JP7206819B2 - リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 Download PDFInfo
- Publication number
- JP7206819B2 JP7206819B2 JP2018207387A JP2018207387A JP7206819B2 JP 7206819 B2 JP7206819 B2 JP 7206819B2 JP 2018207387 A JP2018207387 A JP 2018207387A JP 2018207387 A JP2018207387 A JP 2018207387A JP 7206819 B2 JP7206819 B2 JP 7206819B2
- Authority
- JP
- Japan
- Prior art keywords
- metal composite
- aqueous solution
- positive electrode
- lithium
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
図1、2は、本実施形態に係るリチウムイオン二次電池用正極活物質(以下、「正極活物質」ともいう。)の製造方法の一例を示す図である。図1に示すように、本実施形態に係る正極活物質の製造方法は、表層にタングステン濃縮層を含有する金属複合水酸化物と、リチウム化合物とを混合してリチウム混合物を得る工程(ステップS30)と、リチウム混合物を焼成して、リチウム金属複合酸化物を得る工程(ステップS40)と、を備える。また、図2に示すように、金属複合水酸化物を熱処理する熱処理工程(ステップS25)を備えてもよい。
まず、本実施形態に係る製造方法において、前駆体として好適に用いられる金属複合水酸化物の特性とその製造方法の一例について説明する。図3(A)及び図3(B)は、本実施形態に係る製造方法に用いられる金属複合水酸化物の一例を示す模式図である。
金属複合水酸化物10(二次粒子2)は、図3(B)に示すように、その表層にタングステンが濃縮したタングステン濃縮層3を有する。タングステン濃縮層3は、金属複合水酸化物10の表面に形成され、粒子内部よりもタングステンが濃縮された層状の領域をいう。タングステン濃縮層3が形成された金属複合水酸化物10を前駆体として用いた場合、結晶性が高く、かつ、反応抵抗が低減されて、高出力である正極活物質を得ることができる。タングステン濃縮層3は、例えば、図8に示すように、エネルギー分散型X線分析装置(EDX)を用いた面分析で、W分布を検出することにより確認できる。なお、図3(B)では、一次粒子1は、図示していない。
金属複合水酸化物10の体積平均粒径(MV)は、特に限定されないが、好ましくは4.0μm以上であり、より好ましくは4μm以上9.0μm以下であり、好ましくは4.0μm以上7μm以下である。金属複合水酸化物10の体積平均粒径(MV)は、この金属複合水酸化物10を前駆体として得られるリチウム金属複合酸化物20(正極活物質)の体積平均粒径(MV)と相関する。このため、金属複合水酸化物10の体積平均粒径(MV)を、上記範囲に制御することで、この金属複合水酸化物10を前駆体として得られるリチウム金属複合酸化物20(図7参照)の体積平均粒径(MV)も上記範囲に制御することが可能となる。
金属複合水酸化物10は、粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径(MV)]が0.65以下である。リチウム金属複合酸化物20(正極活物質)の粒度分布は、その前駆体である金属複合水酸化物10の影響を強く受ける。このため、微細粒子や粗大粒子を多く含む金属複合水酸化物10を前駆体とした場合、リチウム金属複合酸化物20にも微細粒子や粗大粒子が多く含まれる。このようなリチウム金属複合酸化物20を正極活物質として用いた二次電池では、熱安定性、サイクル特性、出力特性などの電池特性が低下することがある。そこで、金属複合水酸化物10の[(d90-d10)/体積平均粒径(MV)]を上記範囲に調整した場合、これを前駆体として得られるリチウム金属複合酸化物20の粒度分布を狭くして、微細粒子や粗大粒子の混入を抑制することができる。
金属複合水酸化物10の組成は、特に限定されないが、例えば、金属複合水酸化物10が、ニッケル、コバルト、及び、タングステン、並びに、任意にマンガン、及び、元素Mを含み、それぞれの金属元素の原子数の比(A)が、Ni:Co:Mn:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の金属元素)であることが好ましい。
図4~図5は、金属複合水酸化物10の製造方法の一例を示す図である。この製造方法により、上記特性を有する金属複合水酸化物10を工業的規模で容易に製造することができる。以下、図4~図5を参照して、金属複合水酸化物10の製造方法の一例について説明する。
図4に示すように、金属複合水酸化物10は、反応槽内に、ニッケル(Ni)、及び、マンガン(Mn)と、任意に、コバルト(Co)、及び/又は、金属元素(M)とを含む第1の原料水溶液と、アンモニウムイオン供給体とを供給して、晶析反応を行い、第1の金属複合水酸化物粒子を得る第1の晶析工程(ステップS10)と、上記第1の金属複合水酸化物粒子を含む反応水溶液に、第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給して、晶析反応を行い、第1の金属複合水酸化物粒子の表面にタングステン濃縮層を形成して、第2の金属複合水酸化物粒子を得る第2の晶析工程(ステップS20)と、を備える方法により、得られることが好ましい。
(核生成工程)
まず、第1の原料水溶液とアンモニウムイオン供給体とを供給して、反応槽内の反応水溶液(核生成用水溶液)のpHを所定の範囲に制御して、核生成を行う(ステップS11)。第1の原料水溶液は、例えば、原料となる遷移金属を含む化合物を、水に溶解して調整される。なお、以下に説明する金属複合水酸化物の製造方法では、各工程で晶析により形成される金属複合水酸化物の組成比は、原料水溶液中の各金属の組成比と同様であるため、原料水溶液中の各金属の組成比は、目的とする金属複合水酸化物の遷移金属の組成比とすることができる。また、第1の原料水溶液は、少量のタングステンを含んでもよいし、タングステンを含まなくてもよい。
次いで、pHを特定の範囲に調整した反応水溶液(粒子成長用水溶液)中で粒子成長を行う(ステップS12)。反応水溶液(粒子成長用水溶液)は、生成された核を含む反応水溶液に、第1の原料水溶液と、アルカリ水溶液と、アンモニウムイオン供給体を含む水溶液とを供給して形成される。反応水溶液(粒子成長用水溶液)は、液温25℃基準で測定するpH値が10.5以上12.0以下、アンモニウムイオン濃度が3g/L以上25g/L以下に調整されることが好ましい。これにより、反応水溶液(粒子成長用水溶液)中で、核生成よりも、粒子成長が優位に行われる。
次いで、第1の金属複合水酸化物粒子を含む反応水溶液に、金属元素を含み、かつ、第1の原料水溶液よりタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給して、晶析反応を行う(ステップS20)。これにより、第1の金属複合水酸化物粒子の表面に、タングステン濃縮層を形成した、金属複合水酸化物10を得る。
第1の原料水溶液、及び、第2の原料水溶液は、ニッケル、及び、マンガンと、任意にコバルト、元素M、及び、タングステンを含む。また、第1の原料水溶液は、タングステンを含まなくてもよい。第2の晶析工程において、第2の原料水溶液として、第1の原料水溶液とタングステンを含む水溶液とを用いる場合、第1の原料水溶液中の金属元素の比率が、最終的に得られる金属複合水酸化物の組成比(タングステンを除く)となる。このため、第1の原料水溶液は、目的とする金属複合水酸化物の組成に応じて、各金属元素の含有量を適宜調整することができる。たとえば、上述した比(A)で表される金属複合水酸化物粒子を得ようとする場合、原料水溶液中の金属元素の比率を、Ni:Mn:Co:M=x:y:z:b(ただし、x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦b≦0.1)となるように調整することができる。なお、第1の晶析工程及び第2の晶析工程で用いられる第1の原料水溶液及び第2の原料水溶液の組成は、異なってもよい。この場合、それぞれの晶析工程で用いられる原料水溶液中の各金属元素の含有量の合計が、得られる金属複合水酸化物の組成比とすることができる。
反応水溶液中のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度を、20質量%~50質量%とすることが好ましく、20質量%~30質量%とすることがより好ましい。アルカリ金属水溶液の濃度をこのような範囲に規制することにより、反応系に供給する溶媒量(水量)を抑制しつつ、添加位置で局所的にpH値が高くなることを防止することができるため、粒度分布の狭い金属複合水酸化物粒子を効率的に得ることができる。
アンモニウムイオン供給体を含む水溶液も、特に制限されることはなく、たとえば、アンモニア水、または、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウムもしくはフッ化アンモニウムなどの水溶液を使用することができる。
反応槽内の雰囲気を、酸化性雰囲気、又は、非酸化性雰囲気に制御することで、金属複合水酸化物の粒子構造及びタップ密度が制御される。例えば、中実構造を有する金属複合水酸化物10を得る場合、反応雰囲気は、弱酸化性雰囲気、又は、非酸化性雰囲気に制御することが好ましい。例えば、酸素濃度が5容量%以下の非酸化性雰囲気にすることが好ましく、酸素濃度が1容量%以下の非酸化性雰囲気とすることがより好ましい。また、反応雰囲気は、酸素と不活性ガスの混合雰囲気に制御することが好ましい。これにより、不要な酸化を抑制しつつ、核生成工程(ステップS11)で生成した核を一定の範囲まで成長させることができるため、結晶性が高く、粒度分布が狭い一次粒子が凝集した構造とすることができる。
反応水溶液の温度(反応温度)は、晶析工程(核生成工程と粒子成長工程、第2の晶析工程)全体を通じて、好ましくは20℃以上、より好ましくは20℃以上60℃以下の範囲に制御する。反応温度が20℃未満の場合、反応水溶液の溶解度が低くなることに起因して、核生成が起こりやすくなり、得られる金属複合水酸化物の体積平均粒径(MV)や粒度分布の制御が困難となることがある。なお、反応温度の上限は、特に制限されることはないが、60℃を超えると、アンモニアの揮発が促進され、反応水溶液中のアンモニウムイオンを一定範囲に制御するために供給するアンモニウムイオン供給体を含む水溶液の量が増加し、生産コストが増加する。
本実施形態に係る金属複合水酸化物の製造方法では、反応が完了するまで生成物を回収しない方式の装置、たとえば、バッチ反応槽を用いることが好ましい。このような装置であれば、オーバーフロー方式によって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されることがないため、粒度分布が狭い金属複合水酸化物粒子を容易に得ることができる。
また、図2に示すように、混合工程(ステップS30)の前に、金属複合水酸化物10を熱処理する工程(熱処理工程、ステップS25)を設けてもよい。この場合、混合工程(ステップS30)において、熱処理により得られた前駆体と、リチウム化合物とを混合してもよい。ここで、熱処理後に得られる前駆体としては、熱処理工程(ステップS25)において、余剰水分の少なくとも一部が除去された金属複合水酸化物10、金属複合水酸化物10が酸化物に添加された金属複合酸化物(前駆体)、又は、これらの混合物が含まれてもよい。
次いで、リチウム混合物を、焼成して、リチウム金属複合酸化物20を得る(ステップS40)。本工程は、所定条件の下で焼成することにより、前駆体中にリチウムを拡散させて、リチウム金属複合酸化物20を得る工
程である。得られたリチウム金属複合酸化物20は、そのまま正極活物質として用いてもよく、後述するように、解砕工程により、粒度分布を調整した後、正極活物質として用いてもよい。
焼成温度は、例えば、650℃以上980℃以下であり、好ましくは850℃以上980℃以下である。焼成温度が650℃未満である場合、前駆体中にリチウムが十分に拡散せず、余剰のリチウム(未反応のリチウム化合物を含む)や未反応の金属複合水酸化物または金属複合酸化物が残存したり、得られるリチウム金属複合酸化物の結晶性が不十分になったりすることがある。一方、焼成温度が980℃を超える場合、リチウム金属複合酸化物20(二次粒子22)の粒子間で激しく焼結し、異常粒成長が引き起こされ、不定形な粗大粒子の割合が増加することがある。
上記焼成温度での保持時間(焼成時間)は、少なくとも2時間以上とすることが好ましく、4時間以上24時間以下とすることがより好ましい。また、焼成温度の保持時間(焼成時間)は、2時間以上15時間以下であってもよく、2時間以上10時間以下であってもよい。焼成温度における保持時間が2時間未満では、前駆体中にリチウムが十分に拡散せず、余剰のリチウムや未反応の金属複合水酸化物粒子または熱処理粒子が残存したり、得られるリチウム金属複合酸化物の結晶性が不十分なものとなったりするおそれがある。
焼成時間(保持時間)終了後、焼成温度から少なくとも200℃までの冷却速度は、2℃/分以上10℃/分以下とすることが好ましく、3℃/分以上7℃/分以下とすることがより好ましい。冷却速度を上記範囲に制御することにより、生産性を確保しつつ、匣鉢などの設備が、急冷により破損することを防止することを防止することができる。
焼成時の雰囲気は、好ましくは酸化性雰囲気であり、より好ましくは酸素濃度が18容量%以上100容量%の雰囲気であり、特に好ましくは上記範囲の酸素濃度の酸素と、不活性ガスとの混合雰囲気である。すなわち、焼成は、大気、又は、酸素気流中で行うことが好ましい。雰囲気中の酸素濃度が18容量%未満である場合、リチウム金属複合酸化物の結晶性が十分にならないことがある。
焼成工程(ステップS40)に用いられる炉は、特に限定されず、大気、又は、酸素気流中でリチウム混合物を加熱できるものであればよい。また、炉内の雰囲気を均一に保つという観点から、ガス発生がない電気炉が好ましく、バッチ式、又は、連続式の電気炉であってもよい。また、熱処理工程および仮焼工程に用いる炉についても、炉内の雰囲気を均一に保つという観点から、同様の炉を選択することができる。
リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程(ステップS30)後、焼成工程(ステップS40)の前に、仮焼工程を行ってもよい。仮焼工程は、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃以上800℃以下、好ましくは450℃以上780℃以下で仮焼する工程である。これにより、前駆体中に、リチウムを十分に拡散させることができ、より均一なリチウム金属複合酸化物を得ることができる。
焼成工程(ステップS40)によって得られたリチウム金属複合酸化物20は、凝集または軽度の焼結が生じている場合がある。このような場合、リチウム金属複合酸化物20の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の体積平均粒径(MV)や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギーを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作を意味する。
本実施形態に係るリチウムイオン二次電池用正極活物質(以下、単に「正極活物質」ともいう。)は、リチウム、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、それぞれの金属元素の原子数比が、Li:Ni:Mn:Co:W:M=(1+u):x:y:z:a:b(x+y+z=1、-0.05≦u≦0.50、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Taから選択される1種以上の元素)で表されるリチウム金属複合酸化物を含有する。また、リチウム金属複合酸化物は、六方晶系の層状結晶構造を有することが好ましい。
図7(B)に示すように、タングステン及びリチウムを含む化合物23は、リチウム金属複合酸化物20中に濃縮されて存在する。また、タングステン及びリチウムを含む化合物23は、二次粒子22の表面又は内部に存在する一次粒子21の表層、及び、これらの一次粒子21間の粒界に濃縮されて存在する。タングステン及びリチウムを含む化合物23の存在部位は、例えば、図10に示すように、エネルギー分散型X線分析装置(EDX)を用いた面分析でW分布を検出することにより確認できる。また、タングステン及びリチウム含む化合物23は、濃度勾配を有するように分布してもよく、二次粒子22の内部よりも表面(表層)により多く存在することが好ましい。
リチウム金属複合酸化物20は、CuKα線を使用した粉末X線回折において、ミラー指数(hkl)における(003)面での回折ピークの半価幅が0.076°以上0.090°以下の範囲であり、好ましくは0.079°以上0.087°以下の範囲である。(003)面の回折ピークの半価幅が上記範囲である場合、リチウム金属複合酸化物20は、結晶性に優れることを示す。リチウム金属複合酸化物20は、(003)面の回折ピークの半価幅を上記範囲とし、かつ、一次粒子21の表層及び一次粒子21間の粒界にリチウム及びタングステンを含む化合物23が濃縮して存在することにより、正極活物質の高い結晶性を維持したまま、出力特性のさらなる向上を実現することができる。
正極活物質は、前駆体として用いた金属複合水酸化物10の体積基準の累積分布における50%累積時の粒径(d50)に対する、正極活物質の体積基準の累積分布における50%累積時の粒径(d50)の比(以下、「d50比」ともいう。)が、好ましくは0.95以上1.04以下であり、より好ましくは0.97以上1.02以下である。d50比は、焼結凝集を示す指標の一つであり、[リチウム金属複合酸化物のd50/金属複合水酸化物のd50]から算出できる。d50比が上記範囲である場合、複数の二次粒子22同士の凝集が殆どない状態であり、リチウム金属複合酸化物20の焼結凝集が抑制されていることを示す。このような正極活物質を用いた二次電池は充填性が高く、高容量であり、また、特性のバラつきが少なく均一性に優れる。
正極活物質の体積平均粒径(MV)は、特に限定されないが、例えば、3μm以上9μm以下となるように調整することができる。体積平均粒径(MV)が上記範囲である場合、この正極活物質を用いた二次電池の単位容積あたりの電池容量を増加させることができるばかりでなく、熱安定性や出力特性も改善することができる。これに対して、体積平均粒径(MV)が4μm未満である場合、正極活物質の充填性が低下し、単位容積あたりの電池容量を増加することが難しい。一方、体積平均粒径(MV)が9μmを超える場合、正極活物質の反応面積が低下し始めるので、出力特性が十分とならないことがある。
正極活物質は、粒度分布の広がりを示す指標である[(d90-d10)/MV]が、0.65以下であることが好ましい。[(d90-d10)/MV]が上記範囲である場合、粒度分布が非常に狭いリチウム金属複合酸化物20により構成されることができる。このような正極活物質は、微細粒子や粗大粒子の割合が少なく、これを正極に用いた二次電池は、熱安定性、サイクル特性および出力特性が優れたものとなる。
正極活物質は、上述した特性を有する限り、その組成は、特に限定されないが、例えば、一般式(B):Li1+uNixMnyCozWaMbO2(-0.05≦u≦0.50、x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で表されてもよい。
リチウム金属複合酸化物20の二次粒子22の構造は、特に限定されず、例えば、二次粒子22内部に複数の空隙24を有する空隙構造(図7(A)参照)や、中空部25を有する中空構造(図7(C)参照)を有してもよく、一次粒子が比較的に隙間なく凝集して形成された中実構造(不図示)を有してもよい。リチウム金属複合酸化物20が、空隙24や中空部25を有する場合、リチウム金属複合酸化物20を二次電池の正極として用いた際、二次粒子22の内部に電解液が浸透して、一次粒子21と電解液との接触面積が増加するため、二次粒子22内部の抵抗(正極抵抗)を低減し、出力特性を向上させることができる。
本実施形態に係るリチウムイオン二次電池(以下、「二次電池」ともいう。)は、正極活物質を含む正極と、負極と、電解質とを含む。リチウムイオン二次電池は、従来公知のリチウムイオン二次電池と同様の構成要素により構成されることができ、例えば、正極、負極、及び非水系電解液を備える。また、二次電池は、例えば、正極、負極、及び固体電解質を備えた全固体二次電池であってもよい。以下、正極以外の各構成要素について、説明する。
上記の正極活物質を用いて、二次電池の正極を作製する。以下に正極の製造方法の一例を説明する。まず、上記の正極活物質(粉体状)、導電材および結着剤(バインダー)を混合し、さらに必要に応じて活性炭や、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
負極は、金属リチウム、リチウム合金等を用いることができる。また、負極は、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを用いてもよい。
正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、公知のものを用いることができ、例えば、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
非水電解質としては、非水系電解液を用いることができる。非水系電解液は、例えば、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いてもよい。また、非水系電解液として、イオン液体にリチウム塩が溶解したものを用いてもよい。なお、イオン液体とは、リチウムイオン以外のカチオンおよびアニオンから構成され、常温でも液体状を示す塩をいう。
以上のように説明してきた正極、負極、セパレータ、及び非水系電解液や、正極、負極、及び固体電解質で構成される本実施形態に係るリチウムイオン二次電池は、円筒形や積層形など、種々の形状にすることができる。
本実施形態に係るリチウムイオン二次電池は、上述したように、上述した正極活物質を正極材料として用いているため、容量特性、出力特性およびサイクル特性に優れる。しかも、従来のリチウムニッケル系複合酸化物からなる正極活物質を用いた二次電池との比較においても、熱安定性において優れているといえる。
本実施形態に係るリチウムイオン二次電池は、上述のように、容量特性、出力特性およびサイクル特性に優れており、これらの特性が高いレベルで要求される小型携帯電子機器(ノート型パーソナルコンピュータや県電話端末など)の電源に好適に利用することができる。また、本実施形態に係るリチウムイオン二次電池は、熱安定性にも優れており、小型化および高出力化が可能であるばかりでなく、高価な保護回路を簡略することができるため、搭載スペースに制約を受ける輸送用機器の電源としても好適に利用することができる。
(a)金属複合水酸化物の製造
[核生成工程]
はじめに、反応槽内に、水を1.2L入れて790rpmで撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に、酸素ガスを導入し、30分間流通させ、反応雰囲気を、酸素濃度が1容量%を超える酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.5、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
核生成終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を反応槽へ加えて、pH値が、液温25℃基準で11.6となるように調整することで、粒子成長用水溶液を形成した。pH値が所定の値になったことを確認した後、第1の原料水溶液を反応槽へ供給し、核生成工程で生成した核(粒子)を成長させた。
第2の原料水溶液として、第1の原料水溶液とタングステンを含む水溶液とを用いた。タングステンを含む水溶液として、タングステン酸ナトリウム二水和物を、得られる水酸化物の各金属元素のモル比がNi:Mn:Co:Zr:W=38:29:33:0.2:0.6となるように水に溶解し、タングステン酸ナトリウム水溶液を調製した。
ICP発光分光分析装置(株式会社島津製作所島津製作所製、ICPE-9000ICPE-9000)を用いた分析により、この金属複合水酸化物は、一般式:Ni0.38Mn0.29Co0.33Zr0.002W0.005(OH)2で表されることが確認された。
上述のようにして得られた金属複合水酸化物をLi/Meが1.14となるように、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて炭酸リチウムと十分に混合し、リチウム混合物を得た。
ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.14Ni0.38Mn0.29Co0.33Zr0.002W0.005O2で表されるものであることが確認された。また、レーザ光回折散乱式粒度分析計を用いて、リチウム金属複合酸化物の体積平均粒径(MV)を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である[(d90-d10)/MV]を算出した。その結果、リチウム金属複合酸化物の体積平均粒径(MV)は5.4μmであり、[(d90-d10)/MV]は0.47であり、d50比は0.98であることを確認した。
図8は、電池特性の評価に用いた2032型のコイン型電池CBAを示す図である。以下、図8を参照して、二次電池の作製方法について説明する。
[抵抗]
上記で組み立てたコイン型電池CBAを用いてSOC20%における交流インピーダンス法による抵抗値を測定し、比較例1を基準とした相対値を、Ref.に対する抵抗値として算出したところ94%であった。
表1に示すように、粒子成長中におけるタングステンを含む水溶液の添加のタイミング(添加時間)と焼成温度を変更した以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物、及び、正極活物質の評価結果を表1、2に示す。
粒子成長工程開始時点からタングステン化合物を添加した(添加範囲は100%となる)以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物の評価結果を表1に示す。次に、得られた金属複合水酸化物を前駆体とし、焼成温度を変更した以外は、実施例1と同様の条件で、正極活物質および二次電池を作製した。得られた正極活物質及び二次電池の評価結果を表に示す。
タングステン化合物を添加しなかった以外は実施例1と同様の条件で、金属複合水酸化物を得た。得られた金属複合水酸化物の評価結果を表1に示す。次に、得られた金属複合水酸化物を前駆体と、焼成温度を変更した以外は、実施例1と同様の条件で、正極活物質および二次電池を作製した。得られた正極活物質及び二次電池の評価結果を表に示す。
実施例で得られた正極活物質は、晶析工程全体でタングステンを添加し、かつ、同様の(003)面の半価幅を有する比較例1と比較して、d50比が小さく、焼結凝集が抑制されていた。また、実施例で得られた正極活物質は、二次電池の正極として用いた際、比較例1、2と比較して、より低い抵抗値を示した。
1…一次粒子
2…二次粒子
3…タングステン濃縮層
20…リチウム金属複合酸化物
21…一次粒子
22…二次粒子
23…タングステン及びリチウムを含む化合物
24…空隙
25…中空部
26…空間部
CBA……コイン電池
CA……ケース
PC……正極缶
NC……負極缶
GA……ガスケット
PE……正極
NE……負極
SE……セパレータ
Claims (14)
- 表層にタングステン濃縮層を含有する金属複合水酸化物、及び、前記金属複合水酸化物を熱処理して得られる金属複合酸化物の少なくとも一方と、リチウム化合物と、を混合してリチウム混合物を得る工程と、
前記リチウム混合物を焼成して、リチウム金属複合酸化物を得る工程と、を備え、
前記金属複合水酸化物は、ニッケル、マンガン、及び、タングステン、並びに、任意にコバルト、及び、元素Mを含み、かつ、それぞれの金属元素の原子数比が、Ni:Mn:Co:W:M=x:y:z:a:b(x+y+z=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、及び、Taから選択される1種以上の元素)で表され、
前記リチウム金属複合酸化物は、粉末X線回折において、(003)面の回折ピークの半価幅が0.076°以上0.090°以下であり、
前記金属複合水酸化物に対する、前記リチウム金属複合酸化物の体積基準の累積分布における50%累積時の粒径(d50)の比(前記リチウム金属複合酸化物のd50/前記金属複合水酸化物のd50)が0.95以上1.04以下である、
リチウムイオン二次電池用正極活物質の製造方法。 - 前記金属複合水酸化物は、
反応槽に前記金属元素を含む第1の原料水溶液と、アンモニウムイオン供給体とを供給し、前記反応槽内の反応水溶液のpHを調整して、晶析反応を行うことにより、第1の金属複合水酸化物粒子を得る、第1の晶析工程と、
前記第1の晶析工程により得られた晶析物を含む反応水溶液に、前記金属元素を含み、かつ、前記第1の原料水溶液よりもタングステンを多く含む第2の原料水溶液と、アンモニウムイオン供給体とを供給し、前記反応水溶液のpHを調整して、晶析反応を行うことにより、前記第1の金属複合水酸化物粒子の表面にタングステン濃縮層を形成して、第2の金属複合水酸化物粒子を得る、第2の晶析工程と、を備える方法により得られる、
請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。 - 前記第1の晶析工程は、核生成を行う核生成工程と、粒子成長を行う粒子成長工程と、を備え、
前記第2の晶析工程は、前記第1の晶析工程における粒子成長工程に引き続き、粒子成長を行うことを含み、
前記第1の晶析工程、及び、前記第2の晶析工程における粒子成長は、前記反応水溶液のpHを、前記核生成工程における前記反応水溶液のpH値より低くなるように調整する、
請求項2に記載のリチウムイオン二次電池用正極活物質の製造方法。 - 前記第1の原料水溶液中の前記金属元素を、前記第1の晶析工程及び前記第2の晶析工程において添加される全金属量に対して、50質量%以上95質量%以下の範囲で前記反応槽へ供給した後、前記第2の晶析工程における第2の原料水溶液の供給を行う、
請求項2又は請求項3に記載のリチウムイオン二次電池用正極活物質の製造方法。 - 前記タングステン濃縮層は、前記金属複合水酸化物の表面から中心部に向かう方向において、平均厚さが100nm以下である、請求項1~請求項4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記第2の晶析工程における第2の原料水溶液の添加は、前記第1及び第2の晶析工程において、粒子成長が行われる時間全体に対して、50%以上95%以下経過した時点で行う、請求項2~請求項4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記第2の原料水溶液の供給は、前記第1の原料水溶液と、タングステンを含む水溶液とを別々に前記反応水溶液に供給して行う、請求項2~請求項4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記タングステンを含む水溶液中のタングステン濃度は、前記タングステンを含む水溶液の全体に対して、18質量%以上である、請求項7に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記金属複合水酸化物の体積平均粒径(MV)が4.0μm以上9.0μm以下であり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/体積平均粒径(MV)〕が0.65以下である、請求項1~請求項8のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記リチウム混合物の焼成温度が800℃以上980℃以下である、請求項1~請求項9のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- リチウム、ニッケル、マンガン、及び、タングステンと、任意にコバルト、及び、元素Mと、を含み、それぞれの金属元素の原子数比が、Li:Ni:Mn:Co:W:M=1+u:x:y:z:a:b(x+y+z=1、-0.05≦u≦0.50、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0<a≦0.1、0≦b≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Taから選択される1種以上の元素)で表されるリチウム金属複合酸化物を含有し、
前記リチウム金属複合酸化物は、複数の一次粒子が凝集して形成された二次粒子を含み、前記二次粒子の表面又は内部に存在する一次粒子の表層、及び、前記一次粒子間の粒界に、タングステン及びリチウムを含む化合物が濃縮されて存在し、
粉末X線回折測定によって得られた(003)面の回折ピークの半価幅が0.076°以上0.090°以下であり、
前駆体として用いた金属複合水酸化物に対する、前記リチウム金属複合酸化物の体積基準の累積分布における50%累積時の粒径(d50)の比(前記リチウム金属複合酸化物のd50/前記金属複合水酸化物のd50)が0.95以上1.04以下である、
リチウムイオン二次電池用正極活物質。 - 体積平均粒径(MV)が3μm以上9μm以下であり、かつ、粒度分布の広がりを示す指標である〔(d90-d10)/体積平均粒径(MV)〕が0.65以下である、請求項11に記載のリチウムイオン二次電池用正極活物質。
- 無作為に選択した50個以上のリチウム金属複合酸化物の粒子を走査型電子顕微鏡により観察した際に、二次粒子の凝集が観察される個数が、観察した全二次粒子数に対して、5%以下である、請求項11又は請求項12に記載のリチウムイオン二次電池用正極活物質。
- 正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項11~請求項13のいずれか一項に記載の正極活物質が用いられる、リチウムイオン二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018207387A JP7206819B2 (ja) | 2018-11-02 | 2018-11-02 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018207387A JP7206819B2 (ja) | 2018-11-02 | 2018-11-02 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020072057A JP2020072057A (ja) | 2020-05-07 |
JP7206819B2 true JP7206819B2 (ja) | 2023-01-18 |
Family
ID=70549606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018207387A Active JP7206819B2 (ja) | 2018-11-02 | 2018-11-02 | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7206819B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021260900A1 (ja) * | 2020-06-25 | 2021-12-30 | TeraWatt Technology株式会社 | リチウム2次電池、及びその使用方法 |
CN111916723B (zh) * | 2020-07-14 | 2021-08-17 | 蜂巢能源科技有限公司 | 梯度掺杂的无钴正极材料及其制备方法以及锂离子电池正极和锂电池 |
JP7258060B2 (ja) * | 2021-01-05 | 2023-04-14 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質及び該正極活物質を用いた非水電解質二次電池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012252844A (ja) | 2011-06-01 | 2012-12-20 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、その非水系電解質二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池 |
JP2016094307A (ja) | 2014-11-12 | 2016-05-26 | 住友金属鉱山株式会社 | 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法 |
-
2018
- 2018-11-02 JP JP2018207387A patent/JP7206819B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012252844A (ja) | 2011-06-01 | 2012-12-20 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、その非水系電解質二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池 |
JP2016094307A (ja) | 2014-11-12 | 2016-05-26 | 住友金属鉱山株式会社 | 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020072057A (ja) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6244713B2 (ja) | 非水電解質二次電池用正極活物質の製造方法 | |
JP7188081B2 (ja) | 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP7293576B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 | |
JP7488021B2 (ja) | 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池 | |
JP7110611B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極活物質の評価方法、および非水系電解質二次電池 | |
JP7159639B2 (ja) | 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法 | |
JP7245422B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP7238880B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP7272134B2 (ja) | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7464102B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 | |
JP2024001041A (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池 | |
JP7206819B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池 | |
JP7183813B2 (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7183815B2 (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7183812B2 (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7273260B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP7167540B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
US20230135908A1 (en) | Metal composite hydroxide, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery using said positive electrode active material | |
JP7114876B2 (ja) | 遷移金属複合水酸化物粒子およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7310117B2 (ja) | 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池 | |
JP7183814B2 (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7205114B2 (ja) | 遷移金属複合水酸化物の製造方法、および、リチウムイオン二次電池用正極活物質の製造方法 | |
JP7167491B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池 | |
JP6357978B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池 | |
JP7238881B2 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221017 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20221116 |
|
TRDD | Decision of grant or rejection written | ||
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20221128 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7206819 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |