JP7209309B2 - Degassing, heating, and high-pressure processing methods for food - Google Patents
Degassing, heating, and high-pressure processing methods for food Download PDFInfo
- Publication number
- JP7209309B2 JP7209309B2 JP2021111234A JP2021111234A JP7209309B2 JP 7209309 B2 JP7209309 B2 JP 7209309B2 JP 2021111234 A JP2021111234 A JP 2021111234A JP 2021111234 A JP2021111234 A JP 2021111234A JP 7209309 B2 JP7209309 B2 JP 7209309B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- sample
- heating
- pressure
- pickled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/90—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/85—Food storage or conservation, e.g. cooling or drying
Landscapes
- General Preparation And Processing Of Foods (AREA)
- Preparation Of Fruits And Vegetables (AREA)
- Beans For Foods Or Fodder (AREA)
- Meat, Egg Or Seafood Products (AREA)
- Storage Of Fruits Or Vegetables (AREA)
- Alcoholic Beverages (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Description
本発明は食品に対する脱気・加熱・高圧処理方法に関する。 The present invention relates to a method for degassing, heating, and high-pressure treatment of food.
特許文献1には、調味料の製造方法として、タンパク質分解酵素を含むか添加された鰯や生牡蠣などの食材を40℃~60℃の温度域で50MPa~100MPaの圧力下で保持することで、微生物の増殖を抑制しながら酵素の作用を促進して調味料の熟成期間を短縮する方法が開示されている。
In
特許文献2には、かぶら寿しなどの魚肉加工製品の製造方法として、ブリなどの魚肉材料に100MPa以下の比較的低い圧力を掛けることで、魚肉材料の組織を破壊し、塩漬などの調味に要する期間を短縮する技術が開示されている。
In
非特許文献1には、30kg/cm2の圧力で密閉される含浸装置を用いた山菜への機能性糖類(5%トレハロースと5%サイクロデキストリン)の注入方法について記載されている。
Non-Patent
非特許文献2、3には、木材に硬化剤を注入する際に利用されていた含浸法を食品の浅漬けに応用することで、野菜(ナス、キュウリなど)の浅漬けを短時間で製造する内容が記載されている。
In
高圧処理によって、短時間のうちに食品の内部まで調味液や酵素を含浸させることができ、また、微生物の増殖を抑制しながら酵素の作用を促進するため、呈味成分の増加や液化処理などが期待できる。
しかしながら、高圧処理を従来の食品の製法に併用する場合は当該従来方法の条件との兼ね合いがあり、また同一の製法であっても個々の食品ごとに含有成分が異なるため、同一の高圧処理の条件で同等の効果が期待できるものではなく、高圧処理を適用する製法及び個々の食品ごとに最適な処理条件が存在する。
High-pressure treatment makes it possible to impregnate the interior of food with liquid seasonings and enzymes in a short period of time. can be expected.
However, when high-pressure treatment is used in combination with conventional food manufacturing methods, there is a balance with the conditions of the conventional method, and even if the same manufacturing method is used, the ingredients contained in each individual food are different. Equivalent effects cannot be expected under different conditions, and there are optimal treatment conditions for each food product and manufacturing method that applies high-pressure treatment.
リンゴ、ウメ、アンズなどの「果実のシロップ漬」にあっては、食感を維持しながら殺菌効果を高めて保存期間を長くしたいという要望がある。 In the case of "fruits pickled in syrup" such as apples, plums and apricots, there is a demand to increase the sterilization effect while maintaining the texture and to extend the storage period.
上記課題を解決すべく、本発明に係る食品の製造に適用する脱気・加熱・高圧処理方法は、前記食品は、和梨またはぶどうのシロップ漬けであり、前記和梨またはぶどうをシロップとともにポリエチレン袋などの容器内に入れて脱気して前記容器内に和梨またはぶどうとシロップのみを保持し、このポリエチレン袋などの容器内に和梨またはぶどうを入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で15分~60分処理する。 In order to solve the above problems, the degassing, heating, and high-pressure treatment method applied to the production of food according to the present invention is that the food is Japanese pears or grapes pickled in syrup, and the Japanese pears or grapes are Put it in a container such as a bag and deaerate, hold only Japanese pears or grapes and syrup in the container, and put the Japanese pears or grapes in a container such as a polyethylene bag at 80 MPa or more and 300 MPa or less, Then, it is treated at 40° C. or higher and 70° C. or lower for 15 to 60 minutes.
本発明に係る脱気・加熱・高圧処理方法によれば、遊離アミノ酸、糖などの旨味(呈味成分)成分を短時間のうちに増加させることができ、特に野菜の奈良漬を本発明方法で製造した場合には、従来1年から1年半かかっていた製造期間を数日に短縮することができる。 According to the degassing/heating/high-pressure treatment method according to the present invention, umami (taste component) components such as free amino acids and sugars can be increased in a short period of time. , the manufacturing period, which used to take one to one and a half years, can be shortened to several days.
また、リンゴ、ウメ、アンズなどの果実のシロップ漬の製造に本発明方法を適用した場合には、殺菌効果を高め保存期間を長くすることができる。 Moreover, when the method of the present invention is applied to the production of syrup-pickled fruits such as apples, plums and apricots, the sterilization effect can be enhanced and the storage period can be extended.
また、畜肉の漬物を本発明方法で製造した場合には、上記の他に肉の食感(柔らかさ)が向上し、豆腐の漬物を本発明方法で製造した場合には、舌でつぶせる程度の硬さでクリームチーズのような食感が得られ且つ遊離アミノ酸を増加させることができ、キノコ加工品を本発明方法で製造した場合には、今まで乾物製法でしかできなかったグアニル酸の増加を水煮においても可能とした。 In addition, when pickled livestock meat is produced by the method of the present invention, the texture (softness) of the meat is improved in addition to the above, and when pickled tofu is produced by the method of the present invention, it can be crushed with the tongue. It is possible to obtain a cream cheese-like texture with a hardness of 1, and to increase free amino acids. The increase was made possible even in boiling water.
更に、魚介類の粕漬けおよびソフトスモーク製品を本発明方法で製造した場合には、高圧加温処理の効果だけでなく、酒粕に含まれるアルコールや薫煙による殺菌効果との相乗効果によって菌の増殖などが抑制される。 Furthermore, when seafood lees pickles and soft smoked products are produced by the method of the present invention, not only the effect of the high pressure heating treatment but also the synergistic effect of the sterilization effect of the alcohol and smoke contained in the sake lees causes the growth of bacteria. etc. is suppressed.
以下に本発明を実施するための最良の形態を、「野菜の奈良漬」、「野菜の浅漬」、「野菜の生醤油漬」、「果実のシロップ漬」、「畜肉の漬物」、「豆腐の漬物」、「キノコの加工品」、これらの追加実験および魚介類の粕漬けとソフトスモークの製造に分けて説明する。 The best mode for carrying out the present invention is described below as ``narazuke of vegetables'', ``lightly pickled vegetables'', ``raw soy sauce pickled vegetables'', ``fruits pickled in syrup'', ``pickled meat'', and ``tofu. pickles,” “processed mushroom products,” additional experiments on these, and production of pickled fish and shellfish in sake lees and soft smoke.
野菜の奈良漬
1.実験方法
1-1 試料の調整
野菜として、ナス、ダイコン及びウリを用意し、天日乾燥や脱気処理によって植物組織内部の空気を抜き、粕床の成分の浸透が促進されるようにし、特に表面がツルツルのナスについては、剣山で多数の穴をあけるか、沸騰水中で一度煮て冷やす(ブランチング処理)ことで粕床の成分の浸透を速めた。
Narazuke of
1-2 加工処理
ナスについては、粕床を塗りポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、70℃、60時間の条件で加熱・高圧処理を施した。
ダイコンについては、粕床を塗りポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、70℃、18時間の条件で加熱・高圧処理を施した。
ウリについては、加熱処理で短期に製造した粕床を用いた。この粕を塗りポリエチレン袋に入れた後に脱気し、次いでポリエチレン袋に入れた状態で、100MPa、50℃、60時間の条件で加熱・高圧処理を施した。
1-2 Processing The eggplants were coated with a lees bed and placed in a polyethylene bag, degassed, and then placed in the polyethylene bag and subjected to heat and high pressure treatment under conditions of 100 MPa, 70° C., and 60 hours.
The radish was coated with a lees bed and placed in a polyethylene bag, then degassed. While placed in the polyethylene bag, it was subjected to heating and high pressure treatment under the conditions of 100 MPa, 70° C., and 18 hours.
For cucumbers, we used the lees bed that was produced in a short period of time by heat treatment. After applying this dregs and placing it in a polyethylene bag, it was degassed, and then, while it was placed in a polyethylene bag, it was subjected to heat and high pressure treatment under the conditions of 100 MPa, 50° C., and 60 hours.
粕床を短期間で製造するには、10%の砂糖と5%の食塩を添加し、70℃以上の高温で数時間~数日間処理し、メイラード反応を促進させた。通常の粕床の調製には長期間を要するが、本実施例の方法によれば奈良漬粕床独特の風味を有する促成粕床を数時間~数日で作ることができる。
上記の促成粕床を使用した場合には、GC-MSで分析すると、特有な成分(図1の枠で囲った成分)が検出されるので、従来品との判別が容易である。
In order to produce the lees bed in a short period of time, 10% sugar and 5% salt were added and treated at a high temperature of 70° C. or higher for several hours to several days to accelerate the Maillard reaction. It takes a long time to prepare ordinary lees bed, but according to the method of this embodiment, a forced lees bed having a unique flavor of Narazuke lees bed can be produced in several hours to several days.
When the forged lees bed is used, GC-MS analysis detects specific components (the components enclosed in the frame in FIG. 1), making it easy to distinguish from the conventional product.
また以下の(表1)は粕を加熱・高圧処理した際のバチルス胞子の殺菌効果を示すもの
であり、この表から100MPa、65℃以上、60時間の条件でバチルス胞子を検出しなくなることが分かる。
In addition, the following (Table 1) shows the sterilization effect of Bacillus spores when the dregs are heated and high pressure treated, and from this table, Bacillus spores can no longer be detected under the conditions of 100 MPa, 65 ° C. or higher, and 60 hours. I understand.
2. 試験結果・考察
図2は従来の製法と本発明の加熱・高圧処理方法を比較した図であり、本発明方法では、塩、ミリン入りの吟醸粕を用いて1工程で塩漬する方法と、塩、ミリン入りの酒粕で塩漬した後、吟醸粕に漬け込む2工程で行った。何れの場合も伝統的手法の製造期間(1年から1年半)を大幅に短縮できた。
2. Test results and discussion Fig. 2 is a diagram comparing the conventional method and the heat and high pressure treatment method of the present invention. In the method of the present invention, ginjo lees containing salt and mirin are salted in one step. After pickling in sake lees containing salt and mirin, it was pickled in ginjo lees. In both cases, the production period (one year to one and a half years) of the traditional method could be greatly shortened.
図3は上記の加熱・高圧処理で製造したナス、ダイコン及びウリの写真であり、何れの奈良漬も味、香り、食感が従来の伝統的手法で製造した奈良漬と遜色がなかった。 Fig. 3 is a photograph of the eggplant, radish and gourd produced by the above heat and high pressure treatment, and all narazuke were comparable in taste, aroma and texture to narazuke produced by conventional traditional methods.
以下の(表2)は加熱・高圧処理で製造したナスの奈良漬の一般生菌数及び酵母数の測定結果を示し、この表から本発明方法によって製造した奈良漬は実質的に無菌であることが分かる。 The following (Table 2) shows the measurement results of the number of viable bacteria and the number of yeasts in Narazuke of eggplant produced by heat and high pressure treatment. From this table, Narazuke produced by the method of the present invention is substantially sterile. I understand.
図4は加熱・高圧処理の殺菌原理を説明した図であり、常温では芽胞菌の一部しか発芽しないが、加熱では全ての芽胞菌が発芽する。そして、一旦発芽した細菌は途中で止まることがなく且つ発芽した菌は50℃以上の加熱処理で死滅する。
従来の常温常圧処理では最終的に高温で殺菌しなければならなかったが、加熱・高圧処理の場合は、高温処理が不要のため、殺菌処理に伴う食品の品質劣化を防止することができる。
FIG. 4 is a diagram illustrating the principle of sterilization by heating and high-pressure treatment. At room temperature, only a portion of spore-forming bacteria germinate, but with heating, all spore-forming bacteria germinate. Once germinated bacteria do not stop on the way, and the germinated bacteria are killed by heat treatment at 50° C. or higher.
Conventional normal temperature and pressure treatment requires final sterilization at high temperature, but in the case of heat and high pressure treatment, high temperature treatment is not required, so it is possible to prevent food quality deterioration that accompanies sterilization. .
3.100MPa以上の処理での効果
前記段落(0025)以降に記載した野菜の奈良漬けの製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表3に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the vegetable narazuke manufacturing method described in paragraph (0025) and after was examined by changing only the pressure condition of the high pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 3 were obtained. It was confirmed that the invention is also effective in the pressure range of 100-300 MPa.
咀嚼困難者用野菜の浅漬
1.実験方法
1-1 試料の調整
野菜として、ニンジン、ナス及びダイコンを用意し、厚さ約1cmにカットした。
Lightly Pickled Vegetables for People with Difficulties in
1-2 加工処理
上記のカットした野菜を調味液(市販の浅漬けの素)およびペクチナーゼとともにポリエチレン袋に入れた後に脱気引きし、このポリエチレン袋に入れた状態で、100MPa、50℃、15分の条件で加熱・高圧処理を施した。
この後、各野菜に0.1MPa、3~15時間の常圧加熱理を施した。具体的にはニンジンについては15時間、ナスについては3時間、ダイコンについては3時間及び5時間の二種類の処理を施した。
更にその後、沸騰水中で5分間加熱処理することで、酵素を失活させた。
1-2 Processing Treatment The above cut vegetables were placed in a polyethylene bag together with a seasoning liquid (commercially available lightly pickled base) and pectinase, degassed, and placed in the polyethylene bag. Heating and high-pressure treatment were performed under conditions of minutes.
After that, each vegetable was subjected to normal pressure heating at 0.1 MPa for 3 to 15 hours. Specifically, carrots were treated for 15 hours, eggplants for 3 hours, and radishes for 3 hours and 5 hours.
After that, the enzyme was deactivated by heating in boiling water for 5 minutes.
2. 試験結果・考察
図5は上記の本発明方法に係る加熱・高圧処理によって製造した野菜の浅漬の写真である。
図5に示した野菜は、表4に示す通り、いずれも咀嚼困難者でも喫食可能な口溶する程に極めて柔らかく、しかも殺菌効果も確認でき長期保存が可能であった。
2. Test Results and Discussion FIG. 5 is a photograph of lightly pickled vegetables produced by the heat and high pressure treatment according to the method of the present invention.
As shown in Table 4, all of the vegetables shown in FIG. 5 were extremely soft enough to melt in the mouth so that even those with difficulty chewing could eat them.
3.100MPa以上の処理での効果
前記段落(0037)以降に記載した野菜の浅漬けの製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表4に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method for producing lightly pickled vegetables described in paragraph (0037) and after was examined by changing only the pressure condition of the high pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 4 were obtained. It was confirmed that the present invention is effective even in the pressure range of 100-300 MPa.
野菜の生醤油漬
1.実験方法
1-1 試料の調整
野菜として、ニンジン、ダイコン、キュウリ、ナス、ゴボウ、ナガイモ及びレンコンを用意し、厚さ0.5~1cmにカットした。
1-2 加工処理
図6に示すように、厚さ0.5~1cmにカットした上記野菜を日干する。この工程により水分が除去され、調味液(生醤油オリ)が浸透しやすくなる。
次いで、上記のカットした野菜を調味液(生醤油オリ)とともにポリエチレン袋に入れた後に脱気引きし、このポリエチレン袋に入れた状態で、100MPa、50℃、20分の条件で脱気・加熱・高圧処理を施した。
図7は、0.5cm厚に切った天日干しダイコンと1cm厚に切った天日干しダイコンの脱気・加熱・高圧処理の条件を変化させた場合の、処理直後と翌日の、色調及び塩分を測定した結果を示すグラフである。このグラフから、本発明方法によって、調味液(生醤油オリ)がダイコンに容易に浸透することが分かる。
また図8は、前記ダイコンを含む各種野菜について脱気・加熱・高圧処理により調味液(生醤油オリ)を浸透させた結果を示すグラフである。このグラフから、本発明方法はダイコン以外にも有効であることが分かる。
Vegetables Pickled in
1-2 Processing As shown in FIG. 6, the above vegetables cut into 0.5-1 cm thickness are dried in the sun. This process removes moisture, making it easier for the seasoning liquid (raw soy sauce) to permeate.
Next, the above-mentioned cut vegetables were placed in a polyethylene bag together with a seasoning liquid (raw soy sauce), degassed, and degassed and heated under the conditions of 100 MPa, 50° C., and 20 minutes while being placed in the polyethylene bag.・High pressure treatment is applied.
Figure 7 shows the color tone and salt content of the sun-dried radish cut into 0.5 cm thickness and the sun-dried radish cut into 1 cm thickness, immediately after the treatment and the next day, when the conditions of degassing, heating, and high pressure treatment are changed. It is a graph which shows the measured result. From this graph, it can be seen that the method of the present invention allows the seasoning liquid (raw soy sauce) to easily permeate the radish.
FIG. 8 is a graph showing the results of infiltration of seasoning liquid (raw soy sauce) into various vegetables including the radish by degassing, heating, and high-pressure treatment. From this graph, it can be seen that the method of the present invention is effective for other than radish.
2. 試験結果・考察
図6、図7及び図8に示すように、野菜に調味液の色調および塩分が均一に浸透し、製造期間も従来の2週間程度から20分まで大幅に短縮できた。しかも、表5に示すように殺菌効果も確認でき、長期保存が可能であった。
2. Test results and discussion As shown in Figures 6, 7 and 8, the color tone and salt content of the seasoning liquid permeated the vegetables uniformly, and the production period was greatly shortened from about two weeks to 20 minutes. . Moreover, as shown in Table 5, a bactericidal effect was confirmed, and long-term storage was possible.
3.ダイコンの形状別による比較例
上記とは別に調味液の浸透に関し、特にダイコンについて検討した。
材料としては石川農研産のフクホマレを3cm圧の輪切りにし、これを外観写真用と、塩分・色差測定用に分け、調味液としては直源醤油(株)製の濃口醤油を用い、濃度は20%、40%、60%、80%、100%とし、加熱・高圧処理としては、100MPa、30℃または50℃、24時間とした。
3. Comparative Examples by Different Shapes of Radish In addition to the above, the permeation of the seasoning liquid was investigated, especially the radish.
As a material, Fukuhomare produced by Ishikawa Agricultural Research Institute was cut into round slices with a thickness of 3 cm. 20%, 40%, 60%, 80% and 100%, and the heat/high pressure treatment was 100 MPa, 30° C. or 50° C. for 24 hours.
図9はダイコンへの醤油浸透効果を示す写真であり、図10はダイコンへの醤油浸透効果を比較したグラフであり、この写真及びグラフから処理温度が30℃から50℃に高くなり、且つ調味液の濃度を濃くすることで、内外の浸透効果が均一化されることが分かる。しかし、塩濃度が高いために漬け物食品としては適さない。 FIG. 9 is a photograph showing the effect of soy sauce permeation into radish, and FIG. 10 is a graph comparing the effect of soy sauce permeation into radish. It can be seen that increasing the concentration of the liquid equalizes the permeation effect inside and outside. However, it is not suitable as a pickled food due to its high salt concentration.
また図11はダイコンに切れ目を入れた場合の効果を示す写真とグラフであり、この図11から切れ目を入れることで、外側と内側の彩度の差が小さくなり、浸透性が向上することが分かる。しかし、この方法でも十分に内部まで調味液が浸透しなかった。 FIG. 11 is a photograph and a graph showing the effect of making cuts in the radish. By making cuts in FIG. I understand. However, even with this method, the liquid seasoning did not sufficiently permeate into the interior.
4.100MPa以上の処理での効果
前記段落(0038)以降に記載した野菜の生醤油漬けの製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表5に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
4. Effect of treatment at 100 MPa or more When the method for pickling vegetables in raw soy sauce described in paragraph (0038) and after was examined by changing only the pressure condition of the high pressure treatment condition in the range of 100 to 300 MPa, the results are shown in Table 5. , confirmed that the present invention is effective even in the pressure range of 100 to 300 MPa.
果実のシロップ漬
1.実験方法
1-1 試料の調整
果実としてリンゴ(シナノゴールドなど)、アンズ(信山丸など)、ウメ(石川1号など)を用意した。
Syrup Pickling of
1-2 加工処理
リンゴ、アンズ、ウメのそれぞれをシロップとともにポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、65℃~75℃、30分~60分の条件で加熱・高圧処理を施した。
1-2 Processing Apples, apricots, and plums were each placed in a polyethylene bag together with syrup, deaerated, and placed in the polyethylene bag under the conditions of 100 MPa, 65°C to 75°C, and 30 minutes to 60 minutes. It was subjected to heat and high pressure treatment.
2. 試験結果・考察
2-1 自滅的発芽殺菌効果
リンゴシロップ漬素材に107~108CFU/gのBacillus subtilis芽胞を接種し、各処理後に自滅的発芽殺菌効果を検討した。結果を図12に示す。
この図12から、脱気・加熱・高圧処理した場合は常温常圧または加熱常圧処理に比べ殺菌効果が高く、具体的には2log(CFU/g)程度の殺菌効果があることが分かる。特にシロップの濃度は薄いほど殺菌効果が高くなることを示している。
2. Test results and discussion 2-1 Self-defeating
From FIG. 12, it can be seen that the degassing/heating/high pressure treatment has a higher sterilizing effect than the normal temperature/normal pressure treatment or the heating/normal pressure treatment, and specifically has a sterilizing effect of about 2 log (CFU/g). In particular, the lower the syrup concentration, the higher the bactericidal effect.
図13はシロップの代替品として高甘味度甘味料であるスクラロース水溶液を用い、これに酸味料(フィチン酸)を添加した場合の自発的発芽誘導殺菌効果の結果を示すグラフであり、このグラフから、酸味料を添加した低濃度の甘味料を用い、脱気・加熱・高圧処理することで大幅に殺菌効果が高まることが分かる。 FIG. 13 is a graph showing the results of the spontaneous germination-inducing bactericidal effect when an aqueous solution of sucralose, which is a high-intensity sweetener, is used as a substitute for syrup, and an acidulant (phytic acid) is added thereto. , It can be seen that the sterilization effect is greatly enhanced by using a low-concentration sweetener with an added acidulant and degassing, heating, and high-pressure treatment.
2-2.リンゴに対する脱気・加熱・高圧処理
リンゴの種類は、つがる、秋映、シナノスイート、シナノゴールド及びふじの5種類を用
意した。
上記の5種類に対し、100MPa、65℃、30分間の脱気・加熱・高圧処理を施し、果汁とシロップの糖度及び酸度を比較した。結果を図14に示す。
図14から糖度については加熱・高圧処理の温度が高いほど果汁とシロップの糖度が近くなり、酸度については品種によって影響されることが分かる。
2-2. Degassing, Heating, and High-Pressure Treatment of Apples Five types of apples were prepared: Tsugaru, Shuuei, Shinanosweet, Shinanogold, and Fuji.
The above five types were subjected to degassing, heating and high pressure treatment at 100 MPa, 65° C. for 30 minutes, and the sugar content and acidity of fruit juice and syrup were compared. The results are shown in FIG.
From FIG. 14, it can be seen that the higher the temperature of the heating/high-pressure treatment, the closer the sugar content of the fruit juice and the syrup, and that the acidity is affected by the variety.
表6はリンゴの脱気・加熱・高圧処理の製造温度と保存期間を変化させた場合の菌の検出結果を示すグラフであり、表7は表6の保存期間が0ヶ月の場合、表8は保存期間が4ヶ月の場合を示す。これらの表から常温での保存は3ヶ月、好ましくは2ヶ月が安全と考えられる。 Table 6 is a graph showing the results of bacteria detection when the production temperature and storage period of apple degassing, heating, and high pressure treatment are changed. indicates that the storage period is 4 months. From these tables, storage at room temperature for 3 months, preferably 2 months, is considered safe.
また、図15は表6の4ヶ月(製造温度65℃、保存温度25℃)の場合の「果実」側での菌の状態を示す写真、図16は表6の4ヶ月(製造温度65℃、保存温度25℃)の場合の「シロップ」側での菌の状態を示す写真、図17は表6の4ヶ月(製造温度70℃、保存温度25℃)の場合の「シロップ」側での菌の状態を示す写真である。
In addition, FIG. 15 is a photograph showing the state of bacteria on the “fruit” side in the case of 4 months in Table 6 (manufacturing temperature 65 ° C.,
2-3.硬度向上(保持)
ふじとシナノゴールドに対し、硬度を向上させるため乳酸カルシウムを添加したところ、良好な結果が得られた。
2-3. Hardness improvement (retention)
Calcium lactate was added to Fuji and Shinano Gold to improve hardness, and good results were obtained.
2-4.保存性
表9は本発明方法の加熱・高圧処理を施したリンゴを5℃と常温(25℃)で保存した場合の、微生物の検出結果を示す表である。
2-4. Preservability Table 9 is a table showing the detection results of microorganisms when apples subjected to heat and high pressure treatment according to the method of the present invention were preserved at 5°C and room temperature (25°C).
この表9から、5℃で保存した場合は6ヶ月近く微生物が繁殖しないことが分かる。また常温で保存しても3ヶ月間は確保される。また、表9からは5℃で保存したリンゴは6ヶ月後も殆ど外観が変化しないことが分かる。 From Table 9, it can be seen that microorganisms do not propagate for nearly 6 months when stored at 5°C. In addition, even if it is stored at room temperature, it is ensured for 3 months. Moreover, it can be seen from Table 9 that the apples stored at 5°C show almost no change in appearance even after 6 months.
2-5.アンズに対する脱気・加熱・高圧処理
アンズと40%シロップを脱気包装後、100MPa、65~75℃、30~60分の脱気・加熱・高圧処理を行った。その結果、図18に示すように生の食感や、生の風味を持ったシロップ漬が得られた。
冷凍したアンズとホワイトリカーを合わせて、100MPa、65℃、30~120分の脱気・加熱・高圧処理を行った。その結果、図19に示すように高い有機酸抽出効果により、アンズ風味のリキュールが得られた。
表10はアンズ(品種:平和)のシロップ漬の殺菌効果を示すものである。この表から、本発明方法の脱気・加熱・高圧処理法はオートクレーブ処理と同程度の殺菌効果があることが分かる。
2-5. Degassing/heating/high-pressure treatment for apricots After degassing and packaging apricots and 40% syrup, they were subjected to degassing/heating/high pressure treatment at 100 MPa at 65-75°C for 30-60 minutes. As a result, as shown in FIG. 18, syrup pickles with raw texture and raw flavor were obtained.
The frozen apricots and white liquor were combined and subjected to degassing, heating, and high-pressure treatment at 100 MPa, 65° C., and 30 to 120 minutes. As a result, as shown in FIG. 19, an apricot-flavored liqueur was obtained due to the high organic acid extraction effect.
Table 10 shows the bactericidal effect of apricots (cultivar: Heiwa) pickled in syrup. From this table, it can be seen that the degassing/heating/high-pressure treatment method of the present invention has a sterilization effect equivalent to that of the autoclave treatment.
表11はアンズシロップ漬の保存期間0カ月の場合の菌数のデータであり、表12は保存試験の結果を表す表である。 Table 11 shows data on the number of bacteria in apricot syrup soaked for 0 months, and Table 12 shows the results of the storage test.
アンズ及びウメの脱気・加熱・高圧処理したシロップ漬に対しシアン化合物の分析を行った。結果は図20に示すように、果肉中のシアン化合物は未加工原料に比べてほとんど増加していなかった。
また、図21はアンズシロップ漬の写真である。
Degassed, heated, and high-pressure-treated apricots and plums pickled in syrup were analyzed for cyanide. As a result, as shown in FIG. 20, cyanide in the pulp was hardly increased compared to the unprocessed raw material.
Moreover, FIG. 21 is a photograph of pickled apricots in syrup.
2-6.ウメのシロップ漬
図22はウメのシロップ漬の一例を示す図であり、この実施例にあっては、急速冷凍した青ウメまたは黄熟ウメを材量とし、この冷凍ウメの芯の部分を刳り抜く穴あけ処理を行い、次いでブランチング水晒しし、この後、加熱・高圧処理を行う。加熱・高圧処理の条件は、100MPa、65℃、30分とする。この後、常圧、50℃、40時間静置し果実とシロップの味を均一にした。
2-6. Plum pickled in syrup Fig. 22 is a diagram showing an example of plum pickled in syrup. The part is hollowed out, followed by blanching water exposure, followed by heating and high pressure treatment. The conditions for the heating/high pressure treatment are 100 MPa, 65° C., and 30 minutes. After that, it was allowed to stand at normal pressure at 50° C. for 40 hours to make the flavors of the fruit and syrup uniform.
表13は加熱・高圧処理を行なわない生ウメの保存試験の結果を示す表であり、表14は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(0ヶ月)を示す表であり、表15は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(1ヶ月)を示す表であり、表16は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(2ヶ月)を示す表であり、表17は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(3ヶ月)を示す表であり、表18は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(4ヶ月)を示す表である。 Table 13 is a table showing the results of a storage test of raw plums not subjected to heat and high pressure treatment, and Table 14 is a table showing the results of a storage test (0 months) of plums soaked in syrup that were subjected to heat and high pressure treatment. Table 15 is a table showing the results (one month) of storage tests of plums soaked in syrup that were subjected to heat and high pressure treatment, and Table 16 is the results of storage tests of plums soaked in syrup that were subjected to heat and high pressure treatment. (2 months), Table 17 is a table showing the results of a storage test (3 months) of plums soaked in syrup subjected to heat and high pressure treatment, and Table 18 is a table showing syrup subjected to heat and high pressure treatment. It is a table|surface which shows the result (4 months) of the preservation|save test of the pickled plum.
また図23は、5℃で4ヶ月保存したウメシロップ漬けの写真、図24は25℃で4ヶ月保存したウメシロップ漬けの写真である。 FIG. 23 is a photograph of plum syrup-preserved at 5° C. for 4 months, and FIG. 24 is a photograph of plum syrup-preserved at 25° C. for 4 months.
図25は穴あけ加工したウメと穴あけ加工しないウメのシロップ漬け後の形状を比較した写真であり、穴あけ処理することで、見栄えの良いシロップ漬が得られる。 FIG. 25 is a photograph showing a comparison of the shapes of plums that have been punched and those that have not been punched after being pickled in syrup.
2-5.和ナシのシロップ漬
加熱・高圧処理の条件は、100MPa、65℃、30分とする。この後、常圧、50℃、40時間静置し果実とシロップの味を均一にした。
図26は上記の製造方法を適用して製造した和ナシのシロップ漬の写真である。さらに、表19で示す通り、本発明で行った和ナシのシロップ漬は、殺菌効果が向上した。
2-5. The conditions for heating and high-pressure treatment of Japanese pears in syrup are 100 MPa, 65° C., and 30 minutes. After that, it was allowed to stand at normal pressure at 50° C. for 40 hours to make the flavors of the fruit and syrup uniform.
FIG. 26 is a photograph of Japanese pears pickled in syrup produced by applying the above production method. Furthermore, as shown in Table 19, the sterilization effect of Japanese pears soaked in syrup according to the present invention was improved.
3.100MPa以上の処理での効果
前記段落(0049)以降に記載した果実のシロップ漬製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表19に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the fruit syrup production method described in paragraph (0049) and after was examined by changing only the pressure condition of the high pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 19 were obtained. It was confirmed that the invention is also effective in the pressure range of 100-300 MPa.
ウメ酒
上記ではウメをシロップ漬けすることを説明したが、本発明はウメ酒を製造する場合にも応用できる。
即ち、従来はウメ、砂糖、酒の3種の材料を混合して、常温常圧で72時間(3日間)処理し、その後3ヶ月程度熟成させていたが、本発明方法によれば、図27に示すように
、ウメと砂糖をパックに入れ、脱気・加熱・高圧処理(100MPa、50℃、72時間)することでエキスが抽出され、これを酒と混合することでウメ酒ができる。
ウメと砂糖の割合、処理条件は、例えばウメ(果肉)100gに対し砂糖を100~300g、圧力は100MPa以上、加熱温度は35~65℃、高圧処理時間は24~72時間とするのが好ましい。
結果は、図28-1、図28-2、図28-3図28-4、図29、図30に示すように、従来法(72時間)では、ウメのエキス(酸、ポリフェノール)は十分に抽出されていないが、本発明法(72時間)ではかなり抽出できている。同じく、熟成の目安であるショ糖の分解は、従来法ではほとんど起きていないが、中高圧法ではかなり進んでいる。更に色(b*値、褐色の指標)は、従来法より中高圧法の方が濃い。本発明法は1ヶ月熟成させると、従来法で3ヶ月以上熟成させたものと、ほぼ同等の色の濃さになることが分かる。
このように本発明方法により梅酒の熟成が早く進む理由は、ウメからエキス(酸、ポリフェノール)や熟成を促進させる酵素(糖分解酵素(インベルターゼ))が迅速に抽出され、加熱・高圧圧処理下では、糖の分解が早く進行するためである。
Plum wine While the above has described pickling plums in syrup, the present invention can also be applied to the production of plum wine.
That is, conventionally, three ingredients of plum, sugar, and sake are mixed, treated at normal temperature and pressure for 72 hours (3 days), and then aged for about 3 months. As shown in Figure 27, ume and sugar are put in a pack, deaerated, heated, and subjected to high pressure treatment (100 MPa, 50°C, 72 hours) to extract an extract, which is mixed with sake to make umeshu. .
The ratio of ume and sugar and the treatment conditions are, for example, 100 to 300 g of sugar per 100 g of ume (fruit pulp), pressure of 100 MPa or more, heating temperature of 35 to 65° C., and high pressure treatment time of 24 to 72 hours. .
As a result, as shown in Figures 28-1, 28-2, 28-3, 28-4, 29, and 30, the conventional method (72 hours) was sufficient for plum extract (acid, polyphenol). However, it can be extracted considerably by the method of the present invention (72 hours). Similarly, decomposition of sucrose, which is a measure of maturation, hardly occurs in the conventional method, but it progresses considerably in the medium-high pressure method. Furthermore, the color (b* value, index of brown color) is darker in the medium-high pressure method than in the conventional method. It can be seen that when the method of the present invention is aged for 1 month, the color depth is almost the same as that of the conventional method aged for 3 months or longer.
The reason why the ripening of umeshu proceeds quickly by the method of the present invention is that extracts (acids, polyphenols) and enzymes that promote ripening (sugar-degrading enzymes (invertase)) are rapidly extracted from ume plums, and are processed under heat and high pressure. This is because the decomposition of sugar proceeds quickly.
3.100MPa以上の処理での効果
前記段落(0083)以降に記載したウメ酒の製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表20に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method for producing plum wine described in paragraph (0083) and after was examined by changing only the pressure condition of the high-pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 20 were obtained. is effective even in the pressure range of 100 to 300 MPa.
畜肉の漬物
1.豚肉の漬物
1-1 実験方法
1-1-a 試料の調整
加工処理に先立ち、約1cm厚にスライスした豚ロース肉の両面に、下記表21に示す調味液を肉の2/3重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、脱気度99%の脱気包装を行った。
pickled meat
1. Pork pickles 1-1 Experimental method 1-1-a Preparation of samples Prior to processing, the seasoning liquid shown in Table 21 below is applied to both sides of the pork loin sliced to a thickness of about 1 cm, and 2/3 weight of the meat is applied. It was placed in a polyethylene bag and deaerated and packaged with a deaeration degree of 99% using a deaeration packaging machine.
ここでは、豚肉の厚さを1cm、調味液の量を畜肉の2/3重量としたが、本発明はこの豚肉の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。 Here, the thickness of the pork is 1 cm and the amount of the seasoning liquid is 2/3 of the weight of the meat, but the present invention is not limited to the thickness of the pork and the amount of the seasoning liquid. Any degree of vacuum may be used as long as the air in the bag is sufficiently removed.
1-1-b 加工処理
脱気包装した試料に対して、下記表22に示す加工処理を行った。従来法では、調味液に味噌液を用いて、冷蔵庫内(常圧、4℃)にて72時間保管した。例1~3では、調味液に味噌液を用いて、100MPaの加熱・高圧処理を、それぞれ35、45、55℃の処理温度で、16時間行った。
例4では、調味液に100℃で10分間加熱して酵素類を失活させた加熱味噌液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。
例5では、調味液に味噌液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、1時間行った。
例6では、調味液に酒粕液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。
例7では、調味液に塩麹を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
1-1-b Processing The deaerated packaged sample was processed as shown in Table 22 below. In the conventional method, miso liquid was used as the seasoning liquid and stored in a refrigerator (normal pressure, 4° C.) for 72 hours. In Examples 1 to 3, miso liquid was used as the seasoning liquid, and heat/high pressure treatment at 100 MPa was performed at treatment temperatures of 35, 45, and 55° C. for 16 hours.
In Example 4, the seasoning liquid was heated at 100°C for 10 minutes to inactivate the enzymes, and a heated miso paste was used.
In Example 5, miso liquid was used as the seasoning liquid, and heat treatment at 100 MPa and high pressure was performed at a treatment temperature of 45° C. for 1 hour.
In Example 6, sake lees liquid was used as the seasoning liquid, and heat treatment at 100 MPa and high pressure was performed at a treatment temperature of 45° C. for 16 hours.
In Example 7, salt koji was used as the seasoning liquid, and heat treatment at 100 MPa and high pressure was performed at a treatment temperature of 45° C. for 16 hours. The heating and high pressure treatment was performed using "Marugoto Extract TFS-20" manufactured by Toyo Koatsu Co., Ltd.
1-1-C 呈味成分の測定
従来法および例1~3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度およびグルコース濃度を測定した。
具体的には、各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液に含まれる主要なアミノ酸20種の合計濃度を測定し、元の試料に含まれる遊離アミノ酸濃度に換算した。アミノ酸は日立高速アミノ酸分析計L-8900を用いて測定した。また、定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
1-1-C Measurement of Taste Components Samples processed by the conventional method and Examples 1 to 3 were used to measure free amino acid concentration and glucose concentration as taste components.
Specifically, after homogenizing the meat after each treatment, 5 ml of an 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered, and the clarified liquid was brought to a constant volume of 50 ml. The total concentration of 20 major amino acids contained in the constant-volume liquid was measured and converted to the concentration of free amino acids contained in the original sample. Amino acids were measured using a Hitachi high-speed amino acid analyzer L-8900. Further, the glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined.
1-1-d 食感分析
従来法および例1~7の加工処理を行った試料を用いて、食感の目安として「硬さ」と「噛み切りやすさ」を測定した。
具体的には、各処理を行った肉から調味液を取り除き、肉表面の水分をペーパータオルでふき取った後、試料を新しいプラスチック袋に入れて脱気包装(真空度99%)した。
包装した試料を70℃で1時間湯煎した後、流水で30分間冷却し、カミソリを用いて肉をおおよそ1cm角に切断した。切断した試料を、レオメーター(株)サン科学製CR-500DX)を用いて、カミソリの刃の付いていない側で、筋線維に対して垂直方向に9mm圧縮し、5mm圧縮したときの応力を「硬さ」の指標に、切断したときの応力(せん断応力)を「噛み切りやすさ」の指標にした。
1試料あたり1cm角切片を12個測定し、最大値と最小値を除いた10個の平均値をその試料の測定値とした。以上の操作を1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
1-1-d Texture Analysis Using the samples processed by the conventional method and Examples 1 to 7, "hardness" and "easy to bite off" were measured as indicators of texture.
Specifically, after removing the seasoning liquid from each processed meat and wiping off moisture on the surface of the meat with a paper towel, the sample was placed in a new plastic bag and degassed and packaged (vacuum degree 99%).
After the packaged sample was boiled in hot water at 70° C. for 1 hour, it was cooled with running water for 30 minutes, and the meat was cut into approximately 1 cm squares using a razor. Using Rheometer CR-500DX manufactured by Sun Science Co., Ltd., the cut sample was compressed by 9 mm in the direction perpendicular to the muscle fiber on the side without a razor blade, and the stress when compressed by 5 mm was measured. As an index of "hardness", the stress (shear stress) at the time of cutting was used as an index of "easy to bite off".
Twelve pieces of 1 cm square were measured for each sample, and the average value of 10 pieces excluding the maximum and minimum values was used as the measured value of the sample. The above operation was repeated 3 times per treatment, and the average value and standard deviation were obtained.
1-2. 試験結果・考察
1-2-a 遊離アミノ酸濃度
図31に、従来法および例1~3の加工処理を行った試料の遊離アミノ酸濃度を示す。
従来法および例1~3では、処理前の生肉よりも遊離アミノ酸濃度が上昇しており、例1~3は、従来法よりも処理時間が大幅に短いにも関わらず、遊離アミノ酸濃度が従来法よりも高かった。
また、例1~3の中では、処理温度の最も高い例3が最も遊離アミノ酸濃度が高かった。従って、加熱・高圧処理を利用した例1~3では、従来法よりも短時間で旨味成分を増やすことができ、処理温度は55℃が最も旨味成分が増加すると考えられる。
1-2. Test Results/Discussion 1-2-a Free Amino Acid Concentration FIG.
In the conventional method and Examples 1 to 3, the free amino acid concentration is higher than that of the raw meat before treatment. higher than the law.
Among Examples 1 to 3, Example 3, which was treated at the highest temperature, had the highest concentration of free amino acids. Therefore, in Examples 1 to 3 using heat and high pressure treatment, the umami component can be increased in a shorter time than the conventional method, and the treatment temperature of 55° C. is considered to increase the umami component the most.
1-2-b グルコース濃度
図32に、従来法および例1~3の加工処理を行った試料のグルコース濃度を示す。
従来法および例1~3では、処理前の生肉よりもグルコース濃度が上昇しており、例1~3は、従来法よりも処理時間が大幅に短いにも関わらず、グルコース濃度が従来法とおおよそ同じ程度になっていた。また、例1~3の中では、処理温度の最も高い例3が最もグルコース濃度が高かった。従って、加熱・高圧処理を利用した例1~3では、従来法よりも短時間で調味液中のグルコース濃度を上昇させることができると考えられる。
1-2-b Glucose Concentration FIG. 32 shows the glucose concentrations of the samples processed by the conventional method and Examples 1-3.
In the conventional method and Examples 1 to 3, the glucose concentration is higher than the raw meat before treatment, and in Examples 1 to 3, the glucose concentration is higher than the conventional method, although the treatment time is significantly shorter than the conventional method. It was about the same. Further, among Examples 1 to 3, Example 3 with the highest treatment temperature had the highest glucose concentration. Therefore, in Examples 1 to 3 using heat and high pressure treatment, it is considered that the glucose concentration in the seasoning liquid can be increased in a shorter time than the conventional method.
1-2-c 処理温度による加熱後の硬さの変化
図33に、従来法および例1~4の加工処理を行った試料の、加熱後の硬さを示す。
従来法は無処理とほぼ同じ硬さであったが、例1~3は無処理よりも柔らかくなっていた。また、例1~3の中では、例2、例3が最も柔らかくなり、無処理のおおよそ半分の硬さになった。さらに、加熱して味噌の酵素を失活させた例4は、例2と同じ加工処理を行ったにもかかわらず、無処理とほぼ同じ硬さであった。したがって、例1~3において加熱後の肉が柔らかくなったのは、調味液に含まれる酵素と加工処理(加熱・高圧処理)の相乗効果によるものと考えられる。
1-2-c Change in Hardness after Heating Depending on Treatment Temperature FIG. 33 shows the hardness after heating of the samples processed by the conventional method and Examples 1-4.
The hardness of the conventional method was almost the same as that of no treatment, but Examples 1 to 3 were softer than those of no treatment. Further, among Examples 1 to 3, Examples 2 and 3 were the softest, and the hardness was about half that of the non-treated ones. Furthermore, in Example 4, in which the miso enzyme was deactivated by heating, although the same processing treatment as in Example 2 was performed, the hardness was almost the same as that of no treatment. Therefore, the fact that the meat became tender after heating in Examples 1 to 3 is considered to be due to the synergistic effect of the enzymes contained in the seasoning liquid and the processing treatment (heating and high pressure treatment).
1-2-d 処理温度による加熱後の噛み切りやすさの変化
図34に、従来法および例1~4の加工処理を行った試料の、加熱後の噛み切りやすさを示す。
従来法および例2、例3は、無処理よりも噛み切りやすくなっており、例2、例3は、従来法よりも処理時間が大幅に短いにも関わらず、従来法よりも噛み切りやすくなっていた。一方、例1は無処理とほぼ同じであったことから、加熱・高圧処理を利用して加熱後の肉を噛み切りやすくするには、35℃より高い温度で処理する必要があると考えられる。また、例4は無処理と噛み切りやすさに有意な差がなかったことから、加熱後の肉を噛み切りやすくするには、調味液に含まれる酵素が必要であると考えられる。
1-2-d Changes in easiness of biting off after heating depending on treatment temperature Fig. 34 shows the easiness of biting off after heating of the samples processed by the conventional method and examples 1 to 4.
The conventional method and examples 2 and 3 are easier to bite off than no treatment, and examples 2 and 3 are easier to bite off than the conventional method despite the treatment time being significantly shorter than the conventional method. was becoming On the other hand, since Example 1 was almost the same as no treatment, it is considered necessary to treat at a temperature higher than 35 ° C in order to make it easier to bite off the meat after heating using heat and high pressure treatment. . In addition, since there was no significant difference between the untreated meat and the ease of biting off in Example 4, it is considered that an enzyme contained in the seasoning liquid is necessary to make the meat after heating easy to bite through.
1-2-e 処理時間の違いによる加熱後の噛み切りやすさの変化
図35に、従来法、例2、例5の加工処理を行った試料の加熱後の噛み切りやすさを示す。
100 MPa、45℃の加熱・高圧処理を1時間行った例5は、従来法よりは劣るもの
の、無処理よりも噛み切りやすくなっていた。従って、加熱後の肉を噛み切りやすくするには、100 MPa、45℃という処理条件の場合、加熱・高圧処理を1時間以上行えば良いと考えられる。
1-2-e Changes in ease of biting off after heating due to differences in treatment time FIG.
Example 5, which was subjected to heating and high pressure treatment at 100 MPa and 45° C. for 1 hour, was inferior to the conventional method, but was easier to bite off than no treatment. Therefore, in the case of the treatment conditions of 100 MPa and 45.degree.
1-2-f 調味液の違いによる加熱後の噛み切りやすさの変化
図36に、例2、例6、例7の加工処理を行った試料の、加熱後の噛み切りやすさを示す。
調味液に酒粕液を用いた例6、塩麹を用いた例7ともに、調味液に味噌液を用いた例2とほぼ同じ程度の噛み切りやすさになっていた。従って、本発明は味噌漬に限定されるものではなく、酒粕漬や塩麹漬など、酵素を含む調味液に畜肉を漬ける食品全般に利用できる技術と考えられる。
1-2-f Changes in ease of chewing after heating due to differences in seasoning liquid FIG.
Both Example 6 using sake lees liquid as the seasoning liquid and Example 7 using shio-koji (salted rice malt) were almost as easy to bite off as Example 2 using miso liquid as the seasoning liquid. Therefore, the present invention is not limited to pickling in miso, but is considered to be a technology that can be applied to general foods such as pickling in sake lees and pickling in shio-koji, in which livestock meat is pickled in a seasoning solution containing enzymes.
1-2-g 殺菌効果
表24で示す通り、本発明で行った豚肉の味噌漬は、殺菌効果が向上した。
1-2-g Bactericidal effect As shown in Table 24, the miso-pickled pork performed in the present invention had an improved bactericidal effect.
2.牛肉の漬物
2-1 実験方法
2-1-a 試料の調整
加工処理に先立ち、約1cm厚にスライスしたホルスタインの外モモ肉の両面に、味噌調味液(味噌78%、砂糖11%、みりん11%)を肉の2/3重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、脱気度99%の脱気包装を行った。
2. Beef pickles 2-1 Experimental method 2-1-a Preparation of samples Prior to processing, a miso seasoning liquid (78% miso, 11% sugar, 11% mirin %) was applied to 2/3 of the weight of the meat, placed in a polyethylene bag, and degassed and packaged with a degassing degree of 99% using a degassing packaging machine.
ここでは、牛肉の厚さを1cm、調味液の量を畜肉の2/3重量としたが、本発明はこの牛肉の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。 Here, the thickness of the beef is 1 cm and the amount of the seasoning liquid is 2/3 of the weight of the livestock meat, but the present invention is not limited to the thickness of the beef and the amount of the seasoning liquid. Any degree of vacuum may be used as long as the air in the bag is sufficiently removed.
2-1-b 加工処理
脱気包装した試料に対して、下記表23に示す加工処理を行った。従来法では、調味液に味噌液を用いて、冷蔵庫内(常圧、4℃)にて72時間保管した。例1~3では、100MPaの加熱・高圧処理を、全ての例で処理温度を45℃にし、処理時間をそれぞれ4、8、16時間で行った。
加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
2-1-b Processing Treatment The processing shown in Table 23 below was performed on the vacuum-packaged sample. In the conventional method, miso liquid was used as the seasoning liquid and stored in a refrigerator (normal pressure, 4° C.) for 72 hours. In Examples 1 to 3, heat treatment at 100 MPa and high pressure were performed at a treatment temperature of 45° C. for 4, 8 and 16 hours, respectively.
The heating and high pressure treatment was performed using "Marugoto Extract TFS-20" manufactured by Toyo Koatsu Co., Ltd.
2-1-c 呈味成分の測定
従来法および例1~3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度およびグルコース濃度を測定した。
具体的には、各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。タンパク質分解物(遊離アミノ酸およびペプチド)の指標として、トリクロロ酢酸抽出液中の窒素量をケルダール法で測定した。また、定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
2-1-c Measurement of Taste Components Samples processed by the conventional method and Examples 1 to 3 were used to measure free amino acid concentration and glucose concentration as taste components.
Specifically, after homogenizing the meat after each treatment, 5 ml of an 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered, and the clarified liquid was brought to a constant volume of 50 ml. As an indicator of protein degradation products (free amino acids and peptides), the nitrogen content in the trichloroacetic acid extract was measured by the Kjeldahl method. Further, the glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined.
2-1-d 食感分析
従来法および例1~3の加工処理を行った試料を用いて、食感の目安として「硬さ」と「噛み切りやすさ」を測定した。
具体的には、各処理を行った肉から調味液を取り除き、肉表面の水分をペーパータオルでふき取った後、試料を新しいプラスチック袋に入れて脱気包装(真空度99%)した。
包装した試料を70℃で1時間湯煎した後、流水で30分間冷却し、カミソリを用いて肉をおおよそ1cm角に切断した。切断した試料を、レオメーター(株)サン科学製CR-500DX)を用いて、カミソリの刃の付いていない側で、筋線維に対して垂直方向に9mm圧縮し、5mm圧縮したときの応力を「硬さ」の指標に、切断したときの応力(せん断応力)を「噛み切りやすさ」の指標にした。
1試料あたり1cm角切片を12個測定し、最大値と最小値を除いた10個の平均値をその試料の測定値とした。以上の操作を1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
2-1-d Texture Analysis Using the samples processed by the conventional method and Examples 1 to 3, "hardness" and "easy to bite off" were measured as indicators of texture.
Specifically, after removing the seasoning liquid from each processed meat and wiping off moisture on the surface of the meat with a paper towel, the sample was placed in a new plastic bag and degassed and packaged (vacuum degree 99%).
After the packaged sample was boiled in hot water at 70° C. for 1 hour, it was cooled with running water for 30 minutes, and the meat was cut into approximately 1 cm squares using a razor. Using Rheometer CR-500DX manufactured by Sun Science Co., Ltd., the cut sample was compressed by 9 mm in the direction perpendicular to the muscle fiber on the side without a razor blade, and the stress when compressed by 5 mm was measured. As an index of "hardness", the stress (shear stress) at the time of cutting was used as an index of "easy to bite off".
Twelve pieces of 1 cm square were measured for each sample, and the average value of 10 pieces excluding the maximum and minimum values was used as the measured value of the sample. The above operation was repeated 3 times per treatment, and the average value and standard deviation were obtained.
2-2. 試験結果・考察
2-2-a 酸可溶性窒素(遊離アミノ酸およびペプチド)濃度
図37に、従来法および例1~3の加工処理を行った試料の酸可溶性窒素濃度を示す。
従来法および例1~3では、処理前の生肉よりも酸可溶性窒素濃度が上昇しており、例1~3は、従来法よりも処理時間が大幅に短いにも関わらず、酸可溶性窒素濃度が従来法よりも高かった。
また、例1~3の中では、処理時間の最も長い例3が最も酸可溶性窒素濃度が高かった。従って、加熱・高圧処理を利用した例1~3では、従来法よりも短時間で旨味成分を増やすことができ、処理時間は16時間が最も旨味成分が増加すると考えられる。
2-2. Test Results/Discussion 2-2-a Acid-Soluble Nitrogen (Free Amino Acids and Peptides) Concentration FIG.
In the conventional method and Examples 1 to 3, the acid-soluble nitrogen concentration is higher than the raw meat before treatment, and in Examples 1 to 3, the acid-soluble nitrogen concentration is was higher than the conventional method.
Further, among Examples 1 to 3, Example 3 with the longest treatment time had the highest acid-soluble nitrogen concentration. Therefore, in Examples 1 to 3 using heat and high pressure treatment, the umami component can be increased in a shorter time than the conventional method, and the treatment time of 16 hours is considered to increase the umami component the most.
2-2-b グルコース濃度
図38に、従来法および例1~3の加工処理を行った試料のグルコース濃度を示す。
従来法および例2~3では、処理前の生肉よりもグルコース濃度が上昇しており、例2~3は、従来法よりも処理時間が大幅に短いにも関わらず、グルコース濃度が従来法とおおよそ同じ程度になっていた。また、例1~3の中では、処理温度の最も高い例3の処理時間16時間が最もグルコース濃度が高かった。従って、加熱・高圧処理を利用した例2~3では、従来法よりも短時間で調味液中のグルコース濃度を上昇させることができると考えられる。
2-2-b Glucose Concentration FIG. 38 shows the glucose concentrations of the samples processed by the conventional method and Examples 1-3.
In the conventional method and Examples 2 and 3, the glucose concentration is higher than the raw meat before treatment, and in Examples 2 and 3, despite the treatment time being significantly shorter than the conventional method, the glucose concentration is higher than the conventional method. It was about the same. Further, among Examples 1 to 3, the glucose concentration was the highest in Example 3, which had the highest treatment temperature and had a treatment time of 16 hours. Therefore, in Examples 2 and 3 using heat and high pressure treatment, it is considered that the glucose concentration in the seasoning liquid can be increased in a shorter time than the conventional method.
2-2-c 処理温度による加熱後の硬さの変化
図39に、従来法および例1~3の加工処理を行った試料の、加熱後の硬さを示す。
従来法は無処理とほぼ同じ硬さであったが、例1~3は無処理よりも柔らかくなっていた。また、例1~3の中では、例3が最も柔らかくなり、無処理のおおよそ2/3の硬さになった。
従って、加熱後の肉を噛み切りやすくするには、100 MPa、45℃という処理条件の場合、加熱・高圧処理を16時間行えば良いと考えられる。
2-2-c Change in Hardness after Heating Depending on Treatment Temperature FIG. 39 shows the hardness after heating of the samples processed by the conventional method and Examples 1-3.
The hardness of the conventional method was almost the same as that of no treatment, but Examples 1 to 3 were softer than those of no treatment. In addition, among Examples 1 to 3, Example 3 was the softest and had a hardness of about 2/3 of the untreated.
Therefore, in the case of the treatment conditions of 100 MPa and 45° C., it is thought that heating and high pressure treatment should be performed for 16 hours in order to make the meat easier to bite off after heating.
2-2-d 殺菌効果
表24で示す通り、本発明で行った牛肉の味噌漬は、殺菌効果が向上した。
2-2-d Bactericidal effect As shown in Table 24, the beef miso marinated according to the present invention had an improved bactericidal effect.
3.100MPa以上の処理での効果
前記段落(0086)以降に記載した畜肉の漬物の製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表24に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method for producing pickled livestock meat described in paragraph (0086) and after was examined by changing only the pressure condition of the high-pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 24 were obtained. It was confirmed that the invention is also effective in the pressure range of 100-300 MPa.
豆腐の漬物
1. 実験方法
1-1 試料の調整
加工処理に先立ち、石川県特産の堅豆腐を1cmまたは5cmの厚さにスライスし、ガーゼで包んだ後、堅豆腐の全面に、下記表25に示す調味液を堅豆腐の1/2重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、真空度99%の脱気包装を行った。
ここでは、堅豆腐の厚さを1cmまたは5cmに、調味液の量を堅豆腐の1/2重量としたが、本発明はこの堅豆腐の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。
Tofu pickles 1. Experimental method 1-1 Sample preparation Prior to processing, Ishikawa prefecture's specialty hard tofu was sliced into 1 cm or 5 cm thick slices and wrapped in gauze. The seasoning liquid shown in 1 was applied to 1/2 weight of hard tofu, placed in a polyethylene bag, and degassed and packaged at a vacuum degree of 99% using a degassing packaging machine.
Here, the thickness of the hard tofu is 1 cm or 5 cm, and the amount of the seasoning liquid is 1/2 the weight of the hard tofu, but the present invention is not limited to the thickness of the hard tofu and the amount of the seasoning liquid. Also, the degree of vacuum of the degassed packaging may be any degree of vacuum as long as the air inside the bag is sufficiently removed.
1-2 加工処理
脱気包装した試料に対して、下記表26に示す加工処理を行った。従来法では、堅豆腐を5cm厚にスライスし、調味液に酒粕液を用いて、冷蔵庫内(常圧、4℃)にて9ヶ月間保管した。
1-2 Processing The processing shown in Table 26 below was performed on the deaerated and packaged sample. In the conventional method, hard tofu was sliced into 5 cm thick slices and stored in a refrigerator (normal pressure, 4° C.) for 9 months using sake lees liquid as a seasoning liquid.
例1では、堅豆腐を1cm厚にスライスし、調味液に酒粕液を用いて、100MPa、45℃の加熱・高圧処理を90時間行った。
例2では、堅豆腐を5cm厚にスライスし、調味液に酒粕液を用いて、前処理として冷蔵庫内(常圧、4℃)にて1週間保管した後、100MPa、45℃の加熱・高圧処理を16時間行った。
In Example 1, hard tofu was sliced into 1 cm thick slices, and a sake lees liquid was used as the seasoning liquid, and the slices were subjected to heating and high pressure treatment at 100 MPa and 45° C. for 90 hours.
In Example 2, hard tofu was sliced into 5 cm thick slices, and sake lees liquid was used as the seasoning liquid. After pretreatment, the slices were stored in a refrigerator (normal pressure, 4°C) for 1 week, and then heated at 100 MPa and 45°C under high pressure. Treatment was carried out for 16 hours.
前処理は、堅豆腐の表面と内部の成分のバラつきを抑えるための工程であり、加熱・高圧処理の前に冷蔵保管することにより、あらかじめ豆腐の内部に調味液の成分・酵素を染み込ませるために行う。ここでは、脱気包装した試料を用いて前処理を行ったが、樽やトレイなどを用いて大量の豆腐を一度に調味液に漬けこみ、冷蔵保管した後、豆腐を取り出し、個別に脱気包装してから加熱・高圧処理を行っても良い。 Pretreatment is a process to suppress variations in the surface and internal components of hard tofu, and by storing it in cold storage before heating and high pressure treatment, the ingredients and enzymes of the seasoning liquid are soaked into the inside of the tofu in advance. go to Here, pretreatment was performed using degassed packaged samples, but a large amount of tofu was soaked in the seasoning liquid at once using a barrel or tray, stored in a refrigerator, and then taken out and degassed individually. Heating and high-pressure treatment may be performed after packaging.
例3では、調味液の染込みを良くするために堅豆腐を1cm厚にスライスし、調味液に酒粕液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。
例4では、堅豆腐を1cm厚にスライスし、調味液に味噌液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。
例5では、堅豆腐を1cm厚にスライスし、調味液に塩麹液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
In Example 3, hard tofu was sliced into 1 cm thick slices in order to improve the penetration of the seasoning liquid, and the slices were subjected to heating and high pressure treatment at 100 MPa and 45° C. for 16 hours using sake lees liquid as the seasoning liquid.
In Example 4, hard tofu was sliced into 1 cm thick slices, and a miso paste liquid was used as the seasoning liquid, followed by heating and high pressure treatment at 100 MPa and 45° C. for 16 hours.
In Example 5, hard tofu was sliced into a thickness of 1 cm and subjected to heating and high pressure treatment at 100 MPa and 45° C. for 16 hours using salt koji liquid as the seasoning liquid. The heating and high pressure treatment was performed using "Marugoto Extract TFS-20" manufactured by Toyo Koatsu Co., Ltd.
1-3 呈味成分の測定
従来法および例1~3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度を測定した。具体的には、各処理後の試料からガーゼごと調味液を取り除き、豆腐の表層1cmを切り取ったものを「表層」、残った部分を「内部」として別々にサンプリングした。
例3~5は全体を表層としてサンプリングした。サンプリングした表層と内部を別々にホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液に含まれる主要なアミノ酸20種の合計濃度を測定し、元の試料に含まれる遊離アミノ酸濃度に換算した。アミノ酸は日立高速アミノ酸分析計L-8900を用いて測定した。従来法は1反復のみ、例1~3は3反復ずつ行い、平均値と標準偏差を求めた。
1-3 Measurement of Taste Component Samples processed by the conventional method and Examples 1 to 3 were used to measure free amino acid concentration as a taste component. Specifically, the seasoning liquid was removed together with the gauze from the sample after each treatment, and 1 cm of the surface layer of the tofu was cut off and sampled separately as the “surface layer” and the remaining portion as the “inside”.
Examples 3-5 were sampled entirely as the surface layer. After separately homogenizing the sampled surface layer and the inside, 5 ml of an 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered, and the clarified liquid was brought to a constant volume of 50 ml. The total concentration of 20 major amino acids contained in the constant-volume liquid was measured and converted to the concentration of free amino acids contained in the original sample. Amino acids were measured using a Hitachi high-speed amino acid analyzer L-8900. Only one repetition was performed for the conventional method, and three repetitions were performed for each of Examples 1 to 3, and average values and standard deviations were determined.
1-4 食感分析
従来法および例1~5の加工処理を行った試料を用いて、試料表面の硬さを測定し、食感の目安とした。
具体的には、各処理後の試料からガーゼごと調味液を取り除き、試料の表層1cmを切り取った。切り取った試料をさらに1cm角に切断し、レオメーター((株)サン科学製CR-500DX)を用いて、直径10mmの円柱プランジャーで、堅豆腐の表層から内部に向か
う方向に9mm圧縮し、最大応力を硬さの指標にした。1試料あたり1cm角切片を10個測定し、平均値をその試料の測定値とした。以上の操作を従来法は1反復のみ、例1~5は3反復ずつ行い、平均値と標準偏差を求めた。
1-4 Food Texture Analysis Using the samples processed by the conventional method and Examples 1 to 5, the hardness of the sample surface was measured and used as a measure of the food texture.
Specifically, the seasoning liquid was removed together with the gauze from the sample after each treatment, and 1 cm of the surface layer of the sample was cut off. The cut sample is further cut into 1 cm squares, and using a rheometer (CR-500DX manufactured by Sun Science Co., Ltd.), a cylindrical plunger with a diameter of 10 mm is used to compress the hard tofu by 9 mm in the direction from the surface to the inside, The maximum stress was used as an index of hardness. Ten pieces of 1 cm square were measured per sample, and the average value was taken as the measured value of the sample. The above operation was repeated once in the conventional method and three times in each of Examples 1 to 5, and the average value and standard deviation were obtained.
2 試験結果・考察
2-1 遊離アミノ酸濃度
図40に、従来法および例1~3の加工処理を行った試料の遊離アミノ酸濃度を示す。
従来法では、1週間冷蔵保管したものは表層が約1000mg/100g、内部が約900mg/100g、1カ月間冷蔵保管したものは表層が約1600mg/100g、内部が約1400mg/100g、9カ月間冷蔵保管したものは表層、内部ともに約3000mg/100gになり、冷蔵保管する期間が長くなるほど遊離アミノ酸濃度が上昇した。
2 Test Results and Discussion 2-1 Free Amino Acid Concentration FIG.
In the conventional method, after refrigerating for 1 week, the surface layer is about 1000 mg/100 g, and the inside is about 900 mg/100 g. After refrigeration, the concentration of free amino acids increased with the length of the refrigeration storage period.
これに対して、例1は、表層が約2500mg/100g、内部が約1600mg/100gになり、90時間という短い処理時間でありながら、1カ月間冷蔵保管したものよりも表層、内部ともに遊離アミノ酸濃度が高くなった。
例2は表層が約1500mg/100g、内部が約1000mg/100gとなり、表層は1カ月間冷蔵保管したものと、内部は1週間冷蔵保管したものとほぼ同じになった。
例3は約1500mg/100gとなり、16時間という短い処理時間でありながら、1カ月間冷蔵保管したものとほぼ同じになった。
以上の結果から、加熱・高圧処理を用いることにより、数日間(16~90時間)の加工処理で、従来法で1カ月以上かけて製造したものと同等の遊離アミノ酸濃度にすることができると考えられる。
On the other hand, in Example 1, the surface layer is about 2500 mg/100 g and the inside is about 1600 mg/100 g, and although the treatment time is as short as 90 hours, both the surface layer and the inside have more free amino acids than those stored in a refrigerator for one month. increased concentration.
In Example 2, the surface layer was about 1500 mg/100 g and the inside was about 1000 mg/100 g, and the surface layer was almost the same as the one after refrigerating for one month and the inside after one week.
Example 3 was about 1500 mg/100 g, which was almost the same as the one month refrigerated storage despite the short treatment time of 16 hours.
From the above results, by using heat and high pressure treatment, it is possible to achieve a free amino acid concentration equivalent to that of products manufactured by conventional methods over a month in a few days (16 to 90 hours) of processing. Conceivable.
2-2 処理方法による硬さの違い
図41に、従来法および例1~3の加工処理を行った試料の硬さを示す。
従来法では、1週間冷蔵保管したものは処理前よりもやや硬くなっていた。これは、調味液の浸透圧により堅豆腐の水分が抜け、組織が締まったからと考えられた。
1ヶ月冷蔵保管したものは、処理前よりもやや柔らかくなっていたが、官能評価ではほとんど区別することができない程度の差であった。
9カ月冷蔵保管したものは、処理前よりも非常に柔らかく、舌でつぶせる程度の硬さ(1×104N/m2以下)になっており、食べるとクリームチーズのような食感になっていた。
2-2 Difference in Hardness Depending on Treatment Method FIG. 41 shows the hardness of the samples treated by the conventional method and Examples 1 to 3.
In the conventional method, the product after refrigerating for one week was slightly harder than before treatment. It is considered that this is because the osmotic pressure of the seasoning liquid removes water from the hard tofu and tightens the structure.
The one after refrigerating for one month was slightly softer than before the treatment, but the difference was such that it could hardly be distinguished by sensory evaluation.
After refrigerating for 9 months, it was much softer than before treatment, and had a hardness that could be crushed with the tongue (1×10 4 N/m 2 or less), and when eaten, had a cream cheese-like texture. was
これに対して、例1は、90時間という短い処理時間でありながら、従来法で9カ月間冷蔵保管したものと同じく、舌でつぶせる程度の硬さになっており、食べるとクリームチーズのような食感になっていた。
例2、例3は、例1よりはやや硬いが、歯ぐきでつぶせる程度の硬さ(5×104N/m2以下)になっており、食べると、処理前と比較して明らかに柔らかく、チーズのような食感になっていた。
On the other hand, in Example 1, although the treatment time was as short as 90 hours, it was as hard as the product stored in the refrigerator for 9 months by the conventional method, and it was so hard that it could be crushed with the tongue, and it tasted like cream cheese. It had a nice texture.
Examples 2 and 3 are slightly harder than Example 1, but are hard enough to be crushed with gums (5×10 4 N/m 2 or less), and when eaten, are clearly softer than before treatment. , It had a cheese-like texture.
2-3 調味液の検証
図42に、例3~5の加工処理を行った試料の硬さを示す。
調味液に味噌液を用いた例4、塩麹を用いた例5ともに、調味液に酒粕液を用いた例3とほぼ同じ程度の硬さになっていた。
従って、本発明は酒粕漬に限定されるものではなく、味噌漬や塩麹漬など、酵素を含む調味液に豆腐を漬ける食品全般に利用できる技術と考えられる。
2-3 Verification of seasoning liquid Fig. 42 shows the hardness of samples processed in Examples 3-5.
Both Example 4 using miso liquid as the seasoning liquid and Example 5 using shio-koji had approximately the same hardness as Example 3 using sake lees liquid as the seasoning liquid.
Therefore, the present invention is not limited to pickling in sake lees, but is considered to be a technique that can be applied to general foods such as miso pickling and shio-koji pickling, in which tofu is pickled in a seasoning solution containing enzymes.
2-4 殺菌効果
表27で示す通り、本発明で行った豆腐の漬物は、殺菌効果が向上した。
2-4 Sterilization effect As shown in Table 27, the pickled tofu prepared in the present invention has an improved sterilization effect.
3.100MPa以上の処理での効果
前記段落(0112)以降に記載した豆腐の漬物の製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表27に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method for producing pickled tofu described in paragraph (0112) and after was examined by changing only the pressure condition of the high-pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 27 were obtained. It was confirmed that the invention is also effective in the pressure range of 100-300 MPa.
キノコ加工品
1. 実験方法
1-1 試料の調整
加工処理に先立ち、軸を取り除いた生シイタケと、生シイタケの30%重量の調味液(醤油とバターを1:2の割合で混ぜ合わせたもの)をポリエチレン製の袋に入れ、脱気包装機を用いて、真空度99%の脱気包装を行った。
ここでは、シイタケは傘部分をまるごと使用し、調味液の量はシイタケの30%としたが、本発明はこのシイタケの形状、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。
Here, the whole shiitake mushroom cap portion is used, and the amount of the seasoning liquid is 30% of the shiitake mushroom, but the present invention is not limited to the shape of the shiitake mushroom and the amount of the seasoning liquid. Any degree of vacuum may be used as long as the air inside the bag is sufficiently removed.
1-2 加工処理
脱気包装した試料に対して、下記表28に示す加工処理を行った。
従来法1では、ボイル殺菌として、0.1MPa、98℃で10分間の加熱処理を行った。
従来法2では、レトルト殺菌として、0.2MPa、121℃で20分間の加熱処理を行った。
従来法3では、加熱殺菌として、0.1MPa、70℃で30分間の加熱処理を行った。
本特許を利用した実施例では、加熱・高圧殺菌として、100MPa、70℃で30分間の加熱処理を行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
1-2 Processing The processing shown in Table 28 below was performed on the degassed and packaged samples.
In
In
In
In the examples using this patent, heat treatment was performed at 100 MPa and 70° C. for 30 minutes as heat/high pressure sterilization. The heating and high pressure treatment was performed using "Marugoto Extract TFS-20" manufactured by Toyo Koatsu Co., Ltd.
1-3 グアニル酸の測定
従来法1~3および実施例の加工処理を行った試料を用いて、キノコの旨味成分であるグアニル酸の濃度を測定した。具体的には次のような方法で行った。
各処理後の試料から調味液を拭き取り、試料と同重量の蒸留水を加えてホモジナイズした後、遠心分離(3000rpm、10分間)を行い、上清を回収した。上清を孔径0.45μmのフィルタでろ過し、高速液体クロマトグラフィーで分析した。高速液体クロマトグラフィーは下記表29の条件で行った。標品には和光純薬工業(株)製のグアニル酸(グアノシン1リン酸)を使用した。
1-3 Measurement of Guanylic Acid Using the samples processed by
After wiping off the seasoning liquid from the sample after each treatment, distilled water of the same weight as the sample was added and homogenized, followed by centrifugation (3000 rpm, 10 minutes) to recover the supernatant. The supernatant was filtered through a filter with a pore size of 0.45 μm and analyzed by high performance liquid chromatography. High performance liquid chromatography was performed under the conditions shown in Table 29 below. Guanylic acid (guanosine monophosphate) manufactured by Wako Pure Chemical Industries, Ltd. was used as a standard.
1-4 塩分分析
従来法1~3および実施例の加工処理を行った試料を用いて、呈味成分として塩分を測定した。具体的には上記グアニル酸測定用の上清に含まれるナトリウム量を、原子吸光法により測定し、元の試料に含まれる塩化ナトリウム濃度に換算した。
1-4 Salt Content Analysis Salt content was measured as a taste component using the samples processed by
1.5 食感分析
従来法1~3および実施例の加工処理を行った試料を用いて、傘部分の硬さを春日ら(日本調理学会誌34、pp348-355、2000年)の方法を用いて測定した。すなわち、レオメーター((株)サン科学製CR-500DX)を用いて、直径1mmの円柱プランジャーで、傘部分の軸から5mm離れた箇所を、ヒダのある方向から圧縮し、貫入したときの応力を求めた。1試料あたり4か所測定し、平均値をその試料の測定値とした。1処理あたり5反復ずつ行い、平均値と標準偏差を求めた。
1.5 Texture analysis Using the samples processed by
2 試験結果・考察
2-1 グアニル酸の生成機構
グアニル酸はキノコに含まれる代表的な旨味物質である。図43にグアニル酸の生成および分解の模式図を示す。
グアニル酸は、細胞の核に含まれる核酸(RNA)が酵素(リボヌクレアーゼ)により分解されることで生成される。そのため、キノコの細胞が損傷を受けると、細胞核に存在する核酸が、細胞質中に存在するリボヌクレアーゼにより分解されやすくなるため、グアニル酸が生成されやすくなる。
干シイタケは、乾燥により細胞が損傷を受けているため、旨味成分のグアニル酸が生シイタケよりも増えやすく、古くからダシの材料として利用されている。グアニル酸はホスファターゼにより分解されると無味のグアノシンに変化する。グアニル酸を生成するリボヌクレアーゼは65~70℃で活性が高く、グアニル酸を分解するホスファターゼは40~60℃で活性が高い。さらにホスファターゼは65℃以上で失活するため、シイタケは65~70℃で加熱すると旨味が最も増加しやすいことが知られている。
2 Test results and discussion 2-1 Guanylic acid generation mechanism Guanylic acid is a typical umami substance contained in mushrooms. FIG. 43 shows a schematic diagram of the production and decomposition of guanylic acid.
Guanylic acid is produced by degrading nucleic acid (RNA) contained in the nucleus of cells with an enzyme (ribonuclease). Therefore, when mushroom cells are damaged, nucleic acid present in the cell nucleus is easily degraded by ribonuclease present in the cytoplasm, and guanylate is readily produced.
Since the cells of dried shiitake mushrooms are damaged by drying, the umami component guanylic acid is more likely to increase than fresh shiitake mushrooms, and has been used as an ingredient for dashi since ancient times. Guanylic acid is converted to tasteless guanosine when degraded by phosphatases. A ribonuclease that produces guanylate has high activity at 65-70°C, and a phosphatase that degrades guanylate has high activity at 40-60°C. Furthermore, since phosphatase is inactivated at 65°C or higher, it is known that shiitake mushrooms are most likely to develop their umami when heated at 65-70°C.
2-2 グアニル酸濃度
図44に、従来法1~3および実施例の加工処理を行った試料のグアニル酸濃度を示す
。
処理前の生シイタケにはグアニル酸はほとんど含まれていないが、加熱することによりグアニル酸濃度は上昇した。実施例は、従来法1および従来法2の3倍以上、従来法3の約1.5倍にグアニル酸濃度が上昇した。
以上の結果から、本発明方法を利用することにより、シイタケに含まれるグアニル酸を通常の加熱殺菌方法よりも増加させることができると考えられる。グアニル酸が増加した理由としては、加熱・高圧処理によりリボヌクレアーゼの活性が向上した可能性と、加熱・高圧処理により核膜が損傷した可能性が考えられる。
2-2 Guanylic Acid Concentration FIG. 44 shows the guanylic acid concentrations of the samples processed by
Raw shiitake mushrooms before treatment contained almost no guanylic acid, but the guanylic acid concentration increased by heating. In the example, the concentration of guanylic acid increased more than three times that of
From the above results, it is considered that the guanylic acid contained in shiitake mushrooms can be increased by using the method of the present invention as compared with the usual heat sterilization method. The reason for the increase in guanylic acid is thought to be the possibility that the ribonuclease activity was enhanced by the heat/high pressure treatment, and the possibility that the nuclear membrane was damaged by the heat/high pressure treatment.
2-3 塩分
図45に従来法1~3および実施例の加工処理を行った試料の塩分を示す。
塩分は加熱方法ではなく、加熱時間に依存して高くなった。また、シイタケは組織内の空隙が多いため、脱気包装した際に、気液置換により調味液が染込んだと考えられる。
2-3 Salinity Fig. 45 shows the salinity of the samples processed by
The salinity increased depending on the heating time but not on the heating method. In addition, since shiitake mushrooms have many voids in the tissue, it is thought that the seasoning liquid permeated due to air-liquid replacement when degassed and packaged.
2-4 食感
図46に従来法1~3および実施例の加工処理を行った試料の破断能力を示す。
この図から、食感に関しては有意な差異は認められなかった。
2-4 Texture Fig. 46 shows the breaking ability of the samples processed according to
From this figure, no significant difference in texture was observed.
2-5 殺菌効果
表30で示す通り、本発明で行ったキノコ加工品は、殺菌効果が向上した。
2-5 Bactericidal Effect As shown in Table 30, the mushroom processed product of the present invention has improved bactericidal effect.
3.100MPa以上の処理での効果
前記段落(0129)以降に記載したキノコ加工品の製法を高圧処理条件の圧力条件のみ100~300MPa範囲で変えて検討したところ、表30に示す結果となり、本発明が100~300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the manufacturing method of the processed mushroom product described in paragraph (0129) and after was examined by changing only the pressure condition of the high pressure treatment condition in the range of 100 to 300 MPa, the results shown in Table 30 were obtained. It was confirmed that the invention is also effective in the pressure range of 100-300 MPa.
追加実験(野菜)
(1)大根の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:1~5時間
・製造内容
野菜:大根(青首)
漬床:調味粕(酒粕70%、塩10%、砂糖20%)
製法:皮を剥ぎ、幅1cmの半月状にした大根に同重量の漬床を塗り、袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)に
より測定した。測定結果は図47に示すように、高圧加温処理することで、成分が浸透し、塩分濃度が高くなる。処理温度や処理時間による塩分濃度の違いは若干比例する傾向がある。
噛み切り易さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図48に示すように、高圧加温処理した大根の粕漬けは、処理温度および処理時間に比例して噛み切りやすさが良くなる。さらに、その噛み切りやすさは既製品の噛み切りやすさに近い。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図49に示すように、高圧加温処理することで、酒粕の色が大根に染み込む。処理温度および処理時間におおよそ比例して染み込むと考えられる。また、図50(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表31A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表31B)は処理時間別(処理温度は全て70℃)の微生物衛生検査の結果を示す。
Additional experiment (vegetables)
(1) Pickled radish in sake lees / processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 1 to 5 hours Production details Vegetables: Daikon radish (blue neck)
Pickles: seasoning lees (
Production method: Peeled daikon radish was cut into a half-moon shape with a width of 1 cm.
- Evaluation method Salinity: each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a salinity meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 47, the high-pressure heating treatment permeates the components and increases the salt concentration. Differences in salt concentration due to treatment temperature and treatment time tend to be slightly proportional.
Ease of biting off: each sample was prepared into a square cube of 1 cm high and 2 cm wide, and the stress when it was penetrated to 6 mm by a 5 mmφ cylindrical plunger was measured with a rheometer. As for the measurement results, as shown in FIG. 48, the daikon lees-pickled daikon radish that has been subjected to high-pressure heating improves the easiness of biting off in proportion to the treatment temperature and treatment time. Furthermore, its ease of biting off is close to that of ready-made products.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 49, the color of the sake lees permeates into the radish by high-pressure heating. It is believed that the penetration is roughly proportional to the treatment temperature and treatment time. Also, FIG. 50(a) shows the color tone before the high pressure heating treatment, and FIG. 50(b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 31A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 3 hours), and (Table 31B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 70°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これは高圧加温処理の効果だけでなく、大根に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, the number of viable bacteria is below the sanitary standard value for both treatment temperature and treatment time. This is thought to be due not only to the effects of high-pressure heating, but also to the synergistic effect of the sterilizing effect of the alcohol contained in the sake lees soaked into the daikon radish, which inhibited the growth of bacteria.
(2)中島菜の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:15~45分
・製造内容
野菜:中島菜
漬床:調味粕(酒粕50%、清酒20%、塩10%、砂糖20%)
製法:中島菜の茎と葉の割合を1:1とし、総重量と同重量の漬床と共に袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図51に示すように、高圧加温処理することで、成分が浸透し、塩分濃度が高くなる。処理温度は60℃まで温度の上昇に比例して塩分濃度が高くなるが、70℃では低くなる
硬さ:各試料を長さ1.5cm~2cmに切った茎に調整し、2mmφ針状プランジャーで切った茎を横にし、中心部を貫くように10mmまで進入した時の応力をレオメータにより測定した。測定結果は図52に示すように、高圧加温処理した中島菜の粕漬けの茎の硬さは未処理よりも柔らかくなり、既製品の中島菜漬に近い食感になる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図53に示すように、処理温度および処理時間に比例して葉の緑色はかなりくすむ。また、図54(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表32A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表32B)は処理時間別(処理温度は全て50℃)の微生物衛生検査の結果を示す。
(2) Nakashima greens pickled in sake lees / processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 15-45 minutes Production details Vegetables: Nakashima greens Pickled bed: seasoning lees (
Production method: The ratio of stems and leaves of Nakashima greens was set to 1:1, and the mixture was placed in a bag together with pickles of the same weight as the total weight and vacuum-packaged.
- Evaluation method Salinity: each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a salinity meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 51, the high-pressure heating treatment permeates the components and increases the salt concentration. The treatment temperature increases up to 60°C in proportion to the increase in salinity, but it decreases at 70°C. The stem cut with a jar was placed on its side, and the stress when it penetrated to 10 mm through the center was measured with a rheometer. As shown in FIG. 52, the measurement results show that the stalks of Nakashimana pickled in sake lees that have been subjected to high-pressure heating are softer than those that have not been treated, and have a texture similar to that of ready-made Nakashimanazuke.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As for the measurement results, as shown in FIG. 53, the green color of the leaves becomes considerably dull in proportion to the treatment temperature and treatment time. Further, FIG. 54(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 32A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 30 minutes), and (Table 32B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 50°C).
尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これは大根と同様で高圧加温処理の効果だけでなく、中島菜に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
(3).80MPa以下と100MPa以上の処理での効果
前記大根と中島菜の奈良漬け(粕漬け)の製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表33に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
In the table, “above the standard” means 300/g or more for general viable bacteria, 1000/g or more for fungi, and “below the standard” means 300/g or less for general viable bacteria, 1000/g or less for fungi, and not detected. refers to the limit of detection, 50/g or less.
As shown in the table, the number of viable bacteria is below the sanitary standard value for both treatment temperature and treatment time. This is thought to be due not only to the effect of high-pressure heating, as in radish, but also to the synergistic effect of the sterilization effect of the alcohol contained in the sake lees soaked in Nakashimana, which inhibited the growth of bacteria.
(3). Effect of treatment at 80 MPa or less and 100 MPa or more When the method for producing narazuke (pickled lees) of radish and Nakashimana was examined by changing only the pressure condition of the high pressure treatment condition in the range of 80 to 300 MPa, the results shown in Table 33 were obtained. It was confirmed that the invention is also effective in the pressure range of 80-300 MPa.
(3)大根の醤油漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:15~60分
・製造内容
野菜:大根(青首)
漬液:20%醤油水溶液(塩分濃度 約3.5%)
製法:皮を剥ぎ、幅1cmの半月状にした大根を同重量の漬液と共に袋に入れ真空包装した。また、一般法として、皮を剥ぎ厚さ1cm、半月状にカットした大根を20%醤油水溶液に浸し、5℃で24時間漬け込んだものを試料とした。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図55に示すように、一般法に比べどの処理条件でも大根果肉中の塩分濃度が向上した。また、処理温度の上昇に比例して成分がより染み込み、塩分濃度が高くなる。また、処理時間も長さに比例して塩分濃度が高くなる。
噛み切り易さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図56に示すように、60℃以上の処理温度または60分以上の処理時間で食感は柔らかくなり、噛み切りやすくなる。それら以下の処理条件では生の食感を維持することができる。ただし、いずれの処理条件も一般法に比べ軟化が抑制された。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。図57(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
細胞破壊程度:本実施例では、高圧処理場合の野菜組織内の水の拡散係数の変化を調べた。各種処理条件で高圧処理した大根を試料としてNMRにより水の拡散係数を分析した。NMRの測定は、ESX400(1Hの共鳴周波数400MHz)を用いた。各サンプルの中心部を、おおむね3cm角で切り出し、筒状に丸めてNMR測定管に入れ、PGSTE法により拡散時間を0.1~1.0secまで変化させて、それぞれの拡散係数を測定した。その結果を図58に示す。図58に示すように、水の拡散係数は、組織内での移動できる範囲が小さい場合(制限拡散)は、拡散時間が長くなるほど大きく減少する。図を見ると、未処理に比べて全ての高圧加温処理した試料共に拡散係数の減少幅が小さくなっており、高圧加温処理により、野菜の組織内の水が移動できる範囲が大きくなっていること、すなわち、細胞膜の破壊が起きていることが確認された。それにより成分が浸透しやすくなる。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。図59に示すように、高圧加温処理を行うと、処理温度の上昇に比例して旨味成分は増加する。これは大根の果肉に醤油の旨味成分が浸透したためと考えられる。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表34A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表34B)は処理時間別(処理温度は全て70℃)の微生物衛生検査の結果を示す。
(3) Pickled radish in soy sauce / processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 15-60 minutes Production details Vegetables: Daikon radish (green neck)
Pickling liquid: 20% soy sauce aqueous solution (salinity concentration about 3.5%)
Production method: Peeled daikon radish was cut into a half-moon shape with a width of 1 cm. As a general method, a sample was prepared by removing the skin and cutting the daikon radish into half-moon shape with a thickness of 1 cm and immersing it in a 20% soy sauce aqueous solution at 5° C. for 24 hours.
- Evaluation method Salinity: each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a salinity meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 55, the measurement results showed that the salt concentration in the radish pulp was improved under all treatment conditions compared to the general method. In addition, as the treatment temperature rises, the ingredients permeate more and the salt concentration increases. Also, the salt concentration increases in proportion to the processing time.
Ease of biting off: each sample was prepared into a square cube of 1 cm high and 2 cm wide, and the stress when it was penetrated to 6 mm by a 5 mmφ cylindrical plunger was measured with a rheometer. As shown in FIG. 56, the measurement results show that at a treatment temperature of 60° C. or higher or for a treatment time of 60 minutes or longer, the texture becomes softer and easier to bite off. Raw texture can be maintained under processing conditions below them. However, softening was suppressed under any treatment conditions compared to the general method.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. FIG. 57(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Degree of cell disruption: In this example, changes in the diffusion coefficient of water in vegetable tissue under high pressure treatment were examined. The diffusion coefficient of water was analyzed by NMR using radish treated under various conditions under high pressure as a sample. For NMR measurement, ESX400 (1H resonance frequency of 400 MHz) was used. The central portion of each sample was cut into a square of about 3 cm, rounded into a cylindrical shape, placed in an NMR measuring tube, and the diffusion coefficient of each sample was measured by changing the diffusion time from 0.1 to 1.0 sec by the PGSTE method. The results are shown in FIG. As shown in FIG. 58, the diffusion coefficient of water decreases significantly as the diffusion time increases when the range of movement within the tissue is small (limited diffusion). Looking at the figure, the range of decrease in the diffusion coefficient is smaller for all the high-pressure heating treated samples compared to the untreated sample, and the high-pressure heating treatment increases the range in which water can move in the tissue of the vegetable. In other words, it was confirmed that cell membrane destruction occurred. This makes it easier for the ingredients to penetrate.
Content of umami component: Each sample was suspended in physiological saline and thoroughly mixed. After removing the residue by centrifugation or filtering, amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) with a linear gradient using the prescribed mobile phases (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v/v) % acetonitrile). . AccQ-tag Amino Acid Analysis Column (Waters) was used as the column, and the column oven was set at 40°C and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 59, when the high-pressure heating treatment is performed, the umami component increases in proportion to the increase in treatment temperature. It is thought that this is because the umami component of soy sauce permeated the flesh of the radish.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for general viable counts and 1000 cfu/g or less for fungal counts. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 34A) shows the results of microbial hygiene inspections by treatment temperature (all treatment times were 3 hours), and (Table 34B) shows the results of microbial hygiene inspections by treatment time (all treatment temperatures were 70°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指
す。
表に示すように、各温度で高圧加温処理を30分行うと、40℃では1か月後に衛生基準値を超えてしまうが、50℃では一般生菌は衛生基準値を下回り、真菌は不検出であった。また、60℃以上の処理温度で完全に殺菌することができる。50℃の高圧加温処理では時間による菌数の変化は認められなかったが、すべて衛生基準値を下回っている。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, when high-pressure heating treatment is performed at each temperature for 30 minutes, the sanitation standard value is exceeded at 40°C after one month, but at 50°C, general viable bacteria are below the sanitation standard value, and fungi It was not detected. In addition, it can be completely sterilized at a treatment temperature of 60°C or higher. There was no change in the number of bacteria with time after high-pressure heating treatment at 50°C, but all were below the sanitary standard value.
(4)中島菜の醤油漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:5~30分
・製造内容
野菜:中島菜
漬液:40%醤油水溶液(塩分濃度 約7.3%)
製法:中島菜の茎と葉の割合を1:1とし、総重量と同量の漬液と共に袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図60に示すように、処理温度の上昇に比例して成分がより染み込み、塩分濃度が高くなる。また、処理時間も長さに比例して塩分濃度が高くなる。
硬さ:各試料を長さ1.5cm~2cmに切った茎に調整し、2mmφ針状プランジャーで切った茎を横にし、中心部を貫くように10mmまで進入した時の応力をレオメータにより測定した。測定結果は図61に示すように、高圧加温処理した中島菜の醤油漬けの茎の硬さは未処理よりも柔らかくなるが、既製品の中島菜漬と比べてより歯ごたえのある食感となる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図62に示すように、処理温度および処理時間に比例して葉の緑色はくすむ。これは醤油(塩分)の染み込みに比例している。また、図63(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表35A)は処理温度別(処理時間は全て15分)の微生物衛生検査の結果を示し、(表35B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(4) Nakashima greens pickled in soy sauce / processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 5 to 30 minutes Production details Vegetables: Nakashima greens Pickling liquid: 40% soy sauce aqueous solution (salinity concentration about 7.3%)
Production method: The ratio of stems and leaves of Nakashima greens was set to 1:1, and the whole weight and the same amount of pickling liquid were placed in a bag and vacuum-packaged.
- Evaluation method Salinity: each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a salinity meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 60, the measurement results show that the ingredients permeate more and the salt concentration increases in proportion to the increase in treatment temperature. Also, the salt concentration increases in proportion to the processing time.
Hardness: Each sample is adjusted to a stem cut to 1.5 cm to 2 cm in length, the stem is cut with a needle-like plunger of 2 mmφ, and the stress when it penetrates to 10 mm so as to penetrate the center is measured by a rheometer. It was measured. As shown in FIG. 61, the measurement results show that the hardness of the stalks of soy sauce-pickled Nakashima greens that have been subjected to high-pressure heating is softer than that of the untreated ones, but the texture is more chewy than that of ready-made Nakashima greens. Become.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As for the measurement results, as shown in FIG. 62, the green color of the leaves becomes dull in proportion to the treatment temperature and treatment time. This is proportional to the amount of soy sauce (salt content) soaked in. Also, FIG. 63(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 35A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 15 minutes), and (Table 35B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、一般生菌は全ての処理温度で検出されたが、高圧加温処理の処理温度が50℃以上では衛生基準値を下回っている。真菌は高圧加温処理の処理温度が50℃以上で
衛生基準値を上回っている。60℃で高圧加温処理した場合、処理時間による生菌数の変化は認められなかったが、一般生菌では、衛生基準値を下回り、真菌では、不検出であった。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, general viable bacteria were detected at all treatment temperatures, but at treatment temperatures of 50°C or higher in high-pressure heating treatment, they were below the sanitary standard value. For fungi, the treatment temperature of high-pressure heating treatment is 50°C or higher, exceeding the sanitary standard value. When high-pressure heating treatment was performed at 60°C, no change in the number of viable bacteria was observed depending on the treatment time.
(5)80MPa以下と100MPa以上の処理での効果
前記大根と中島菜の醤油漬けの製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表36に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
(5) Effect of treatment at 80 MPa or less and 100 MPa or more When the method for pickling radish and Nakashima greens in soy sauce was examined by changing only the pressure condition of the high pressure treatment condition in the range of 80 to 300 MPa, the results are shown in Table 36. It was confirmed that the present invention is effective even in the pressure range of 80-300 MPa.
追加実験(果実)
(1)ウメのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:15~60分
・製造内容
果実:石川県産 冷凍梅(石川1号)
シロップ:60%グラニュー糖水(糖度50.4%)
製法:ウメ5粒をそれらの2倍量のシロップと共に袋に入れ真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図64に示すように、高圧加温処理を行うと処理温度が高いほど、また、60℃では、処理時間が長いほどシロップの糖分が向上して果肉に染み込みやすくなることを確認した。
酸度:高圧加温処理したサンプルを袋から取り出し、シロップを拭き取った後、種を取り除きミキサーでホモジナイズした。ホモジナイズによりペースト化したサンプルを試料とした。酸度滴定計を用いて試料の酸度(%)を測定し、クエン酸相当量として換算して評価した。測定結果は図65に示すように、高圧加温処理を行うと処理温度が高いほどまた、60℃では、処理時間が長いほど果肉の酸度が低下して果肉から酸が溶出しやすくなることを確認した。
硬さ:冷凍梅1個を測定台に固定し、3mmφ円柱プランジャーで6mmまで圧縮した時の応力をレオメータにより測定した。測定結果は図66に示すように、60℃以上の温度お
よびその温度で30分以上の高圧加温処理を行うと果肉の食感は軟らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図67に示すように、高圧加温処理を行うことで、果皮の色は若干くすむが、商品性に問題はない。また、図68(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表37A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表37B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
Additional experiment (fruit)
(1) Plum pickled in syrup/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 15 to 60 minutes Production details Fruit: Frozen plums from Ishikawa Prefecture (Ishikawa No. 1)
Syrup: 60% granulated sugar water (50.4% sugar content)
Production method: 5 plums were placed in a bag together with twice the amount of syrup and vacuum-packaged.
・Evaluation method Sugar content: Each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a sugar content meter (manufactured by Atago Co., Ltd.). As shown in FIG. 64, the measurement results confirmed that the higher the treatment temperature and the longer the treatment time at 60°C, the higher the sugar content of the syrup and the easier it penetrates into the pulp. .
Acidity: The high-pressure heat-treated sample was taken out of the bag, the syrup was wiped off, the seeds were removed, and the sample was homogenized with a mixer. A sample that was made into a paste by homogenization was used as a sample. The acidity (%) of the sample was measured using an acidity titrator, and was converted into the equivalent amount of citric acid for evaluation. As shown in FIG. 65, the measurement results show that the higher the treatment temperature and the longer the treatment time at 60° C., the lower the acidity of the pulp and the easier the acid elution from the pulp. confirmed.
Hardness: One piece of frozen plum was fixed on a measuring table, and the stress when it was compressed to 6 mm with a 3 mmφ cylindrical plunger was measured with a rheometer. As shown in FIG. 66, the measurement results show that when the temperature is 60° C. or higher and the high-pressure heating treatment is performed at that temperature for 30 minutes or longer, the texture of the pulp becomes soft.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 67, the measurement results show that the color of the pericarp becomes slightly dull due to the high-pressure heating treatment, but there is no problem with marketability. Also, FIG. 68(a) shows the color tone before high pressure heating treatment, and FIG. 68(b) shows the color tone before high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 37A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 30 minutes), and (Table 37B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60°C).
尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、一般生菌、真菌ともに60℃以上の高圧加温処理でほとんどの試験区で不検出となり殺菌できることを確認した。また、高圧加温処理の処理温度が60℃の場合、処理時間30分以上で長期保存が可能となる。
In the table, “above the standard” means 300/g or more for general viable bacteria, 1000/g or more for fungi, and “below the standard” means 300/g or less for general viable bacteria, 1000/g or less for fungi, and not detected. refers to the limit of detection, 50/g or less.
As shown in the table, it was confirmed that both general viable bacteria and fungi could be sterilized by high-pressure heating at 60°C or higher, with no detection in most of the test plots. Moreover, when the treatment temperature of the high-pressure heating treatment is 60° C., the treatment time is 30 minutes or longer, and long-term storage is possible.
(2)和ナシのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:15~60分
・製造内容
果実:和梨(陽水)
シロップ:15%グラニュー糖水(糖度14.3%)
製法:果皮および種を取り除いたナシを同じ重量のシロップと共に袋に入れ、真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図69に示すように、高圧加温処理を行うと、処理温度および処理時間に比例してシロップの成分が果肉に染み込む。
硬さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図70に示すように、60℃以上の温度で処理時間が長いと果肉の食感は若干柔らかくなるが、未処理の果肉の食感をほぼ維持できる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図71に示すように、シロップが染み込むことによって半透明化するが、処理条件による色の変化はほとんどない。また、この色調は商品性に問題ない。また、図72(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理
前の色調を示す。
細胞破壊程度:本実施例では、高圧処理場合の野菜組織内の水の拡散係数の変化を調べた。各種処理条件で高圧処理したナシを試料としてNMRにより水の拡散係数を分析した。NMRの測定は、ESX400(1Hの共鳴周波数400MHz)を用いた。各サンプルの中心部を、おおむね3cm角で切り出し、筒状に丸めてNMR測定管に入れ、PGSTE法により拡散時間を0.1~1.0secまで変化させて、それぞれの拡散係数を測定した。その結果は図73に示すように、高圧加温処理すると、処理温度に比例して細胞が破壊されているため、高い処理温度ほど成分は染み込むことがわかる。
(2) Japanese pear soaked in syrup/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 15-60 minutes Production details Fruit: Japanese pear (Yosui)
Syrup: 15% granulated sugar water (14.3% sugar content)
Method: The peeled and seeded pears were bagged with an equal weight of syrup and vacuum packed.
・Evaluation method Sugar content: Each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a sugar content meter (manufactured by Atago Co., Ltd.). As shown in FIG. 69, the measurement results show that when the high-pressure heating treatment is performed, the components of the syrup permeate into the pulp in proportion to the treatment temperature and treatment time.
Hardness: Each sample was prepared into a square cube with a height of 1 cm and a width of 2 cm, and the stress was measured by a rheometer when a cylindrical plunger with a diameter of 5 mm penetrated to a depth of 6 mm. As shown in FIG. 70, the measurement results show that when the temperature is 60° C. or higher and the treatment time is long, the texture of the pulp becomes slightly softer, but the texture of the untreated pulp can be almost maintained.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 71, the measurement results show translucency due to the permeation of the syrup, but there is almost no change in color due to treatment conditions. Moreover, this color tone does not pose any problem in marketability. Also, FIG. 72(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Degree of cell disruption: In this example, changes in the diffusion coefficient of water in vegetable tissue under high pressure treatment were examined. The diffusion coefficient of water was analyzed by NMR using pears treated under various conditions under high pressure as samples. For NMR measurement, ESX400 (1H resonance frequency of 400 MHz) was used. The central portion of each sample was cut into a square of about 3 cm, rounded into a cylindrical shape, placed in an NMR measuring tube, and the diffusion coefficient of each sample was measured by changing the diffusion time from 0.1 to 1.0 sec by the PGSTE method. As shown in FIG. 73, the high-pressure heating process destroys the cells in proportion to the treatment temperature.
(3)ブドウのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40~70℃
時間:15~60分
・製造内容
果実:石川県産ブドウ(ルビーロマン)
シロップ:20%グラニュー糖水(糖度18.9%)
製法:果皮を剥いたブドウ5粒をそれらの40%量のシロップと共に袋に入れ、真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図74に示すように、ぶどうは、高圧加温処理を行うとどの処理温度および処理時間でもシロップの糖分が同程度に果肉へ染み込む。
硬さ、噛み切りやすさ:ブドウ1個を測定台に固定し、3mmφ円柱プランジャーで6mmまで圧縮した時の応力をレオメータにより測定した。測定結果は図75に示すようにぶどうの硬さおよび噛み切りやすさは高圧加温処理しても未処理と変わらず、生の食感を維持することができる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図76に示すように、未処理の果肉の色を基準に色差を比較すると、ぶどう果肉の色は高圧加温処理をしてもほぼ変わらず、生のぶどう果肉の色を維持することができる。また図77(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表38A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表38B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(3) Grapes soaked in syrup/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 40-70°C
Time: 15-60 minutes Production details Fruit: Ishikawa Prefecture grapes (Ruby Roman)
Syrup: 20% granulated sugar water (18.9% sugar content)
Method: 5 peeled grapes were bagged with their 40% amount of syrup and vacuum packed.
・Evaluation method Sugar content: Each sample was pulverized and filtered, and the filtrate was used as a measurement sample and measured with a sugar content meter (manufactured by Atago Co., Ltd.). As shown in FIG. 74, the measurement results show that when grapes are subjected to high-pressure heating treatment, the sugar content of the syrup permeates into the pulp to the same extent regardless of the treatment temperature and treatment time.
Hardness and ease of biting: A single grape was fixed on a measuring table and the stress when compressed to 6 mm with a 3 mmφ cylindrical plunger was measured with a rheometer. As shown in FIG. 75, the measurement results show that the hardness of the grapes and the ease of chewing through the grapes are the same as those of the untreated grapes even after the high-pressure heating treatment, and the raw texture can be maintained.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 76, the measurement results show that when the color difference is compared with the color of the untreated pulp, the color of the grape pulp does not change even after the high-pressure heating treatment, and the color of the raw grape pulp is maintained. be able to. FIG. 77(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 38A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 30 minutes), and (Table 38B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60°C).
尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、高圧加熱処理の処理温度別では、どの温度でも一般生菌、真菌ともに基準以下または不検出であった。50℃以上の処理温度では、6か月後まで一般生菌および真菌は検出されなかった。また、高圧加熱処理の処理温度が60℃の場合では、処理時間が30分以上で一般生菌および真菌が検出されなかった。
In the table, “above the standard” means 300/g or more for general viable bacteria, 1000/g or more for fungi, and “below the standard” means 300/g or less for general viable bacteria, 1000/g or less for fungi, and not detected. refers to the limit of detection, 50/g or less.
As shown in the table, by treatment temperature of high-pressure heat treatment, both general viable bacteria and fungi were below the standard or not detected at any temperature. At treatment temperatures of 50° C. and above, no common viable bacteria and fungi were detected until after 6 months. Moreover, when the treatment temperature of the high-pressure heat treatment was 60° C., the treatment time was 30 minutes or longer, and no viable bacteria or fungi were detected.
(4).80MPa以下と100MPa以上の処理での効果
前記ウメ、和ナシおよびブドウのシロップ漬製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表39に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
(4). Effect of treatment at 80 MPa or less and 100 MPa or more When the syrup pickling method for ume, Japanese pear, and grapes was examined by changing only the pressure condition of the high-pressure treatment condition in the range of 80 to 300 MPa, the results shown in Table 39 were obtained. is effective even in the pressure range of 80 to 300 MPa.
追加実験(牛肉)
(1)牛肉(外モモ)の味噌漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:7.5時間~30時間
・製造内容
肉:牛肉(外モモ)
漬床:調味味噌(味噌78%、砂糖11%、みりん11%)
製法:厚さ1cmにスライスした牛モモ肉に1/2量の漬床を塗り、袋に入れ、真空包装した。一般製造法として牛モモをガーゼで包み、その上から食材の1/2量の漬床(調味味噌)を塗り、袋に入れ真空包装した後に5℃で3日保存した。
・評価方法
糖組成:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図78に示すように、未処理に比べ15時間高圧加温処理した試料は、処理温度に関わらず糖濃度が10倍以上浸透した。また、漬床に含まれる糖成分の牛モモ肉への浸透は処理温度の上昇に比例して高くなり、処理温度60℃では、一般法以上の濃度となる。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図79に示すように、高圧加温処理を行うことで加熱後の硬さは未処理および一般法に比べて柔らかくなる。60℃の処理では、酵素反応が進み、柔らかくなったと考えられる。40℃の処理では、処理時間による硬さの変化があまり無いことから、処理時間は7.5時間でも十分であると考えられる。
色調:図80(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタ60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysi
s Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図81に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加し、特に60℃の処理温度で大きく増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表40A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表40B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (beef)
(1) Beef (outer thigh) marinated in miso and processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 7.5 hours to 30 hours Production content Meat: Beef (outer thigh)
Pickles: seasoned miso (78% miso, 11% sugar, 11% mirin)
Production method: A 1 cm-thick slice of beef thigh was coated with 1/2 of pickled bed, placed in a bag, and vacuum-packaged. As a general production method, beef thighs were wrapped in gauze, coated with 1/2 of the amount of pickles (seasoned miso), placed in a bag, vacuum-packaged, and stored at 5°C for 3 days.
・Evaluation method Sugar composition: A sample subjected to high-pressure heating was taken out from the bag, and after wiping off the seasoning liquid, etc., it was homogenized with a mixer. After adding 1 ml of an 8% trichloroacetic acid solution to 1 g of the homogenized sample and stirring vigorously, the extract was filtered and diluted to 10 ml with distilled water to obtain a sample. An HPLC system (Shimadzu Corporation) was used for analysis. The column was Mightysil NH 2 (5 μm) (Kanto Kagaku Co., Ltd.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the analysis was performed at a flow rate of 1 ml/min. Three components, fructose, glucose, and sucrose, were evaluated by measuring the sugar composition of samples and quantifying them. As shown in FIG. 78, the sugar concentration permeated the sample treated with high pressure heating for 15 hours more than 10 times higher than that of the untreated sample regardless of the treatment temperature. In addition, the permeation of the sugar components contained in the marinade into the beef thigh increases in proportion to the rise in the treatment temperature, and at a treatment temperature of 60°C, the concentration is higher than the general method.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As for the measurement results, as shown in FIG. 79, the hardness after heating becomes softer by performing the high-pressure heating treatment as compared with the untreated and the general method. It is thought that the treatment at 60°C accelerated the enzymatic reaction and made it softer. In the treatment at 40°C, the hardness did not change much with the treatment time, so it is considered that the treatment time of 7.5 hours is sufficient.
Color tone: Fig. 80(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Content of umami components: Suspend each sample in physiological saline, mix well, and eluate each amino acid by high performance liquid chromatography (HPLC) using either centrifugation or a linear gradient using a filter (60 (v/v) % acetonitrile). bottom. AccQ-tag Amino Acid Analysis as a column
s Column (Waters) was used, the column oven was set at 40°C, and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 81, the measurement results show that when the high-pressure heating treatment is performed, the amount of umami component increases in proportion to the treatment temperature and treatment time, especially at a treatment temperature of 60°C.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 40A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 40B) shows the results of the microbial hygiene inspection by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌は検出されたが、すべて衛生基準値は下回っている。真菌は処理温度別および処理時間別ともに検出されなかった。牛モモ肉の味噌漬けは、どの処理条件でも5℃で1か月保存が可能である。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, general viable bacteria were detected for each treatment temperature and treatment time, but all were below the sanitary standard values. No fungi were detected at any treatment temperature or treatment time. Beef thigh marinated in miso can be stored at 5°C for one month under any processing conditions.
(2)牛肉(タン)の味噌漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:7.5時間~30時間
・製造内容
肉:牛タン(クラウンカット)
漬床:調味味噌(味噌78%、砂糖11%、みりん11%)
製法:厚さ1cmにスライスした牛モモ肉に1/2量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、牛タンをガーゼで包み、その上から食材の1/2量の漬床(調味味噌)を塗り、袋に入れ真空包装した後に5℃で3日保存した。
・評価方法
糖組成:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図82に示すように、未処理に比べ15時間高圧加温処理した試料は、処理温度に関わらず糖濃度が約3g以上浸透した。また、漬床に含まれる糖成分の牛タン肉への浸透は処理温度の上昇に比例して高くなり、処理温度40℃以上では、一般法以上の濃度となる。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図83に示すように、高圧加温処理を行うことで加熱後の硬さは未処理および一般法に比べて柔らかくなる。60℃の処理では、酵素反応が進み、柔らかくなったと考えられる。40℃の処理では、処理時間が長いほど柔らかくなる。
色調:図84(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図85に示すように、60℃の処理温度で旨味成分量は大きく増加する。また、処理時間に比例して旨味成分量は増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表41A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表41B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(2) Beef (tongue) marinated in miso and processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 7.5 hours to 30 hours Production content Meat: Beef tongue (crown cut)
Pickles: seasoned miso (78% miso, 11% sugar, 11% mirin)
Production method: A 1 cm-thick slice of beef thigh was coated with 1/2 of pickled bed, placed in a bag, and vacuum-packaged. As a general production method, the beef tongue was wrapped in gauze, coated with 1/2 of the amount of pickles (seasoned miso) of the ingredients, placed in a bag, vacuum-packaged, and stored at 5°C for 3 days.
・Evaluation method Sugar composition: A sample subjected to high-pressure heating was taken out from the bag, and after wiping off the seasoning liquid, etc., it was homogenized with a mixer. After adding 1 ml of an 8% trichloroacetic acid solution to 1 g of the homogenized sample and stirring vigorously, the extract was filtered and diluted to 10 ml with distilled water to obtain a sample. An HPLC system (Shimadzu Corporation) was used for analysis. The column was Mightysil NH 2 (5 μm) (Kanto Kagaku Co., Ltd.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the analysis was performed at a flow rate of 1 ml/min. Three components, fructose, glucose, and sucrose, were evaluated by measuring the sugar composition of samples and quantifying them. As shown in FIG. 82, the measurement results show that the sugar concentration of about 3 g or more permeated the sample treated with high pressure heating for 15 hours compared to the untreated sample, regardless of the treatment temperature. In addition, the permeation of the sugar components contained in the marinade into the beef tongue increases in proportion to the rise in the treatment temperature, and at a treatment temperature of 40°C or higher, the concentration is higher than the general method.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As for the measurement results, as shown in FIG. 83, the hardness after heating becomes softer by performing the high-pressure heating treatment as compared with the untreated and the general method. It is thought that the treatment at 60°C accelerated the enzymatic reaction and made it softer. In the 40°C treatment, the longer the treatment time, the softer it becomes.
Color tone: Fig. 84(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Content of umami component: Each sample was suspended in physiological saline and thoroughly mixed. After removing the residue by centrifugation or filtering, amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) with a linear gradient using the prescribed mobile phases (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v/v) % acetonitrile). . AccQ-tag Amino Acid Analysis Column (Waters) was used as the column, and the column oven was set at 40°C and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 85, the measurement results show that the amount of umami component is greatly increased at a treatment temperature of 60°C. Moreover, the amount of umami components increases in proportion to the processing time.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 41A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 41B) shows the results of the microbial hygiene inspection by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌は検出されたが、すべて衛生基準値は下回っている。真菌は処理温度別および処理時間別ともに検出されなかった。牛タンの味噌漬けも牛モモ肉と同様に、どの処理条件でも5℃で1か月保存が可能である。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, general viable bacteria were detected for each treatment temperature and treatment time, but all were below the sanitary standard values. No fungi were detected at any treatment temperature or treatment time. Miso-pickled beef tongue can be stored at 5°C for one month under any treatment conditions, as with beef thigh.
(3)牛肉(外モモ)の糀漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:1時間~5時間
・製造内容
肉:牛肉(外モモ)
漬液:米糀水(糀:水=1:1)
製法:厚さ1cmにスライスした牛モモ肉と、1/5量の米糀水をと共に袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図86に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、牛モモ肉中のグルコース濃度は200mg以上に向上した。また、処理温度の上昇に比例して牛モモ肉のグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。特に60℃の処理温度は糀の酵素の適正温度にあた
るため、グルコース濃度の上昇は顕著である。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図87に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、処理した肉の硬さは、軟化した。また、処理温度の上昇によって軟化する傾向があった。特に、糀の酵素の適正温度である60℃の処理温度で、加熱後の硬さは柔らかくなる。60℃での処理時間の長さにも比例して加熱後の硬さは柔らかくなる。
色調:図88(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図89に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加する。また、処理時間が15時間場合では、処理温度が40℃以上、処理温度が60℃の場合では、処理時間が15時間以上であれば旨味成分の含有率は、1%以上となった
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を 3 日間行った後に形成された微生物集落数を計数し、試料 1 g あたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表42A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表42B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(3) Beef (outer thigh) pickled in rice malt and processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 1 to 5 hours Production content Meat: Beef (outer thigh)
Pickling liquid: rice koji water (koji: water = 1:1)
Production method: Beef thigh meat sliced into 1 cm thickness and 1/5 amount of rice koji water were placed in a bag and vacuum-packaged.
Evaluation method glucose concentration: After homogenizing the meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered, and clarified. The glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined. As for the measurement results, as shown in FIG. 86, the glucose concentration in the beef thigh increased to 200 mg or more, regardless of the treatment time and temperature of the high-pressure heating treatment, compared to the untreated beef. In addition, the glucose concentration of the beef thigh increases in proportion to the increase in treatment temperature. Also, the glucose concentration increases in proportion to the length of treatment time. In particular, since the processing temperature of 60°C is the optimal temperature for koji enzymes, the increase in glucose concentration is remarkable.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As shown in FIG. 87, the measurement results show that the hardness of the treated meat was softened compared to the untreated meat regardless of the treatment time and temperature of the high pressure heating treatment. In addition, there was a tendency of softening as the treatment temperature increased. In particular, at a treatment temperature of 60°C, which is the optimum temperature for koji enzymes, the hardness after heating becomes softer. The hardness after heating becomes softer in proportion to the length of treatment time at 60°C.
Color tone: Fig. 88(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Content of umami component: Each sample was suspended in physiological saline and thoroughly mixed. After removing the residue by centrifugation or filtering, amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) with a linear gradient using the prescribed mobile phases (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v/v) % acetonitrile). . AccQ-tag Amino Acid Analysis Column (Waters) was used as the column, and the column oven was set at 40°C and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 89, the measurement results show that when the high-pressure heating treatment is performed, the amount of umami component increases in proportion to the treatment temperature and treatment time. In addition, when the treatment time was 15 hours, the treatment temperature was 40°C or higher, and when the treatment temperature was 60°C, the umami component content was 1% or higher when the treatment time was 15 hours or longer. Test method: Suspend each sample in physiological saline and serially dilute each diluted sample on a standard agar medium (Eiken, for general viable cell count) and potato containing 0.01 (w/v) % chloramphenicol. It was smeared on a dextrose agar medium (Eiken, for fungi) (in the case of standard agar, the pour method was used). After culturing at 30-37°C for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 42A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times were 15 hours), and (Table 42B) shows the results of the microbial hygiene inspection by treatment time (all treatment temperatures were 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、40℃以下の処理で一般生菌および真菌ともに衛生基準値を超えてしまったが、60℃以上では不検出であった。60℃での処理時間別では、1時間処理したもののみが1か月後に衛生基準値を超えない範囲で一般生菌が検出されたが、処理時間による生菌数の違いはほぼなかった。糀の酵素の活性温度が60℃であることも含めると、牛モモ肉の糀漬けは60℃以上での高圧加温処理を推奨する。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, by treatment temperature, both general viable bacteria and fungi exceeded the sanitary standard values when treated at 40°C or lower, but were not detected at 60°C or higher. By treatment time at 60°C, viable bacteria were detected within a range that did not exceed the sanitation standard value after one month only in those treated for 1 hour, but there was almost no difference in the number of viable bacteria depending on the treatment time. Considering that the active temperature of koji enzymes is 60°C, we recommend high-pressure heating at 60°C or higher for pickling beef thighs in koji.
(4)牛肉(タン)の糀漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:1時間~5時間
・製造内容
肉:牛タン(タン先)
漬液:米糀水(糀:水=1:1)
製法:厚さ1cmにスライスした牛モモ肉と、2/5量の米糀水をと共に袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図90に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、牛タン肉中のグルコース濃度は約200mg以上に向上した。また、処理温度の上昇に比例して牛タン肉のグルコース濃度は高くなる。また、処理時間の長さ
にも比例してグルコース濃度は高くなる。特に60℃の処理温度は糀の酵素の適正温度にあたるため、グルコース濃度の上昇は顕著である。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図91に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、処理した肉の硬さは、軟化した。また、処理温度の上昇および処理時間の長さに比例して軟化した。
色調:図92(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図93に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加する。また、処理時間が15時間場合では、処理温度が20℃以上、処理温度が60℃の場合では、処理時間が15時間以上であれば旨味成分の含有率は、1%以上となった。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表43A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表43B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(4) Beef (tongue) marinated in rice malt and processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 1 to 5 hours Production details Meat: Beef tongue (before tongue)
Pickling liquid: rice koji water (koji: water = 1:1)
Production method: Beef thigh meat sliced into 1 cm thickness and 2/5 amount of rice koji water were placed in a bag and vacuum-packaged.
Evaluation method glucose concentration: After homogenizing the meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered, and clarified. The glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined. As for the measurement results, as shown in FIG. 90, the glucose concentration in the beef tongue improved to about 200 mg or more, regardless of the treatment time and temperature of the high-pressure heating treatment, compared to the untreated beef tongue. In addition, the glucose concentration in beef tongue increases in proportion to the increase in treatment temperature. Also, the glucose concentration increases in proportion to the length of treatment time. In particular, since the processing temperature of 60°C is the optimal temperature for koji enzymes, the increase in glucose concentration is remarkable.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As shown in FIG. 91, the measurement results show that the hardness of the treated meat was softened compared to the untreated meat regardless of the treatment time and temperature of the high-pressure heating treatment. In addition, the softening was proportional to the increase in treatment temperature and the length of treatment time.
Color tone: Fig. 92(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Content of umami component: Each sample was suspended in physiological saline and thoroughly mixed. After removing the residue by centrifugation or filtering, amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) with a linear gradient using the prescribed mobile phases (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v/v) % acetonitrile). . AccQ-tag Amino Acid Analysis Column (Waters) was used as the column, and the column oven was set at 40°C and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 93, the measurement results show that when the high-pressure heating treatment is performed, the amount of umami component increases in proportion to the treatment temperature and treatment time. Also, when the treatment time was 15 hours, the treatment temperature was 20°C or higher, and when the treatment temperature was 60°C, the umami component content was 1% or more when the treatment time was 15 hours or longer.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 43A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 3 hours), and (Table 43B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、40℃以下の処理で一般生菌および真菌ともに衛生基準値を超えてしまったが、60℃以上の処理では衛生基準値を下回っている。60℃での処理時間別では、一般生菌についてはどの処理時間でも衛生基準値を超えない範囲で検出されたが、処理時間による生菌数の違いはなかった。牛モモ肉と同様に、糀の酵素の活性温度が60℃であることから、牛タンの糀漬けも60℃以上での高圧加温処理を推奨する。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, by treatment temperature, both general viable bacteria and fungi exceeded the sanitary standard values when treated at 40°C or lower, but fell below the sanitary standard values when treated at 60°C or higher. By treatment time at 60°C, general viable bacteria were detected within a range that did not exceed the sanitary standard value at any treatment time, but there was no difference in the number of viable bacteria depending on the treatment time. As with beef thigh meat, the enzyme activity temperature of koji is 60°C, so we recommend high-pressure heating at 60°C or higher for pickling beef tongue in koji.
(5)80MPa以下と100MPa以上の処理での効果
前記牛肉の味噌および糀漬けの製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表44に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
(5) Effect of treatment at 80 MPa or less and 100 MPa or more When the method for producing beef miso and koji pickles was examined by changing only the pressure condition of the high pressure treatment condition in the range of 80 to 300 MPa, the results shown in Table 44 were obtained. It was confirmed that the invention is also effective in the pressure range of 80-300 MPa.
追加実験(堅豆腐)
(1)堅豆腐の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:7.5時間~30時間
・製造内容
加工品:堅豆腐
漬床:調味粕(酒粕40%、味噌40%、清酒10%、みりん10%)
製法:1cm幅に切った堅豆腐に1/2量の調味酒粕を塗り、袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の魚肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図94に示すように、高圧加温処理を行うことで、グルコース濃度が高くなる。40℃の処理温度で特に高く、処理時間に比例してグルコース濃度も高くなる。
硬さ:各試料を1cm角立方体に調製し、10mmφ円柱プランジャーで80%圧縮した時の応力をレオメータにより測定した。測定結果は図95に示すように、高圧加温処理を行うことで、堅豆腐の硬さが柔らかくなる。グルコース濃度同様40℃の処理温度で特に柔らかくなり、処理時間に比例してさらに柔らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図96に示すように、処理温度および処理時間に比例して色が変化し、より黄色くなる。また図97(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のア
ミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図98に示すように、高圧加温処理を行うと、旨味成分量は増加し、特に60℃の処理温度で大きく増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37 ℃にて培養を 3 日間行った後に形成された微生物集落数を計数し、試料 1 g あたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表45A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表45B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (hard tofu)
(1) Hard tofu pickled in lees and processing conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 7.5 hours to 30 hours Production details Processed product: Hard tofu Pickled bed: Seasoning lees (40% sake lees, 40% miso, 10% sake, 10% mirin)
Production method: Hard tofu cut into 1 cm wide pieces was coated with 1/2 amount of seasoned sake lees, placed in a bag, and vacuum-packaged.
Evaluation method glucose concentration: After homogenizing the fish meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered and clarified. The glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined. As shown in FIG. 94, the measurement results show that the high-pressure heating process increases the glucose concentration. It is particularly high at the treatment temperature of 40°C, and the glucose concentration increases in proportion to the treatment time.
Hardness: Each sample was prepared into a 1 cm square cube, and the stress when it was compressed by 80% with a 10 mmφ cylindrical plunger was measured with a rheometer. As shown in FIG. 95, the hardness of hard tofu is softened by high-pressure heating. Like the glucose concentration, it becomes particularly soft at a treatment temperature of 40°C, and becomes softer in proportion to the treatment time.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 96, the measurement results show that the color changes in proportion to the treatment temperature and treatment time, becoming more yellow. FIG. 97(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Content of umami component: Each sample was suspended in physiological saline and thoroughly mixed. After removing the residue by centrifugation or filtering, amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) with a linear gradient using the prescribed mobile phases (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v/v) % acetonitrile). . AccQ-tag Amino Acid Analysis Column (Waters) was used as the column, and the column oven was set at 40°C and elution was performed at a flow rate of 1 ml/min. Upon detection, fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 98, the measurement results show that the high-pressure heating treatment increases the amount of umami components, especially at a treatment temperature of 60°C.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30-37°C for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 45A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 45B) shows the results of microbial hygiene inspections by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これまでの粕漬けと同様に、高圧加温処理の効果だけでなく、堅豆腐に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, the number of viable bacteria is below the sanitary standard value for both treatment temperature and treatment time. This is thought to be due to the synergistic effect of not only the effect of high-pressure heating, but also the sterilization effect of the alcohol contained in the sake lees soaked into the hard tofu, which inhibits the growth of bacteria.
(2)80MPa以下と100MPa以上の処理での効果
前記堅豆腐の漬物の製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表46に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
(2) Effect of treatment at 80 MPa or less and 100 MPa or more When the method for producing hard tofu pickles was examined by changing only the pressure condition of the high pressure treatment condition in the range of 80 to 300 MPa, the results shown in Table 46 were obtained. It was confirmed that it is effective even in the pressure range of 80 to 300 MPa.
追加実験(魚介類)
(1)フクラギの粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:7.5時間~30時間
・製造内容
魚介:フクラギ
漬床:調味粕(酒粕73%、粉末米糀11.2%、清酒7.5%、みりん7.5%、塩0.8%)
製法:幅2cmの切り身にしたフクラギに同重量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、フクラギの切り身をガーゼで包み、その上から食材と同量の調味粕を塗り、袋に入れ真空包装した後、常温で3日間保存した。
・評価方法
グルコース濃度:各処理後の魚肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図99に示すように、未処理に比べて、処理条件に関わらず、0.3%以上のグルコースの浸透が確認された。処理温度の上昇に比例してグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。さらに、処理時間15時間では、40℃以上、処理温度40℃では、15時間以上の条件で一般法でのグルコース濃度より高い濃度となった。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図100に示すように、フクラギの粕漬けに関しては、高圧加温処理することで未処理や一般法に比べて硬くなる傾向が認められた。しかし、15時間処理の場合処理温度の上昇、に比例してフクラギは柔らかくなり、60℃では、未処理や一般法より柔らかくなった。また、処理時間の長さにも比例してフクラギは柔らかくなった。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図101に示すように、高圧加温処理を行うことで、成分などが染み込み鮮やかな茶色になる。また、処理温度および処理時間に比例して色の鮮やかさは良くなる。また、また図102(a)は高圧加温処理前の色調を示し、(b)
は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表47A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表47B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (seafood)
(1) Fukurugi lees pickling/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 7.5 hours to 30 hours Production details Seafood: Fukuragi pickled bed: Seasoning lees (73% sake lees, 11.2% powdered rice koji, 7.5% sake, 7.5% mirin, 0.8% salt)
Production method: A 2 cm wide fillet of Fukuragagi was coated with the same weight of pickled bed, placed in a bag, and vacuum-packaged. As a general production method, fillets of Fukuragagi were wrapped in gauze, the same amount of seasoning lees as the ingredients was applied thereon, placed in a bag, vacuum-packaged, and stored at room temperature for 3 days.
Evaluation method glucose concentration: After homogenizing the fish meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered and clarified. The glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined. As for the measurement results, as shown in FIG. 99, it was confirmed that 0.3% or more of glucose permeation was observed regardless of the treatment conditions compared to the untreated. The glucose concentration increases in proportion to the increase in treatment temperature. Also, the glucose concentration increases in proportion to the length of treatment time. Furthermore, the glucose concentration was higher than that in the general method at a treatment time of 15 hours at 40°C or higher, and at a treatment temperature of 40°C for 15 hours or longer.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As for the measurement results, as shown in FIG. 100, it was observed that the pickled Fukuraguri lees tended to become harder when subjected to high-pressure heating than when untreated or by the general method. However, when treated for 15 hours, Fukuragi became softer in proportion to the increase in treatment temperature, and at 60°C, it became softer than untreated and conventional method. In addition, Fukuragaki softened in proportion to the length of treatment time.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As shown in FIG. 101, the measurement results show that the high-pressure heating process permeates the components and makes the material bright brown. Also, the vividness of the color is improved in proportion to the processing temperature and processing time. Also, FIG. 102(a) shows the color tone before the high-pressure heating treatment, and (b)
indicates the color tone before high-pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 47A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 47B) shows the results of microbial hygiene inspections by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌および真菌の生菌数は不検出または衛生基準値以下であった。これは野菜の粕漬けと同様に、高圧加温処理の効果だけでなく、フクラギに染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, the viable cell counts of general viable bacteria and fungi were not detected or were below the sanitary standard values for both the treatment temperature and the treatment time. This is thought to be due not only to the effect of high-pressure heating, but also to the synergistic effect of the sterilization effect of the alcohol contained in the sake lees soaked in Fukuragagi, which inhibits the growth of bacteria, similar to pickled vegetables in sake lees.
(2)イカの粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:7.5時間~30時間
・製造内容
魚介:スルメイカ(胴)
漬床:調味粕(酒粕73%、粉末米糀11.2%、清酒7.5%、みりん7.5%、塩0.8%)
製法:皮を剥いだイカの胴部分に同重量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、イカの切り身をガーゼで包み、その上から食材と同量の調味粕を塗り、袋に入れ真空包装した後、常温で3日間保存した。
・評価方法
グルコース濃度:各処理後のイカ肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図103に示すように、未処理に比べて、処理条件に関わらず、0.5%以上のグルコースの浸透が確認された。処理温度の上昇に比例してグル
コース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。さらに、処理条件に関わらす一般法でのグルコース濃度より高い濃度となった。
硬さ:各試料を2cm角立方体に調製し、5mmφ針状プランジャーで15mmまで進入した時の応力をレオメータにより測定した。測定結果は図104に示すように、イカの粕漬けも、高圧加温処理することで未処理に比べて硬くなる傾向が認められたが、いずれの条件も一般法に比べて軟らかかった。また、15時間処理の場合処理温度40℃以上、40℃処理の場合処理時間15時間以上で未処理より柔らかくなった。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図105に示すように、高圧加温処理を行うことで、成分などが染み込み鮮やかな茶色になる。また、処理温度および処理時間に比例して色の鮮やかさは良くなる。また図106(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表48A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表48B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(2) Squid pickled in sake lees/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 7.5 hours to 30 hours Production details Seafood: Japanese flying squid (body)
Pickled bed: Seasoning lees (sake lees 73%, powdered rice koji 11.2%, sake 7.5%, mirin 7.5%, salt 0.8%)
Production method: The body of the peeled squid was coated with the same weight of pickling, placed in a bag, and vacuum-packaged. As a general production method, squid fillet was wrapped in gauze, the same amount of seasoning lees as the food was applied on top, put in a bag, vacuum-packaged, and stored at room temperature for 3 days.
Evaluation method glucose concentration: After homogenizing the squid meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, vigorously shaken, filtered and clarified, and the volume of the liquid was adjusted to 50 ml. The glucose concentration of the constant-volume liquid was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted to the glucose concentration contained in the original sample. Three replicates were performed per treatment, and the mean and standard deviation were determined. As shown in FIG. 103, the measurement results confirmed permeation of 0.5% or more of glucose, regardless of the treatment conditions, compared to the untreated. The glucose concentration increases in proportion to the increase in treatment temperature. Also, the glucose concentration increases in proportion to the length of treatment time. Furthermore, the concentration of glucose was higher than that in the general method regardless of the treatment conditions.
Hardness: Each sample was prepared into a cube of 2 cm square, and the stress was measured by a rheometer when a 5 mmφ needle-like plunger was used to penetrate the sample to 15 mm. As shown in FIG. 104, the squid pickled in sake lees also tended to become harder when subjected to high-pressure heating than when not treated, but was softer than when treated under any conditions. In the case of treatment for 15 hours, the treatment temperature was 40°C or more, and in the case of treatment at 40°C, the treatment time was 15 hours or more.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As for the measurement result, as shown in FIG. 105, by performing the high-pressure heating treatment, the components and the like permeate and become bright brown. Also, the vividness of the color is improved in proportion to the processing temperature and processing time. Also, FIG. 106(a) shows the color tone before high pressure heating treatment, and FIG. 106(b) shows the color tone before high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 48A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times were 15 hours), and (Table 48B) shows the results of the microbial hygiene inspection by treatment time (all treatment temperatures were 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌および真菌の生菌数は、不検出または、衛生基準値以下であった。野菜やフクラギの粕漬けと同様に、高圧加温処理の効果だけでなく、イカに染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, the viable cell counts of general viable bacteria and fungi were not detected or were below the sanitary standard values for both treatment temperature and treatment time. It is thought that the multiplication of bacteria was suppressed not only by the effect of high-pressure heating, but also by the synergistic effect of the sterilization effect of the alcohol contained in the sake lees soaked in the squid, similar to pickling vegetables and Fukuragagi in sake lees.
(3)フクラギのソフトスモーク
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:30分~2時間
・製造内容
魚介:フクラギ
漬液:調味くん液(塩20%、砂糖20%、トレハロース8%、粉末くん液2%、水50%)
製法:幅2cmの切り身にしたフクラギと同重量の漬液を共に袋に入れ、真空包装した。・評価方法
糖濃度:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図107に示すように、高圧加温処理を行うことで、糖濃度が高くなる。処理温度による違いは認
められなかった。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図108に示すように、製造の過程で、調味くん液の塩分などによる脱水が起こったり、乾燥処理を行ったりするため、硬さは未処理よりも硬くなる。高圧加温処理による影響は処理温度の上昇に比例して柔らかくなることや、処理時間の長さに比例して硬くなることが挙げられる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図109に示すように、高圧加温処理を行うことで、調味くん液が染み込み鮮やかな茶色になる。処理温度および処理時間に比例して色の鮮やかさは良くなる。また図110(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表49A)は処理温度別(処理時間は全て1時間)の微生物衛生検査の結果を示し、(表49B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(3) Fukurugi soft smoke/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 30 minutes to 2 hours Production details Seafood: Fukuragi marinated liquid: Seasoning liquid (20% salt, 20% sugar, 8% trehalose, 2% powdered liquid, 50% water)
Production method: A 2 cm wide fillet of Fukuragagi and the same weight of pickling liquid were placed in a bag and vacuum-packaged.・Evaluation method Sugar concentration: A high-pressure heating-treated sample was taken out of the bag, and after wiping off the seasoning liquid, etc., it was homogenized with a mixer. After adding 1 ml of an 8% trichloroacetic acid solution to 1 g of the homogenized sample and stirring vigorously, the extract was filtered and diluted to 10 ml with distilled water to obtain a sample. An HPLC system (Shimadzu Corporation) was used for analysis. The column was Mightysil NH 2 (5 μm) (Kanto Kagaku Co., Ltd.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the analysis was performed at a flow rate of 1 ml/min. Three components, fructose, glucose and sucrose, were evaluated by measuring the sugar composition of the sample and quantifying them. As shown in FIG. 107, the measurement results show that the high-pressure heating process increases the sugar concentration. No difference due to treatment temperature was observed.
Hardness: Each sample was prepared into a cube of 1 cm square, and a razor-blade plunger was applied perpendicularly to muscle fibers, and the stress was measured by a rheometer when the muscle fibers were penetrated to a depth of 8 mm. As shown in FIG. 108, the measurement results show that during the manufacturing process, dehydration occurs due to the salt content of the seasoning liquid, and drying treatment is performed. Effects of the high-pressure heating treatment include softening in proportion to the rise in treatment temperature and hardening in proportion to the length of treatment time.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As for the measurement result, as shown in FIG. 109, by performing the high-pressure heating process, the seasoning liquid permeates and becomes bright brown. Color vibrancy improves in proportion to treatment temperature and treatment time. FIG. 110(a) shows the color tone before the high pressure heating treatment, and FIG. 110(b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 49A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 1 hour), and (Table 49B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、60℃以上の処理温度で一般生菌および真菌ともに不検出であった。40℃での処理時間別では、2時間以上で衛生基準値を下回った。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, by treatment temperature, neither general viable bacteria nor fungi were detected at treatment temperatures of 60°C or higher. By treatment time at 40℃, it was below the sanitary standard value for 2 hours or more.
(4)イカのソフトスモーク
・処理条件
圧力:1000気圧(100MPa)
温度:20℃~60℃
時間:30分~2時間
・製造内容
魚介:スルメイカ(胴)
漬液:調味くん液(塩20%、砂糖20%、トレハロース8%、粉末くん液2%、水50%)
製法:皮を剥いだイカの胴部分と同重量の漬液を共に袋に入れ、真空包装した。
・評価方法
糖濃度:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図111に示すように、高圧加温処理を行うことで、フクラギと同様に糖濃度が高くなる。また、処理温度が60℃で最も糖濃度が上昇した。
硬さ:各試料を2cm角立方体に調製し、5mmφ針状プランジャーで15mmまで進入した時
の応力をレオメータにより測定した。測定結果は図112に示すように、フクラギと同様に、製造の過程で未処理よりも硬くなる傾向がある。高圧加温処理による影響は、フクラギとは反対に、処理時間の長さに比例して柔らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図113に示すように、高圧加温処理を行うことで、フクラギと同様に調味くん液が染み込み鮮やかな茶色になる。また、色の鮮やかさも処理温度および処理時間に比例して良くなる。また図114(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30~37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表50A)は処理温度別(処理時間は全て1時間)の微生物衛生検査の結果を示し、(表50B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(4) Soft smoked squid/treatment conditions Pressure: 1000 atmospheres (100 MPa)
Temperature: 20°C to 60°C
Time: 30 minutes to 2 hours Production details Seafood: Japanese flying squid (body)
Pickling liquid: Seasoning liquid (20% salt, 20% sugar, 8% trehalose, 2% powdered liquid, 50% water)
Production method: The skin-peeled squid body and the same weight of pickling liquid were placed in a bag and vacuum-packaged.
・Evaluation method Sugar concentration: A high-pressure heating-treated sample was taken out of the bag, and after wiping off the seasoning liquid, etc., it was homogenized with a mixer. After adding 1 ml of 8-trichloroacetic acid solution to 1 g of the homogenized sample and stirring vigorously, the extract was filtered and diluted to 10 ml with distilled water to obtain a sample. An HPLC system (Shimadzu Corporation) was used for analysis. The column was Mightysil NH 2 (5 μm) (Kanto Kagaku Co., Ltd.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the analysis was performed at a flow rate of 1 ml/min. Three components, fructose, glucose, and sucrose, were evaluated by measuring the sugar composition of samples and quantifying them. As for the measurement results, as shown in FIG. 111, the high-pressure heating treatment increases the sugar concentration in the same manner as in Fukuraguri. Moreover, the sugar concentration increased the most when the treatment temperature was 60°C.
Hardness: Each sample was prepared into a cube of 2 cm square, and the stress was measured by a rheometer when it was penetrated to 15 mm by a needle-like plunger of 5 mmφ. As shown in FIG. 112, the measurement results show that, similarly to Fukuragi, it tends to become harder during the manufacturing process than untreated. Contrary to Fukuragi, the effect of high-pressure heating softens in proportion to the length of treatment time.
Color tone: L*, a*, and b* were measured by the reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.) for the color tone of the sample under each processing condition. As for the measurement results, as shown in FIG. 113, by performing the high-pressure heating process, the seasoning liquid permeates and becomes bright brown like Fukuragagi. Also, the vividness of the color is improved in proportion to the treatment temperature and treatment time. FIG. 114(a) shows the color tone before the high pressure heating treatment, and (b) shows the color tone before the high pressure heating treatment.
Microbial hygiene test method: Suspend each sample in physiological saline, serially dilute, and add each diluted sample to standard agar medium (Eiken, for general viable cell count) and 0.01 (w/v) % chloramphenicol. Potato dextrose agar medium (Eiken, for fungi) was smeared (in the case of standard agar, the pour method was used). After culturing at 30 to 37° C. for 3 days, the number of microbial colonies formed was counted, and the number of viable general bacteria and fungi per 1 g of sample was calculated. With reference to the standards of the Food Sanitation Act, the standard values were 300 cfu/g or less for the general viable count and 1000 cfu/g or less for the fungal count. Non-detection was defined as 50 cfu/g or less for both general viable bacteria and fungi.
(Table 50A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 1 hour), and (Table 50B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40°C).
尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、イカのソフトスモークでは、製造直後の40℃で1時間処理したもの以外は一般生菌および真菌がともに不検出であった。イカのソフトスモークはどの処理条件でも5℃で1か月保存が可能である。
In the table, above the standard means 100,000/g or more for general viable bacteria, 1000/g or more for fungi, and below the standard means 100,000/g or less for general viable bacteria, 1000/g or less for fungi, and no Detection refers to the limit of detection, 50/g or less.
As shown in the table, neither general viable bacteria nor fungi were detected in soft smoked squid other than those treated at 40°C for 1 hour immediately after production. Soft smoked squid can be stored at 5°C for 1 month under any processing conditions.
(5)80MPa以下と100MPa以上の処理での効果
前記フクラギおよびイカの漬物およびソフトスモークの製法を、高圧処理条件の圧力条件のみ80~300MPa範囲で変えて検討したところ、表51に示す結果となり、本発明が80~300MPaの圧力範囲でも有効であることを確認した。
(5) Effect of treatment at 80 MPa or less and 100 MPa or more When the method for producing pickled and soft smoked Fukuragi and squid was examined by changing only the pressure condition of the high pressure treatment condition in the range of 80 to 300 MPa, the results are shown in Table 51. , confirmed that the present invention is effective even in the pressure range of 80 to 300 MPa.
本発明に係る脱気・加熱・高圧処理方法は、野菜の奈良漬、野菜の浅漬及び野菜の生醤油漬にあっては、上記以外の野菜にも適用でき、また果実のシロップ漬にあっては、リンゴ、アンズ、ウメ以外にも適用でき、畜肉の漬物にあっては、豚ロース肉以外に鶏肉、牛肉にも利用でき、豆腐の漬物にあっては、石川県特産の堅豆腐に限らず、一般の豆腐にも利用でき、キノコの加工品にあっては、シイタケ以外のキノコにも利用することができる。 The degassing, heating, and high-pressure treatment method according to the present invention can be applied to vegetables other than the above in narazuke of vegetables, lightly pickled vegetables, and raw soy sauce pickles of vegetables. can be applied to other than apples, apricots, and plums. For pickled meat, it can be used not only for pork loin, but also for chicken and beef. It can also be used for general tofu, and for processed mushroom products, it can be used for mushrooms other than shiitake mushrooms.
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015213699 | 2015-10-30 | ||
JP2015213699 | 2015-10-30 | ||
JP2020077390A JP6990857B2 (en) | 2015-10-30 | 2020-04-24 | Degassing / heating / high pressure treatment method for food |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020077390A Division JP6990857B2 (en) | 2015-10-30 | 2020-04-24 | Degassing / heating / high pressure treatment method for food |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021153605A JP2021153605A (en) | 2021-10-07 |
JP7209309B2 true JP7209309B2 (en) | 2023-01-20 |
Family
ID=58712310
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016207719A Active JP6818390B2 (en) | 2015-10-30 | 2016-10-24 | Deaeration / heating / high pressure treatment method for food |
JP2019235596A Active JP6905232B2 (en) | 2015-10-30 | 2019-12-26 | Degassing / heating / high pressure treatment method for food |
JP2020077390A Active JP6990857B2 (en) | 2015-10-30 | 2020-04-24 | Degassing / heating / high pressure treatment method for food |
JP2021111212A Active JP7321441B2 (en) | 2015-10-30 | 2021-07-05 | Degassing, heating, and high-pressure processing methods for food |
JP2021111234A Active JP7209309B2 (en) | 2015-10-30 | 2021-07-05 | Degassing, heating, and high-pressure processing methods for food |
JP2021111194A Active JP7233644B2 (en) | 2015-10-30 | 2021-07-05 | Degassing, heating, and high-pressure processing methods for food |
JP2022160994A Active JP7445100B2 (en) | 2015-10-30 | 2022-10-05 | Deaeration, heating, and high-pressure processing methods for food |
JP2023176362A Pending JP2023171587A (en) | 2015-10-30 | 2023-10-12 | Deaeration/heating/high pressure processing method for food |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016207719A Active JP6818390B2 (en) | 2015-10-30 | 2016-10-24 | Deaeration / heating / high pressure treatment method for food |
JP2019235596A Active JP6905232B2 (en) | 2015-10-30 | 2019-12-26 | Degassing / heating / high pressure treatment method for food |
JP2020077390A Active JP6990857B2 (en) | 2015-10-30 | 2020-04-24 | Degassing / heating / high pressure treatment method for food |
JP2021111212A Active JP7321441B2 (en) | 2015-10-30 | 2021-07-05 | Degassing, heating, and high-pressure processing methods for food |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021111194A Active JP7233644B2 (en) | 2015-10-30 | 2021-07-05 | Degassing, heating, and high-pressure processing methods for food |
JP2022160994A Active JP7445100B2 (en) | 2015-10-30 | 2022-10-05 | Deaeration, heating, and high-pressure processing methods for food |
JP2023176362A Pending JP2023171587A (en) | 2015-10-30 | 2023-10-12 | Deaeration/heating/high pressure processing method for food |
Country Status (1)
Country | Link |
---|---|
JP (8) | JP6818390B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515374B2 (en) * | 2017-02-09 | 2019-05-22 | 株式会社紅梅園 | Plum food manufacturing method |
JP7231955B2 (en) * | 2021-08-03 | 2023-03-02 | 天狗罐詰株式会社 | Nameko container-packed product manufacturing method |
CN114184612B (en) * | 2021-11-11 | 2024-03-26 | 南方电网科学研究院有限责任公司 | Method for evaluating degassing effect of crosslinked polyethylene cable |
CN118510428A (en) * | 2022-02-21 | 2024-08-16 | 松下知识产权经营株式会社 | Cooking apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002052662A (en) | 2000-08-10 | 2002-02-19 | Kureha Chem Ind Co Ltd | Laminated film for packaging pickles, bag consisting of the same, and package filled with pickles |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55111750A (en) * | 1979-02-17 | 1980-08-28 | Shigeru Hayakawa | Preparation of pickles by vacuum treatment |
JPS61152262A (en) * | 1984-12-27 | 1986-07-10 | Tetsuo Izumi | Processed beef tongue food |
JPS63109733A (en) * | 1986-10-27 | 1988-05-14 | Tsuneya Takeba | Sterilization method for low-salted and pickled ume (plum) |
JPH01202244A (en) * | 1988-02-09 | 1989-08-15 | Shoei Pack:Kk | Preparation of pickle |
JPH0330631A (en) * | 1989-06-27 | 1991-02-08 | Toppan Printing Co Ltd | Preparation of pickles |
JPH0383566A (en) * | 1989-08-25 | 1991-04-09 | Toppan Printing Co Ltd | Processing of food |
JPH0779675B2 (en) * | 1990-04-17 | 1995-08-30 | 株式会社ジャパンエナジー | Manufacturing method of medicinal liquor and fruit liquor |
JPH04183355A (en) * | 1990-11-15 | 1992-06-30 | M Y Eng:Kk | Preparation of pickles |
JPH0541945A (en) * | 1991-08-13 | 1993-02-23 | Dainippon Printing Co Ltd | Production of high pressure-treated fruit product |
JPH0564541A (en) * | 1991-09-03 | 1993-03-19 | Hisanao Zenno | Pickling base containing beancurd refuse, de-fatted soybean lees, bean jam lees, rice bran, de-fatted rice bran or wheat bran as ingredient, seasoning liquid and solid seasoning agent obtained therefrom and pickled vegetable, fish and shellfish or means produced using the same seasoning |
JPH05192125A (en) * | 1991-10-24 | 1993-08-03 | Dainippon Printing Co Ltd | Fruit wine and its production |
JPH09289871A (en) * | 1996-04-25 | 1997-11-11 | Shinshin:Kk | Measurement of sterilization temperature for pouched pickle and control device therefor |
JP2007274921A (en) * | 2006-04-04 | 2007-10-25 | Ezaki Glico Co Ltd | Cooked chestnut |
-
2016
- 2016-10-24 JP JP2016207719A patent/JP6818390B2/en active Active
-
2019
- 2019-12-26 JP JP2019235596A patent/JP6905232B2/en active Active
-
2020
- 2020-04-24 JP JP2020077390A patent/JP6990857B2/en active Active
-
2021
- 2021-07-05 JP JP2021111212A patent/JP7321441B2/en active Active
- 2021-07-05 JP JP2021111234A patent/JP7209309B2/en active Active
- 2021-07-05 JP JP2021111194A patent/JP7233644B2/en active Active
-
2022
- 2022-10-05 JP JP2022160994A patent/JP7445100B2/en active Active
-
2023
- 2023-10-12 JP JP2023176362A patent/JP2023171587A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002052662A (en) | 2000-08-10 | 2002-02-19 | Kureha Chem Ind Co Ltd | Laminated film for packaging pickles, bag consisting of the same, and package filled with pickles |
Also Published As
Publication number | Publication date |
---|---|
JP7445100B2 (en) | 2024-03-07 |
JP6818390B2 (en) | 2021-01-20 |
JP2023171587A (en) | 2023-12-01 |
JP2022173566A (en) | 2022-11-18 |
JP2021153605A (en) | 2021-10-07 |
JP7321441B2 (en) | 2023-08-07 |
JP2020115888A (en) | 2020-08-06 |
JP7233644B2 (en) | 2023-03-07 |
JP6905232B2 (en) | 2021-07-21 |
JP2020062040A (en) | 2020-04-23 |
JP2017079729A (en) | 2017-05-18 |
JP6990857B2 (en) | 2022-01-12 |
JP2021164470A (en) | 2021-10-14 |
JP2021153604A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7209309B2 (en) | Degassing, heating, and high-pressure processing methods for food | |
JP5800338B2 (en) | How to change the flavor of food | |
CN105054059A (en) | Salmon-containing blood fat lowering shredded pork with salted vegetable, and making method thereof | |
CH713366B1 (en) | Method for keeping fresh a frozen Baozis with vegetable filling. | |
KR102005322B1 (en) | Marinated sea cucumber and method for preparing the same | |
KR100515973B1 (en) | Food preservative composition and food comprising the same | |
Sohail et al. | Combined effect of edible coating and packaging materials on post harvest storage life of plum fruits | |
KR101915708B1 (en) | Method for manufacturing functionality Kimchi | |
JP7036425B2 (en) | A method for producing shiitake mushroom extract and a shelf life improving agent containing the shiitake mushroom extract. | |
CN106259854A (en) | The manufacture method of HUOLONG dried fruits | |
CN106235113A (en) | The manufacture method of dried mango | |
CN108771171A (en) | The pickling process of vegetables | |
KR100375962B1 (en) | Method for preparation of kimchi which has the optimum aging period increased | |
JP2015177779A (en) | Method of producing processed chestnut, and processed chestnut | |
CN106235111A (en) | The manufacture method of dried Chinese gooseberry | |
Kumar et al. | Post harvest technology of papaya fruits and it’s value added products-a review | |
Premakumar et al. | Effects of Salt Concentration on Storage Ability of Sauerkraut | |
CN106107683A (en) | The manufacture method that yellow peach is dry | |
KR100665681B1 (en) | A Ginseng Pickle and Product Method of It | |
Minh | Optimization of Different Parameters for Dried Soursop Slices | |
KR102487295B1 (en) | Protein bar comprising cornus fruit extract and manufacturing method of the same | |
Falagán et al. | Antimicrobial properties of edible coatings enriched with natural additives on fresh-cut peaches | |
JP6981712B2 (en) | Persimmon fruit processing method | |
CN106174213A (en) | The manufacture method of dried banana | |
KR101772169B1 (en) | method for manufacturing pickle using tomato |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7209309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |