JP7042216B2 - 解剖学的モデルの表示 - Google Patents

解剖学的モデルの表示 Download PDF

Info

Publication number
JP7042216B2
JP7042216B2 JP2018558323A JP2018558323A JP7042216B2 JP 7042216 B2 JP7042216 B2 JP 7042216B2 JP 2018558323 A JP2018558323 A JP 2018558323A JP 2018558323 A JP2018558323 A JP 2018558323A JP 7042216 B2 JP7042216 B2 JP 7042216B2
Authority
JP
Japan
Prior art keywords
model
catheter
location
display view
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558323A
Other languages
English (en)
Other versions
JP2019515754A5 (ja
JP2019515754A (ja
Inventor
ドロン ハーレブ,
ジェフリー ピーター ライト,
Original Assignee
アフェラ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アフェラ, インコーポレイテッド filed Critical アフェラ, インコーポレイテッド
Publication of JP2019515754A publication Critical patent/JP2019515754A/ja
Publication of JP2019515754A5 publication Critical patent/JP2019515754A5/ja
Priority to JP2021146088A priority Critical patent/JP2021184882A/ja
Application granted granted Critical
Publication of JP7042216B2 publication Critical patent/JP7042216B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/30Clipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/004Annotating, labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/028Multiple view windows (top-side-front-sagittal-orthogonal)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2004Aligning objects, relative positioning of parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2012Colour editing, changing, or manipulating; Use of colour codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2016Rotation, translation, scaling

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Architecture (AREA)
  • Geometry (AREA)
  • Robotics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Optics & Photonics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

(関連出願の相互参照)
本願は、米国仮出願第62/330,910号(出願日2016年5月3日)、米国仮出願第62/337,541号(出願日2016年5月17日)、米国仮出願第62/338,068号(出願日2016年5月18日)、米国仮出願第62/357,600号(出願日2016年7月1日)、米国仮出願第62/367,763号(出願日2016年7月28日)に対する優先権を主張するものであり、これらの出願の全内容は、参照により本明細書中に援用される。
本願はまた、“MEDICAL DEVICE VISUALIZATION”と題された同日に出願された共有に係る米国特許出願(代理人管理番号AFRA-0004-P01)にも関しており、その全内容は、参照により本明細書中に援用される。
設置または使用が容易に観察可能もしくは実践的ではないとき、3次元モデルが、時として、そのようなデバイスの設置または使用を補助するために使用される。例えば、医療手技では、3次元モデルは、患者の診断または治療の一部として医療デバイスの設置および使用を補助するために使用される。3次元モデルの補助を用いて施行される医療手技の実施例は、異常伝導を中断させ、心臓内のある不整脈を終了させる、病変を形成するための高周波(「RF」)カテーテルアブレーションの使用である。
本開示は、解剖学的構造上で実施される医療手技の間、グラフィカルユーザインターフェース上において、患者の解剖学的構造のディスプレイビューを自動的に制御し、例えば、解剖学的構造に対する医療デバイスの位置の可視化を促進する、デバイス、システム、および方法を対象とする。例えば、本開示のデバイス、システム、および方法は、グラフィカルユーザインターフェース上に、例えば、心臓アブレーション等の医療手技の間、患者の心腔の3次元解剖学的モデルに対する心臓カテーテル(例えば、アブレーションカテーテル)の自動ディスプレイビューを提供するために使用されることができる。医療手技の間、3次元解剖学的モデルのディスプレイビューを手動で制御することと比較して、本開示のデバイス、システム、および方法による、自動化された可視化は、医療手技の効率を改良し、加えて、または代替として、手技の間、医師によって使用されるグラフィカルユーザインターフェース上の3次元解剖学的モデルの配向に関して、医師(滅菌野内)と技術者(滅菌野外)との間の通信の必要性を低減させることができることを理解されたい。
一側面によると、方法は、患者の心腔の3次元モデルを取得するステップと、患者の心腔内のカテーテルの場所を示す信号を受信するステップと、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップと、少なくとも部分的に、心腔内のカテーテルの場所、心腔内のカテーテルの1つ以上の前の場所、および3次元モデルの幾何学的特徴に基づいて、心腔の3次元モデルのディスプレイビューを決定するステップと、グラフィカルユーザインターフェース上に、心腔の3次元モデルのディスプレイビューを表示するステップとを含む。
いくつかの実装では、心腔内のカテーテルの場所を示す信号を受信するステップは、カテーテルと心腔との間の接触を示す信号を受信するステップを含むことができる。例えば、接触を示す信号は、カテーテルと心腔との間の力を示す信号であることができる。
ある実装では、少なくとも1つの幾何学的特徴を決定するステップは、3次元モデルにおいて、カテーテルの場所に局所的な心腔の面積内の表面法線方向を計算するステップを含むことができる。
いくつかの実装では、少なくとも1つの幾何学的特徴を決定するステップは、3次元モデルの最薄方向を決定するステップを含むことができる。
ある実装では、少なくとも1つの幾何学的特徴を決定するステップは、3次元モデルを含有する最小体積を伴う境界ボックスを決定するステップに基づくことができる。例えば、少なくとも1つの幾何学的特徴を決定するステップは、境界ボックスの座標系の各個別の直交ベクトルの方向に境界ボックスの正規化された長さを表す3つのスカラー値を生成するステップと、3つのスカラー値の相互比較に基づいて、直交ベクトルのうちの1つに対応する方向を選択するステップとを含むことができる。
いくつかの実装では、本方法はさらに、3次元モデルの少なくとも1つの可視化選好を決定するステップを含むことができ、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、少なくとも1つの可視化選好に基づく。例えば、少なくとも1つの可視化選好は、3次元モデルの好ましい配向を含むことができる。加えて、または代替として、少なくとも1つの可視化選好を決定するステップは、少なくとも部分的に、受信されたユーザ入力に基づく。
ある実装では、3次元モデルのディスプレイビューを決定するステップは、少なくとも部分的に、ある時間周期にわたって受信された場所信号に基づくことができる。例えば、カテーテルの場所を示す受信された信号は、時変信号であることができ、カテーテルの場所を示す信号を受信するステップは、時変信号を処理するステップを含むことができ、3次元モデルのディスプレイビューを決定するステップは、少なくとも部分的に、処理され、受信された場所信号に基づくことができる。具体的実施例として、カテーテルの場所を示す時変信号を処理するステップは、時変信号を低域通過フィルタリングするステップを含むことができる。
いくつかの実装では、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、患者の心腔の3次元モデルの形状の分析に基づくことができる。
ある実装では、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、可視化選好に基づくことができる。
いくつかの実装では、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、1つ以上の以前に表示されたビューに基づくことができる。
ある実装では、ディスプレイビューを決定するステップは、ビューウィンドウ上に投影されるような3次元モデルのサイズを調節するステップを含むことができ、ディスプレイビューを表示するステップは、調節されたサイズに従って、3次元モデルの投影をグラフィカルユーザインターフェース上に表示するステップを含むことができる。例えば、ビューウィンドウ上に投影される3次元モデルのサイズを調節するステップは、画像平面上のビューウィンドウのサイズ、画像平面と3次元モデルの相対的位置、およびビューウィンドウと3次元モデルの投影のための投影中心との間の相対的位置のうちの少なくとも1つに基づくことができる。加えて、または代替として、ビューウィンドウの少なくとも1つの寸法は、3次元モデルの投影の寸法の固定倍数に維持されることができる。例えば、寸法は、画像平面における3次元モデルの投影の最大幅である。さらに、または代替として、ディスプレイビューを決定するステップは、3次元モデルによって画定された軸に対する画像平面のピッチを限定するステップを含むことができる。なおもさらに、または代替として、ディスプレイビューを決定するステップは、3次元モデルによって画定された軸に対するビューウィンドウのロールを限定するステップを含むことができる。ある事例では、本方法はさらに、少なくとも部分的に、カテーテルの場所を示す受信された信号に基づいて、カテーテルの変位速度を決定するステップを含むことができ、ビューウィンドウ上に投影される3次元モデルのサイズを調節するステップは、少なくとも部分的に、カテーテルの決定された変位速度に基づくことができる。
いくつかの実装では、心腔の3次元モデルのディスプレイビューを表示するステップは、決定されたビューを3次元グラフィカルユーザインターフェース上に表示するステップを含むことができる。例えば、決定されたビューを3次元グラフィカルユーザインターフェース上に表示するステップは、決定されたビューを拡張現実環境内に表示するステップを含むことができる。加えて、または代替として、決定されたビューを3次元グラフィカルユーザインターフェース上に表示するステップは、決定されたビューを仮想現実環境内に表示するステップを含むことができる。
別の側面によると、方法は、患者の解剖学的構造の3次元モデルを取得するステップであって、3次元モデルは、画定された表面を含む、ステップと、患者の解剖学的構造内のカテーテルの場所を示す信号を受信するステップと、少なくとも部分的に、解剖学的構造内のカテーテルの場所および画定された表面に基づいて、解剖学的構造の3次元モデルのディスプレイビューを決定するステップと、グラフィカルユーザインターフェース上に、解剖学的構造の3次元モデルのディスプレイビューを表示するステップとを含む。
いくつかの実装では、3次元モデルの画定された表面は、3次元モデルの表面メッシュを含むことができる。
ある実装では、3次元モデルの画定された表面は、解剖学的構造の血液-組織境界を表すことができる。
いくつかの実装では、解剖学的構造の3次元モデルのディスプレイビューを決定するステップは、少なくとも部分的に、3次元モデルの画定された表面に対するカテーテルの場所に基づくことができる。例えば、解剖学的構造の3次元モデルのディスプレイビューを決定するステップは、少なくとも部分的に、3次元モデルの画定された表面の局所的幾何学的特徴に対するカテーテルの場所に基づくことができる。
さらに別の側面によると、患者の中空の解剖学的構造の3次元表現を表示する方法は、患者の中空の解剖学的構造3次元モデルを取得するステップと、患者の中空の解剖学的構造内の医療デバイスの場所を示す信号を受信するステップと、少なくとも部分的に、中空の解剖学的構造内の医療デバイスの場所および中空の解剖学的構造内の医療デバイスの1つ以上の前の場所に基づいて、中空の解剖学的構造の3次元モデルのディスプレイビューを決定するステップと、グラフィカルユーザインターフェース上に、中空の解剖学的構造の3次元モデルのディスプレイビューを表示するステップとを含む。
ある実装では、本方法はさらに、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップを含むことができ、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、3次元モデルの少なくとも1つの幾何学的特徴に基づくことができる。
いくつかの実装では、本方法はさらに、3次元モデルの少なくとも1つの可視化選好を決定するステップを含むことができ、ディスプレイビューを決定するステップはさらに、少なくとも部分的に、少なくとも1つの可視化選好に基づくことができる。
なおも別の側面によると、患者の心腔の3次元表現を表示する方法は、患者の心腔の3次元モデルを取得するステップと、患者の心腔内のカテーテルの場所を示す信号を受信するステップと、少なくとも部分的に、心腔内のカテーテルの場所および心腔内のカテーテルの1つ以上の前の場所に基づいて、心腔の3次元モデルのディスプレイビューの軌道を決定するステップと、グラフィカルユーザインターフェース上に、決定された軌道に従って、心腔の3次元モデルのディスプレイビューを表示するステップとを含む。
いくつかの実装では、本方法はさらに、3次元モデルの形状を分析するステップを含み、ディスプレイビューの軌道を決定するステップはさらに、3次元モデルの分析された形状に基づくことができる。例えば、3次元モデルの形状を分析するステップは、カテーテルの場所に基づいて、3次元モデルの局所的部分を分析するステップを含むことができる。加えて、または代替として、3次元モデルの形状を分析するステップは、カテーテルの1つ以上の前の場所に基づいて、3次元モデルの局所的特徴を分析するステップを含むことができる。加えて、または代替として、3次元モデルの形状を分析するステップは、3次元モデルの1つ以上の大域的特徴を分析するステップを含むことができる。
いくつかの実装では、本方法はさらに、1つ以上の可視化選好を取得するステップを含むことができ、ディスプレイビューの軌道を決定するステップはさらに、1つ以上の可視化選好に基づくことができる。例えば、1つ以上の可視化選好は、3次元モデルの好ましい配向を含むことができる。
ある実装では、ディスプレイビューの軌道を決定するステップはさらに、1つ以上の以前に表示されたビューに基づくことができる。
なおも別の側面によると、患者の解剖学的構造の3次元モデルのディスプレイを制御する方法は、患者の解剖学的構造の3次元モデルを取得するステップと、解剖学的構造内の医療デバイスの場所を示す信号を受信するステップと、少なくとも部分的に、解剖学的構造内の医療デバイスの場所に基づいて、複数のルールから、3次元モデルの配向および画像平面の仕様に関するディスプレイルールを選択するステップと、少なくとも部分的に、ディスプレイルールに基づいて、i)3次元モデルの配向およびii)画像平面を規定するステップと、グラフィカルユーザインターフェース上で、3次元モデルの投影の少なくとも一部を、規定された配向において、規定された画像平面上に表示するステップとを含む。
ある実装では、ディスプレイルールは、少なくとも部分的に、解剖学的構造に対する医療デバイスの場所に基づくことができる。加えて、または代替として、ディスプレイルールはさらに、少なくとも部分的に、解剖学的構造に対する医療デバイスの1つ以上の前の場所に基づくことができる。
いくつかの実装では、複数のルールは、局所的ルールおよび大域的ルールを含むことができ、局所的ルールは、少なくとも部分的に、3次元モデルに対する医療デバイスの場所に基づくことができ、大域的ルールは、少なくとも部分的に、3次元モデルの形状に基づくことができる。例えば、ディスプレイルールを選択するステップは、医療デバイスの場所と少なくとも部分的に3次元モデルによって画定された禁止領域の比較に基づいて、局所的ルール、大域的ルール、またはそれらの組み合わせを選択するステップを含むことができる。大域的ルールは、医療デバイスの場所が禁止領域の境界内にある場合、選択されることができる。加えて、または代替として、局所的ルールは、医療デバイスの場所が禁止領域の境界を越える所定の距離である場合、選択される。ある事例では、局所的ルールおよび大域的ルールの組み合わせは、医療デバイスの場所が禁止領域に対する所定の遷移距離内にある場合、選択されることができる。例えば、局所的ルールと大域的ルールの相対的加重は、カテーテルの場所から禁止領域までの距離の関数として変動する(例えば、略線形に)ことができる。
ある実装では、禁止領域は、少なくとも部分的に、3次元モデルによって表される流体の体積の質量中心によって画定されることができる。加えて、または代替として、禁止領域は、体積の質量中心を含有する少なくとも1つの平面を中心として略対称であることができる。
いくつかの実装では、禁止領域は、上下軸を中心として略対称であることができる。
いくつかの実装では、禁止領域は、約5度を上回り、かつ約90度未満の開放角を有する、二重無限直錐であることができる。
ある実装では、局所的ルールは、医療デバイスの場所に基づいて、局所的方向ベクトルを決定するステップを含むことができる。例えば、局所的方向ベクトルは、少なくとも部分的に、医療デバイスの場所に局所的な面積内の3次元モデルの表面に対して法線方向にある方向ベクトルに基づくことができる。加えて、または代替として、局所的ルールの選択に基づいて、規定された画像平面は、局所的方向ベクトルによって画定された軸と垂直な平面であることができる。さらに、または代わりに、ディスプレイルールを選択するステップは、上下軸に対する画像平面のピッチを限定するステップを含むことができる。なおもさらに、または代替として、ディスプレイルールを選択するステップは、上下軸に対するビューウィンドウのロールを限定するステップを含むことができ、ビューウィンドウは、画像平面内にある。
ある実装では、規定された画像平面は、3次元モデルの表面境界外にあることができる。
いくつかの実装では、規定された画像平面は、部分的に、局所的方向ベクトルの方向に基づくことができる。
ある実装では、3次元モデルの配向を規定するステップは、3次元モデルの基準軸を規定し、基準軸と3次元モデルによって画定された上下軸を整合させるステップを含むことができる。例えば、本方法はさらに、基準軸の所定の好ましい方向を示す入力を受信するステップを含むことができる。例えば、基準軸の所定の好ましい方向は、解剖学的構造の上位方向である。
いくつかの実装では、大域的ルールが選択される場合、3次元モデルの配向および画像平面を規定するステップは、解剖学的構造の3次元モデルの最薄方向を決定し、画像平面を最薄方向によって画定された軸と垂直な平面に規定するステップを含むことができる。例えば、規定された画像平面は、3次元モデルの表面境界外にある。
ある実装では、3次元モデルの投影をグラフィカルユーザインターフェース上に表示するステップは、ズーム倍率を決定するステップを含むことができる。例えば、画像平面内のビューウィンドウの少なくとも1つの寸法は、画像平面内の3次元モデルの寸法の固定倍数に維持されることができる。加えて、または代替として、ビューウィンドウの幅は、画像平面内の3次元モデルの最大寸法に対して固定倍数に維持されることができる。ある事例では、本方法はさらに、少なくとも部分的に、医療デバイスの場所を示す受信された信号に基づいて、医療デバイスの変位速度を決定するステップを含むことができ、ズーム倍率を決定するステップは、少なくとも部分的に、医療デバイスの決定された変位速度に基づくことができる。例えば、少なくとも部分的に、医療デバイスの決定された変位速度に基づいて、ズーム倍率を決定するステップは、医療デバイスの変位速度が減少するにつれて、ズーム倍率を増加させるステップを含むことができる。
別の側面によると、3次元解剖学的モデルの2次元ビューを制御する方法は、患者の解剖学的構造の3次元モデルを生成するステップと、(例えば、グラフィカルユーザインターフェース上に)3次元モデルの投影を表示するステップであって、投影は、画像平面のビューウィンドウ上にある、ステップと、解剖学的構造内の医療デバイスの場所を示す信号を受信するステップと、少なくとも部分的に、医療デバイスの場所を示す受信された信号に基づいて、解剖学的構造内の医療デバイスの変位速度を決定するステップと、少なくとも部分的に、医療デバイスの決定された変位速度に基づいて、ズーム倍率を調節するステップとを含むことができる。
いくつかの実装では、本方法はさらに、ズーム倍率のインジケーションをグラフィカルユーザインターフェース上に表示するステップを含むことができる。
いくつかの実装では、ズーム倍率を調節するステップは、医療デバイスの変位速度の減少に伴って、ビューウィンドウのサイズを減少させるステップを含むことができる。
ある実装では、ズーム倍率を調節するステップは、視野を調節するステップを含むことができる。
いくつかの実装では、ズーム倍率を調節するステップは、画像平面と投影の中心との間の距離を調節するステップを含むことができる。
ある実装では、ズーム倍率を調節するステップは、ビューウィンドウおよび投影の中心を3次元モデルに対して移動させるステップを含むことができる。
なおも別の側面によると、非一過性のコンピュータ可読記憶媒体は、1つ以上のプロセッサに、患者の心腔の3次元モデルを取得させ、患者の心腔内のカテーテルの場所を示す信号を受信させ、3次元モデルの少なくとも1つの幾何学的特徴を決定させ、少なくとも部分的に、心腔内のカテーテルの場所、心腔内のカテーテルの1つ以上の前の場所、および3次元モデルの幾何学的特徴に基づいて、心腔の3次元モデルのディスプレイビューを決定させ、グラフィカルユーザインターフェース上に、心腔の3次元モデルのディスプレイビューを表示させるためのその上に記憶されるコンピュータ実行可能命令を有する。
さらに別の側面によると、システムは、医療デバイスと、医療デバイスと通信する、医療デバイスインターフェースユニットとを含む。医療デバイスインターフェースユニットは、グラフィカルユーザインターフェースと、1つ以上のプロセッサと、1つ以上のプロセッサに、患者の心腔の3次元モデルを取得させ、患者の心腔内のカテーテルの場所を示す信号を受信させ、3次元モデルの少なくとも1つの幾何学的特徴を決定させ、少なくとも部分的に、心腔内のカテーテルの場所、心腔内のカテーテルの1つ以上の前の場所、および3次元モデルの幾何学的特徴に基づいて、心腔の3次元モデルのディスプレイビューを決定させ、グラフィカルユーザインターフェース上に、心腔の3次元モデルのディスプレイビューを表示させるためのその上に記憶されたコンピュータ実行可能命令を有する、非一過性のコンピュータ可読記憶媒体とを含む。
実装は、以下の利点のうちの1つ以上のものを含むことができる。
ある実装では、3次元モデルのディスプレイビューは、少なくとも部分的に、心腔内の受信されたカテーテルの場所および1つ以上の以前に心腔内の受信されたカテーテルの場所に基づくことができる。1つ以上の以前に受信されたカテーテルの場所に基づいて、ディスプレイビューを決定するステップは、例えば、医療手技の一部として3次元モデルの表現に依拠する、医師を混乱または別様に邪魔し得る、急および/または大遷移の尤度を低減させることができる。加えて、または代替として、1つ以上の以前に受信されたカテーテルの場所に基づいて、ディスプレイビューを決定するステップは、そうでなければ、カテーテル場所に基づいて、自動化された3次元モデルの表現に出現し得る、動揺を低減または排除さえすることができる。
いくつかの実装では、3次元モデルのディスプレイビューは、少なくとも部分的に、解剖学的構造内の受信されたカテーテルの場所および3次元モデルの画定された表面に基づくことができる。受信されたカテーテルの場所および3次元モデルの画定された表面に基づいて、ディスプレイビューを決定するステップは、例えば、カテーテルが解剖学的構造を通して移動するにつれて、3次元モデルの容認可能ビューを提供することを促進することができる。具体的実施例として、受信されたカテーテルの場所および3次元モデルの画定された表面に基づいて、ディスプレイビューを決定するステップは、少なくとも、受信されたカテーテルの場所および3次元モデルの画定された表面に基づくディスプレイビューが、解剖学的構造の表面に対するカテーテルの視認を促進することができるため、カテーテル位置単独から導出される3次元モデルのビューから判別可能であろうものより多くの情報を提供することができる。表面に対する医療デバイスのそのようなビューの自動化された生成は、特に、解剖学的構造の表面上で実施される医療手技において有利であり得ることを理解されたい。すなわち、一般に、医療デバイスの場所および解剖学的構造の表面の両方を考慮する、3次元モデルの視点を提供することは、診断および/または治療されるべき解剖学的表面の所望の面積に沿った医師によるカテーテルの適切な設置を促進することができる。
いくつかの実装では、3次元モデルのディスプレイビュー(例えば、画像平面内に画定されたビューウィンドウ)は、少なくとも部分的に、カテーテルの変位速度に基づくことができる。カテーテルの変位速度に基づくディスプレイビューに対するそのような変化は、直感的変化を3次元モデルの表現に提供することを促進することができることを理解されたい。そのような直感的変化は、例えば、医療手技の間、3次元モデルの表現の手動調節の必要性を低減させることができる。
他の側面、特徴、および利点は、説明および図面ならびに請求項から明白となるであろう。
本発明は、例えば、以下を提供する。
(項目1)
方法であって、
患者の心腔の3次元モデルを取得することと、
前記患者の心腔内のカテーテルの場所を示す信号を受信することと、
前記3次元モデルの少なくとも1つの幾何学的特徴を決定することと、
少なくとも部分的に、前記心腔内のカテーテルの場所、前記心腔内のカテーテルの1つ以上の前の場所、および前記3次元モデルの幾何学的特徴に基づいて、前記心腔の3次元モデルのディスプレイビューを決定することと、
グラフィカルユーザインターフェース上に、前記心腔の3次元モデルのディスプレイビューを表示することと
を含む、方法。
(項目2)
心腔内のカテーテルの場所を示す信号を受信することは、前記カテーテルと前記心腔との間の接触を示す信号を受信することを含む、項目1に記載の方法。
(項目3)
前記接触を示す信号は、前記カテーテルと前記心腔との間の力を示す信号である、項目2に記載の方法。
(項目4)
前記少なくとも1つの幾何学的特徴を決定することは、前記3次元モデルにおいて、前記カテーテルの場所に局所的な前記心腔の面積内の表面法線方向を計算することを含む、項目1-3のいずれか1項に記載の方法。
(項目5)
前記少なくとも1つの幾何学的特徴を決定することは、前記3次元モデルの最薄方向を決定することを含む、項目1-4のいずれか1項に記載の方法。
(項目6)
前記少なくとも1つの幾何学的特徴を決定することは、前記3次元モデルを含有する最小体積を伴う境界ボックスを決定することに基づく、項目1-5のいずれか1項に記載の方法。
(項目7)
前記少なくとも1つの幾何学的特徴を決定することは、前記境界ボックスの座標系の各個別の直交ベクトルの方向に前記境界ボックスの正規化された長さを表す3つのスカラー値を生成することと、前記3つのスカラー値の相互比較に基づいて、前記直交ベクトルのうちの1つに対応する方向を選択することとを含む、項目6に記載の方法。
(項目8)
前記3次元モデルの少なくとも1つの可視化選好を決定することをさらに含み、前記ディスプレイビューを決定することはさらに、少なくとも部分的に、前記少なくとも1つの可視化選好に基づく、項目1-7のいずれか1項に記載の方法。
(項目9)
前記少なくとも1つの可視化選好は、前記3次元モデルの好ましい配向を含む、項目8に記載の方法。
(項目10)
前記少なくとも1つの可視化選好を決定することは、少なくとも部分的に、受信されたユーザ入力に基づく、項目8および9のいずれか1項に記載の方法。
(項目11)
前記3次元モデルのディスプレイビューを決定することは、少なくとも部分的に、ある時間周期にわたって受信された場所信号に基づく、項目1-10のいずれか1項以上に記載の方法。
(項目12)
前記カテーテルの場所を示す受信された信号は、時変信号であり、前記カテーテルの場所を示す信号を受信することは、前記時変信号を処理することを含み、前記3次元モデルのディスプレイビューを決定することは、少なくとも部分的に、前記処理され、受信された場所信号に基づく、項目11に記載の方法。
(項目13)
前記カテーテルの場所を示す前記時変信号を処理することは、前記時変信号を低域通過フィルタリングすることを含む、項目12に記載の方法。
(項目14)
前記ディスプレイビューを決定することはさらに、少なくとも部分的に、前記患者の心腔の3次元モデルの形状の分析に基づく、項目1-13のいずれか1項以上に記載の方法。
(項目15)
前記ディスプレイビューを決定することはさらに、少なくとも部分的に、可視化選好に基づく、項目1-16のいずれか1項以上に記載の方法。
(項目16)
前記ディスプレイビューを決定することはさらに、少なくとも部分的に、1つ以上の以前に表示されたビューに基づく、項目1-15のいずれか1項以上に記載の方法。
(項目17)
前記ディスプレイビューを決定することは、ビューウィンドウ上に投影されるような前記3次元モデルのサイズを調節することを含み、前記ディスプレイビューを表示することは、前記調節されたサイズに従って、前記3次元モデルの投影を前記グラフィカルユーザインターフェース上に表示することを含む、項目1-16のいずれか1項以上に記載の方法。
(項目18)
前記ビューウィンドウ上に投影される前記3次元モデルのサイズを調節することは、画像平面上のビューウィンドウのサイズ、前記画像平面と前記3次元モデルの相対的位置、および前記ビューウィンドウと前記3次元モデルの投影のための投影の中心との間の相対的位置のうちの少なくとも1つに基づく、項目17に記載の方法。
(項目19)
ビューウィンドウの少なくとも1つの寸法は、前記3次元モデルの投影の寸法の固定倍数に維持される、項目17に記載の方法。
(項目20)
前記寸法は、前記画像平面における前記3次元モデルの投影の最大幅である、項目19に記載の方法。
(項目21)
前記ディスプレイビューを決定することは、前記3次元モデルによって画定された軸に対する前記画像平面のピッチを限定することを含む、項目17-20のいずれか1項に記載の方法。
(項目22)
前記ディスプレイビューを決定することは、前記3次元モデルによって画定された軸に対する前記ビューウィンドウのロールを限定することを含む、項目17-21のいずれか1項に記載の方法。
(項目23)
少なくとも部分的に、前記カテーテルの場所を示す受信された信号に基づいて、前記カテーテルの変位速度を決定することをさらに含み、前記ビューウィンドウ上に投影される前記3次元モデルのサイズを調節することは、少なくとも部分的に、前記カテーテルの前記決定された変位速度に基づく、項目17-22のいずれか1項以上に記載の方法。
(項目24)
前記心腔の3次元モデルのディスプレイビューを表示することは、前記決定されたビューを3次元グラフィカルユーザインターフェース上に表示することを含む、項目1-23のいずれか1項以上に記載の方法。
(項目25)
前記決定されたビューを前記3次元グラフィカルユーザインターフェース上に表示することは、前記決定されたビューを拡張現実環境内に表示することを含む、項目24に記載の方法。
(項目26)
前記決定されたビューを前記3次元グラフィカルユーザインターフェース上に表示することは、前記決定されたビューを仮想現実環境内に表示することを含む、項目24または25のいずれか1項に記載の方法。
(項目27)
方法であって、
患者の解剖学的構造の3次元モデルを取得することであって、前記3次元モデルは、画定された表面を含む、ことと、
前記患者の解剖学的構造内のカテーテルの場所を示す信号を受信することと、
少なくとも部分的に、前記解剖学的構造内のカテーテルの場所および前記画定された表面に基づいて、前記解剖学的構造の3次元モデルのディスプレイビューを決定することと、
グラフィカルユーザインターフェース上に、前記解剖学的構造の3次元モデルのディスプレイビューを表示することと
を含む、方法。
(項目28)
前記3次元モデルの画定された表面は、前記3次元モデルの表面メッシュを含む、項目27に記載の方法。
(項目29)
前記3次元モデルの画定された表面は、前記解剖学的構造の血液-組織境界を表す、項目27に記載の方法。
(項目30)
前記解剖学的構造の3次元モデルのディスプレイビューを決定することは、少なくとも部分的に、前記3次元モデルの画定された表面に対する前記カテーテルの場所に基づく、項目27に記載の方法。
(項目31)
前記解剖学的構造の3次元モデルのディスプレイビューを決定することは、少なくとも部分的に、前記3次元モデルの画定された表面の局所的幾何学的特徴に対する前記カテーテルの場所に基づく、項目30に記載の方法。
(項目32)
患者の中空の解剖学的構造の3次元表現を表示する方法であって、前記方法は、
前記患者の中空の解剖学的構造の3次元モデルを取得することと、
前記患者の中空の解剖学的構造内の医療デバイスの場所を示す信号を受信することと、
少なくとも部分的に、前記中空の解剖学的構造内の医療デバイスの場所および前記中空の解剖学的構造内の医療デバイスの1つ以上の前の場所に基づいて、前記中空の解剖学的構造の3次元モデルのディスプレイビューを決定することと、
グラフィカルユーザインターフェース上に、前記中空の解剖学的構造の3次元モデルのディスプレイビューを表示することと
を含む、方法。
(項目33)
前記3次元モデルの少なくとも1つの幾何学的特徴を決定することをさらに含み、前記ディスプレイビューを決定することはさらに、少なくとも部分的に、前記3次元モデルの少なくとも1つの幾何学的特徴に基づく、項目32に記載の方法。
(項目34)
前記3次元モデルの少なくとも1つの可視化選好を決定することをさらに含み、前記ディスプレイビューを決定することはさらに、少なくとも部分的に、前記少なくとも1つの可視化選好に基づく、項目32または33のいずれか1項以上に記載の方法。
(項目35)
患者の心腔の3次元表現を表示する方法であって、前記方法は、
前記患者の心腔の3次元モデルを取得することと、
前記患者の心腔内のカテーテルの場所を示す信号を受信することと、
少なくとも部分的に、前記心腔内のカテーテルの場所および前記心腔内のカテーテルの1つ以上の前の場所に基づいて、前記心腔の3次元モデルのディスプレイビューの軌道を決定することと、
グラフィカルユーザインターフェース上に、前記決定された軌道に従って、前記心腔の3次元モデルのディスプレイビューを表示することと
を含む、方法。
(項目36)
前記3次元モデルの形状を分析することをさらに含み、前記ディスプレイビューの軌道を決定することはさらに、前記3次元モデルの分析された形状に基づく、項目35に記載の方法。
(項目37)
前記3次元モデルの形状を分析することは、前記カテーテルの場所に基づいて、前記3次元モデルの局所的部分を分析することを含む、項目36に記載の方法。
(項目38)
前記3次元モデルの形状を分析することは、前記カテーテルの1つ以上の前の場所に基づいて、前記3次元モデルの局所的特徴を分析することを含む、項目36または37のいずれか1項以上に記載の方法。
(項目39)
前記3次元モデルの形状を分析することは、前記3次元モデルの1つ以上の大域的特徴を分析することを含む、項目36-38のいずれか1項以上に記載の方法。
(項目40)
1つ以上の可視化選好を取得することをさらに含み、前記ディスプレイビューの軌道を決定することはさらに、前記1つ以上の可視化選好に基づく、項目35-39のいずれか1項以上に記載の方法。
(項目41)
前記1つ以上の可視化選好は、前記3次元モデルの好ましい配向を含む、項目40に記載の方法。
(項目42)
前記ディスプレイビューの軌道を決定することはさらに、1つ以上の以前に表示されたビューに基づく、項目35-41のいずれか1項以上に記載の方法。
(項目43)
患者の解剖学的構造の3次元モデルのディスプレイを制御する方法であって、前記方法は、
前記患者の解剖学的構造の3次元モデルを取得することと、
前記解剖学的構造内の医療デバイスの場所を示す信号を受信することと、
少なくとも部分的に、前記解剖学的構造内の医療デバイスの場所に基づいて、複数のルールから、前記3次元モデルの配向および画像平面の仕様に関するディスプレイルールを選択することと、
少なくとも部分的に、前記ディスプレイルールに基づいて、i)前記3次元モデルの配向およびii)前記画像平面を規定することと、
グラフィカルユーザインターフェース上で、前記3次元モデルの投影の少なくとも一部を、前記規定された配向において、前記規定された画像平面上に表示することと
を含む、方法。
(項目44)
前記ディスプレイルールは、少なくとも部分的に、前記解剖学的構造に対する前記医療デバイスの場所に基づく、項目43に記載の方法。
(項目45)
前記ディスプレイルールはさらに、少なくとも部分的に、前記解剖学的構造に対する前記医療デバイスの1つ以上の前の場所に基づく、項目44に記載の方法。
(項目46)
前記複数のルールは、局所的ルールおよび大域的ルールを含み、前記局所的ルールは、少なくとも部分的に、前記3次元モデルに対する前記医療デバイスの場所に基づき、前記大域的ルールは、少なくとも部分的に、前記3次元モデルの形状に基づく、項目43-45のいずれか1項に記載の方法。
(項目47)
前記ディスプレイルールを選択することは、前記医療デバイスの場所と少なくとも部分的に前記3次元モデルによって画定された禁止領域の比較に基づいて、前記局所的ルール、前記大域的ルール、またはそれらの組み合わせを選択することを含む、項目46に記載の方法。
(項目48)
前記大域的ルールは、前記医療デバイスの場所が前記禁止領域の境界内にある場合、選択される、項目47に記載の方法。
(項目49)
前記局所的ルールは、前記医療デバイスの場所が前記禁止領域の境界を越える所定の距離である場合、選択される、項目47および48のいずれか1項に記載の方法。
(項目50)
前記局所的ルールおよび前記大域的ルールの組み合わせは、前記医療デバイスの場所が前記禁止領域に対する所定の遷移距離内にある場合、選択される、項目47-49のいずれか1項に記載の方法。
(項目51)
前記局所的ルールと前記大域的ルールの相対的加重は、前記カテーテルの場所から前記禁止領域までの距離の関数として変動する、項目50に記載の方法。
(項目52)
前記局所的ルールと前記大域的ルールの相対的加重は、前記医療デバイスの場所から前記禁止領域までの距離の関数として略線形に変動する、項目51に記載の方法。
(項目53)
前記禁止領域は、少なくとも部分的に、前記3次元モデルによって表される流体の体積の質量中心によって画定される、項目47-52のいずれか1項に記載の方法。
(項目54)
前記禁止領域は、前記体積の質量中心を含有する少なくとも1つの平面を中心として略対称である、項目53に記載の方法。
(項目55)
前記禁止領域は、上下軸を中心として略対称である、項目47-54のいずれか1項に記載の方法。
(項目56)
前記禁止領域は、約5度を上回り、かつ約90度未満の開放角を有する、二重無限直錐である、項目47-55のいずれか1項に記載の方法。
(項目57)
前記局所的ルールは、前記医療デバイスの場所に基づいて、局所的方向ベクトルを決定することを含む、項目47-56のいずれか1項に記載の方法。
(項目58)
前記局所的方向ベクトルは、少なくとも部分的に、前記医療デバイスの場所に局所的な面積内の3次元モデルの表面に対して法線方向にある方向ベクトルに基づく、項目57に記載の方法。
(項目59)
前記局所的ルールの選択に基づいて、前記規定された画像平面は、前記局所的方向ベクトルによって画定された軸と垂直な平面である、項目57および58のいずれか1項に記載の方法。
(項目60)
前記ディスプレイルールを選択することは、上下軸に対する前記画像平面のピッチを限定することを含む、項目59に記載の方法。
(項目61)
前記ディスプレイルールを選択することは、上下軸に対するビューウィンドウのロールを限定することを含み、前記ビューウィンドウは、前記画像平面内にある、項目59および60のいずれか1項に記載の方法。
(項目62)
前記規定された画像平面は、前記3次元モデルの表面境界外にある、項目59-61のいずれか1項に記載の方法。
(項目63)
前記規定された画像平面は、部分的に、前記局所的方向ベクトルの方向に基づく、項目59-62のいずれか1項に記載の方法。
(項目64)
前記3次元モデルの配向を規定することは、前記3次元モデルの基準軸を規定し、前記基準軸と前記3次元モデルによって画定された上下軸とを整合させることを含む、項目47-63のいずれか1項に記載の方法。
(項目65)
前記基準軸の所定の好ましい方向を示す入力を受信することをさらに含む、項目64に記載の方法。
(項目66)
前記基準軸の所定の好ましい方向は、前記解剖学的構造の上位方向である、項目64および65のいずれか1項に記載の方法。
(項目67)
前記大域的ルールが選択される場合、前記3次元モデルの配向および前記画像平面を規定することは、前記解剖学的構造の3次元モデルの最薄方向を決定し、前記画像平面を前記最薄方向によって画定された軸と垂直な平面に規定することとを含む、項目47-66のいずれか1項に記載の方法。
(項目68)
前記規定された画像平面は、前記3次元モデルの表面境界外にある、項目67に記載の方法。
(項目69)
前記3次元モデルの投影を前記グラフィカルユーザインターフェース上に表示することは、ズーム倍率を決定することを含む、項目47-68のいずれか1項に記載の方法。
(項目70)
前記画像平面内のビューウィンドウの少なくとも1つの寸法は、前記画像平面内の3次元モデルの寸法の固定倍数に維持される、項目69に記載の方法。
(項目71)
前記ビューウィンドウの幅は、前記画像平面内の3次元モデルの最大寸法に対して固定倍数に維持される、項目70に記載の方法。
(項目72)
少なくとも部分的に、前記医療デバイスの場所を示す前記受信された信号に基づいて、前記医療デバイスの変位速度を決定することをさらに含み、前記ズーム倍率を決定することは、少なくとも部分的に、前記医療デバイスの前記決定された変位速度に基づく、項目69-71のいずれか1項以上に記載の方法。
(項目73)
少なくとも部分的に、前記医療デバイスの前記決定された変位速度に基づいて、前記ズーム倍率を決定することは、前記医療デバイスの変位速度が減少するにつれて、前記ズーム倍率を増加させることを含む、項目72に記載の方法。
(項目74)
3次元解剖学的モデルの2次元ビューを制御する方法であって、前記方法は、
患者の解剖学的構造の3次元モデルを生成することと、
グラフィカルユーザインターフェース上に、前記3次元モデルの投影を表示することであって、前記投影は、画像平面のビューウィンドウ上にある、ことと、
前記解剖学的構造内の医療デバイスの場所を示す信号を受信することと、
少なくとも部分的に、前記医療デバイスの場所を示す前記受信された信号に基づいて、前記解剖学的構造内の医療デバイスの変位速度を決定することと、
少なくとも部分的に、前記医療デバイスの前記決定された変位速度に基づいて、ズーム倍率を調節することと
を含む、方法。
(項目75)
前記ズーム倍率のインジケーションを前記グラフィカルユーザインターフェース上に表示することをさらに含む、項目74に記載の方法。
(項目76)
前記ズーム倍率を調節することは、前記医療デバイスの変位速度の減少に伴って、前記ビューウィンドウのサイズを減少させることを含む、項目74および75のいずれか1項に記載の方法。
(項目77)
前記ズーム倍率を調節することは、視野を調節することを含む、項目74-76のいずれか1項に記載の方法。
(項目78)
前記ズーム倍率を調節することは、前記画像平面と投影中心との間の距離を調節することを含む、項目74-77のいずれか1項に記載の方法。
(項目79)
前記ズーム倍率を調節することは、前記ビューウィンドウおよび前記投影の中心を前記3次元モデルに対して移動させることを含む、項目74-78のいずれか1項に記載の方法。
(項目80)
非一過性のコンピュータ可読記憶媒体であって、前記非一過性のコンピュータ可読記憶媒体は、その上に記憶されるコンピュータ実行可能命令を有し、前記コンピュータ実行可能命令は、1つ以上のプロセッサに、
患者の心腔の3次元モデルを取得することと、
前記患者の心腔内のカテーテルの場所を示す信号を受信することと、
前記3次元モデルの少なくとも1つの幾何学的特徴を決定することと、
少なくとも部分的に、前記心腔内のカテーテルの場所、前記心腔内のカテーテルの1つ以上の前の場所、および前記3次元モデルの幾何学的特徴に基づいて、前記心腔の3次元モデルのディスプレイビューを決定することと、
グラフィカルユーザインターフェース上に、前記心腔の3次元モデルのディスプレイビューを表示することと
を行わせる、非一過性のコンピュータ可読記憶媒体。
(項目81)
システムであって、
医療デバイスと、
前記医療デバイスと通信する医療デバイスインターフェースユニットであって、前記医療デバイスインターフェースユニットは、グラフィカルユーザインターフェースと、1つ以上のプロセッサと、非一過性のコンピュータ可読記憶媒体とを含み、前記非一過性のコンピュータ可読記憶媒体は、その上に記憶されたコンピュータ実行可能命令を有し、前記コンピュータ実行可能命令は、1つ以上のプロセッサに、
患者の心腔の3次元モデルを取得することと、
前記患者の心腔内のカテーテルの場所を示す信号を受信することと、
前記3次元モデルの少なくとも1つの幾何学的特徴を決定することと、
少なくとも部分的に、前記心腔内のカテーテルの場所、前記心腔内のカテーテルの1つ以上の前の場所、および前記3次元モデルの幾何学的特徴に基づいて、前記心腔の3次元モデルのディスプレイビューを決定することと、
グラフィカルユーザインターフェース上に、前記心腔の3次元モデルのディスプレイビューを表示することと
を行わせる、医療デバイスインターフェースユニットと
を備える、システム。
図1は、医療処置の間のシステムの略図であって、システムは、カテーテルと、カテーテルインターフェースユニットのグラフィカルユーザインターフェースとを含む。
図2は、図1のアブレーションシステムのアブレーションカテーテルの斜視図である。
図3は、アブレーション治療の間、患者の心腔内の図2のアブレーションカテーテルの先端区分の略図である。
図4は、図3のアブレーション治療の間、患者の心腔の3次元モデルの投影を表示する図1のグラフィカルユーザインターフェースの略図であって、3次元モデルは、図1のカテーテルインターフェースユニットの記憶媒体上に記憶される。
図5は、図1のグラフィカルユーザインターフェース上に表示されるディスプレイビュー上への図4の3次元モデルの投影の略図である。
図6は、図4の3次元モデルを図1のグラフィカルユーザインターフェース上に表示する例示的プロセスのフローチャートである。
図7は、受信されたカテーテルの場所に局所的な3次元モデルの面積内の表面法線方向の略図である。
図8は、3次元モデルの境界ボックス分析の略図である。
図9は、図4の3次元モデルを図1のグラフィカルユーザインターフェース上に表示する例示的プロセスのフローチャートである。
図10は、患者の解剖学的構造の3次元モデルを表示する例示的プロセスのフローチャートである。
図11は、図2のアブレーションカテーテルの先端区分の場所の略図であって、場所は、図4および5の3次元モデルに対して示される。
図12は、図1のグラフィカルユーザインターフェースのビューウィンドウのサイズを制御する例示的プロセスのフローチャートである。
種々の図面における同様の参照記号は、同様の要素を示す。
本開示は、概して、患者の解剖学的構造上で実施される医療手技の間、グラフィカルユーザインターフェース(例えば、医師または他の医療人員によって使用される)上で、患者の解剖学的構造のディスプレイビューを制御する、デバイス、システム、および方法を対象とする。例えば、本開示のデバイス、システム、および方法は、解剖学的構造上で実施される医療手技の間、医療デバイスの位置を可視化するために使用されることができる。非限定的実施例として、説明の明確化のために、本開示のデバイス、システム、および方法は、心臓不整脈の治療と関連付けられた診断および/またはアブレーション治療の一部として、心腔の中に挿入される心臓カテーテルの可視化に関して説明される。しかしながら、別様に規定されない限り、本開示のデバイス、システム、および方法は、医療手技への直接視覚的アクセスが、非実践的であって、および/または解剖学的構造のモデルの使用によって改良され得る、患者の中空の解剖学的構造上で実施される手技等の種々の異なる医療手技のいずれかのために使用されることができることを理解されたい。例えば、本開示のデバイス、システム、および方法は、加えて、または代替として、介入呼吸器学、脳外科手術、および/または洞外科手術(例えば、副鼻腔手術)において使用されることができる。
本明細書で使用されるように、用語「医師」は、医療手技を実施または補助し得る、任意のタイプの医療人員を含むと見なされるべきである。
本明細書で使用されるように、用語「患者」は、医療手技が実施されるヒトを含む、任意の哺乳類を含むと見なされるべきである。
図1は、患者102上で実施される心臓治療(例えば、アブレーション治療)の間のシステム100の略図である。システム100は、延在ケーブル106を介して、カテーテルインターフェースユニット108に接続される、カテーテル104を含むことができる。カテーテルインターフェースユニット108は、処理ユニット109(例えば、1つ以上のプロセッサ)と、グラフィカルユーザインターフェース110と、記憶媒体113とを含むことができる。グラフィカルユーザインターフェース110および記憶媒体113は、処理ユニット109と電気通信(例えば、有線通信および/または無線通信)することができる。
マッピングシステム112、記録システム111、潅注ポンプ114、および発生器116のうちの1つ以上のものは、カテーテルインターフェースユニット108に接続されることができる。潅注ポンプ114はまた、流体ライン115を介して、カテーテル104に除去可能かつ流動的に接続される。発生器116はまた、ワイヤ117を介して、患者102の皮膚に取り付けられる帰還電極118に接続されることができる。
記録システム111は、手技全体を通してならびに治療前または後に使用されることができる。マッピングシステム112は、手技に先立って、またはその間、患者102の心臓組織をマッピングし、アブレーション手技の場合、アブレーションを要求する心臓組織の領域または複数の領域を決定するために使用されることができる。以下にさらに詳細に説明されるように、グラフィカルユーザインターフェース110は、例えば、患者102の心腔内のカテーテル104の場所に基づいて自動的に変化するディスプレイを用いて、患者102の心腔の3次元モデルを表示することによって、患者102の心臓組織の診断および/または治療の一部として使用されることができる。患者の心腔の3次元表現のディスプレイの手動制御を要求するシステムと比較して、グラフィカルユーザインターフェース110上に、患者102の心腔内のカテーテル104の場所に基づいて、3次元表現を表示することは、心腔の有用なビューを取得するために要求される複雑性および時間を低減させることができる。
図1-4を参照すると、カテーテル104は、ハンドル120と、カテーテルシャフト122と、先端区分124とを含むことができる。カテーテルシャフト122は、ハンドル120に固着される近位部分126と、先端区分124に結合される遠位部分128とを含むことができる。
先端区分124は、治療、診断、または両方の目的のために、組織に直接または間接的に係合し、したがって、当技術分野において公知の組織とのあらゆる様式およびタイプの接触および/または非接触相互作用を含み得る、カテーテル104の任意の部分を含むことができる。例えば、先端区分124は、組織とのエネルギー相互作用(例えば、電気エネルギー、超音波エネルギー、光エネルギー、および任意のそれらの組み合わせ)および/または化学相互作用の形態における組織との接触および/または非接触相互作用を含むことができる。したがって、例えば、先端区分124は、任意の数の治療および/または診断手技の一部として、エネルギー(例えば、電気エネルギー)を心腔内の組織に送達することができる。ある実装では、先端区分124から組織へのエネルギーのそのような送達は、先端区分124と組織との間の直接接触を通して行われることができる。先端区分124は、接触を通してエネルギーを組織に送達するものとして説明されるが、そのような説明は、ここでは、説明の明確化のために提供され、本開示のシステムおよび方法は、組織に係合しないカテーテル104の遠位端部分および/または他のタイプのエネルギーを送達するカテーテル104の遠位端部分を含む、カテーテル104の任意の数および様式の設計を使用して実装されることができることを理解されたい。
カテーテル104はさらに、カテーテルシャフト122の遠位部分128に沿って位置付けられる、磁気位置センサ130を含むことができる。磁気位置センサ130は、当技術分野において周知の種々の磁気位置センサのいずれかであることができ、遠位部分128に沿って任意の点に位置付けられることができることを理解されたい。磁気位置センサ130は、例えば、磁場発生器から発出する信号を検出する、1つ以上のコイルを含むことができる。実施例として、5または6自由度を伴って位置を決定するための1つ以上のコイルが、使用されることができる。磁気位置センサ130によって検出された磁場は、例えば、単層内の磁場を感知するための磁気センサの使用および磁気位置センサ130の場所を決定するためのルックアップテーブルの使用に基づく方法等の当技術分野において一般に公知の1つ以上の方法に従って、カテーテルシャフト122の遠位部分128の位置を決定するために使用されることができる。故に、先端区分124は、磁気位置センサ130に対して既知の固定関係において、カテーテルシャフト122の遠位部分128に結合されるため、磁気位置センサ130はまた、先端区分124の場所を提供することができる。先端区分124の場所は、磁気位置感知に基づいて決定されるように説明されるが、他の位置感知方法も、加えて、または代替として、使用されることができる。例えば、先端区分124の場所は、加えて、または代替として、インピーダンス、超音波、および/または撮像(例えば、リアルタイムMRIまたは蛍光透視法)に基づくことができる。
患者102の心腔132の3次元モデル134が、心腔132内のカテーテル104の先端区分124の既知の位置に基づいて(例えば、アブレーション治療の適用に先立って)、および/または手技に先立って、またはその間に入手された心腔の画像に基づいて、構築されることができる。3次元モデル134は、例えば、心腔132の解剖学的モデルであって、グラフィカルユーザインターフェース110上に表示されることができる。ある実装では、グラフィカルユーザインターフェース110は、2次元であることができ、3次元モデル134の2次元表現が、グラフィカルユーザインターフェース110上に投影されることができる。しかしながら、グラフィカルユーザインターフェース110は、加えて、または代替として、例えば、拡張現実環境および/または仮想現実環境を含む、3次元ディスプレイを含むことができることを理解されたい。さらに、先端区分124の位置は、既知であるため、心腔132の表面133に対する先端区分124の位置もまた、グラフィカルユーザインターフェース110上に表示されることができる。
使用時、カテーテル104の先端区分124は、患者102の心腔132の中に挿入されることができる。カテーテルインターフェースユニット108によって磁気位置センサ130から受信された信号(受信された信号は、先端区分124の場所を決定するために使用される)に基づいて、グラフィカルユーザインターフェース110上に表示される3次元モデル134のビューは、心腔132内の先端区分124の移動に応答して、自動的に変化することができる。例えば、グラフィカルユーザインターフェース110上に表示される3次元モデル134の配向は、心腔132の表面133に対する先端区分124の場所(例えば、場所の変化)に基づいて、更新されることができる。加えて、または代替として、グラフィカルユーザインターフェース110上に表示される3次元モデル134のサイズは、更新されることができる(例えば、先端区分124の場所変化の速度に基づいて)。グラフィカルユーザインターフェース110上への3次元モデル134の表示は、心腔132内の先端区分124の場所に応答し得るため、3次元モデル134のディスプレイは、医師がハンドル120を操作し、カテーテルシャフト122の遠位部分128を偏向させ、カテーテル104の先端区分124を患者102の心腔内の所望の診断および/または治療場所に対して移動させるにつれて、自動的に調節されることができる。
例示的治療では、先端区分124は、心腔132の表面133と接触するように設置されることができ、RFエネルギーが、先端区分124から心腔132の表面133に指向され、表面133に対してある深度において組織をアブレートすることができる。心腔の表面133に沿って先端区分124によって作成されたそのようなアブレーションは、例えば、本条件を用いて、患者における心臓不整脈を治療することができる。しかしながら、心腔132の表面133に沿って先端区分124を使用して作成されたアブレーションの有効性は、アブレーションの場所に依存し得る。故に、本明細書に説明される方法に従って、心腔の3次元モデル134のディスプレイビューを自動的に調節することは、心臓の効率的かつ効果的マッピングおよび/または心臓不整脈を治療するためのアブレーション治療の効率的かつ効果的送達のために有用であり得る。
心腔132の3次元モデル134は、処理ユニット109によって3次元モデル134のディスプレイビュー136をグラフィカルユーザインターフェース110上に表示するために実行可能な命令とともに、記憶媒体111上に記憶される。記憶媒体111上に記憶され、処理ユニット109によって3次元モデル134のディスプレイビューを表示するために実行可能な命令は、例えば、www.vtk.orgにおいて利用可能なオープンソース3DコンピュータグラフィックツールキットであるVisualization Toolkitを使用して構築される、アプリケーションであることができる。
図5は、グラフィカルユーザインターフェース110上に表示されるビューウィンドウ138上に投影される、3次元モデル134のディスプレイビュー136の略図である。3次元モデル134は、記憶媒体111(図1)等のメモリ内に記憶されることができることを理解されたい。さらに、3次元モデル134の投影は、処理ユニット109(図1)が記憶媒体111(図1)上に記憶されるコンピュータ実行可能命令を実行することによって施行されることができることを理解されたい。
図4および5を参照すると、グラフィカルユーザインターフェース110が2次元ディスプレイである事例では、3次元モデル134は、画像平面140のビューウィンドウ138に投影され、投影中心141を有する画像を形成することができる。画像平面140は、グラフィカルユーザインターフェース110の2次元ディスプレイの平面に対応することができ、ビューウィンドウ138は、グラフィカルユーザインターフェース110の2次元ディスプレイの視野に対応することができ、投影中心141は、グラフィカルユーザインターフェース110上の画像を視認しているユーザの視点に対応することができる。故に、3次元モデル134のディスプレイビュー136をビューウィンドウ138上に投影させることによって形成される画像は、グラフィカルユーザインターフェース110上に表示される具体的3次元モデル134の配向に対応することができる。
グラフィカルユーザインターフェース110上のビューウィンドウ138上に3次元モデル134の投影の基礎を形成する、ディスプレイビュー136の1つ以上の特徴(例えば、視点およびサイズ)は、少なくとも、3次元モデル134に対する画像平面140の位置、画像平面140上のビューウィンドウ136のサイズ、およびビューウィンドウ136と投影中心141との間の距離の関数であることができる。例えば、画像平面140の移動は、ディスプレイビューの対応する移動をもたらすことができる。先端区分124が、心腔132内で移動されるにつれて、画像平面140の位置(例えば、平行移動、配向、または両方)は、3次元モデル134に対して変化することができ、および/または画像平面140上のビューウィンドウ136のサイズは、変化し、グラフィカルユーザインターフェース110上に表示される3次元モデル134のディスプレイビュー136の視点、場所、およびサイズのうちの1つ以上のものの対応する変化をもたらすことができる。加えて、または代替として、先端区分124が、心腔132内で移動されるにつれて、投影中心141の位置は、変化し、グラフィカルユーザインターフェース110上に表示される3次元モデル134のディスプレイビュー136の視点、場所、およびサイズのうちの1つ以上のものの対応する変化をもたらすことができる。
記憶媒体111(図1)上に記憶されるコンピュータ実行可能命令は、処理ユニット109(図1)に、以下の例示的方法のうちの1つ以上のものに従って、3次元モデル134をグラフィカルユーザインターフェース110上のディスプレイビュー136上に表示させることができる。別様に示されない、または文脈から明白とならない限り、以下の例示的方法はそれぞれ、システム100(図1)および/またはその1つ以上の構成要素を使用して実装されることができる。
ここで図6を参照すると、患者の心腔の3次元表現を表示する例示的方法160は、患者の心腔の3次元モデルを取得するステップ162と、患者の心腔内のカテーテルの場所を示す信号を受信するステップ164と、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップ165と、心腔の3次元モデルのディスプレイビューを決定するステップ166と、(例えば、図1に示されるグラフィカルユーザインターフェース110等のグラフィカルユーザインターフェース上に)心腔の3次元モデルのディスプレイビューを表示するステップ168とを含むことができる。以下により詳細に説明されるように、3次元モデルのディスプレイビューを決定するステップ166は、受信164されたカテーテルの場所、3次元モデルの少なくとも1つの幾何学的特徴、および1つ以上の以前に受信された心腔内のカテーテルの場所のうちの1つ以上のものに基づくことができる。心腔の文脈において以下に説明されるが、例示的方法160は、例えば、それを通してカテーテルが通過され得る(例えば、診断、治療、または両方の目的のために)、患者の脳、肺、洞、および/または他の中空の解剖学的構造等の患者の他の解剖学的構造の3次元表現を表示するように施行されることができることを理解されたい。
一般に、心腔の3次元モデルを取得するステップ162は、3次元モデルのディスプレイが制御される手技に先立って、心腔の3次元モデルを受信および/または決定するステップを含むことができる。
心腔の3次元モデルを取得するステップ162は、例えば、心腔内のカテーテルの複数の場所を受信し、受信されたカテーテルの訪問場所を既知の座標系上にマッピングするステップを含むことができる。そのような実装では、訪問場所の境界は、心腔内の血液-組織境界を表すことができる。複数の受信された場所は、例示的方法160の一部として使用されるカテーテルおよび/または別のカテーテル(例えば、前の手技の一部として使用される)からのものであることができる。
ある実装では、心腔の3次元モデルを取得するステップ162は、信号をカテーテルの遠位部分に沿って配置される磁気センサ(例えば、上記に説明される磁気センサ130等)から受信し、受信された磁気センサ信号から決定されたカテーテル場所に基づいて、3次元モデルを構築するステップを含むことができる。加えて、または代替として、受信されたカテーテルの複数の場所は、カテーテルのインピーダンス、超音波、撮像(例えば、蛍光透視法)、および/またはカテーテル位置を決定する他の公知の方法に基づいて決定されることができる。
いくつかの実装では、心腔の3次元モデルを取得するステップ162は、心腔の1つ以上の画像(例えば、コンピュータ断層撮影(CT)画像、磁気共鳴画像診断(MRI)画像、または両方)を受信し、画像と磁気位置センサまたは他の追跡センサの座標系を位置合わせするステップを含むことができる。これらの画像は、例えば、手技に先立って、入手されることができる。しかしながら、これらの画像は、加えて、または代替として、リアルタイムで(例えば、回転血管造影を使用して)入手されることができることを理解されたい。
一般に、心腔内のカテーテルの場所を示す信号を受信するステップ164は、本明細書に説明される方法のいずれかに従って、カテーテルの場所を示す信号を受信するステップを含むことができる。ある事例では、心腔内のカテーテルの場所を示す信号を受信するステップ164は、カテーテルと心腔との間の接触を示す(例えば、力を示す)信号を受信するステップを含むことができる。さらに、本明細書で使用されるように、カテーテルの場所は、カテーテルの先端区分(例えば、図2のカテーテル104の先端区分124)の場所を指す。しかしながら、カテーテルの場所は、心腔内のカテーテルの任意の所定の部分の場所を含むことができることを理解されたい。
心腔内のカテーテルの場所を示す信号を受信するステップ164は、ある時間周期にわたって信号を受信するステップを含むことができる。具体的実施例として、カテーテルの場所を示す信号は、時変信号であることができる。ある時間周期にわたって受信された時変信号に基づいて、ディスプレイビューを決定166することによって、決定166されたディスプレイビューは、1つ以上の以前に受信されたカテーテルの場所に基づくことができる。さらなる説明として、1つ以上の以前に受信された場所は、本明細書で使用されるように、決定166されたディスプレイビューと関連付けられた現在の時間ステップに先立って受信された1つ以上のカテーテルの場所を含むと理解されるべきである。例えば、時変の受信164された信号は、処理されることができる(例えば、時変信号を低域通過フィルタリングすることによって)。決定166されたディスプレイビューは、処理された時変信号に基づくことができ、したがって、1つ以上の以前に受信されたカテーテルの場所に基づくことができる。加えて、または代替として、ディスプレイビューは、時変の受信164された信号に基づくことができ、ディスプレイビュー自体は、決定166されたディスプレイビューが、1つ以上の前のディスプレイビューに基づき、したがって、1つ以上の以前に受信されたカテーテルの場所に基づき得るように、処理されることができる(例えば、ディスプレイビューを低域通過フィルタリングすることによって)。ある実装では、時変の受信164された信号および/または決定166されたディスプレイビューを処理するためのパラメータは、カテーテルによって移動される距離に伴って変動することができる。
時変信号を処理するステップは、例えば、グラフィカルユーザインターフェース上のディスプレイビューの改良された知覚のために有用であり得る。例えば、受信されたカテーテル場所の時変信号を処理するステップは、カテーテルの場所の変化に対応するディスプレイビュー内の変化を平滑化することができる。そのような平滑化を通して、結果として生じる決定166されたディスプレイビューは、未処理時変信号に基づいて更新されたディスプレイビューと比較して、より安定である(例えば、揺れが少ない)ことができる。故に、時変信号を処理するステップは、カテーテル位置の変化に合わせるために十分に高速であるが、カテーテルを位置付けるための3次元モデルの医師の使用に干渉する可能性がより高い、ディスプレイビューに対する大変化および/または多くの小高速変化を回避するために十分に低速の両方である、率で変化を決定166されたディスプレイビューにもたらすために有用であり得る。
3次元モデルの少なくとも1つの幾何学的特徴を決定するステップ165は、以下にさらに詳細に説明される、種々の異なる決定のうちの任意の1つ以上のものを含む。したがって、例えば、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップ165は、受信164されたカテーテルの場所に局所的な心腔の面積内の表面法線方向を決定するステップを含むことができる。加えて、または代替として、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップ165は、3次元モデルの最薄方向を決定するステップを含むことができる。さらに、または代わりに、3次元モデルの少なくとも1つの幾何学的特徴を決定するステップ165は、3次元モデルを含有する最小体積を伴う境界ボックスを決定するステップに基づくことができる。少なくとも1つの幾何学的特徴のこれらの決定はそれぞれ、ディスプレイビューの決定166に関して以下に記載される。
一般に、3次元モデルのディスプレイビューを決定するステップ166は、心腔内の1つ以上の以前に受信されたカテーテルの場所に基づくことができる。ある実装では、ディスプレイビューを決定するステップ166は、1つ以上の以前に表示されたビューに基づくことができる。例えば、ディスプレイビューを決定するステップ166は、3次元モデルを使用して、カテーテルを位置付ける医師を邪魔する可能性が高い、ある遷移を制約する(例えば、低減または防止する)、以下にさらに詳細に説明されるルールのいずれか等の1つ以上のルール(例えば、ルールの階層)を含むことができる。ある実装では、ディスプレイビューを決定するステップ166は、決定166されたビューが3次元モデルの垂直軸に沿って所定の閾値を上回って(例えば、約5度を上回って)以前に表示されたビュー(例えば、直前に表示されたビュー)に対して回転されないように防止する、ルールを含むことができる。加えて、または代替として、ディスプレイビューを決定するステップ166は、決定166されたビューの回転を1つ以上の回転方向に限定する、ルールを含むことができる。例えば、決定166されたビューのロールおよびピッチのうちの1つ以上のものは、所定のルールに従って限定されることができる。
ある実装では、ディスプレイビューの決定166は、3次元モデルの少なくとも1つの幾何学的特徴の決定165に基づくことができる。3次元モデルの少なくとも1つの幾何学的特徴に基づいてディスプレイビューを決定するステップ166は、例えば、解剖学的構造の表面における組織上で実施される医療手技の間、有用なビューを提供することができ、加えて、または代替として、そのような医療手技の間、カテーテルと組織との間の係合角度(軸方向または側方)の変動を考慮することができる。本タイプの例示的医療手技は、エネルギーを心腔の表面に送達し、病変を作成するステップを含み、その間、概して、表面に向かうカテーテルの視点からではなく、カテーテルに面した表面の視点からカテーテルを視認することが望ましく、さらに、または代替として、カテーテルと組織との間の係合角度の変動を自動的に補償する、ディスプレイビューを有することが望ましい。
例えば、以下により詳細に説明されるように、幾何学的特徴は、カテーテルの近傍の3次元モデルの局所的幾何学的特徴であることができ、決定166されたディスプレイビューは、本局所的幾何学的特徴に対して配向されることができる。また、以下により詳細に説明される、別の実施例として、幾何学的特徴は、心腔の大域的幾何学的特徴(例えば、3次元モデルの全体的形状)であることができ、決定166されたディスプレイビューは、本大域的幾何学的特徴に対して配向されることができる。さらに、決定166されたディスプレイビューは、少なくとも部分的に、局所的幾何学的特徴および大域的幾何学的特徴に基づいて、受信162されたカテーテルの場所およびルールの階層に従って決定されることができる。
ここで図6および7を参照すると、少なくとも1つの幾何学的特徴は、受信されたカテーテルの場所に局所的な3次元モデルの面積内の表面法線方向Nであることができる。例えば、表面法線方向Nは、受信されたカテーテルの場所からの閾値距離内の3次元モデルの表面要素172の個別の法線ベクトル170の加重和であることができる。例えば、閾値距離は、受信されたカテーテルの場所に最も近い3次元モデルの表面メッシュ上の点から約1cm半径未満であることができる。閾値距離の下限は、少なくとも1つの法線ベクトルを含む、有限サイズであることを理解されたい。
一般に、表面法線方向Nは、受信されたカテーテルの場所の関数であるため、表面法線方向Nは、カテーテルが、心腔の表面に対して、したがって、心腔の3次元モデル内に表される表面に対して移動するにつれて変化する。さらに、表面法線方向Nは、受信されたカテーテルの場所の近傍内の局所的特徴の関数であるため、表面法線方向Nに基づいてディスプレイビューを決定するステップ166は、ディスプレイビューを受信されたカテーテルの場所の近傍内のモデルの最も顕著な特徴に向かって自動的に配向することを促進することができる。例えば、決定166された3次元モデルのディスプレイビューは、表面法線方向Nに対して固定角度(例えば、垂直または平行)で配向されることができる。
表面法線方向Nに及ぼす局所的幾何学形状の影響は、表面法線方向Nをディスプレイビューを決定166するために有用なパラメータにし得るが、ある局所的幾何学形状に対応する面法線方向Nは、決定166されたディスプレイビューの基礎を成すために好適ではない場合がある。例えば、ある局所的幾何学形状の表面法線方向Nは、決定166されたディスプレイビューのための1つ以上のルールに違反するディスプレイビューを生産するであろう、方向に延在し得る。故に、表面法線方向Nは、決定166されたディスプレイビューが3次元モデルの局所的幾何学的特徴または大域的幾何学的特徴に基づくかどうかを決定するための少なくとも1つの要因として使用されることができる。一実施例として、決定166されたディスプレイビューは、表面法線ベクトルNと垂直な方向が決定166されたディスプレイビューのために不適切である(例えば、1つ以上の所定のディスプレイルールに違反する)とき、3次元モデルの大域的幾何学的特徴に基づくことができる。
ここで図6および8を参照すると、3次元モデル134の最薄方向174は、ディスプレイビューを決定166するために使用され得る、3次元モデルの大域的幾何学的特徴の実施例である。ある心腔等のある解剖学的構造に関して、3次元モデルの最薄方向は、一般に、少なくとも3次元モデルに対するコンテキストを提供する、方向である。故に、最薄方向を識別し、決定166されたディスプレイビューの視点が他の2つの方向と平行であるように、最薄方向と垂直な画像平面を規定することが有利であり得、これは、より多くのコンテキスト(例えば、解剖学的目印等の形態で)を医師に提供することができる。
いくつかの実装では、境界ボックス分析が、最薄方向174を決定するために使用されることができる。例えば、3次元モデル134を含有する、最小体積を伴う境界ボックス176が、決定されることができる。境界ボックス176は、3次元座標系178を画定する。境界ボックス176の最薄方向174、したがって、3次元モデル134の最薄方向は、3次元座標系178の各寸法における境界ボックス176の長さに基づいて決定されることができる。例えば、境界ボックス176の最薄方向174は、3次元座標系178内の各個別の直交ベクトルの方向における境界ボックスの正規化された長さを表す3つのスカラー値を生成し、3つのスカラー値を相互に比較し、直交ベクトルの1つ(例えば、最短)に対応する方向を選択することによって決定されることができる。
決定166されたディスプレイビューは、例えば、最薄方向174と平行であることができる。しかしながら、3次元モデル134は、最薄方向174に沿って2つの側を有し得ることを理解されたい。故に、以下により詳細に説明されるように、決定166されたディスプレイビューは、最薄方向174と平行であって、さらに、3次元モデル134の可視化選好に従って決定されることができる。
最薄方向174は、大域的幾何学的特徴の一実施例として説明されたが、他のタイプの幾何学的特徴も、加えて、または代替として、使用されることができる。例えば、主成分分析が、3次元モデル134に適用されることができる。一般に、そのような主成分分析は、3次元モデル134に対応する心腔および/または表面の質量の配向を識別することを促進することができる。したがって、大域的幾何学的特徴を識別するための境界ボックスアプローチと比較して、主成分分析は、広範ではあるが、3次元モデル134の顕著な特徴に対応しない、3次元モデル134の幾何学的特徴による歪曲を殆ど受け得ない。
主成分分析が3次元モデル134の大域的幾何学的特徴を識別するために使用される実装では、決定166されたディスプレイビューは、心腔および/または表面の大部分の質量を表す方向と平行であることができる。本配向は、医師に有用なコンテキスト情報を提供する可能性が最も高い3次元モデルのビュー134を提供するために有利であり得ることを理解されたい。
ある事例では、心腔の3次元モデル134は、実質的に明確に異なる大域的幾何学的特徴(例えば、境界ボックス分析および/または主成分分析を使用して決定された大域的幾何学的特徴等)を有していない場合がある。本明細書で使用されるように、実質的に明確に異なる大域的幾何学的特徴は、他の大域的幾何学的特徴を閾値量だけ超える特徴を含むことができる。したがって、例えば、3次元モデル134は、例えば、境界ボックス分析および/または主成分分析が、略等しい大きさを伴う3つの直交ベクトルを生産するように、略対称(例えば、球状)であることができる。そのような事例では、決定166されたディスプレイビューは、例えば、本明細書に説明される方法のいずれかに従う面法線方向に基づいて、3次元モデル134の局所的幾何学的特徴に基づいて決定された方向に配向されることができる。
ディスプレイビューを決定するステップ166は、受信164されたカテーテルの場所および1つ以上の以前に心腔内の受信されたカテーテルの場所に基づくように説明され、他の実装も、加えて、または代替として、可能性として考えられる。例えば、ディスプレイビューを決定するステップ166は、解剖学的構造内の受信されたカテーテルの場所および3次元モデルの画定された表面に基づくことができる。具体的実施例として、3次元モデルのディスプレイビューを決定するステップ166は、受信された3次元モデルの画定された表面に対する(例えば、本明細書に説明される局所的幾何学的特徴のうちの任意の1つ以上のもの等の3次元モデルの画定された表面の局所的幾何学的特徴に対する)カテーテルの場所に基づくことができる。
3次元モデルの画定された表面は、例えば、解剖学的構造の血液-組織境界を表すことができる。加えて、または代替として、画定された表面は、3次元モデルの表面メッシュを含むことができる。表面メッシュは、当技術分野において周知であって、例えば、カテーテルによって訪問された場所によって形成される境界に基づく方法を含む、種々の異なる方法のいずれかに従って決定されることができる。表面メッシュはまた、または代わりに、CT、MRI、または他の撮像モダリティからの立体データセット等の立体データセットから決定されることができる。そのような実装では、セグメント化が、血液-組織境界を識別するために実施されることができ、表面メッシュは、その境界に適合されることができる。
ディスプレイビューを決定するステップ166は、3次元モデルの少なくとも1つの幾何学的特徴に基づくように説明されたが、ディスプレイビューを決定するステップ166は、加えて、または代替として、カテーテルと組織との間の接触の受信されたインジケーションに基づくことができることを理解されたい。受信された接触のインジケーションは、例えば、カテーテル先端に沿って配置され、当技術分野において周知の種々の異なる構成のいずれかの力センサから受信されることができる。
受信された接触のインジケーションに基づいて決定166されたディスプレイビューは、受信された接触のインジケーションに対する所定の配向であることができる。実施例として、ディスプレイビューは、受信された接触のインジケーションに対応する力ベクトルと反対であることができる。別の非排他的実施例として、ディスプレイビューは、そのような力ベクトルに直交することができる。
決定166されたディスプレイビューは、例えば、受信された接触のインジケーションのみに基づくことができる。したがって、例示的実装では、決定166されたディスプレイビューは、カテーテルが組織と接触していない間、一定のままであることができる。本例示的実装を継続すると、カテーテルと組織の再係合の検出に応じて(例えば、新しい受信された接触のインジケーションを通して)、決定166されたディスプレイビューは、更新されることができる。
加えて、または代替として、決定166されたディスプレイビューは、受信された接触のインジケーションと受信164されたカテーテルの場所に局所的な面法線Nの組み合わせに基づくことができる。例えば、決定166されたディスプレイビューは、受信された接触のインジケーションが存在するとき、受信された接触のインジケーションに基づき、受信された接触のインジケーションが存在しないとき(例えば、カテーテルが組織と接触していないとき)、面法線Nに基づくことができる。さらに、または代わりに、受信された接触のインジケーションに基づいて決定166されたディスプレイビューは、所定の基準に基づいて、ディスプレイビューを面法線Nに基づいて上書きすることができる。
ある実装では、受信された接触のインジケーションに基づいて決定166されたディスプレイビューと面法線Nに基づいて決定166されたディスプレイビューの比較は、3次元モデル、受信164されたカテーテルの場所、または両方に対する有用な洞察を提供することができる。例えば、受信された接触のインジケーションに基づいて決定166されたディスプレイビューと1つ以上の局所的幾何学的特徴に基づいて決定166されたディスプレイビューの比較は、3次元モデルおよび受信164されたカテーテルの場所がその物理的類似物に対応する近似度のインジケーションを提供することができる。より具体的には、受信された接触のインジケーションに基づくディスプレイビューは、3次元モデルおよびカテーテル位置がその物理的類似物に合致するときの1つ以上の局所的幾何学的特徴に基づくディスプレイビューに略相当することができる。故に、受信された接触のインジケーションに基づくディスプレイビューと1つ以上の局所的幾何学的特徴に基づくディスプレイビューの差異は、例えば、3次元モデル、受信164されたカテーテルの場所、またはそれらの組み合わせを更新するために有用であり得ることを理解されたい。
ディスプレイビューを決定するステップ166は、生体構造(例えば、3次元モデルの少なくとも1つの幾何学的特徴)に基づき、および/または受信された接触のインジケーションに基づくように説明されたが、より一般的には、ディスプレイビューを決定するステップ166は、カテーテルに最も近い表面上の点を決定するための本明細書に説明される任意の1つ以上の方法に基づくことができることを理解されたい。
実施例として、決定166されたディスプレイビューは、加えて、または代替として、カテーテルに沿って配置される1つ以上の個別のセンサ(例えば、電極)と関連付けられた1つ以上の電気信号の変化(例えば、インピーダンスの変化)に基づくことができる。そのような実装では、電気信号の変化は、接触のインジケーションであることができる。本実施例を継続すると、複数の異なるセンサと関連付けられた1つ以上の電気信号の変化は、接触ならびに接触方向を示すことができる。
別の実施例として、決定166されたディスプレイビューは、加えて、または代替として、組織を検出し得る、撮像モダリティに基づくことができる。例えば、1つ以上の超音波変換器が、カテーテル上に嵌合され、カテーテルに最も近い表面上の点に関するフィードバックを提供することができる。そのような構成では、カテーテルに最も近い表面上の点は、超音波画像から視覚的または自動的に判別可能であることができる。
ディスプレイビューを決定するステップ166は、局所的幾何学的特徴および/または大域的幾何学的特徴に基づくことができ、ディスプレイビューを決定するステップ166は、加えて、または代替として、3次元モデルを表示するための少なくとも1つの可視化選好に基づくことができる。例えば、局所的幾何学的特徴および大域的幾何学的特徴に基づく階層等のルールベースの階層はさらに、少なくとも1つの可視化選好に基づくことができる。
本明細書で使用されるように、用語「可視化選好」は、広義には、直接、局所的幾何学的特徴または大域的幾何学的特徴に基づかない、ディスプレイルールを含むように定義されると理解されるべきである。例えば、可視化選好は、事前決定される(例えば、受信されたユーザ入力を通して)、および/または、3次元モデルの前のディスプレイビューに基づいて決定されることができる。一般に、可視化選好は、決定166されたディスプレイビューが、容認不可能である、および/または医師が3次元モデルを使用して、心腔内のカテーテルを移動させることを要求する手技を可視化することを邪魔するであろう、尤度を低減させることができる。
3次元モデル134の最薄方向174に基づいてディスプレイビューを決定するステップ166の実施例に戻ると、ディスプレイビューを決定するステップ166はさらに、3次元モデル134の2つの可能性として考えられる側のうち、3次元モデル134の以前に表示されたビュー(例えば、直前に表示されたビュー)に最も近い3次元モデル134の側を表示させることが好ましいという、可視化選好を含むことができる。すなわち、本可視化選好が、ルールの階層内の別のルールによって上書きされない限り、ディスプレイビューは、最薄方向174と垂直に、3次元モデル134の以前に表示されたビューに最も近い3次元モデル134の側に沿って配向されるであろう。そのようなディスプレイルールは、例えば、決定166されたディスプレイビューが、医師が手技を実施することを邪魔するであろうディスプレイビューの容認不可能な大変化をもたらすであろう、尤度を低減させることができる。
ディスプレイビューを決定するステップ166はさらに、または代わりに、少なくとも部分的に、3次元モデルの好ましい配向を含む、可視化選好に基づくことができる。例えば、好ましい配向は、可視化技法(例えば、X線)を使用して取得される配向と類似または同一の配向であることができる。そのような好ましい配向は、例えば、3次元モデルの予期または精通配向を医師に提示するために有用であり得る。
ある実装では、ディスプレイビューを決定するステップ166は、少なくとも部分的に、受信されたユーザ入力を含む、可視化選好に基づくことができる。例えば、医師は、外部デバイス(例えば、キーボード、マウス、および/またはグラフィカルユーザインターフェース)を通して入力を提供し、医師の選好に従って、可視化選好を規定することができる。ある実装では、本入力は、手技の前に、医師によって提供されることができる。いくつかの実装では、本入力は、手技の間、医師によって提供されることができる。
ディスプレイビューを決定するステップ166はさらに、または代替として、少なくとも部分的に、幾何学的特徴(例えば、大域的幾何学的特徴)と少なくとも1つの可視化選好の相対的配向に基づくことができる。実施例として、決定166されたディスプレイビューは、可視化選好を組み込むディスプレイビューにスナッピングすることに基づくことができる。これは、例えば、大域的幾何学的特徴に基づくディスプレイビューが、2つの可能性として考えられるディスプレイビュー(例えば、3次元モデルの両側)をもたらし、決定166されたディスプレイビューが、2つの可能性として考えられるディスプレイビューから、以前に表示されたディスプレイビューに最も近いディスプレイビューを選択するステップを含む、実装を検討することによって理解されることができる。したがって、ある事例では、少なくとも部分的に、幾何学的特徴と可視化選好の相対的配向に基づいて、ディスプレイビューを決定するステップ166は、有利には、3次元モデルを手技の一部として使用する医師を混乱させる尤度を低減させることができる。
ここで図5および6を参照すると、ディスプレイビューを表示するステップ168は、3次元モデルのディスプレイビューの2次元ディスプレイを表示するステップを含むことができる。例えば、ディスプレイビュー136は、3次元モデル134を画像平面140内に画定されたビューウィンドウ138上に投影させるための基礎を形成することができ、これは、グラフィカルユーザインターフェース(例えば、図4におけるグラフィカルユーザインターフェース110)に対応することができる。
ある実装では、ディスプレイビューを決定するステップ166は、ビューウィンドウ上に投影されるような3次元モデルのサイズを調節するステップを含むことができ、ディスプレイビューを表示するステップ168は、決定されたサイズに従って、3次元モデルの投影をグラフィカルユーザインターフェース上に表示するステップを含むことができる。例えば、ビューウィンドウ上に投影される3次元モデルのサイズを調節するステップは、画像平面上のビューウィンドウのサイズ、画像平面と3次元モデルの相対的位置、およびビューウィンドウと3次元モデルのための投影の中心との間の相対的位置に基づくことができる。一般に、これらのパラメータのうちの任意の1つ以上のものは、ビューウィンドウ上への3次元モデルの投影の具体的サイズを達成するように変動されることができることを理解されたい。本明細書で使用されるように、ビューウィンドウ上への3次元モデルの投影のサイズは、ズーム倍率とも称される。
例えば、ビューウィンドウ138の少なくとも1つの寸法(例えば、幅、高さ、または両方)は、画像平面140上に投影された3次元モデルの寸法(例えば、最大幅、最大高、最大厚)の固定パーセンテージであることができる。本パーセンテージまたは倍数は、ある事例では、ビューウィンドウ上の3次元モデルの決定されたディスプレイビューの投影より約20~30パーセント大きくあることができる。しかしながら、他のパーセンテージまたは倍数も、加えて、または代替として、可能性として考えられることが、容易に理解されるはずである。
ビューウィンドウ138の少なくとも1つの寸法が3次元モデルの投影の寸法より固定パーセンテージ大きい実装は、例えば、医師に表示168される3次元モデルのディスプレイビューのためのコンテキストを提供するために有用であり得る。すなわち、3次元モデルの最大寸法がビューウィンドウの寸法未満であるように、3次元モデルのディスプレイビューを表示168することによって、3次元モデルの1つ以上の境界が、グラフィカルユーザインターフェース上に表示168されることができる。そのような可視境界は、ある事例では、表示168される3次元モデルの配向に関する医師に対する視覚的キューとしての役割を果たすことができる。
いくつかの実装では、3次元モデルのディスプレイビューを表示するステップ168は、カテーテルの変位速度に基づくことができる。カテーテルの変位速度は、例えば、時間の関数として受信されたカテーテルの場所の変化に基づいて、決定されることができることを理解されたい。変位速度が時変信号であり得ることを前提として、さらに、変位速度に基づくように本明細書に説明される方法のいずれも、変位速度をフィルタリング(例えば、低域通過フィルタリング)するステップを含むことができることが理解されるはずである。
一般に、3次元モデルのディスプレイビューを表示するステップ168は、カテーテルの変位速度が変化するにつれて、ビューウィンドウ上、したがって、グラフィカルユーザインターフェース上の3次元モデルのサイズを変化させるステップを含むことができる。いくつかの実装では、ディスプレイビューを表示するステップ168は、カテーテルの変位速度の逆関数として、ビューウィンドウ上の3次元モデルの投影のサイズを変化させるステップを含むことができる。例えば、カテーテルの変位速度が比較的に高い事例では、視認平面上の3次元モデルのサイズは、高速変化が、カテーテルの変位の高速変化に応答して、3次元モデルのディスプレイ168に成され得るように、比較的に小さくされることができる。本実施例を継続すると、カテーテルの変位が比較的に小さい、したがって、表示168されるビューの更新もまた比較的に低速である事例では、視認平面上の3次元モデルのサイズは、比較的に大きくあり得る。これは、例えば、カテーテルをゆっくりと移動させ、3次元モデル134において着目面積を観察し得る医師による、3次元モデルの具体的面積の観察を促進するために有用であり得る。
加えて、または代替として、ディスプレイビューと関連付けられたズーム倍率を表示するステップ168は、接触のインジケーションを含む、受信164されたカテーテル場所に基づくことができる。すなわち、接触のインジケーションの受信に応じて、ズーム倍率は、増加され、医師に接触の面積のより詳細図を提供することができる。ある事例では、接触のインジケーションは、力のインジケーションを含むことができ、ズーム倍率は、力のインジケーションに基づいて、増加または減少されることができる。実施例として、ズーム倍率は、力のインジケーションに応答して増加されることができる(例えば、ズーム倍率は、力の増加に伴って増加する)。
決定166された3次元モデルのディスプレイビューを表示するステップ168は、2次元ディスプレイに関して説明されたが、本明細書に説明される方法は、加えて、または代替として、他のタイプのディスプレイにも適用可能であることを理解されたい。例えば、3次元グラフィカルユーザインターフェースに対して決定166された3次元モデルのディスプレイビューを表示するステップ168のあらゆる様式および方法が、本開示の範囲内である。決定166された3次元モデルのディスプレイビューが表示168され得る、そのような3次元ディスプレイの実施例は、拡張現実環境および仮想現実環境のうちの1つ以上のものを含むことができる。
ここで図9を参照すると、患者の心腔の3次元表現を表示する例示的方法190は、患者の心腔の3次元モデルを取得するステップ192と、患者の心腔内のカテーテルの場所を示す信号を受信するステップ194と、心腔の3次元モデルのディスプレイビューの軌道を決定するステップ196と、決定された軌道に従って、心腔の3次元モデルのディスプレイビューをグラフィカルユーザインターフェース上に表示するステップ198とを含むことができる。3次元モデルのディスプレイビューの軌道を決定するステップ196は、少なくとも部分的に、受信194されたカテーテルの場所および心腔内の1つ以上の以前に受信されたカテーテルの場所に基づくことができる。心腔の文脈において以下に説明されるが、例示的方法190は、例えば、それを通してカテーテルが診断および/または治療目的のために通過され得る、患者の脳、肺、洞、および/または他の中空の解剖学的構造等の他の患者の解剖学的構造の3次元モデルを表示するために施行されることができることを理解されたい。
患者の心腔の3次元モデルを取得するステップ192は、本明細書に説明される3次元モデルを取得する任意の1つ以上の方法を含むことができる。したがって、例えば、3次元モデルを取得するステップ192は、本明細書に説明される方法のうちの任意の1つ以上のものに従って、心腔内の複数のカテーテルの場所を受信し、受信された場所をマッピングするステップを含むことができる。加えて、または代替として、心腔の3次元モデルを取得するステップ192は、本明細書に説明される方法のうちの任意の1つ以上のものに従って、心腔の1つ以上のデータセットを受信し、随意に、それらをセグメント化し、表面メッシュを形成し、データセットと座標系を位置合わせするステップを含むことができる。
患者の心腔内のカテーテルの場所を示す信号を受信するステップ194は、本明細書に説明されるそのような信号を受信する方法のうちの任意の1つ以上のものを含むことができる。故に、受信194された信号は、磁気位置センサ(例えば、上記に説明される磁気位置センサ130)に基づいて、信号を含むことができる。さらに、または代替として、受信194された信号は、例えば、磁気位置センサからの信号等の時変信号を含む、またはそこから導出されることができる。
ディスプレイビューの軌道を決定するステップ196は、一般に、受信194されたカテーテルの場所および心腔内の1つ以上の以前に受信されたカテーテルの場所に基づくことができる。例えば、ディスプレイビューの軌道を決定するステップ196は、ある時間周期にわたる時変の受信194された信号に基づくことができる。ディスプレイビューの軌道を決定するステップ196の実施例は、したがって、ある時間周期にわたって受信194された時変信号に基づいて、時変信号および/またはディスプレイビューを処理(例えば、低域通過フィルタリング)するステップを含むことができる。
ある時間周期にわたって受信194された時変信号に基づいて決定されたディスプレイビューを処理するステップは、ディスプレイビューの軌道をもたらすことができる。加えて、または代替として、ディスプレイビューの軌道を決定するステップ196は、1つ以上の以前に表示されたビューに基づくことができる。したがって、本明細書で使用されるように、ディスプレイビューの軌道は、次のディスプレイビューが傾向情報に基づいて決定され得るように、ディスプレイビューに関連する傾向情報を含むと理解されるべきである。少なくとも本理由から、当業者は、カテーテル場所を示す未処理信号に基づくディスプレイビューと比較して、ディスプレイビューの決定196された軌道が、3次元モデルのより安定化されたディスプレイの基礎として使用されることができることを理解するであろう。本明細書で使用されるように、3次元モデルの安定化されたディスプレイは、非安定化ディスプレイまたは準安定化ディスプレイと比較して、より少なくかつあまり高速ではない変化を呈し、したがって、殆ど揺れがなく出現するものである。
ある実装では、ディスプレイビューの軌道を決定するステップ196は、3次元モデルの分析された形状に基づくことができる。例えば、3次元モデルの分析は、カテーテルの現在の場所を示す受信194された信号に局所的な3次元モデルの一部を分析するステップを含むことができる。3次元モデルの本局所的分析は、いくつかの事例では、3次元モデルの局所的特徴を分析するステップを含むことができる。加えて、または代替として、3次元モデルの分析は、3次元モデルの1つ以上の大域的特徴を分析するステップを含むことができる。3次元モデルの局所的および/または大域的特徴に基づく分析は、本明細書に説明される局所的および/または大域的特徴に基づく分析のうちの任意の1つ以上のものを含むことができることを理解されたい。
いくつかの実装では、ディスプレイビューの軌道を決定するステップ196は、1つ以上の可視化選好に基づくことができる。例示的可視化選好は、本明細書に説明される可視化選好のうちの任意の1つ以上のものを含み、したがって、3次元モデルの好ましい配向を含んでもよい。
心腔の3次元モデルのディスプレイビューをグラフィカルユーザインターフェース上に表示するステップ198は、本明細書に説明される方法のうちの任意の1つ以上のものに基づくことができる。実施例として、心腔の3次元モデルのディスプレイビューを表示するステップ198は、3次元モデルを画像平面内に画定された視認平面上に投影させるステップを含むことができる。本投影における3次元モデルの配向は、ディスプレイビューの決定196された軌道に基づくことができることを理解されたい。
ここで図10を参照すると、患者の解剖学的構造の3次元モデルのディスプレイを制御する例示的方法200は、患者の解剖学的構造の3次元モデルを取得するステップ202と、解剖学的構造内の医療デバイスの場所を示す信号を受信するステップ204と、3次元モデルの配向および画像平面の仕様に関する、ディスプレイルールを複数のディスプレイルールから選択するステップ206と、画像平面を規定するステップ208aと、3次元モデルの配向を規定するステップ208bと、3次元モデルの投影の少なくとも一部(例えば、規定された配向において、規定された画像平面上に)をグラフィカルユーザインターフェース上に表示するステップ210とを含むことができる。解剖学的構造の実施例は、限定ではないが、それを通してカテーテルが診断および/または治療目的のために通過され得る、患者の心腔、脳、肺、洞、および/または他の中空の解剖学的構造を含むことができる。以下により詳細に説明されるように、画像平面を規定するステップ208aおよび/または3次元モデルの配向を規定するステップ208bは、少なくとも部分的に、選択206されたディスプレイルールに基づくことができる。
3次元モデルを取得するステップ202は、本明細書に説明される3次元モデルを取得する任意の1つ以上の方法を含むことができる。実施例として、3次元モデルを取得するステップ202は、本明細書に説明される方法のうちの任意の1つ以上のものに従って、解剖学的構造内の複数の医療デバイスの場所(例えば、本明細書に説明される医療デバイスのうちの任意の1つ以上のもの)を受信し、受信された訪問場所をマッピングするステップを含むことができる。さらに、または代わりに、解剖学的構造の3次元モデルを取得するステップ202は、本明細書に説明される方法のうちの任意の1つ以上のものに従って、解剖学的構造の1つ以上の画像を受信し、画像と座標系を位置合わせするステップを含むことができる。
患者の解剖学的構造内のカテーテルの場所を示す信号を受信するステップ204は、本明細書に説明されるそのような信号を受信する方法のうちの任意の1つ以上のものを含むことができる。故に、受信204された信号は、磁気位置センサ(例えば、上記に説明される磁気位置センサ130)に基づく信号を含むことができる。加えて、または代替として、受信204された信号は、時変信号を含むことができる。
ディスプレイルールを選択するステップ206は、一般に、ディスプレイルールを複数のディスプレイルールから選択するステップを含むことができる。複数のディスプレイルールは、所定のディスプレイルールおよび/または医師の選好の入力に基づくディスプレイルールを含むことができる。選択206されたディスプレイルールは、以下により詳細に説明されるように、3次元モデルの投影をグラフィカルユーザインターフェース上に表示210するために、3次元モデルおよび画像平面の配向のための基礎を形成することができる。故に、本明細書に説明されるディスプレイルールの任意の階層は、医療手技の間、解剖学的構造の3次元モデルのディスプレイの自動化された制御を達成する、一例として提供され、限定ではないことを理解されたい。さらに、複数のディスプレイルールからのディスプレイルールの選択206は、医療手技の過程にわたって、医療手技の間に要求される3次元モデルの手動調節の量を低減させ、したがって、医師からの注意を殆ど要求せず、医療手技の効率を改良することができることを理解されたい。
ディスプレイルールを選択するステップ206は、少なくとも部分的に、解剖学的構造に対する受信された医療デバイスの場所に基づくことができる。一般に、ディスプレイルールを選択するステップ206は、適用可能なディスプレイルールが、受信された医療デバイスの場所に基づく、または少なくとも部分的に、3次元モデルの形状に基づくかどうかを決定するステップを含むことができる。より具体的には、局所的ディスプレイルールは、少なくとも部分的に、3次元モデルに対する受信された医療デバイスの場所に基づくことができ、大域的ディスプレイルールは、少なくとも部分的に、3次元モデルの形状に基づくことができる。そのような事例では、ディスプレイルールを選択するステップ206は、受信されたカテーテルの場所に基づいて、局所的ディスプレイルールが不適切ではない限り、局所的ディスプレイルールを選定するステップを含むことができ、不適切である場合、大域的ディスプレイルールが、選定される。局所的ディスプレイルールおよび大域的ディスプレイルールは、本明細書に説明される局所的ディスプレイルールおよび大域的ディスプレイルールのうちの任意の1つ以上のものであることができる。
ここで図10および11を参照すると、ディスプレイルールを選択するステップ206の例示的方法が、明確化のために、心腔132の3次元モデル134に対するカテーテル104の先端区分124の場所212の略図に関して説明される。しかしながら、ディスプレイルールを選択するステップ206のこれらの例示的方法は、加えて、または代替として、他のタイプの医療デバイス、3次元モデル、および/または解剖学的構造にも適用可能であることができることを理解されたい。
空間基準214は、3次元モデル134に対して画定されることができる。ある実装では、空間基準214は、基準軸(例えば、ユーザによって規定される)を含むことができる。そのような実装では、空間基準214は、3次元モデルによって画定された上下軸と整合されることができる。上下軸と整合される空間基準214は、実施例として、優先的に、3次元モデル134を上下方向に配向するステップを促進することができる(例えば、3次元モデルの投影は、ビューウィンドウ上の「上」方向に配向される)。これは、ある実装では、3次元モデル134を他のタイプの診断撮像(例えば、X線)と一貫したビューに従って表示210するために有利であり得る。
加えて、または代替として、空間基準214は、ユーザ入力(例えば、キーボード、マウス、およびグラフィカルユーザインターフェースのうちの1つ以上のものから受信される)を含むことができる。一例として、限定ではなく、ユーザ入力は、基準軸の所定の好ましい場所および/または方向のインジケーションを含むことができる。
カテーテル104の先端区分124の場所212は、少なくとも部分的に、カテーテル104の先端区分124の場所を示す受信204された信号に基づくことができる。当業者は、したがって、選択206されたディスプレイルールが、治療の間、先端区分124の場所212が変化するにつれて変化し得ることを理解するであろう。ディスプレイルールの選択206のそのような変化は、3次元モデル134の投影のディスプレイ210を自動的に更新し、医師に3次元モデルの有益なビューを提供することを促進することができる。3次元モデルの有益なビューは、一例として、限定ではなく、比較的に明確であって、予期される配向にあって(例えば、患者の解剖学的姿勢と一貫する)、および/または医師に3次元モデル134に対する先端区分124の場所212に関するコンテキストを提供する、ビューを含むことができる。
局所的方向ベクトル216は、受信204されたカテーテル204の場所を示す信号に基づいて、決定されることができる。ある実装では、局所的方向ベクトル216は、受信204されたカテーテル104の場所から生じることができる。したがって、そのような実装では、局所的方向ベクトル216は、カテーテル204から離れる方向に、3次元モデル134の表面に向かって指し得る。
一般に、ディスプレイルールを選択するステップ206は、カテーテルの場所212と少なくとも部分的に3次元モデルによって画定された禁止領域218を比較するステップを含むことができる。少なくとも部分的に、本比較に基づいて、局所的ルールまたは大域的ルールが、選択されることができる。比較が局所的ルールと大域的ルールとの間の切替をもたらす事例では、遷移は、漸次的遷移であって、グラフィカルユーザインターフェース上のディスプレイビューの平滑遷移を促進することができる。禁止領域218は、局所的ディスプレイルールを選択するステップが、医師に非有益および/または混乱させるものとして容認不可能である尤度増加を有する、ビューまたはビューの集合をもたらし得る、カテーテルの場所212または場所212の集合を表すことを理解されたい。とりわけ、禁止領域218に対応するそのような非有益および/または混乱させるビューの一実施例は、直接空間基準214に沿った(例えば、上下軸に沿った)3次元モデル134のビューである。
局所的方向ベクトル216は、少なくとも部分的に、受信204されたカテーテル104の場所に局所的な面積内の3次元モデル134の表面に対して法線方向にある方向ベクトルに基づくことができる。例えば、局所的方向ベクトル216は、少なくとも部分的に、本明細書に説明される方法のうちの任意の1つ以上のものに従って決定された面法線方向に基づくことができる。故に、局所的方向ベクトル216は、受信204されたカテーテル104の場所に局所的な面積内の3次元モデル134の表面に対して法線方向にある方向ベクトルの加重和であることができる。
禁止領域218は、少なくとも部分的に、3次元モデル134によって画定されることができる。例えば、禁止領域218は、少なくとも部分的に、3次元モデルによって表される流体の体積の質量中心によって画定されることができる。具体的実施例として、禁止領域218は、質量中心を含有する少なくとも1つの平面を中心として略対称であることができる。加えて、または代替として、禁止領域218は、空間基準214を中心として(例えば、上下軸を中心として)略対称であることができる。
ある実装では、禁止領域218は、二重無限直錐を含むことができる。本明細書で使用されるように、用語「二重無限直錐」は、頂点間に設置された2つの直円錐(例えば、同一サイズ)を含む。二重無限直錐の各円錐の開放角は、約5度を上回り、かつ約90度未満であることができる。二重無限直錐の各円錐の底辺は、例えば、空間基準214が基準軸を含む実装では、基準軸と垂直であることができる。いくつかの実装では、2つの直円錐の頂点は、3次元モデルによって表される流体の体積の質量中心にある。
禁止領域218が二重無限直錐を含む実装では、カテーテルの場所212と禁止領域218を比較するステップは、カテーテルの場所212が二重無限直錐の極大部分のいずれか内にあるかどうかを決定するステップを含む。本実施例を継続すると、ディスプレイルールを選択するステップ206は、カテーテルの場所212が二重無限直錐内にあるかどうかに基づいて、局所的ルールまたは大域的ルールを選択するステップを含むことができる。例えば、大域的ルールは、カテーテルの場所212が禁止領域218の境界内である場合、選択206されることができる。加えて、または代替として、局所的ルールは、カテーテルの場所212が禁止領域の境界を所定の距離越える場合、選択206されることができる。本所定の距離は、例えば、カテーテルの場所212が遷移距離内にある場合、局所的ルールおよび大域的ルールの組み合わせが選択される、遷移領域であることができる。そのような組み合わせは、例えば、カテーテルの場所212を禁止領域218の内外に移動させることから生じる平滑遷移を生産するために有用であり得る。実施例として、局所的ルールと大域的ルールの相対的加重は、カテーテルの場所212から禁止領域218までの距離の関数として変動されることができる(例えば、略線形に)。
二重無限直錐を含む、禁止領域218は、例えば、複数の方向における対称に基づいて、ルール階層を実装するために有利であり得る。加えて、または代替として、二重無限直錐は、カテーテル104の視点から3次元モデルを表示するために有利であり得る。禁止領域218は、二重無限直錐を含むように説明されるが、禁止領域218の他の形状も、加えて、または代替として、可能性として考えられることを理解されたい。例えば、ある解剖学的構造に関して、禁止領域218は、単一円錐形、円筒形、および/または球形として適切に成形されることができる。
局所的ルールが、ディスプレイルールとして選択206される場合、規定208aされた画像平面は、局所的方向ベクトル216によって画定された軸と垂直であることができる。画像平面は、例えば、本明細書に説明される画像平面のうちの任意の1つ以上のものであることができる。したがって、画像平面は、本明細書に説明される任意の1つ以上のグラフィカルユーザインターフェースの2次元ディスプレイの平面に対応する平面であることができる。加えて、または代替として、局所的ルールが、選択206される場合、軸(例えば、空間基準214)に対する画像平面のピッチは、所定の量だけ限定されることができる。さらに、または代わりに、局所的ルールが、選択206される場合、ビューウィンドウのロールは、軸(例えば、空間基準214)に対する所定の量だけ限定されることができる。
局所的ルールが選択206されたディスプレイルールである実装を継続すると、規定208aされた画像平面は、3次元モデル134の表面境界外にあることができる。3次元モデル134に対する画像平面のそのような位置は、例えば、コンテキストを3次元モデルの表示210される投影に提供するために有用であり得る。そのようなコンテキストは、3次元モデル134において解剖学的特徴を識別する医師の能力を促進し、いくつかの事例では、カテーテル104を心腔内に位置付けることを促進することができる。
さらに、局所的ルールがディスプレイルールとして選択206される実装を継続すると、規定208aされた画像平面は、部分的に、局所的方向ベクトル216の方向に基づくことができる。より具体的には、規定208aされた画像平面は、局所的方向ベクトル218と垂直であることができる。例えば、規定208aされた画像平面は、表示210される3次元モデル134の投影の視点がカテーテル104の先端区分124の視点からであるように、局所的方向ベクトル216に対して位置付けられることができる。局所的方向ベクトル216に対する規定208aされた画像平面のそのような位置は、カテーテル104の先端区分124の視点からの解剖学的構造の3次元モデル134の視認を促進することができる。そのような視点は、医師がカテーテル104の先端区分124を解剖学的構造内で操作するための直感的座標系を提供するために有利であり得ることを理解されたい。
局所的ルールが、ディスプレイルールとして選択206される場合、3次元モデル134の配向を規定するステップ208bは、所定の好ましい方向に延在するように3次元モデル134の一部を配向するステップを含むことができる。実施例として、空間基準214が3次元モデル134の上下軸である実装では、3次元モデル134の配向を規定するステップ208bは、3次元モデル134の上位部分を上下軸の上位方向に配向するステップを含むことができる。本好ましい配向は、医師に3次元モデル134において表される解剖学的構造の精通配向を提供するために便宜的であり得る。加えて、または代替として、3次元モデル134の部分および/または所定の好ましい方向は、本明細書に説明される入力デバイスのうちの任意の1つ以上のものを通して入力として受信されることができる。使用時、これらの入力は、3次元モデル134によって表される解剖学的構造のカスタマイズされたビューを作成するために有用であり得ることを理解されたい。本タイプのカスタマイズは、例えば、医師に、医師の選好に対応し、および/または特定の医療手技によって必須である、具体的ビューを提供するために有用であり得る。
大域的ルールが、ディスプレイルールとして選択206される場合、画像平面を規定するステップ208aおよび/または3次元モデル134の配向を規定するステップ208bは、解剖学的構造の3次元モデル134の最薄方向を決定するステップを含むことができる。3次元モデル134の最薄方向のそのような決定は、本明細書に説明される方法のうちの任意の1つ以上のものを含むことができることを理解されたい。例えば、3次元モデル134の最薄方向の決定は、主成分分析および/または境界ボックス分析に基づくことができる。
大域的ルールがディスプレイルールとして選択206される実装を継続すると、画像平面を規定するステップ208aは、画像平面を3次元モデル134における最薄方向によって画定された軸および/または質量の最少量を表す方向によって画定された軸と垂直な平面に規定するステップ208aを含むことができる。故に、そのような実装では、画像平面は、3次元モデル134の座標系の他の方向と平行であることができる。3次元モデルにおける最薄方向および/または質量の最少量を表す方向は、概して、医師に3次元モデル134に関する最少量のコンテキストを提供する方向であるため、座標系内の他の方向のうちの1つと平行な画像平面を規定するステップ208aは、医師に3次元モデル134に関するコンテキストを提供するために有利であり得る。さらに、または代替として、規定208aされた画像平面は、3次元モデル134の表面境界外にあることができ、これは、付加的または代替コンテキストを医師に提供するために有用であり得る。
さらに、大域的ルールがディスプレイルールとして選択206される実装を継続すると、3次元モデル134の配向を規定するステップ208bは、3次元モデル134の一部を空間基準214に対する好ましい方向に配向するステップを含むことができる。そのような配向は、3次元モデル134を配向するための本明細書に説明される任意の1つ以上の方法を含むことができる。故に、3次元モデル134の部分および/または好ましい方向は、事前決定されることができる(例えば、本明細書に説明される入力デバイスのうちの任意の1つ以上のものに従って受信された入力に基づいて)ことを理解されたい。
3次元モデル134の投影をグラフィカルユーザインターフェース上に表示するステップ210は、本明細書に説明される方法のうちの1つ以上のものに従って施行されることができる。例えば、3次元モデル134の投影を表示するステップ210は、ズーム倍率を決定するステップを含むことができる。別の非排他的実施例として、ビューウィンドウの少なくとも1つの寸法は、画像平面内の3次元モデル134の寸法の固定倍数に維持されることができる。
ある実装では、ズーム倍率は、本明細書に説明される方法のうちの任意の1つ以上のものに従って、少なくとも部分的に、医療デバイスの決定された変位速度に基づくことができる。例示的実装では、したがって、ズーム倍率は、カテーテル104の変位速度が減少するにつれて増加することができる。
ここで図12を参照すると、3次元解剖学的モデルの2次元ビューを制御する例示的方法220は、患者の解剖学的構造の3次元モデルを生成するステップ222と、3次元モデルの投影を画像平面のビューウィンドウ上に表示するステップ224(例えば、グラフィカルユーザインターフェース上に)と、解剖学的構造内の医療デバイスの場所を示す信号を受信するステップ226と、解剖学的構造内の医療デバイスの変位速度を決定するステップ228と、少なくとも部分的に、医療デバイスの決定された変位速度に基づいて、ズーム倍率を調節するステップ230とを含むことができる。例示的方法220は、本明細書に説明されるデバイスおよびシステムのうちの任意の1つ以上のものを使用して施行されることができ、種々の異なる医療手技のいずれかの間、種々の異なる医療デバイスのいずれかの可視化にも適用可能であることができる。さらに、または代わりに、患者の解剖学的構造は、本明細書に説明される任意の解剖学的構造であることができ、実施例は、それを通してカテーテルが移動され得る、心腔、肺、脳、洞、および/または任意の解剖学的構造を含む。
患者の解剖学的構造の3次元モデルを生成するステップ222は、本明細書に説明される方法のうちの任意の1つ以上のものを含むことができる。したがって、例えば、3次元モデルを生成するステップ222は、受信された医療デバイスの場所に基づく方法を含むと理解されるべきである。
3次元モデルの投影を画像平面のビューウィンドウ上に表示するステップ224は、本明細書に説明される方法のうちの任意の1つ以上のものを含むことができる。同様に、医療デバイスの場所を示す信号を受信するステップ226は、本明細書に説明される方法のうちの任意の1つ以上のものを含むことができる。したがって、3次元モデルの投影を表示するステップ224および/または医療デバイスの場所を示す信号を受信するステップ226の実施例は、図4および5に関して説明される方法を含むことができる。
解剖学的構造内の医療デバイスの変位速度を決定するステップ228は、少なくとも部分的に、受信226された医療デバイスの場所に基づくことができる。加えて、または代替として、医療デバイスの速度を決定するステップ228は、本明細書に説明される方法のうちの任意の1つ以上のものを含むことができる。
ズーム倍率を調節するステップ230は、本明細書に説明される方法のいずれかを含むことができる。実施例として、ズーム倍率を調節するステップ230は、医療デバイスの変位速度の減少に伴って、ビューウィンドウのサイズを減少させるステップを含むことができる。付加的または代替実施例として、ズーム倍率を調節するステップ230は、視野を調節するステップを含むことができる。ある実装では、視野は、変位速度が減少するにつれて減少することができる。いくつかの実装では、ズーム倍率を調節するステップ230は、画像平面と投影の中心との間の距離を調節するステップを含むことができる。加えて、または代替として、ズーム倍率を調節するステップ230は、ビューウィンドウおよび投影の中心(例えば、ともに)を3次元モデルに対して移動させるステップを含むことができる。より一般的には、ズーム倍率を調節するステップ230は、グラフィカルユーザインターフェース上への3次元モデルの投影のサイズを変化させる、任意の1つ以上の調節を含むことができる。
前述のシステム、デバイス、方法、プロセス、および同等物は、ハードウェア、ソフトウェア、または特定の用途に好適なこれらの任意の組み合わせにおいて実現されてもよい。ハードウェアは、汎用コンピュータおよび/または専用コンピューティングデバイスを含んでもよい。これは、内部および/または外部メモリとともに、1つ以上のマイクロプロセッサ、マイクロコントローラ、内蔵マイクロコントローラ、プログラマブルデジタル信号プロセッサまたは他のプログラマブルデバイスまたは処理回路内における実現を含む。これはまた、または代わりに、1つ以上の特定用途向け集積回路、プログラマブルゲートアレイ、プログラマブルアレイ論理構成要素、または電子信号を処理するように構成され得る、任意の他のデバイスまたはデバイスを含んでもよい。
さらに、上記に説明されるプロセスまたはデバイスの実現は、記憶、コンパイル、または解釈され、前述のデバイス、ならびにプロセッサ、プロセッサアーキテクチャ、または異なるハードウェアおよびソフトウェアの組み合わせの異種組み合わせのうちの1つ上で起動され得る、C等の構造化されたプログラミング言語、C++等のオブジェクト指向プログラミング言語、または任意の他の高レベルまたは低レベルプログラミング言語(アセンブリ言語、ハードウェア記述言語、およびデータベースプログラミング言語および技術を含む)を使用して作成されたコンピュータ実行可能コードを含んでもよいことを理解されたい。別の側面では、本方法は、そのステップを実施するシステム内で具現化されてもよく、いくつかの方法において、デバイスを横断して分散されてもよい。同時に、処理は、上記に説明される種々のシステム等のデバイスを横断して分散されてもよい、または機能性は全て、専用独立型デバイスまたは他のハードウェアの中に統合されてもよい。別の側面では、上記に説明されるプロセスと関連付けられたステップを実施するための手段は、上記に説明されるハードウェアおよび/またはソフトウェアのいずれかを含んでもよい。全てのそのような順列および組み合わせは、本開示の範囲内にあると意図される。
本明細書に開示される実施形態は、1つ以上のコンピューティングデバイス上で実行すると、そのステップの任意および/または全てを実施する、コンピュータ実行可能コードまたはコンピュータ使用可能コードを備える、コンピュータプログラム製品を含んでもよい。コードは、非一過性方式において、コンピュータメモリ内に記憶されてもよく、これは、プログラムが実行するメモリ(プロセッサと関連付けられたランダムアクセスメモリ等)、またはディスクドライブ、フラッシュメモリまたは任意の他の光学、電磁、磁気、赤外線または他のデバイスまたはデバイスの組み合わせ等の記憶デバイスであってもよい。
別の側面では、上記に説明されるシステムおよび方法のいずれかは、コンピュータ実行可能コードを搬送する任意の好適な伝送または伝搬媒体および/またはそこへの任意の入力またはそこからの出力において具現化されてもよい。
上記に説明されるデバイス、システム、および方法は、一例として記載され、限定ではないことを理解されたい。そうではないことの明示的指示がない限り、開示されるステップは、本開示の範囲から逸脱することなく、修正、補完、省略、および/または並替されてもよい。多数の変形例、追加、省略、および他の修正は、当業者に明白となるであろう。加えて、上記の説明および図面における方法ステップの順序または提示は、特定の順序が明示的に要求される、または別様に文脈から明白にならない限り、列挙されるステップを実施する本順序を要求することを意図するものではない。
本明細書に説明される実装の方法ステップは、異なる意味が明示的に提供される、または別様に文脈から明白にならない限り、そのような方法ステップを以下の請求項の特許性と一貫して実施させる任意の好適な方法を含むことが意図される。したがって、例えば、Xのステップを実施することは、遠隔ユーザ、遠隔処理リソース(例えば、サーバまたはクラウドコンピュータ)、または機械等の別の当事者に、Xのステップを実施させるための任意の好適な方法を含む。同様に、ステップX、Y、およびZを実施することは、そのような他の個人またはリソースの任意の組み合わせに、ステップX、Y、およびZを実施させ、そのようなステップの利点を取得するように指示または制御する任意の方法を含んでもよい。したがって、本明細書に説明される実装の方法ステップは、1つ以上の他の当事者またはエンティティに、異なる意味が明示的に提供される、または別様に文脈から明白にならない限り、以下の請求項の特許性と一貫してステップを実施させる任意の好適な方法を含むことが意図される。そのような当事者またはエンティティは、任意の他の当事者またはエンティティの指示または制御下にある必要はなく、特定の管轄権内に位置する必要もない。
したがって、特定の実施形態が、図示および説明されたが、形態および詳細における種々の変更および修正が、本開示の精神および範囲から逸脱することなくその中に行われてもよく、以下の請求項によって定義された本発明の一部を形成することが意図されることが、当業者に明白となるであろう。

Claims (13)

  1. 患者の心腔に訪問するように構成されるカテーテルと、処理ユニットを有するカテーテルインターフェースユニットとを備えるシステムであって、
    前記カテーテルインターフェースユニットは、前記カテーテルから信号を受信するように構成され、前記信号は、前記患者の前記心腔内の前記カテーテルの場所を示
    前記処理ユニットは、前記心腔の3次元表面モデルの少なくとも1つの幾何学的特徴を決定するように構成され、前記3次元表面モデルは、前記心腔内において前記カテーテルによって訪問された複数の場所に少なくとも部分的に基づいて、構築され
    前記処理ユニットは、(i)前記心腔内の前記カテーテルの場所と、(ii)前記心腔内の前記カテーテルの1つ以上の前の場所と、(iii)前記3次元表面モデルの前記決定された少なくとも1つの幾何学的特徴とに少なくとも部分的に基づいて、前記3次元表面モデルのディスプレイビューを決定するように構成されるシステム
  2. 前記3次元表面モデルの前記少なくとも1つの幾何学的特徴を決定するために、前記処理ユニットは、前記カテーテルの場所に局所的な前記心腔の面積内の表面法線方向を計算するように構成される、請求項1に記載のシステム
  3. 前記表面法線方向は、前記ディスプレイビューが前記カテーテルと標的組織との間の係合角度の変動を自動的に補償するように、前記カテーテルの場所、および、前記カテーテルの場所に局所的な前記3次元表面モデルの局所的幾何学形状の関数である、請求項2に記載のシステム
  4. 前記処理ユニットは、前記3次元表面モデルの最薄方向を決定するように構成される、請求項1に記載のシステム
  5. 前記少なくとも1つの幾何学的特徴は、前記3次元表面モデルを含有する最小体積を伴う境界ボックスに基づいて決定される、請求項1に記載のシステム
  6. 前記処理ユニットは、前記3次元表面モデルの少なくとも1つの可視化選好を決定するように構成され前記処理ユニットは、前記ディスプレイビューを前記少なくとも1つの可視化選好に少なくとも部分的にさらに基づいて、決定するように構成される、請求項1に記載のシステム
  7. 前記処理ユニットは、前記ディスプレイビューを、ある時間周期にわたる前記受信された信号に少なくとも部分的にさらに基づいて、決定するように構成される、請求項1に記載のシステム
  8. 前記処理ユニットは、前記ディスプレイビューを、前記3次元表面モデルの形状の分析に少なくとも部分的にさらに基づいて、決定するように構成される、請求項1に記載のシステム
  9. 前記処理ユニットは、前記ディスプレイビューを、可視化選好に少なくとも部分的にさらに基づいて、決定するように構成される、請求項1に記載のシステム
  10. 前記カテーテルインターフェースユニットは、グラフィカルユーザインターフェースをさらに備え、前記3次元表面モデルの前記決定されたディスプレイビューは、前記グラフィカルユーザインターフェースに伝送される、請求項1に記載のシステム
  11. 前記カテーテルインターフェースユニットは、グラフィカルユーザインターフェースをさらに備え、前記3次元表面モデルの前記決定されたディスプレイビューは、前記グラフィカルユーザインターフェース上に表示される、請求項1に記載のシステム
  12. 前記カテーテルインターフェースユニットは、グラフィカルユーザインターフェースをさらに備え、前記処理ユニットは、ビューウィンドウ上に投影されるような前記3次元表面モデルのサイズを調節するように構成されさらに、前記ディスプレイビューは、前記調節されたサイズに従った前記グラフィカルユーザインターフェース上への前記3次元表面モデルの投影を含む、請求項1に記載のシステム
  13. 前記処理ユニットが、前のディスプレイビューから前記決定されたディスプレイビューへの遷移が、平滑であり、かつ、3次元表面表現の連続的な動きとして知覚されるように、前記受信された信号を処理するように構成され、かつ/または
    前記処理ユニットが、前記決定されたディスプレイビューが1つ以上の前のディスプレイビューに基づくように、前記ディスプレイビューを処理するように構成される、請求項1に記載のシステム
JP2018558323A 2016-05-03 2017-05-03 解剖学的モデルの表示 Active JP7042216B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021146088A JP2021184882A (ja) 2016-05-03 2021-09-08 解剖学的モデルの表示

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201662330910P 2016-05-03 2016-05-03
US62/330,910 2016-05-03
US201662337541P 2016-05-17 2016-05-17
US62/337,541 2016-05-17
US201662338068P 2016-05-18 2016-05-18
US62/338,068 2016-05-18
US201662357600P 2016-07-01 2016-07-01
US62/357,600 2016-07-01
US201662367763P 2016-07-28 2016-07-28
US62/367,763 2016-07-28
PCT/US2017/030928 WO2017192781A1 (en) 2016-05-03 2017-05-03 Anatomical model displaying

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021146088A Division JP2021184882A (ja) 2016-05-03 2021-09-08 解剖学的モデルの表示

Publications (3)

Publication Number Publication Date
JP2019515754A JP2019515754A (ja) 2019-06-13
JP2019515754A5 JP2019515754A5 (ja) 2020-06-18
JP7042216B2 true JP7042216B2 (ja) 2022-03-25

Family

ID=58708060

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018558323A Active JP7042216B2 (ja) 2016-05-03 2017-05-03 解剖学的モデルの表示
JP2021146088A Pending JP2021184882A (ja) 2016-05-03 2021-09-08 解剖学的モデルの表示

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021146088A Pending JP2021184882A (ja) 2016-05-03 2021-09-08 解剖学的モデルの表示

Country Status (4)

Country Link
US (5) US10163252B2 (ja)
EP (2) EP3452992B1 (ja)
JP (2) JP7042216B2 (ja)
WO (2) WO2017192781A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
JP7042216B2 (ja) 2016-05-03 2022-03-25 アフェラ, インコーポレイテッド 解剖学的モデルの表示
WO2017197114A1 (en) 2016-05-11 2017-11-16 Affera, Inc. Anatomical model generation
EP3455756A2 (en) 2016-05-12 2019-03-20 Affera, Inc. Anatomical model controlling
US11282191B2 (en) * 2017-01-12 2022-03-22 Navix International Limited Flattened view for intra-lumenal navigation
EP3568837A1 (en) 2017-01-12 2019-11-20 Navix International Limited Flattened view for intra-lumenal navigation
US10506991B2 (en) * 2017-08-31 2019-12-17 Biosense Webster (Israel) Ltd. Displaying position and optical axis of an endoscope in an anatomical image
CN109427106A (zh) * 2017-09-01 2019-03-05 三纬国际立体列印科技股份有限公司 三维模型裁切方法与电子装置
US11150776B2 (en) * 2018-02-02 2021-10-19 Centerline Biomedical, Inc. Graphical user interface for marking anatomic structures
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
KR102149369B1 (ko) 2018-04-06 2020-08-31 주식회사 뷰노 의료 영상을 시각화하는 방법 및 이를 이용한 장치
US10869727B2 (en) * 2018-05-07 2020-12-22 The Cleveland Clinic Foundation Live 3D holographic guidance and navigation for performing interventional procedures
US11123135B2 (en) * 2018-05-30 2021-09-21 Biosense Webster (Israel) Ltd. Enhanced large-diameter balloon catheter
WO2020008418A1 (en) * 2018-07-04 2020-01-09 Navix International Limited Incorporating new location readings to old models
US10943410B2 (en) * 2018-11-19 2021-03-09 Medtronic, Inc. Extended reality assembly modeling
US11992373B2 (en) 2019-12-10 2024-05-28 Globus Medical, Inc Augmented reality headset with varied opacity for navigated robotic surgery
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11607277B2 (en) 2020-04-29 2023-03-21 Globus Medical, Inc. Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
CN115699195A (zh) * 2020-05-29 2023-02-03 美敦力公司 智能辅助(ia)生态系统
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
CN112053426B (zh) * 2020-10-15 2022-02-11 南京航空航天大学 一种基于深度学习的大规模三维铆钉点云提取方法
US12048562B2 (en) * 2021-08-31 2024-07-30 Biosense Webster (Israel) Ltd. Reducing perceived latency of catheters
US20240000420A1 (en) 2022-06-29 2024-01-04 Biosense Webster (Israel) Ltd. Systems and methods for cavity imaging in patient organ based on position of 4d ultrasound catheter
US11941776B1 (en) * 2023-03-30 2024-03-26 Illuscio, Inc. Systems and methods for improved interactivity with three-dimensional objects
CN117406160B (zh) * 2023-10-23 2024-05-17 国网黑龙江省电力有限公司营销服务中心 基于历史状态对比的智能电表故障诊断系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532162A (ja) 2006-04-03 2009-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者に挿入されている対象物を取り巻く組織の判定
JP2012520474A (ja) 2009-03-16 2012-09-06 マイクロポート・メディカル(シャンハイ)カンパニー,リミテッド 人体腔内壁の三次元測定方法、並びにその装置及びシステム
US20130286012A1 (en) 2012-04-25 2013-10-31 University Of Southern California 3d body modeling from one or more depth cameras in the presence of articulated motion

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734690A (en) 1984-07-20 1988-03-29 Tektronix, Inc. Method and apparatus for spherical panning
US5276785A (en) 1990-08-02 1994-01-04 Xerox Corporation Moving viewpoint with respect to a target in a three-dimensional workspace
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
JPH07262412A (ja) 1994-03-16 1995-10-13 Fujitsu Ltd 三次元モデル断面指示装置および指示方式
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
IL120867A0 (en) 1997-05-20 1997-09-30 Cadent Ltd Computer user interface for orthodontic use
JP3183632B2 (ja) 1997-06-13 2001-07-09 株式会社ナムコ 情報記憶媒体及び画像生成装置
US6556206B1 (en) 1999-12-09 2003-04-29 Siemens Corporate Research, Inc. Automated viewpoint selection for 3D scenes
JP3854062B2 (ja) 2000-04-28 2006-12-06 株式会社モリタ製作所 断層面画像の表示方法、表示装置、この表示方法を実現するプログラムを記録した記録媒体
JP4584575B2 (ja) 2001-07-06 2010-11-24 クゥアルコム・インコーポレイテッド 3d画像に表示される3dサーフェイスとインタラクトする画像処理方法
GB2387519B (en) 2002-04-08 2005-06-22 Canon Europa Nv Viewing controller for three-dimensional computer graphics
TW558689B (en) * 2002-08-30 2003-10-21 Univ Taipei Medical Three-dimensional surgery simulation system and method
JP2004105256A (ja) 2002-09-13 2004-04-08 Fuji Photo Film Co Ltd 画像表示装置
JP2006512133A (ja) * 2002-11-29 2006-04-13 ブラッコ イメージング ソチエタ ペル アチオニ 3dモデルを表示および比較するためのシステムおよび方法
EP1586020A2 (en) * 2003-01-25 2005-10-19 Purdue Research Foundation Methods, systems, and data structures for performing searches on three dimensional objects
JP4510817B2 (ja) 2003-06-11 2010-07-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3次元ボリューム空間クロップのユーザ制御
DE10339979B4 (de) 2003-08-29 2005-11-17 Tomtec Imaging Systems Gmbh Verfahren und Vorrichtung zur Darstellung eines vorbestimmbaren Bereichs in mehrdimensionalen Datensätzen
US9237929B2 (en) 2003-12-22 2016-01-19 Koninklijke Philips N.V. System for guiding a medical instrument in a patient body
US20070038088A1 (en) * 2005-08-04 2007-02-15 Rich Collin A Medical imaging user interface and control scheme
AU2006302057B2 (en) * 2005-10-11 2013-03-21 Carnegie Mellon University Sensor guided catheter navigation system
US8014561B2 (en) 2006-09-07 2011-09-06 University Of Louisville Research Foundation, Inc. Virtual fly over of complex tubular anatomical structures
US20080146941A1 (en) * 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking for Intracardiac Catheters
US7894663B2 (en) 2007-06-30 2011-02-22 General Electric Company Method and system for multiple view volume rendering
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
JP5337161B2 (ja) 2007-11-02 2013-11-06 コーニンクレッカ フィリップス エヌ ヴェ 自動動画飛行経路計算
US8494608B2 (en) * 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
US8745536B1 (en) * 2008-11-25 2014-06-03 Perceptive Pixel Inc. Volumetric data exploration using multi-point input controls
US8466934B2 (en) * 2009-06-29 2013-06-18 Min Liang Tan Touchscreen interface
US8218727B2 (en) * 2009-09-04 2012-07-10 Siemens Medical Solutions Usa, Inc. System for medical image processing, manipulation and display
US10580325B2 (en) * 2010-03-24 2020-03-03 Simbionix Ltd. System and method for performing a computerized simulation of a medical procedure
US20120245465A1 (en) 2011-03-25 2012-09-27 Joger Hansegard Method and system for displaying intersection information on a volumetric ultrasound image
US8817076B2 (en) 2011-08-03 2014-08-26 General Electric Company Method and system for cropping a 3-dimensional medical dataset
US20130241929A1 (en) 2012-03-13 2013-09-19 Fady Massarwa Selectably transparent electrophysiology map
US11278353B2 (en) * 2016-03-16 2022-03-22 Synaptive Medical Inc. Trajectory alignment system and methods
JP6396987B2 (ja) * 2013-03-15 2018-09-26 エスアールアイ インターナショナルSRI International 超精巧外科システム
GB2532614B8 (en) 2013-05-02 2020-07-08 Hu Yangqiu Surface and image integration for model evaluation and landmark determination
CA2917478A1 (en) * 2013-07-10 2015-01-15 Real View Imaging Ltd. Three dimensional user interface
US9460538B2 (en) 2013-08-07 2016-10-04 Siemens Medical Solutions Usa, Inc. Animation for conveying spatial relationships in multi-planar reconstruction
JP2015192697A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 制御装置および制御方法、並びに撮影制御システム
US20150324114A1 (en) * 2014-05-06 2015-11-12 Conceptualiz Inc. System and method for interactive 3d surgical planning and modelling of surgical implants
US10105107B2 (en) * 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
KR102035993B1 (ko) * 2015-09-03 2019-10-25 지멘스 메디컬 솔루션즈 유에스에이, 인크. 탄성 영상을 형성하는 초음파 시스템 및 방법
JP7042216B2 (ja) 2016-05-03 2022-03-25 アフェラ, インコーポレイテッド 解剖学的モデルの表示

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532162A (ja) 2006-04-03 2009-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者に挿入されている対象物を取り巻く組織の判定
JP2012520474A (ja) 2009-03-16 2012-09-06 マイクロポート・メディカル(シャンハイ)カンパニー,リミテッド 人体腔内壁の三次元測定方法、並びにその装置及びシステム
US20130286012A1 (en) 2012-04-25 2013-10-31 University Of Southern California 3d body modeling from one or more depth cameras in the presence of articulated motion

Also Published As

Publication number Publication date
JP2021184882A (ja) 2021-12-09
EP3452992A1 (en) 2019-03-13
US20230351716A1 (en) 2023-11-02
WO2017192746A1 (en) 2017-11-09
US20170319172A1 (en) 2017-11-09
EP3882867A1 (en) 2021-09-22
US10467801B2 (en) 2019-11-05
US20190096122A1 (en) 2019-03-28
US20170323473A1 (en) 2017-11-09
EP3452992B1 (en) 2021-06-23
US10475236B2 (en) 2019-11-12
WO2017192781A1 (en) 2017-11-09
JP2019515754A (ja) 2019-06-13
US20240233300A1 (en) 2024-07-11
US11954815B2 (en) 2024-04-09
US10163252B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
JP7042216B2 (ja) 解剖学的モデルの表示
US20200138516A1 (en) Systems and methods for ultrasound image-guided ablation antenna placement
EP3422297B1 (en) System and method for glass state view in real-time three-dimensional (3d) cardiac imaging
JP6745796B2 (ja) 介入治療内で器具を挿入する間の実時間の臓器区分化及び器具ナビゲーションのためのシステム、並びにその作動方法
EP3206747B1 (en) System for real-time organ segmentation and tool navigation during tool insertion in interventional therapy and method of opeperation thereof
CN108135647B (zh) 用于显示电生理损伤的方法和系统
EP3703012A1 (en) Map of body cavity
JP7423292B2 (ja) 身体部位の複合可視化
US20230320787A1 (en) Medical device visualization
CN111526794A (zh) 从ct图像中自动分割消融天线
WO2020106664A1 (en) System and method for volumetric display of anatomy with periodic motion
CN118742266A (zh) 在四维超声图像中使医疗探头可视化

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7042216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02