to the size effect. When the second type particles have a nanostructure on the surface like the first type particles, the nanostructure can realize low-temperature fusion bonding, so the average particle size D2 of the second type particles is 5 μm or less. and the range of D1/D2 is the above range.

第二種粒子の形状は特に限定されず、球状、塊状、針状、フレーク状等が挙げられる。中でも、粒子同士が融着した際の粒子間の空隙の体積を小さくできることから、第二種粒子の形状は、球状またはフレーク状が好ましい。前述のように、第二種粒子は表面にナノ構造が形成されていてもよい。 The shape of the second type particles is not particularly limited, and may be spherical, massive, needle-like, flake-like, or the like. Above all, the shape of the second type particles is preferably spherical or flaky because the volume of voids between particles can be reduced when the particles are fused together. As described above, the second type particles may have a nanostructure formed on their surface.

第二種粒子の形状は、第一種粒子の形状と同一でもよく異なっていてもよい。例えば、第一種粒子および第二種粒子がともに球状であってもよく、第一種粒子および第二種粒子がともにフレーク状であってもよく、第一種粒子がフレーク状、第二種粒子が球状であってもよく、第一種粒子が球状、第二種粒子がフレーク状であってもよい。 The shape of the second type particles may be the same as or different from the shape of the first type particles. For example, both the first particles and the second particles may be spherical, both the first particles and the second particles may be flaky, the first particles may be flaky, and the second particles may be flaky. The particles may be spherical, or the particles of the first kind may be spherical and the particles of the second kind may be flaky.

第二種粒子として、平均粒子径が0.05~5μmの市販の銅粉をそのまま用いてもよい。また、市販の銅粉の加熱酸化により表面にナノ構造を形成したものを用いることもできる。 As the second type particles, commercially available copper powder having an average particle size of 0.05 to 5 μm may be used as it is. In addition, a commercially available copper powder having a nanostructure formed on its surface by heat oxidation can also be used.

(その他の金属粒子)
銅ペーストは、上記の第一種粒子および第二種粒子以外の金属粒子を含んでいてもよい。銅粒子以外の金属粒子としては、銅ナノ粒子、ニッケル、銀、金、パラジウム、白金等の粒子が挙げられる。銅粒子以外の金属粒子の平均粒子径は、0.01~50μm程度が好ましい。金属粒子の全量100質量部に対する銅粒子以外の金属粒子の量は、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下がさらに好ましい。換言すると、金属粒子の全量100質量部に対する銅粒子(表面に酸化物のナノ構造を有する銅粒子を含む)の含有量は、80質量部以上が好ましく、90質量部以上がより好ましく、95質量部以上がさらに好ましい。銅粒子の量が上記範囲であることにより、接合強度を確保することが容易となる。
(other metal particles)
The copper paste may contain metal particles other than the first type particles and the second type particles. Metal particles other than copper particles include copper nanoparticles, particles of nickel, silver, gold, palladium, platinum, and the like. The average particle size of metal particles other than copper particles is preferably about 0.01 to 50 μm. The amount of the metal particles other than the copper particles is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less with respect to 100 parts by mass of the total amount of the metal particles. In other words, the content of the copper particles (including copper particles having an oxide nanostructure on their surfaces) with respect to the total amount of 100 parts by mass of the metal particles is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and 95 parts by mass. Part or more is more preferable. When the amount of the copper particles is within the above range, it becomes easy to ensure the bonding strength.

(第一種粒子および第二種粒子の含有量)
上述のように、第二種粒子は、融着した第一種粒子の隙間を埋める作用を有する。金属粒子中の第一種粒子および第二種粒子の含有量は、両者の粒子径の比D1/D2等に応じて、第二種粒子が上記作用を有するように設定すればよい。
(Contents of first-class particles and second-class particles)
As described above, the second type particles have the effect of filling the gaps between the fused first type particles. The contents of the first type particles and the second type particles in the metal particles may be set according to the particle size ratio D1/D2 of the two so that the second type particles have the above action.

第一種粒子の含有量は、金属粒子全量100質量部に対して、20~95質量部が好ましく、30~90質量部がより好ましく、35~85質量部がさらに好ましく、40~80質量部が特に好ましい。第一種粒子の含有量が上記範囲内であれば、無加圧接合用銅ペーストを焼結した際に、第一種粒子同士の融着による高い接合強度と接続信頼性を実現できる。 The content of the first particles is preferably 20 to 95 parts by mass, more preferably 30 to 90 parts by mass, even more preferably 35 to 85 parts by mass, with respect to 100 parts by mass of the total amount of metal particles, and 40 to 80 parts by mass. is particularly preferred. If the content of the first-class particles is within the above range, when the copper paste for pressureless bonding is sintered, high bonding strength and connection reliability can be achieved due to fusion between the first-class particles.

第二種粒子の含有量は、金属粒子全量100質量部に対して、5~80質量部が好ましく、10~70質量部がより好ましく、15~65質量部がさらに好ましく、20~60質量部が特に好ましい。第二種粒子の含有量が上記範囲内であれば、無加圧接合用銅ペーストを焼結した際に、融着した第一種粒子間の空隙に第二種粒子が効率的に充填されやすい。そのため、空隙率が減少し、接合強度の向上を図ることができる。また、第一種粒子表面のナノ構造は第二種粒子とも融着し、接合面積が増大する。そのため、第一種粒子のみを有する場合に比べて、接合強度が上昇する傾向がある。 The content of the second type particles is preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, even more preferably 15 to 65 parts by mass, and 20 to 60 parts by mass with respect to 100 parts by mass of the total amount of metal particles. is particularly preferred. If the content of the second type particles is within the above range, the voids between the fused first type particles are easily filled with the second type particles when the copper paste for pressureless bonding is sintered. . Therefore, the porosity is reduced, and the bonding strength can be improved. In addition, the nanostructure on the surface of the first type particles is also fused with the second type particles, increasing the bonding area. Therefore, the bonding strength tends to increase compared to the case where only the first particles are present.

第一種粒子同士の融着を促進するとともに、第一種粒子間の隙間を第二種粒子により効率的に充填するためには、第二種粒子の量は、第一種粒子の量の0.05~5倍が好ましく、0.1~2倍がより好ましく、0.2~1.5倍がさらに好ましく、0.25~1.3倍が特に好ましい。 In order to promote fusion between the first particles and to efficiently fill the gaps between the first particles with the second particles, the amount of the second particles must be less than the amount of the first particles. 0.05 to 5 times is preferable, 0.1 to 2 times is more preferable, 0.2 to 1.5 times is more preferable, and 0.25 to 1.3 times is particularly preferable.

<分散媒>
銅ペーストは、上記金属粒子を分散させるための分散媒(溶媒)を含む。分散媒は、金属粒子を分散可能であり、かつペーストの焼結時に揮発可能であれば特に限定されず、各種の水系溶媒や有機溶媒を使用できる。分散媒の沸点は、150~400℃程度が好ましい。沸点の異なる複数の溶媒を混合して分散媒として用いてもよい。
<Dispersion medium>
The copper paste contains a dispersion medium (solvent) for dispersing the metal particles. The dispersion medium is not particularly limited as long as it can disperse the metal particles and volatilize during sintering of the paste, and various aqueous solvents and organic solvents can be used. The boiling point of the dispersion medium is preferably about 150 to 400°C. A plurality of solvents having different boiling points may be mixed and used as a dispersion medium.

分散媒の具体例としては、鎖状炭化水素、芳香族炭化水素、脂環式炭化水素、鎖状アルコール、芳香族アルコール、脂環式アルコール、グリコールやトリオール等の多価アルコール、エーテル、グリコールエーテル、アミン、アミド、アルデヒド、ケトン等が挙げられる。 Specific examples of the dispersion medium include chain hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, chain alcohols, aromatic alcohols, alicyclic alcohols, polyhydric alcohols such as glycols and triols, ethers, and glycol ethers. , amines, amides, aldehydes, ketones and the like.

これらの中でも、銅粒子の分散性に優れることから、分散媒としては、グリコールまたはグリコールエーテルが好ましく用いられる。グリコールとしては、エチレングリコール、プロピレングリコール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール(主に分子量が1000以下のもの)が挙げられる。グリコールエーテルとしては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノブチルエーテル等のポリアルキレングリコールアルキルエーテル類、およびそのエステル誘導体(例えばジエチレングリコールモノブチルエーテルアセテート)が挙げられる。 Among these, glycol or glycol ether is preferably used as the dispersion medium because of its excellent dispersibility of the copper particles. Glycols include alkylene glycols such as ethylene glycol and propylene glycol, and polyalkylene glycols (mainly having a molecular weight of 1000 or less) such as polyethylene glycol and polypropylene glycol. Glycol ethers include polyalkylene glycol alkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monobutyl ether, and ester derivatives thereof ( For example, diethylene glycol monobutyl ether acetate) can be mentioned.

分散媒の量は、金属粒子を100質量部に対して、5~100質量部程度であり、7~70質量部程度が好ましい。分散媒の含有量が上記範囲内であれば、金属粒子を適切に分散可能であり、かつ銅ペーストの粘度を適切な範囲に調整できる。 The amount of the dispersion medium is about 5 to 100 parts by mass, preferably about 7 to 70 parts by mass, per 100 parts by mass of the metal particles. If the content of the dispersion medium is within the above range, the metal particles can be appropriately dispersed, and the viscosity of the copper paste can be adjusted within an appropriate range.

<添加剤>
銅ペーストには、必要に応じて、各種の添加剤を含んでいてもよい。添加剤としては、酸化防止剤、界面活性剤、消泡剤、イオントラップ剤等が挙げられる。
<Additive>
The copper paste may contain various additives as necessary. Examples of additives include antioxidants, surfactants, antifoaming agents, ion trapping agents, and the like.

後述のように、本発明の銅ペーストは、還元性雰囲気下で加熱することにより銅粒子の融着が促進される。銅の融着の促進等を目的として、銅ペーストには還元剤が含まれていてもよい。還元剤としては、硫化物、チオ硫酸塩、シュウ酸、ギ酸、アスコルビン酸、アルデヒド、ヒドラジンおよびその誘導体、ヒドロキシルアミンおよびその誘導体、ジチオスレイトール、ホスファイト、ヒドロホスファイト、亜リン酸およびその誘導体、リチウムアルミニウム水素化物、ジイソブチルアルミニウム水素化物、ホウ水素化ナトリウム等が挙げられる。 As will be described later, the copper paste of the present invention promotes fusion of copper particles by heating in a reducing atmosphere. The copper paste may contain a reducing agent for the purpose of promoting fusion of copper. Reducing agents include sulfide, thiosulfate, oxalic acid, formic acid, ascorbic acid, aldehyde, hydrazine and its derivatives, hydroxylamine and its derivatives, dithiothreitol, phosphite, hydrophosphite, phosphorous acid and its derivatives. , lithium aluminum hydride, diisobutylaluminum hydride, sodium borohydride and the like.

銅ペーストには、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂、テルペン系樹脂等の樹脂成分が含まれていてもよい。これらの樹脂成分は、金属粒子のバインダーとして作用し得る。なお、本発明の銅ペーストは、第一種粒子よりも粒子径の小さい第二種粒子により、第一種粒子間の空隙を充填することが可能であるため、樹脂成分を含まない場合でも、高い接合性を実現可能である。特に、接合部に高い導電性が要求される場合には、銅ペーストは樹脂成分を実質的に含まないことが好ましい。銅ペーストにおける樹脂の含有量は、金属粒子100質量部に対して10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下がさらに好ましく、1質量部以下が特に好ましい。 The copper paste contains resin components such as polyester resins, polyurethane resins such as blocked isocyanate, epoxy resins, acrylic resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. may be These resin components can act as binders for the metal particles. In addition, since the copper paste of the present invention can fill the gaps between the first type particles with the second type particles having a smaller particle size than the first type particles, even if it does not contain a resin component, High bondability can be realized. In particular, when high conductivity is required for the joint, the copper paste preferably does not substantially contain a resin component. The content of the resin in the copper paste is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1 part by mass or less, relative to 100 parts by mass of the metal particles.

<銅ペーストの調製>
上記の金属粒子および任意の添加剤と分散媒とを混合することにより、銅ペーストを調製できる。金属粒子は全量を一度に分散媒に分散させてもよく、金属粒子の一部を分散させた後に残部を添加してもよい。また、第二種粒子を分散させた後に、第一種粒子を添加してもよく、第一種粒子の分散液と第二種粒子の分散液とを混合してもよい。
<Preparation of copper paste>
A copper paste can be prepared by mixing the above metal particles and optional additives with a dispersion medium. The metal particles may be dispersed all at once in the dispersion medium, or the remainder may be added after part of the metal particles are dispersed. Alternatively, the first type particles may be added after the second type particles are dispersed, or the dispersion liquid of the first type particles and the dispersion liquid of the second type particles may be mixed.

各成分の混合後に、撹拌処理を行ってもよい。また、各成分の混合前後に、分級操作により凝集物を除去してもよい。 After mixing each component, a stirring treatment may be performed. Moreover, before and after mixing each component, aggregates may be removed by a classification operation.

撹拌処理には、石川式攪拌機、シルバーソン攪拌機、キャビテーション攪拌機、自転公転式(遊星式)攪拌機、超薄膜高速回転式分散機、超音波分散機、ライカイ機、二軸混練機、ビーズミル、ボールミル、三本ロールミル、ホモジナイザー、プラネタリーミキサー、超高圧型分散機、薄層せん断分散機、湿式超微粒化装置、超音速式ジェットミル等の撹拌・混練装置を用いてもよい。 For agitation, Ishikawa stirrer, Silverson stirrer, cavitation stirrer, planetary rotation stirrer, ultra-thin film high-speed rotary disperser, ultrasonic disperser, Raikai machine, twin-screw kneader, bead mill, ball mill, A stirring/kneading device such as a three-roll mill, homogenizer, planetary mixer, super-high-pressure disperser, thin-layer shear disperser, wet ultra-atomizer, supersonic jet mill, etc. may be used.

分級操作は、ろ過、自然沈降、遠心分離を用いて行うことができる。ろ過用のフィルタとしては、水櫛、金属メッシュ、メタルフィルター、ナイロンメッシュが挙げられる。 The classification operation can be performed using filtration, natural sedimentation, and centrifugation. Filtration filters include water combs, metal meshes, metal filters, and nylon meshes.

[銅ペーストを用いた接合]
上記の銅ペーストは、各種の配線や導電膜を形成するための導電性ペースト、複数の部材間を接合するための接合材等の用途に使用できる。特に、上記の銅ペーストは、還元性雰囲気下で焼結することにより高い接合性を実現可能であり、無加圧接合用ペーストとして好適に用いられる。
[Joining using copper paste]
The above copper paste can be used as a conductive paste for forming various wirings and conductive films, and as a bonding material for bonding between a plurality of members. In particular, the above copper paste can realize high bondability by sintering in a reducing atmosphere, and is suitably used as a paste for pressureless bonding.

無加圧接合では、第一部材と第二部材との間に銅ペーストを配置した積層体を準備し、第一部材の自重が作用する方向に銅ペーストおよび第二部材を配置した状態、または0.01MPa以下の圧力を付加した状態で、還元性雰囲気下において上記積層体の加熱が行われる。還元性雰囲気下での加熱により銅ペーストを焼結すると、金属粒子間の融着が進行して第一部材と第二部材が接合される。 In pressureless bonding, a laminate is prepared in which copper paste is arranged between the first member and the second member, and the copper paste and the second member are arranged in the direction in which the weight of the first member acts, or The laminate is heated in a reducing atmosphere while applying a pressure of 0.01 MPa or less. When the copper paste is sintered by heating in a reducing atmosphere, fusion bonding between metal particles progresses and the first member and the second member are joined.

(積層体の準備)
図2は、第一部材1と第二部材2との間に銅ペースト5を配置した積層体10の構成例を示す断面図である。このような積層体は、例えば、第二部材2の所定領域に上記の銅ペースト5を設け、その上に第一部材1を配置することにより用意することができる。
(Preparation of laminate)
FIG. 2 is a cross-sectional view showing a configuration example of a laminate 10 in which a copper paste 5 is arranged between the first member 1 and the second member 2. As shown in FIG. Such a laminate can be prepared, for example, by providing the above copper paste 5 in a predetermined region of the second member 2 and placing the first member 1 thereon.

第一部材1および第二部材2は特に限定されず、各種の金属材料、半導体材料、セラミック材料または樹脂材料を用いることができる。第二部材の具体例としては、シリコン基板等の半導体基板;銅基板等の金属基板、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基板、銅リボン、金属ブロック、端子等の給電用部材、放熱板、水冷板等が挙げられる。第一部材の具体例としては、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、センサー、アナログ集積回路、半導体レーザー、LEDモジュール等が挙げられる。第一部材および第二部材は上記に限定されない。また、第一部材の例として上述したものを第二部材としてもよく、第二部材の例として上述したものを第一部材としてもよい。 The first member 1 and the second member 2 are not particularly limited, and various metal materials, semiconductor materials, ceramic materials, or resin materials can be used. Specific examples of the second member include semiconductor substrates such as silicon substrates; metal substrates such as copper substrates; lead frames; metal plate-attached ceramic substrates (e.g., DBC); Power supply members such as blocks and terminals, radiator plates, water cooling plates, and the like can be used. Specific examples of the first member include diodes, rectifiers, thyristors, MOS gate drivers, power switches, power MOSFETs, IGBTs, Schottky diodes, power modules composed of fast recovery diodes, transmitters, amplifiers, sensors, and analog integrated circuits. , semiconductor lasers, and LED modules. The first member and the second member are not limited to the above. Moreover, what was mentioned above as an example of the first member may be the second member, and what was mentioned above as an example of the second member may be the first member.

第一部材1および第二部材2は、銅ペースト5(接合材)と接する面に金属を含んでいてもよい。金属としては、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデンおよびこれらの合金等が挙げられる。 The first member 1 and the second member 2 may contain metal on the surfaces in contact with the copper paste 5 (bonding material). Metals include copper, nickel, silver, gold, palladium, platinum, lead, tin, cobalt, manganese, aluminum, beryllium, titanium, chromium, iron, molybdenum and alloys thereof.

第二部材2上に接合材としての銅ペースト5を設ける方法としては、スクリーン印刷、転写印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、ジェットプリント、ディスペンサー、コンマコート、スリットコート、ダイコート、グラビアコート、バーコート、プレーコート、スピンコート、電着塗装等の各種の塗布法を採用すればよい。 Methods for providing the copper paste 5 as a bonding material on the second member 2 include screen printing, transfer printing, offset printing, letterpress printing, intaglio printing, gravure printing, stencil printing, soft lithography, jet printing, dispenser, and comma coating. , slit coating, die coating, gravure coating, bar coating, play coating, spin coating, and electrodeposition coating.

銅ペースト5の厚み(分散媒を乾燥後の厚み、すなわち接合層の厚み)は、例えば1~1000μm程度である。接合層の厚みは、10μm以上、30μm以上、50μm以上、70μm以上または100μm以上であり得る。塗布厚みは、700μm以下、500μm以下、400μm以下、300μm以下または200μm以下であり得る。 The thickness of the copper paste 5 (the thickness after drying the dispersion medium, that is, the thickness of the bonding layer) is, for example, about 1 to 1000 μm. The thickness of the bonding layer can be 10 μm or more, 30 μm or more, 50 μm or more, 70 μm or more, or 100 μm or more. The coating thickness can be 700 μm or less, 500 μm or less, 400 μm or less, 300 μm or less, or 200 μm or less.

第二部材上に設けられた無加圧接合用銅ペーストは、焼結時の流動やボイドの発生の抑制等を目的として、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中でもよく、無酸素雰囲気でもよく、還元性雰囲気でもよい。乾燥は、常温・常圧で実施してもよく、加熱や減圧により乾燥を促進してもよい。 The copper paste for non-pressure bonding provided on the second member may be dried as appropriate for the purpose of suppressing flow during sintering and generation of voids. The gas atmosphere during drying may be the air, an oxygen-free atmosphere, or a reducing atmosphere. Drying may be performed at normal temperature and normal pressure, or may be accelerated by heating or reducing pressure.

第二部材2上に設けられたペースト5上への第一部材1の配置には、チップマウンタやフリップチップボンダ等を用いてもよく、各種の冶具を用いて手作業で行ってもよい。 The placement of the first member 1 on the paste 5 provided on the second member 2 may be performed using a chip mounter, a flip chip bonder, or the like, or manually using various jigs.

(焼結)
上記の積層体を加熱することにより、銅ペーストの焼結を行う。還元性雰囲気下で加熱を行うことにより、第一種粒子の表面に形成された(亜)酸化銅のナノ構造が還元されて銅のナノ構造が生成し、ナノ構造のサイズ効果により、低温での融着が進行する。第二種粒子が表面に酸化膜や(亜)酸化銅のナノ構造を有している場合は、第二種粒子も還元性雰囲気下で表面が還元され、融着が促進される。
(sintering)
The copper paste is sintered by heating the laminate. By heating in a reducing atmosphere, the nanostructure of copper (sub)oxide formed on the surface of the first particles is reduced to form a nanostructure of copper. of fusion progresses. When the second type particles have an oxide film or a nanostructure of cuprous oxide on the surface, the surfaces of the second type particles are also reduced in a reducing atmosphere, promoting fusion.

還元性雰囲気としては、水素やギ酸等の還元性ガスの存在雰囲気が挙げられる。還元性雰囲気ガスは、水素やギ酸等の還元性ガスと、窒素や希ガス等の不活性ガスとの混合ガスでもよい。ペーストが還元剤を含んでいる場合は、還元性ガスを用いる代わりに、酸化抑制雰囲気で加熱を行ってもよい。この場合は、加熱により還元剤が揮発して還元性雰囲気となる。酸化抑制雰囲気とは、窒素や希ガス等の不活性ガス雰囲気や真空下が挙げられる。 The reducing atmosphere includes an atmosphere in which a reducing gas such as hydrogen or formic acid is present. The reducing atmosphere gas may be a mixed gas of a reducing gas such as hydrogen or formic acid and an inert gas such as nitrogen or rare gas. When the paste contains a reducing agent, heating may be performed in an oxidation-inhibiting atmosphere instead of using a reducing gas. In this case, the reducing agent is volatilized by heating to create a reducing atmosphere. The oxidation-suppressing atmosphere includes an atmosphere of an inert gas such as nitrogen or a rare gas, or under vacuum.

加熱時の到達最高温度は、第一部材および第二部材への熱ダメージを抑制しつつ、分散媒の揮発および金属粒子の融着を促進する観点から、200~500℃が好ましく、230~450℃がより好ましく、250~400℃がさらに好ましい。 The maximum temperature reached during heating is preferably 200 to 500° C., more preferably 230 to 450, from the viewpoint of promoting volatilization of the dispersion medium and fusion of the metal particles while suppressing thermal damage to the first member and the second member. °C is more preferred, and 250 to 400°C is even more preferred.

上記の温度範囲での保持時間は、分散媒の揮発および金属粒子の融着を十分に進行させる観点から、1分以上が好ましく、5分以上がより好ましい。加熱の保持時間の上限は特に限定されないが、歩留まりや工程効率等の観点からは60分以下が好ましい。 The holding time in the above temperature range is preferably 1 minute or longer, more preferably 5 minutes or longer, from the viewpoint of sufficiently advancing volatilization of the dispersion medium and fusion of the metal particles. Although the upper limit of the heating holding time is not particularly limited, it is preferably 60 minutes or less from the viewpoint of yield, process efficiency, and the like.

第一部材と第二部材とが銅ペーストの焼結体(接合材)を介して接合された接合体のダイシェア強度は、20MPa以上が好ましく、23MPa以上がより好ましく、25MPa以上がさらに好ましい。上記の銅ペーストを用いることにより、銅の融点以下の低温での無加圧接合により、高いシェア強度を実現できる。 The die shear strength of the joined body in which the first member and the second member are joined via a copper paste sintered body (joining material) is preferably 20 MPa or more, more preferably 23 MPa or more, and even more preferably 25 MPa or more. By using the above copper paste, high shear strength can be realized by non-pressure bonding at a low temperature below the melting point of copper.

このような高い接合強度を実現できる推定要因として、相対的に粒子径の大きい第一種粒子が表面にナノ構造を有するために低温融着が可能であるとともに、相対的に粒子径の小さい第二種粒子が第一種粒子間の空隙に入り込んだ微細組織を構成し、各粒子間での焼結が進行するために、空隙が少なく緻密化された接合層が形成されることが挙げられる。銅ペーストを焼結後の接合層の断面における空隙率は、25%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましい。空隙率は接合断面のSEM観察像から算出できる(図3参照)。 As presumed factors for realizing such high bonding strength, low-temperature fusion bonding is possible because the first particles, which have a relatively large particle size, have a nanostructure on the surface, and the second particles, which have a relatively small particle size, are possible. The particles of the second kind form a microstructure in which the particles of the first kind enter the gaps between the particles of the first kind, and sintering between the particles proceeds, so that a dense bonding layer with few gaps is formed. . The cross section of the bonding layer after sintering the copper paste preferably has a porosity of 25% or less, more preferably 20% or less, and even more preferably 15% or less. The porosity can be calculated from the SEM observation image of the joint cross section (see FIG. 3).

空隙が少ないことに加えて、マイクロ粒子を用いることにより、焼結時の体積収縮が小さく、接合層内の歪が抑制されることも、接合強度の向上に寄与していると考えられる。また、第二種粒子は、低温融着が可能であり、かつ凝集が生じ難い程度の粒子径を有しているため、第一種粒子表面のナノ構造と第二種粒子との融着および第二種粒子同士の融着が進行し、接合強度がさらに上昇すると考えられる。さらに、第一種粒子の平均粒子径D1と第二種粒子の平均粒子径D2の比D1/D2が所定範囲内であることにより、接合層内の粒界の割合が小さいことも、接合強度の上昇に寄与していると考えられる。 In addition to the small number of voids, the use of microparticles reduces volume shrinkage during sintering and suppresses strain in the bonding layer, which is thought to contribute to the improvement in bonding strength. In addition, since the second type particles can be fused at a low temperature and have a particle size that is difficult to cause aggregation, the nanostructure on the surface of the first type particles and the second type particles are fused and It is considered that the fusion between the particles of the second kind progresses and the bonding strength further increases. Furthermore, the ratio D1/D2 of the average particle size D1 of the first type particles and the average particle size D2 of the second type particles is within a predetermined range, so that the proportion of grain boundaries in the bonding layer is small. is thought to have contributed to the increase in

本発明の接合方法は、各種の電子部品や半導体装置の製造に適用できる。すなわち、本発明の銅ペーストの焼結により複数の部品を接合した接合体は、電子部品または半導体装置等であり得る。本発明の接合体は、接合部が高いダイシェア強度を有し、接続信頼性に優れている。また、接合材が主に銅からなり、第一種粒子間の空隙に第二種粒子が充填されることにより空隙率が低いため、高い熱伝導率および電気伝導率も実現可能である。 The joining method of the present invention can be applied to manufacture of various electronic components and semiconductor devices. That is, a bonded body obtained by bonding a plurality of parts by sintering the copper paste of the present invention can be an electronic part, a semiconductor device, or the like. The bonded body of the present invention has a high die shear strength at the bonded portion and is excellent in connection reliability. In addition, since the bonding material is mainly made of copper and the voids between the first particles are filled with the second particles, the porosity is low, so high thermal conductivity and high electrical conductivity can be achieved.

以下に実施例を挙げて本発明を具体的に説明するが、本発明は下記の実施例に限定されない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

[銅粒子の準備]
下記A~Iの銅粉末の市販品を準備した。
A:太陽日酸製「Tn-Cu100」(平均粒子径0.1μmの球状銅粉)
B:三井金属鉱業製「1050YP」(平均粒子径0.9μmのフレーク状銅粉)
C:三井金属鉱業製「MAC03K」(平均粒子径3.0μmの球状銅粉)
D:三井金属鉱業製「MAC03KP」(平均粒子径4.0μmのフレーク状銅粉)
E:三井金属鉱業製「1400YM」(平均粒子径4.2μmの球状銅粉)
F:三井金属鉱業製「1400YP」(平均粒子径5.2μmのフレーク状銅粉)
G:三井金属鉱業製「MA-CF」(平均粒子径21.1μmのフレーク状銅粉)
H:CuLox製「Cu6500」(平均粒子径50μmの球状銅粉)
I:三井金属鉱業製「MACNS」(平均粒子径64μmの球状銅粉)
[Preparation of copper particles]
Commercially available copper powders A to I below were prepared.
A: “Tn-Cu100” manufactured by Taiyo Nippon Sanso (spherical copper powder with an average particle size of 0.1 μm)
B: "1050YP" manufactured by Mitsui Kinzoku Co., Ltd. (flake-shaped copper powder with an average particle size of 0.9 μm)
C: "MAC03K" manufactured by Mitsui Kinzoku Mining (spherical copper powder with an average particle size of 3.0 μm)
D: "MAC03KP" manufactured by Mitsui Kinzoku Co., Ltd. (flake-shaped copper powder with an average particle size of 4.0 μm)
E: "1400YM" manufactured by Mitsui Mining & Smelting (spherical copper powder with an average particle size of 4.2 μm)
F: "1400YP" manufactured by Mitsui Mining & Smelting (flake-shaped copper powder with an average particle size of 5.2 μm)
G: "MA-CF" manufactured by Mitsui Kinzoku Mining (flake-shaped copper powder with an average particle size of 21.1 μm)
H: "Cu6500" made by CuLox (spherical copper powder with an average particle size of 50 μm)
I: "MACNS" manufactured by Mitsui Kinzoku Co., Ltd. (spherical copper powder with an average particle size of 64 μm)

[表面にナノファイバー構造を有する銅粒子の作製]
上記の粒子Eを大気下で撹拌しながら、100℃で10分、150℃で10分、200℃で10分、250℃で10分、300℃で10分、350℃に昇温して10分、400℃で30分加熱した。加熱後の粒子RをSEM観察したところ、凝集塊はほとんど確認されず、図1(C2)に示すように、表面にファイバー状のナノ構造が形成されていた。
[Preparation of copper particles having a nanofiber structure on the surface]
While stirring the above particles E in the atmosphere, 10 minutes at 100 ° C., 10 minutes at 150 ° C., 10 minutes at 200 ° C., 10 minutes at 250 ° C., 10 minutes at 300 ° C., and 350 ° C. for 10 minutes. minutes, and heated at 400° C. for 30 minutes. When the particles R after heating were observed with an SEM, almost no agglomerates were observed, and as shown in FIG. 1(C2), a fibrous nanostructure was formed on the surface.

上記の粒子C,D,F,G,H,Iを用いて、粒子Rの作製と同様の条件で加熱を行い、表面にファイバー状のナノ構造を有する粒子P,Q,S,T,U,Vを作製した。 Particles P, Q, S, T, and U having fibrous nanostructures on their surfaces were obtained by heating the particles C, D, F, G, H, and I under the same conditions as in the preparation of the particles R. , V were produced.

[実施例1]
第一種粒子として粒子Rを50質量部、第二種粒子として粒子Bを50質量部、および分散媒としてトリプロピレングリコールモノメチルエーテル(MFTG;沸点242.4℃)30質量部を混合した。減圧下で、撹拌機(クラボウ製「マゼルスター KK-V300」)を用いて、公転回転数1340rpm、自転回転数737rpmで2分間混合物を遊星撹拌して無加圧接合用銅ペーストを得た。
[Example 1]
50 parts by mass of particles R as the first particles, 50 parts by mass of particles B as the second particles, and 30 parts by mass of tripropylene glycol monomethyl ether (MFTG; boiling point 242.4° C.) as a dispersion medium were mixed. Under reduced pressure, using a stirrer ("Mazerustar KK-V300" manufactured by Kurabo Industries), the mixture was planetarily stirred for 2 minutes at a revolution speed of 1340 rpm and a rotation speed of 737 rpm to obtain a copper paste for pressureless bonding.

[実施例2~9および比較例1~6]
金属粒子および溶媒の配合量を表1に示すように変更した(表1における配合の数値は質量部である)。それ以外は実施例1と同様にして、銅ペーストを得た。
[Examples 2 to 9 and Comparative Examples 1 to 6]
The blending amounts of the metal particles and the solvent were changed as shown in Table 1 (the numerical values of the blending in Table 1 are parts by mass). A copper paste was obtained in the same manner as in Example 1 except for the above.

[評価]
(ダイシェア強度試験用試料の作製)
銅ペースト0.009gを、20mm×20mmの銅板(厚み1mm)上の中央に塗布し、その上に厚さ1mm、サイズ5×5mmのCuチップを接触させた後、10gの荷重でCuチップを軽く押し付けて積層体を形成した。
[evaluation]
(Preparation of sample for die shear strength test)
0.009 g of copper paste is applied to the center of a 20 mm × 20 mm copper plate (thickness 1 mm), and a Cu chip having a thickness of 1 mm and a size of 5 × 5 mm is brought into contact therewith, and then the Cu chip is applied with a load of 10 g. A laminate was formed by pressing lightly.

この積層体を還元接合装置(アユミ工業製「RB-100」)の炉内に設置し、室温から130℃まで4分間で昇温した後、130℃で5分間保持して予備乾燥を行った。その後、130℃から300℃まで10分間で昇温した。実施例1~9、比較例1~3および比較例6の試料については、大気雰囲気で室温から300℃まで昇温を行った。比較例4および比較例5の試料については、窒素雰囲気で室温から300℃まで昇温を行った。300℃に昇温後、炉内にギ酸蒸気を導入してギ酸雰囲気とし、300℃で30分加熱を行った。炉内を窒素ガス置換して35℃以下まで冷却後、試料を取り出した。 This laminate was placed in a furnace of a reduction bonding apparatus (“RB-100” manufactured by Ayumi Industry), heated from room temperature to 130° C. in 4 minutes, and then held at 130° C. for 5 minutes for pre-drying. . After that, the temperature was raised from 130° C. to 300° C. in 10 minutes. The samples of Examples 1 to 9, Comparative Examples 1 to 3, and Comparative Example 6 were heated from room temperature to 300° C. in an air atmosphere. The samples of Comparative Examples 4 and 5 were heated from room temperature to 300° C. in a nitrogen atmosphere. After the temperature was raised to 300° C., formic acid vapor was introduced into the furnace to create a formic acid atmosphere, and heating was performed at 300° C. for 30 minutes. After the inside of the furnace was replaced with nitrogen gas and cooled to 35° C. or lower, the sample was taken out.

(ダイシェア強度の測定)
DS-100ロードセルを装着した万能型ボンドテスタ(ノードソン・アドバンスト・テクノロジー製4000シリーズ)を用い、大気下にて、測定スピード1mm/分、測定高さ200μmの条件で、上記試料のダイシェア強度を測定した。
(Measurement of die shear strength)
Using a universal bond tester (Nordson Advanced Technologies 4000 series) equipped with a DS-100 load cell, the die shear strength of the above sample was measured under the conditions of a measurement speed of 1 mm/min and a measurement height of 200 μm. .

実施例および比較例の銅ペーストの組成、銅ペースト中の金属粒子の平均粒子径の比D1/D2、および接合試料のダイシェア強度を表1に示す。なお、表1においては相対的に粒子径が大きい第一種粒子の含有量に下線を付している。実施例1および比較例3の試料については、断面のSEM観察を行い、図3(A)(B)のSEM写真から空隙率を算出した。 Table 1 shows the compositions of the copper pastes of Examples and Comparative Examples, the average particle size ratio D1/D2 of the metal particles in the copper pastes, and the die shear strength of the bonded samples. In addition, in Table 1, the content of the first particles having a relatively large particle size is underlined. For the samples of Example 1 and Comparative Example 3, cross-sectional SEM observation was performed, and the porosity was calculated from the SEM photographs of FIGS. 3(A) and 3(B).

Figure 0007220310000001
Figure 0007220310000001

ナノ構造を有していない銅粒子のみを用いた比較例1および比較例2では、接合試料のダイシェア強度が20MPa未満であった。表面にナノ構造を有するマイクロ銅粒子のみを用いた比較例3では、比較例1,2よりもさらにシェア強度が低下していた。図3(B)から求めた比較例3の接合断面の空隙率は30.4%であった。 In Comparative Examples 1 and 2, in which only copper particles without nanostructures were used, the die shear strength of the bonded samples was less than 20 MPa. In Comparative Example 3 using only micro copper particles having a nanostructure on the surface, the shear strength was even lower than in Comparative Examples 1 and 2. The porosity of the joint cross section of Comparative Example 3 obtained from FIG. 3(B) was 30.4%.

金属粒子として、表面にナノ構造を有するマイクロ粒子(第一種粒子)に加えて、第一種粒子よりも粒子径の小さい銅粒子(第二種粒子)を含む実施例1~9では、いずれもダイシェア強度が20MPa以上に上昇していた。図3(A)から求めた実施例1の接合断面の空隙率は11.5%であり、μmオーダーの粒子間の空隙が微細な粒子により充填されることにより、比較例3に比べて大幅に空隙率が低減していることが確認された。これらの結果から、加熱酸化により表面にナノ構造が形成されたマイクロ銅粒子と、相対的に粒子径の小さい銅粒子を用いることにより、マイクロ銅粒子間の空隙が相対的に粒子径の小さい粒子により充填されるとともに、金属粒子間の接合が強化されて、接合強度が上昇することが分かる。 In Examples 1 to 9 containing copper particles (second type particles) having a smaller particle size than the first type particles in addition to microparticles (first type particles) having a nanostructure on the surface as metal particles, any Also, the die shear strength increased to 20 MPa or more. The porosity of the joint cross section of Example 1 obtained from FIG. It was confirmed that the porosity was reduced in From these results, by using micro copper particles with a nanostructure formed on the surface by thermal oxidation and copper particles with a relatively small particle size, the voids between the micro copper particles are relatively small particles It can be seen that the bonding between the metal particles is strengthened and the bonding strength is increased as the metal particles are filled.

相対的に粒子径の小さい第二種粒子として表面にナノ構造を有するマイクロ銅粒子を用いた実施例8,9も、他の実施例と同様に高い接合強度を示した。一方、比較例4および比較例5では、比較例1および比較例2と同様に、粒子径の異なる2種類の銅粒子を用いたが、ダイシェア強度は比較例1~3よりもさらに低下していた。これらの結果から、実施例では、銅粒子の表面に形成されたナノ構造が、マイクロ粒子同士の融着を促進する作用を有するために、接合強度が上昇したのに対して、ナノ構造を有していないマイクロ粒子を用いた比較例4,5では、マイクロ粒子同士が融着しないために、接合強度が低下したと考えられる。 Examples 8 and 9 using micro copper particles having a nanostructure on the surface as the second-type particles having a relatively small particle size also exhibited high bonding strength as in the other examples. On the other hand, in Comparative Examples 4 and 5, as in Comparative Examples 1 and 2, two types of copper particles having different particle sizes were used, but the die shear strength was even lower than in Comparative Examples 1 to 3. rice field. From these results, in Examples, the nanostructure formed on the surface of the copper particles has the effect of promoting the fusion between the microparticles, so that the bonding strength increased, whereas the nanostructure It is considered that in Comparative Examples 4 and 5 using microparticles that were not bonded, the bonding strength was lowered because the microparticles did not fuse with each other.

表面にナノ構造を有し平均粒子径が64μmである粒子Vと、平均粒子径が0.1μmの粒子Aを用いた比較例6では、表面にナノ構造を有するマイクロ粒子と、小粒径の銅粒子とを併用しているにも関わらず、接合強度が不十分であった。比較例6では、2種類の粒子の粒子径のD1/D2が大きく、粒界の比率が高いために、接合強度が低下したと考えられる。この結果から、第一種粒子と第二種粒子の平均粒子径の比D1/D2を所定範囲とすることにより、高い接合性を実現できることが分かる。

In Comparative Example 6, in which particles V having a nanostructure on the surface and an average particle size of 64 μm and particles A having an average particle size of 0.1 μm were used, microparticles having a nanostructure on the surface and particles having a small particle size Although copper particles were used in combination, the bonding strength was insufficient. In Comparative Example 6, it is considered that the bonding strength decreased because the particle diameters D1/D2 of the two types of particles were large and the grain boundary ratio was high. From this result, it can be seen that high bondability can be achieved by setting the ratio D1/D2 of the average particle sizes of the first type particles to the second type particles within a predetermined range.

Claims (5)

複数の部材間の無加圧接合に用いられる銅ペーストであって、
第一種粒子、および前記第一種粒子よりも平均粒子径が小さい第二種粒子を含む金属粒子と、分散媒とを含み、
前記第一種粒子は、平均粒子径が1~100μmであり、銅の酸化物により形成されているファイバー状のナノ構造を表面に有する銅粒子であり、
前記第二種粒子は、平均粒子径が0.05~5μmである銅粒子であり、
前記第一種粒子の平均粒子径が前記第二種粒子の平均粒子径の2~550倍であり、
前記金属粒子の全量100質量部に対する銅粒子の含有量が、80質量部以上であり、
前記金属粒子の全量100質量部に対して、前記第一種粒子の含有量が20~95質量部、前記第二種粒子の含有量が5~80質量部である、無加圧接合用銅ペースト。
A copper paste used for non-pressure bonding between a plurality of members,
Metal particles containing first type particles and second type particles having an average particle size smaller than the first type particles, and a dispersion medium ,
The first particles are copper particles having an average particle diameter of 1 to 100 μm and having a fibrous nanostructure formed of copper oxide on the surface,
The second type particles are copper particles having an average particle size of 0.05 to 5 μm,
The average particle size of the first type particles is 2 to 550 times the average particle size of the second type particles,
The content of the copper particles with respect to 100 parts by mass of the total amount of the metal particles is 80 parts by mass or more,
A copper paste for pressureless bonding , wherein the content of the first type particles is 20 to 95 parts by mass and the content of the second type particles is 5 to 80 parts by mass with respect to the total amount of 100 parts by mass of the metal particles. .
前記第一種粒子の平均粒子径が3~50μmであり、前記第二種粒子の平均粒子径が0.1~5μmである、請求項1に記載の無加圧接合用銅ペースト。 2. The copper paste for pressureless bonding according to claim 1, wherein the average particle size of the first type particles is 3 to 50 μm, and the average particle size of the second type particles is 0.1 to 5 μm. 前記金属粒子100質量部に対して前記分散媒を5~100質量部含有する、請求項1または2に記載の無加圧接合用銅ペースト。 3. The copper paste for pressureless bonding according to claim 1, which contains 5 to 100 parts by mass of the dispersion medium with respect to 100 parts by mass of the metal particles. 第一部材と第二部材との間に、請求項1~3のいずれか1項に記載の銅ペーストを設けた積層体を準備し、
前記積層体を還元性雰囲気下で加熱して前記銅ペーストを焼結する、無加圧接合方法。
Prepare a laminate provided with the copper paste according to any one of claims 1 to 3 between the first member and the second member,
A pressureless bonding method, wherein the laminate is heated in a reducing atmosphere to sinter the copper paste.
第一部材と第二部材との間に、請求項1~3のいずれか1項に記載の銅ペーストを設けた積層体を準備し、
前記積層体を還元性雰囲気下で加熱して前記銅ペーストを焼結することにより、前記第一部材と前記第二部材とを無加圧接合する、接合体の製造方法。
Prepare a laminate provided with the copper paste according to any one of claims 1 to 3 between the first member and the second member,
A method for manufacturing a joined body, wherein the laminated body is heated in a reducing atmosphere to sinter the copper paste, thereby joining the first member and the second member without pressure .
JP2022001819A 2018-03-29 2022-01-07 Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body Active JP7220310B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018065201 2018-03-29
JP2018065201 2018-03-29
JP2020510704A JPWO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method and manufacturing method of bonded body
PCT/JP2019/011213 WO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method, and method for producing bonded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020510704A Division JPWO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method and manufacturing method of bonded body

Publications (2)

Publication Number Publication Date
JP2022046765A JP2022046765A (en) 2022-03-23
JP7220310B2 true JP7220310B2 (en) 2023-02-09

Family

ID=68061545

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020510704A Pending JPWO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method and manufacturing method of bonded body
JP2022001819A Active JP7220310B2 (en) 2018-03-29 2022-01-07 Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020510704A Pending JPWO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method and manufacturing method of bonded body

Country Status (4)

Country Link
EP (1) EP3778069A4 (en)
JP (2) JPWO2019188511A1 (en)
TW (1) TWI798404B (en)
WO (1) WO2019188511A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391678B2 (en) * 2020-01-24 2023-12-05 大陽日酸株式会社 Bonding material
JP7026739B2 (en) * 2020-08-04 2022-02-28 石原ケミカル株式会社 Joining method, copper sintered body and copper paste
WO2023190450A1 (en) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 Bonded body manufacturing method
KR102674086B1 (en) * 2022-04-01 2024-06-14 (주)호전에이블 Copper sintering paste composition and its manufacturing method
EP4306234A1 (en) 2022-07-15 2024-01-17 Technische Hochschule Ingolstadt Sintering paste and method for producing a sintering paste
KR20240080255A (en) 2022-11-29 2024-06-07 (주)창성 Copper paste composition for ceramic chip components
WO2024142582A1 (en) * 2022-12-28 2024-07-04 三井金属鉱業株式会社 Joining composition and method for producing joined structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286111A (en) 2004-03-30 2005-10-13 Shoei Chem Ind Co Conductive paste for laminates ceramic electronic part terminal electrodes
JP2005298903A (en) 2004-04-12 2005-10-27 Dowa Mining Co Ltd Method for manufacturing copper powder, copper powder and conductive paste
JP2011094236A (en) 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
US20120201759A1 (en) 2011-02-03 2012-08-09 Massachusetts Institute Of Technology Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
JP2014152338A (en) 2013-02-05 2014-08-25 Murata Mfg Co Ltd Nano-wire-provided fine particle and production method thereof
WO2017043545A1 (en) 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device
JP2017103180A (en) 2015-12-04 2017-06-08 日立化成株式会社 Copper paste non-pressure conjugation, conjugation, and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (en) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd Copper conductor paste and substrate printed therewith
JP6199048B2 (en) 2013-02-28 2017-09-20 国立大学法人大阪大学 Bonding material
JP6659026B2 (en) 2015-10-14 2020-03-04 国立大学法人大阪大学 Low temperature joining method using copper particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286111A (en) 2004-03-30 2005-10-13 Shoei Chem Ind Co Conductive paste for laminates ceramic electronic part terminal electrodes
JP2005298903A (en) 2004-04-12 2005-10-27 Dowa Mining Co Ltd Method for manufacturing copper powder, copper powder and conductive paste
JP2011094236A (en) 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
US20120201759A1 (en) 2011-02-03 2012-08-09 Massachusetts Institute Of Technology Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
JP2014152338A (en) 2013-02-05 2014-08-25 Murata Mfg Co Ltd Nano-wire-provided fine particle and production method thereof
WO2017043545A1 (en) 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device
JP2017103180A (en) 2015-12-04 2017-06-08 日立化成株式会社 Copper paste non-pressure conjugation, conjugation, and semiconductor device

Also Published As

Publication number Publication date
EP3778069A4 (en) 2022-04-06
WO2019188511A1 (en) 2019-10-03
TW201942372A (en) 2019-11-01
TWI798404B (en) 2023-04-11
EP3778069A1 (en) 2021-02-17
JP2022046765A (en) 2022-03-23
JPWO2019188511A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7220310B2 (en) Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body
JP7192842B2 (en) COPPER PASTE FOR JOINING, METHOD FOR MANUFACTURING JOINTED BODY, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP6866893B2 (en) Copper paste for bonding, manufacturing method of bonded body and manufacturing method of semiconductor device
JP6848549B2 (en) Copper paste for bonding and semiconductor devices
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
JP7200527B2 (en) METAL PASTE FOR JOINING AND METHOD FOR MANUFACTURING JOINT
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP7392728B2 (en) Copper paste for bonding, method for manufacturing bonded body, and bonded body
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
JP7210842B2 (en) Method for manufacturing joined body, copper paste for forming sintered copper pillars, and joining member with pillars
WO2021066026A1 (en) Copper paste for joining, method for manufacturing joined body, and joined body
WO2020196299A1 (en) Metal paste, bonding method and method for producing bonded body
JP7107355B2 (en) COPPER PASTE FOR NO-PRESSURE JOINING, JOINT, AND SEMICONDUCTOR DEVICE
KR102459748B1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
JP7500943B2 (en) Metal paste for bonding, method for manufacturing bonded body, and bonded body
JP7463681B2 (en) Method for manufacturing joined body and joined body
JP7468358B2 (en) Method for manufacturing bonded body and semiconductor device, and copper paste for bonding
JP2021063262A (en) Metal paste for joining, method for manufacturing joined body, and joined body
JP7508802B2 (en) Metal paste for bonding, bonded body, semiconductor device, and method for manufacturing bonded body
WO2022196653A1 (en) Copper paste for forming sintered copper pillars and method for producing bonded body
JP7127407B2 (en) Joining metal paste, joined body, and method for producing joined body
JP2018172764A (en) Metallic particle aggregate and method for producing the same, paste-like metallic particle composition, and method for producing conjugate
CN111033703A (en) Mounting structure and nanoparticle mounting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7220310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150