JP6991732B2 - Imaging optical system and imaging equipment using it - Google Patents
Imaging optical system and imaging equipment using it Download PDFInfo
- Publication number
- JP6991732B2 JP6991732B2 JP2017081260A JP2017081260A JP6991732B2 JP 6991732 B2 JP6991732 B2 JP 6991732B2 JP 2017081260 A JP2017081260 A JP 2017081260A JP 2017081260 A JP2017081260 A JP 2017081260A JP 6991732 B2 JP6991732 B2 JP 6991732B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- positive lens
- imaging optical
- lrn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Lenses (AREA)
Description
本発明は撮像光学系に関し、特に一眼レフカメラ、デジタルスチルカメラ、フィルム用カメラ、ビデオカメラ、監視用カメラ等の撮像装置に好適なものである。 The present invention relates to an image pickup optical system, and is particularly suitable for an image pickup device such as a single-lens reflex camera, a digital still camera, a film camera, a video camera, and a surveillance camera.
近年、撮像素子を用いた撮像装置は小型化されるとともに、画質の高画質化が進んでいる。特に一眼レフカメラにおいては、撮像時の画質の高画質化に加え、画像のボケ味が良いことが要求されている。これらの要求を満足するために、近年はFno(Fナンバー)を明るくし、ボケ量のコントロールが出来るようにした大口径比の撮像光学系が提案されている。この大口径化を満足する撮像光学系のレンズタイプとしては、例えばダブルガウスタイプが知られている。 In recent years, image pickup devices using image pickup devices have been miniaturized, and image quality has been improved. In particular, in a single-lens reflex camera, in addition to improving the image quality at the time of imaging, it is required to have good image blur. In order to satisfy these demands, in recent years, an imaging optical system having a large aperture ratio has been proposed in which the Fno (F number) is brightened and the amount of blur can be controlled. As a lens type of an imaging optical system that satisfies this increase in aperture, for example, a double Gauss type is known.
高画質化を図りつつ、ボケ味をきれいにするためには、色収差を軽減し、色滲みを抑えることが必要になってくる。ダブルガウスタイプの撮像光学系は、大口径比化が容易であるが、色収差を補正しつつ像面湾曲を良好に補正することが難しい。このため、ダブルガウスタイプを変形させて色収差と像面湾曲等の諸収差を良好に補正するようにした撮像光学系が提案されている(特許文献1、2)。特許文献1、2は開口絞りの物体側に配置するレンズの硝材及び屈折力配置等を適切に構成することで高画質化を図りつつ、大口径比化を図っている。 It is necessary to reduce chromatic aberration and suppress color bleeding in order to improve the image quality and improve the bokeh. The double-Gauss type imaging optical system can easily achieve a large-diameter ratio, but it is difficult to satisfactorily correct curvature of field while correcting chromatic aberration. Therefore, an imaging optical system has been proposed in which the double Gauss type is modified to satisfactorily correct various aberrations such as chromatic aberration and curvature of field (Patent Documents 1 and 2). Patent Documents 1 and 2 aim for a large diameter ratio while improving the image quality by appropriately configuring the glass material of the lens arranged on the object side of the aperture diaphragm and the arrangement of the refractive power.
ダブルガウスタイプの撮像光学系は大口径比化が容易で、しかも物体距離の変動に対する収差変動が比較的少ないという特徴がある。しかしながら大口径比化を図りつつ、色収差を低減し、高画質でしかも全系の小型化を図るには、撮像光学系を構成する各レンズの材料を適切に設定することが重要になってくる。例えば屈折率、アッベ数、部分分散比等を適切に選択した材料のレンズを光路中の適切な位置に用いることが重要になってくる。特に色収差を良好に補正し、高画質でボケ味の良い画像を得るには開口絞りに隣接して物体側と像側に配置されたレンズの形状や材料等を適切に設定することが重要になってくる。 The double-Gauss type imaging optical system is characterized in that it is easy to make a large-diameter ratio and that aberration fluctuations with respect to fluctuations in object distance are relatively small. However, in order to reduce chromatic aberration, achieve high image quality, and reduce the size of the entire system while increasing the aperture ratio, it is important to appropriately set the material of each lens that constitutes the imaging optical system. .. For example, it is important to use a lens made of a material having an appropriately selected refractive index, Abbe number, partial dispersion ratio, etc. at an appropriate position in the optical path. In particular, it is important to properly set the shape and material of the lenses placed on the object side and image side adjacent to the aperture stop in order to correct chromatic aberration well and obtain a high-quality image with good bokeh. It will be.
本発明は、大口径比で色収差を良好に補正し、高画質でしかもボケ味の良い画像が容易に得られる撮像光学系の提供を目的とする。 An object of the present invention is to provide an imaging optical system that can satisfactorily correct chromatic aberration with a large aperture ratio and easily obtain an image with high image quality and good bokeh.
本発明の撮像光学系は、物体側から像側へ順に配置された前群、開口絞り、後群より構成される撮像光学系において、
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpRとするとき、
θgFnR-(-0.00240νdnR+0.6694)<0.0
30.0<νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)
42.0<νdpR<80.0
なる条件式を満足することを特徴としている。
また、本発明の他の撮像光学系は、物体側から像側へ順に配置された前群、開口絞り、後群より構成される撮像光学系において、
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpR、前記接合レンズLRの焦点距離をfR、全系の焦点距離をf、前記負レンズLRNの材料の屈折率をNdnR、前記正レンズLRPの材料の屈折率をNdpRとするとき、
θgFnR-(-0.00240νdnR+0.6694)<0.0
30.0<νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)
42.0<νdpR<80.0
-0.95<fR/f<-0.70
NdnR-NdpR<-0.05
なる条件式を満足することを特徴としている。
また、本発明の他の撮像光学系は、物体側から像側へ順に配置された前群、開口絞り、後群より構成される撮像光学系において、
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、
前記前群は、前記開口絞りに隣接して配置された接合レンズLFを有し、該接合レンズLFは負レンズLFNと正レンズLFPが接合されて構成されており、
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpR、前記接合レンズLRの焦点距離をfR、全系の焦点距離をf、前記負レンズLFNと前記正レンズLFPの材料のアッベ数を各々νdnF、νdpF、前記負レンズLFNと前記正レンズLFPの材料の部分分散比を各々θgFnF、θgFpFとするとき、
θgFnR-(-0.00240νdnR+0.6694)<0.0
30.0<νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)
42.0<νdpR<80.0
-0.95<fR/f<-0.70
θgFnF-(-0.00240νdnF+0.6694)<0.0
30.0<νdnF
0.0<θgFpF-(-0.00083νdpF+0.5981)
42.0<νdpF<80.0
なる条件式を満足することを特徴としている。
The image pickup optical system of the present invention is an image pickup optical system composed of a front group, an aperture stop, and a rear group arranged in order from the object side to the image side.
The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
When the Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, and the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR, respectively.
θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0 <νdnR
0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0 <νdpR <80.0
It is characterized by satisfying the conditional expression.
Further, another imaging optical system of the present invention is an imaging optical system composed of a front group, an aperture stop, and a rear group arranged in order from the object side to the image side.
The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
The Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR, respectively, and the focal distances of the junction lens LR are fR. When the focal distance of the entire system is f, the refractive index of the material of the negative lens LRN is NdnR, and the refractive index of the material of the positive lens LRP is NdpR.
θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0 <νdnR
0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0 <νdpR <80.0
-0.95 <fR / f <-0.70
NdnR-NdpR <-0.05
It is characterized by satisfying the conditional expression.
Further, another imaging optical system of the present invention is an imaging optical system composed of a front group, an aperture stop, and a rear group arranged in order from the object side to the image side.
The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
The front group has a bonded lens LF arranged adjacent to the aperture stop, and the bonded lens LF is configured by bonding a negative lens LFN and a positive lens LFP.
The Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR, respectively, and the focal distances of the junction lens LR are fR. The focal distance of the entire system is f, the Abbe numbers of the materials of the negative lens LFN and the positive lens LFP are νdnF and νdpF, respectively, and the partial dispersion ratios of the materials of the negative lens LFN and the positive lens LFP are θgFnF and θgFpF, respectively. and when,
θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0 <νdnR
0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0 <νdpR <80.0
-0.95 <fR / f <-0.70
θgFnF- (-0.00240νdnF + 0.6694) <0.0
30.0 <νdnF
0.0 <θgFpF- (-0.00083νdpF + 0.5981)
42.0 <νdpF <80.0
It is characterized by satisfying the conditional expression.
本発明によれば、大口径比で色収差を良好に補正し、高画質でしかもボケ味の良い画像が容易に得られる撮像光学系が得られる。 According to the present invention, it is possible to obtain an imaging optical system that can satisfactorily correct chromatic aberration with a large aperture ratio and easily obtain an image having high image quality and good bokeh.
以下、図面を用いて本発明の撮像光学系及びそれを有する撮像装置の実施例について説明する。本発明の撮像光学系は、物体側から像側へ順に配置された前群、開口絞り、後群より構成される。前群に含まれ開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、後群の最も物体側には接合レンズLRを配置している。接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されている。 Hereinafter, examples of the image pickup optical system of the present invention and an image pickup apparatus having the same will be described with reference to the drawings. The imaging optical system of the present invention is composed of a front group, an aperture stop, and a rear group arranged in order from the object side to the image side. The lens included in the front group and arranged adjacent to the aperture stop has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group. The bonded lens LR has a concave lens surface on the object side, and is configured by joining a negative lens LRN and a positive lens LRP.
接合レンズLRは物体側から像側へ順に配置された正レンズLRP、負レンズLRNより構成される。または接合レンズLRは物体側から像側へ順に配置された負レンズLRN、正レンズLRPより構成される。前群は開口絞りに隣接して接合レンズLFを有し、接合レンズLFは物体側から像側へ順に配置された正レンズLFPと負レンズLFNより構成される。 The junction lens LR is composed of a positive lens LRP and a negative lens LRN arranged in order from the object side to the image side. Alternatively, the junction lens LR is composed of a negative lens LRN and a positive lens LRP arranged in order from the object side to the image side. The front group has a junction lens LF adjacent to the aperture stop, and the junction lens LF is composed of a positive lens LFP and a negative lens LFN arranged in order from the object side to the image side.
図1は本発明の実施例1の無限遠に合焦(フォーカス)しているときのレンズ断面図である。図2(A)、(B)は本発明の実施例1の無限遠と至近(撮像倍率-0.188)に合焦しているときの縦収差図である。実施例1はFナンバー1.45、撮像画角45.8度の撮像光学系である。 FIG. 1 is a cross-sectional view of a lens when the lens is focused at infinity according to the first embodiment of the present invention. 2A and 2B are longitudinal aberration diagrams of the first embodiment of the present invention when they are in focus at infinity and close proximity (imaging magnification −0.188). The first embodiment is an imaging optical system having an F number of 1.45 and an imaging angle of view of 45.8 degrees.
図3は本発明の実施例2の無限遠に合焦しているときのレンズ断面図である。図4(A)、(B)は本発明の実施例2の無限遠と至近(撮像倍率-0.173)に合焦しているときの縦収差図である。実施例2はFナンバー1.45、撮像画角46.24度の撮像光学系である。 FIG. 3 is a cross-sectional view of the lens when the lens is in focus at infinity according to the second embodiment of the present invention. 4 (A) and 4 (B) are longitudinal aberration diagrams of the second embodiment of the present invention when they are in focus at infinity and close proximity (imaging magnification −0.173). The second embodiment is an imaging optical system having an F number of 1.45 and an imaging angle of view of 46.24 degrees.
図5は本発明の実施例3の無限遠に合焦しているときのレンズ断面図である。図6(A)、(B)は本発明の実施例3の無限遠と至近(撮像倍率-0.188)に合焦しているときの縦収差図である。実施例3はFナンバー1.45、撮像画角45.8度の撮像光学系である。 FIG. 5 is a cross-sectional view of the lens when the lens is in focus at infinity according to the third embodiment of the present invention. 6 (A) and 6 (B) are longitudinal aberration diagrams of the third embodiment of the present invention when they are in focus at infinity and close proximity (imaging magnification −0.188). Example 3 is an imaging optical system having an F number of 1.45 and an imaging angle of view of 45.8 degrees.
図7は本発明の実施例4の無限遠に合焦しているときのレンズ断面図である。図8(A)、(B)は本発明の実施例4の無限遠と至近(撮像倍率-0.188)に合焦しているときの縦収差図である。実施例4はFナンバー1.45、撮像画角45.72度の撮像光学系である。 FIG. 7 is a cross-sectional view of the lens when the lens is in focus at infinity according to the fourth embodiment of the present invention. 8 (A) and 8 (B) are longitudinal aberration diagrams of the fourth embodiment of the present invention when they are in focus at infinity and close proximity (imaging magnification −0.188). Example 4 is an imaging optical system having an F number of 1.45 and an imaging angle of view of 45.72 degrees.
図9は本発明の実施例5の無限遠に合焦しているときのレンズ断面図である。図10(A)、(B)は本発明の実施例5の無限遠と至近(撮像倍率-0.101)に合焦しているときの縦収差図である。実施例5はFナンバー1.45、撮像画角45.5度の撮像光学系である。 FIG. 9 is a cross-sectional view of the lens when the lens is focused at infinity according to the fifth embodiment of the present invention. 10 (A) and 10 (B) are longitudinal aberration diagrams of the fifth embodiment of the present invention when they are in focus at infinity and close proximity (imaging magnification −0.11). Example 5 is an imaging optical system having an F number of 1.45 and an imaging angle of view of 45.5 degrees.
図11は本発明の実施例6の無限遠に合焦しているときのレンズ断面図である。図12(A)、(B)は本発明の実施例6の無限遠と至近(撮像倍率-0.187)に合焦しているときの縦収差図である。実施例6はFナンバー1.45、撮像画角46.04度の撮像光学系である。図13は本発明の撮像装置の要部概略図である。 FIG. 11 is a cross-sectional view of the lens when the lens is focused at infinity according to the sixth embodiment of the present invention. 12 (A) and 12 (B) are longitudinal aberration diagrams when the subject 6 of the present invention is in focus at infinity and close proximity (imaging magnification −0.187). Example 6 is an imaging optical system having an F number of 1.45 and an imaging angle of view of 46.04 degrees. FIG. 13 is a schematic view of a main part of the image pickup apparatus of the present invention.
本発明の撮像光学系はデジタルカメラやビデオカメラ、放送用カメラ、監視用カメラ、銀塩写真用カメラ等の撮像装置に用いられる。 The image pickup optical system of the present invention is used in an image pickup device such as a digital camera, a video camera, a broadcasting camera, a surveillance camera, and a silver salt photography camera.
実施例1乃至4、6に対応する図1、図3、図5、図7、図11のレンズ断面図において、左方が被写体側で、右方が像側である。レンズ断面図において、L0は撮像光学系である。L1は正の屈折力の第1レンズ群、L2は正の屈折力の第2レンズ群である。SPは開口絞りであり、第1レンズ群L1内に配置しており、フォーカシングに際して第1レンズ群L1と一体的に(同じ軌跡で)移動する。開口絞りSPよりも物体側のレンズが前群、開口絞りSPより像側のレンズが後群である。 In the lens cross-sectional views of FIGS. 1, 3, 5, 7, and 11 corresponding to the first to fourth and sixth embodiments, the left side is the subject side and the right side is the image side. In the lens cross-sectional view, L0 is an imaging optical system. L1 is a first lens group having a positive refractive power, and L2 is a second lens group having a positive refractive power. The SP is an aperture stop, is arranged in the first lens group L1, and moves integrally (with the same trajectory) with the first lens group L1 during focusing. The lens on the object side of the aperture stop SP is the front group, and the lens on the image side of the aperture stop SP is the rear group.
実施例5の図9のレンズ断面図において、左方が被写体側で、右方が像側である。レンズ断面図において、L0は撮像光学系である。L1は正の屈折力の第1レンズ群である。SPは開口絞りであり、第1レンズ群L1内に配置しており、フォーカシングに際して第1レンズ群L1と一体的に移動する。開口絞りSPよりも物体側のレンズが前群、開口絞りSPより像側のレンズが後群である。IPは像面であり、デジタルスチルカメラやビデオカメラの撮像光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。 In the cross-sectional view of the lens of FIG. 9 of the fifth embodiment, the left side is the subject side and the right side is the image side. In the lens cross-sectional view, L0 is an imaging optical system. L1 is a first lens group having a positive refractive power. The SP is an aperture stop, is arranged in the first lens group L1, and moves integrally with the first lens group L1 during focusing. The lens on the object side of the aperture stop SP is the front group, and the lens on the image side of the aperture stop SP is the rear group. The IP is an image plane, and the image pickup surface of a solid-state image sensor such as a CCD sensor or CMOS sensor when used as an image pickup optical system for a digital still camera or video camera corresponds to the film surface when used as a silver halide film camera. do.
収差図において、FnoはFナンバーである。ωは半画角(度)である。また球面収差図において実線のdはd線(波長587.6nm)、二点鎖線のgはg線(波長435.8nm)である。非点収差図で点線のΔMはd線におけるメリディオナル像面、実線のΔSはd線におけるサジタル像面である。歪曲収差図はd線について示している。倍率色収差図において二点鎖線のgはg線である。後述する数値データをmm単位で表したとき縦収差図において、球面収差は0.25mm、非点収差は0.25mm、歪曲は2%、倍率色収差は0.03mmのスケールで描かれている。 In the aberration diagram, Fno is an F number. ω is the half angle of view (degrees). In the spherical aberration diagram, the solid line d is the d line (wavelength 587.6 nm), and the two-dot chain line g is the g line (wavelength 435.8 nm). In the astigmatism diagram, the dotted line ΔM is the meridional image plane on the d line, and the solid line ΔS is the sagittal image plane on the d line. The distortion diagram shows the d-line. In the chromatic aberration of magnification diagram, g of the alternate long and short dash line is g line. When the numerical data described later is expressed in mm units, the spherical aberration is drawn on a scale of 0.25 mm, the astigmatism is drawn on a scale of 0.25 mm, the distortion is drawn on a scale of 2%, and the chromatic aberration of magnification is drawn on a scale of 0.03 mm.
本発明の撮像光学系L0は、F1.4(Fナンバー)程度の大口径でありながら色収差を軽減し高画質かつ全系が小型でボケ味のきれいな像が容易に得られる。撮像光学系L0を大口径化するためには、特にダブルガウスタイプを用いることが有効である。ダブルガウスタイプはレンズ構成を開口絞りに対して略対称配置としているため、コマ収差や歪曲収差等を良好に補正することが容易となる。 The image pickup optical system L0 of the present invention has a large diameter of about F1.4 (F number), reduces chromatic aberration, has high image quality, and the entire system is small, so that a clear image with a clear bokeh can be easily obtained. In order to increase the diameter of the imaging optical system L0, it is particularly effective to use a double Gauss type. Since the double-Gauss type has a lens configuration that is substantially symmetrical with respect to the aperture diaphragm, it is easy to satisfactorily correct coma aberration, distortion, and the like.
また、レンズの材料に高屈折率硝材を使用することで球面収差を良好に補正することが容易となる。しかしながらダブルガウスタイプは軸上色収差の補正が難しく、これを補正するためにはレンズ構成をダブルガウスタイプから変形させ、適切な場所に適切な硝材のレンズを使用することが必要となってくる。 Further, by using a high refractive index glass material as the material of the lens, it becomes easy to satisfactorily correct the spherical aberration. However, it is difficult to correct axial chromatic aberration in the double Gauss type, and in order to correct this, it is necessary to deform the lens configuration from the double Gauss type and use an appropriate glass lens in an appropriate place.
本発明では、開口絞りSP近傍に接合レンズLRを配置し、接合レンズLRを正レンズLPRと負レンズLRNより構成し、このときの正レンズLRPの材料と負レンズLRNの材料を適切に設定することによって、色収差を良好に補正している。ダブルガウスタイプは大口径化する際に軸上光束が広がる開口絞りの物体側に高屈折率硝材のレンズを使用することで球面収差を良好に補正している。しかし、一般に高屈折率硝材は分散が大きいため、色収差を良好に補正しつつ、球面収差、像面湾曲などの諸収差を良好に補正するが難しくなる。 In the present invention, the junction lens LR is arranged in the vicinity of the aperture stop SP, the junction lens LR is composed of a positive lens LPR and a negative lens LRN, and the material of the positive lens LRP and the material of the negative lens LRN at this time are appropriately set. As a result, chromatic aberration is satisfactorily corrected. The double-Gauss type satisfactorily corrects spherical aberration by using a lens made of high-refractive index glass material on the object side of the aperture diaphragm where the axial light beam spreads when the diameter is increased. However, since a high-refractive index glass material generally has a large dispersion, it is difficult to satisfactorily correct various aberrations such as spherical aberration and curvature of field while satisfactorily correcting chromatic aberration.
本発明ではこれらの収差を良好に補正するために比較的軸上光束が大きい開口絞りSP近傍に接合レンズLRを配置し、正レンズLRPの材料に部分分散比が大きい硝材、負レンズLRNの材料に部分分散比が小さい硝材を使用している。これにより2次の色消しを考慮した色収差の補正を効果的に行っている。開口絞りよりも物体側のレンズ群に高屈折率硝材のレンズを使用し、開口絞りSP近傍に接合レンズを配置すると、全系の小型化を図りつつ軸上色収差の補正が容易になるが、開口絞りSP近傍でコマ収差が発生し、コマ収差の補正が難しくなる。 In the present invention, in order to satisfactorily correct these aberrations, the junction lens LR is arranged in the vicinity of the aperture stop SP having a relatively large axial luminous flux, and the material of the positive lens LRP is a glass material having a large partial dispersion ratio, and the material of the negative lens LRN. A glass material with a small partial dispersion ratio is used. As a result, chromatic aberration is effectively corrected in consideration of the second-order achromaticity. If a lens made of high refractive index glass is used for the lens group on the object side of the aperture stop and a bonded lens is placed near the aperture stop SP, it will be easier to correct axial chromatic aberration while reducing the size of the entire system. Coma occurs in the vicinity of the aperture stop SP, making it difficult to correct coma.
そこで本発明では、開口絞りSP近傍に配置した負レンズLRNと、正レンズLRPに使用する硝材の範囲を適切に設定することで色収差とコマ収差を良好に補正している。これらの構成を採用することで全系が小型でかつ大口径化で高画質の像を得ている。 Therefore, in the present invention, chromatic aberration and coma are satisfactorily corrected by appropriately setting the range of the negative lens LRN arranged in the vicinity of the aperture stop SP and the glass material used for the positive lens LRP. By adopting these configurations, the entire system is compact and has a large aperture, and a high-quality image is obtained.
本発明の撮像光学系L0において、負レンズLRNと正レンズLRPの材料のアッベ数を各々νdnR、νdpRとする。負レンズLRNと正レンズLRPの材料の部分分散比を各々θgFnR、θgFpRとする。 In the imaging optical system L0 of the present invention, the Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively. The partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are set to θgFnR and θgFpR, respectively.
このとき、
θgFnR-(-0.00240νdnR+0.6694)<0.0 ・・・(1)
30.0<νdnR ・・・(1x)
0.0<θgFpR-(-0.00083νdpR+0.5981) ・・・(2)
42.0<νdpR<80.0 ・・・(2x)
なる条件式を満足する。但し条件式(1)は条件式(1x)を満足することを前提とし、条件式(2)は条件式(2x)を満足することを前提としている。
At this time,
θgFnR- (-0.00240νdnR + 0.6694) <0.0 ... (1)
30.0 <νdnR ... (1x)
0.0 <θgFpR- (-0.00083νdpR + 0.5981) ... (2)
42.0 <νdpR <80.0 ... (2x)
Satisfies the conditional expression. However, the conditional expression (1) is premised on satisfying the conditional expression (1x), and the conditional expression (2) is premised on satisfying the conditional expression (2x).
次に前述の各条件式の技術的意味について説明する。本発明の撮像光学系L0では比較的軸上光束が大きい開口絞りSP近傍に正レンズLRPと負レンズLRNを接合した接合レンズを配置している。そして正レンズLRPに部分分散比が大きい硝材、負レンズLRNに部分分散比が小さい硝材を使用することで色収差を効果的に補正している。 Next, the technical meaning of each of the above conditional expressions will be described. In the image pickup optical system L0 of the present invention, a bonded lens in which a positive lens LRP and a negative lens LRN are bonded is arranged in the vicinity of an aperture stop SP having a relatively large axial luminous flux. Chromatic aberration is effectively corrected by using a glass material having a large partial dispersion ratio for the positive lens LRP and a glass material having a small partial dispersion ratio for the negative lens LRN.
条件式(1)は、開口絞りSPに隣接して像側に配置された接合レンズLRに含まれる負レンズLRNの硝材に関し、主に特に軸上色収差を良好に補正するためのものである。条件式(1)の上限値を上回ると、2次の色消し効果が小さくなり、特に軸上色収差を良好に補正するのが困難となる。また、負レンズLRNが低分散となり、1次の色消し効果も小さくなるため、色収差の補正が困難になる。 The conditional expression (1) is mainly for satisfactorily correcting axial chromatic aberration with respect to the glass material of the negative lens LRN included in the junction lens LR arranged on the image side adjacent to the aperture stop SP. If the upper limit of the conditional expression (1) is exceeded, the secondary achromatic effect becomes small, and it becomes particularly difficult to satisfactorily correct the axial chromatic aberration. In addition, the negative lens LRN has a low dispersion and the primary achromatic effect is reduced, which makes it difficult to correct chromatic aberration.
条件式(2)は、開口絞りSPに隣接して像側に配置された接合レンズLRに含まれる正レンズLRPの硝材に関し、主に軸上色収差を良好に補正するためのものである。条件式(2)の下限値を下回ると、2次の色消し効果が小さくなり、特に軸上色収差を良好に補正するのが困難となる。 The conditional expression (2) is mainly for satisfactorily correcting axial chromatic aberration with respect to the glass material of the positive lens LRP included in the junction lens LR arranged on the image side adjacent to the aperture stop SP. If it is less than the lower limit of the conditional expression (2), the secondary achromatic effect becomes small, and it becomes particularly difficult to satisfactorily correct the axial chromatic aberration.
尚、各実施例において、収差補正上更に好ましくは、条件式(1)、(2)の数値範囲を次の如く設定するのが良い。
-0.02<θgFnR-(-0.00240νdnR+0.6694)<0.0
・・・(1a)
0.0<θgFpR-(-0.00083νdpR+0.5981)<0.02
・・・(2a)
In each embodiment, it is more preferable to set the numerical range of the conditional expressions (1) and (2) as follows, more preferably for aberration correction.
-0.02 <θgFnR- (-0.00240νdnR + 0.6694) <0.0
... (1a)
0.0 <θgFpR- (-0.00083νdpR + 0.5981) <0.02
... (2a)
より更に好ましくは、条件式(1a)、(2a)の数値範囲を次の如く設定するのが良い。
-0.01<θgFnR-(-0.00240νdnR+0.6694)<0.0
・・・(1b)
0.0<θgFpR-(-0.00083νdpR+0.5981)<0.01
・・・(2b)
Even more preferably, it is preferable to set the numerical range of the conditional expressions (1a) and (2a) as follows.
-0.01 <θgFnR- (-0.00240νdnR + 0.6694) <0.0
... (1b)
0.0 <θgFpR- (-0.00083νdpR + 0.5981) <0.01
... (2b)
以上のように本発明によれば、Fナンバー1.4程度の大口径でありながら色収差を低減し高画質かつ小型でボケ味のきれいな撮像光学系が得られる。 As described above, according to the present invention, it is possible to obtain an image pickup optical system having a large aperture of about F number 1.4, reducing chromatic aberration, high image quality, small size, and clear bokeh.
本発明において更に好ましくは次の条件式のうち1つ以上を満足するのが良い。負レンズLRNの材料の屈折率をNdnR、正レンズLRPの材料の屈折率をNdpRとする。接合レンズLRの焦点距離をfR、全系の焦点距離をfとする。前群は1枚以上の正レンズを有し、このうち少なくとも1枚の正レンズは材料の屈折率をNdFPとする。前群は開口絞りSPに隣接して配置された接合レンズLFを有し、接合レンズLFは負レンズLFNと正レンズLFPが接合されて構成されている。 In the present invention, it is more preferable to satisfy one or more of the following conditional expressions. The refractive index of the material of the negative lens LRN is NdnR, and the refractive index of the material of the positive lens LRP is NdpR. Let fR be the focal length of the junction lens LR and f be the focal length of the entire system. The front group has one or more positive lenses, of which at least one positive lens has a material refractive index of NdFP. The front group has a bonded lens LF arranged adjacent to the aperture stop SP, and the bonded lens LF is configured by bonding a negative lens LFN and a positive lens LFP.
負レンズLFNと正レンズLFPの材料のアッベ数を各々νdnF、νdpFとする。負レンズLFNと正レンズLFPの材料の部分分散比を各々θgFnF、θgFpFとする。負レンズLFNの材料の屈折率をNdnF、正レンズLFPの材料の屈折率をNdpFとする。 Let the Abbe numbers of the materials of the negative lens LFN and the positive lens LFP be νdnF and νdpF, respectively. Let the partial dispersion ratios of the materials of the negative lens LFN and the positive lens LFP be θgFnF and θgFpF, respectively. The refractive index of the material of the negative lens LFN is NdnF, and the refractive index of the material of the positive lens LFP is NdpF.
このとき次の条件式のうち1つ以上を満足するのが良い。
NdnR-NdpR<-0.05 ・・・(3)
-30.0<νdnR-νdpR<-5.0 ・・・(4)
-0.95<fR/f<-0.70 ・・・(5)
1.90<NdFP ・・・(6)
θgFnF-(-0.00240νdnF+0.6694)<0.0 ・・・(7)
30.0<νdnF ・・・(7x)
0.0<θgFpF-(-0.00083νdpF+0.5981) ・・・(8)
42.0<νdpF<80.0 ・・・(8x)
0.05<NdnF-NdpF ・・・(9)
At this time, it is preferable to satisfy one or more of the following conditional expressions.
NdnR-NdpR <-0.05 ... (3)
-30.0 <νdnR-νdpR <-5.0 ... (4)
-0.95 <fR / f <-0.70 ... (5)
1.90 <NdFP ... (6)
θgFnF- (-0.00240νdnF + 0.6694) <0.0 ... (7)
30.0 <νdnF ... (7x)
0.0 <θgFpF- (-0.00083νdpF + 0.5981) ... (8)
42.0 <νdpF <80.0 ... (8x)
0.05 <NdnF-NdpF ... (9)
但し条件式(7)は条件式(7x)を満足することが前提となる。条件式(8)は条件式(8x)を満足することが前提となる。 However, the conditional expression (7) is premised on satisfying the conditional expression (7x). The conditional expression (8) is premised on satisfying the conditional expression (8x).
次に前述の各条件式の技術的意味について説明する。条件式(3)は、開口絞りSPに隣接して像側に配置された接合レンズLRに含まれる正レンズLRPの材料と負レンズLRNの材料の屈折率差に関し、主に像面湾曲、コマ収差を良好に補正するためのものである。条件式(3)の上限値を上回ると、球面収差の補正とコマ収差の補正は容易となるが、ペッツバール和が増大し、像面湾曲を良好に補正するのが困難になる。 Next, the technical meaning of each of the above conditional expressions will be described. Conditional expression (3) mainly relates to the difference in refractive index between the material of the positive lens LRP and the material of the negative lens LRN included in the junction lens LR arranged on the image side adjacent to the aperture stop SP, and mainly has curvature of field and coma. This is for correcting aberrations satisfactorily. When the upper limit of the conditional expression (3) is exceeded, the spherical aberration and the coma are easily corrected, but the Petzval sum increases and it becomes difficult to satisfactorily correct the curvature of field.
条件式(4)は、開口絞りSPに隣接して像側に配置された接合レンズLRに含まれる正レンズLRPの材料と負レンズLRNの材料のアッベ数の差に関し、主に軸上色収差とコマ収差を良好に補正するためのものである。条件式(4)の下限値を下回ると、アッベ数の差が小さくなり、1次の色消しを行う上で困難となる。また、各々のレンズの屈折力が強まり、レンズ径が大型化してくるため好ましくない。一方、条件式(4)の上限値を上回ると、アッベ数の差が大きくなり、各々のレンズの屈折力が弱まるためレンズ径の小型化、色収差の補正は容易になるが、コマ収差を良好に補正するのが困難となる。 Conditional expression (4) mainly relates to axial chromatic aberration with respect to the difference in Abbe number between the material of the positive lens LRP and the material of the negative lens LRN included in the junction lens LR arranged on the image side adjacent to the aperture stop SP. This is for correcting coma aberration satisfactorily. If it is less than the lower limit of the conditional expression (4), the difference in Abbe number becomes small, and it becomes difficult to perform the first-order achromatization. Further, the refractive power of each lens is increased, and the lens diameter is increased, which is not preferable. On the other hand, if the upper limit of the conditional expression (4) is exceeded, the difference in Abbe number becomes large and the refractive power of each lens weakens, so that the lens diameter can be reduced and chromatic aberration can be easily corrected, but coma aberration is good. It becomes difficult to correct to.
条件式(5)は、開口絞りSPに隣接して像側に配置された接合レンズLRの屈折力に関し、球面収差、像面湾曲を良好に補正するためのものである。条件式(5)の下限値を下回ると、負の屈折力が弱まるので球面収差、コマ収差の補正は容易となるが、ペッツバール和がプラス方向に大きくなるため像面湾曲を良好に補正するのが困難となる。一方、条件式(5)の上限値を上回ると、負の屈折力が強まるのでペッツバール和が補正されるため像面湾曲の補正は容易となるが、球面収差、コマ収差を良好に補正するのが困難となる。 The conditional equation (5) is for satisfactorily correcting spherical aberration and curvature of field with respect to the refractive power of the junction lens LR arranged on the image side adjacent to the aperture stop SP. Below the lower limit of the conditional equation (5), the negative refractive power weakens, so that spherical aberration and coma are easily corrected, but the Petzval sum increases in the positive direction, so the curvature of field is satisfactorily corrected. Becomes difficult. On the other hand, if the upper limit of the conditional expression (5) is exceeded, the negative refractive power becomes stronger and the Petzval sum is corrected, so that the curvature of field is easily corrected, but spherical aberration and coma are satisfactorily corrected. Becomes difficult.
条件式(6)は、開口絞りSPより物体側に配置された1枚以上の正レンズのうちの少なくとも1つの正レンズの材料の屈折率に関し、主に球面収差、像面湾曲を良好に補正するためのものである。条件式(6)の下限値を下回ると、ペッツバール和がプラス方向に大きくなるため像面湾曲を補正するのが困難となる。また、球面収差を補正するためにレンズ面の曲率が強まり、レンズが大型化するため好ましくない。 Conditional expression (6) satisfactorily corrects spherical aberration and curvature of field with respect to the refractive index of the material of at least one positive lens among one or more positive lenses arranged on the object side of the aperture stop SP. It is for doing. If it is less than the lower limit of the conditional expression (6), the Petzval sum becomes large in the positive direction, and it becomes difficult to correct the curvature of field. Further, the curvature of the lens surface is increased in order to correct the spherical aberration, and the size of the lens is increased, which is not preferable.
条件式(7)は、開口絞りSPに隣接して物体側に配置された接合レンズLFに含まれる負レンズLFNの材料に関し、主に軸上色収差を良好に補正するためのものである。条件式(7)の上限値を上回ると、2次の色消し効果が小さくなり、特に軸上色収差を補正するのが困難となる。また、負レンズLFNの材料が低分散となり、1次の色消し効果も小さくなるため、色収差の補正が困難になる。 The conditional expression (7) is mainly for satisfactorily correcting axial chromatic aberration with respect to the material of the negative lens LFN included in the junction lens LF arranged on the object side adjacent to the aperture stop SP. If the upper limit of the conditional expression (7) is exceeded, the secondary achromatic effect becomes small, and it becomes particularly difficult to correct the axial chromatic aberration. Further, since the material of the negative lens LFN has a low dispersion and the primary achromatic effect is reduced, it becomes difficult to correct chromatic aberration.
条件式(8)は、開口絞りSPに隣接して物体側に配置された接合レンズLFに含まれる正レンズLFPの材料に関し、主に軸上色収差を良好に補正するためのものである。条件式(8)の下限値を下回ると、2次の色消し効果が小さくなり、軸上色収差を良好に補正するのが困難となる。 Conditional expression (8) is mainly for satisfactorily correcting axial chromatic aberration with respect to the material of the positive lens LFP included in the junction lens LF arranged on the object side adjacent to the aperture stop SP. If it is less than the lower limit of the conditional expression (8), the secondary achromatic effect becomes small, and it becomes difficult to satisfactorily correct the axial chromatic aberration.
条件式(9)は、開口絞りSPに隣接して物体側に配置された接合レンズLFに含まれる正レンズLFPの材料と負レンズLFNの材料の屈折率差に関し、主に球面収差、コマ収差を良好に補正するためのものである。条件式(9)の下限値を下回ると、ペッツバール和を補正するのが容易となるが、球面収差と、コマ収差を良好に補正するのが困難となる。 The conditional equation (9) mainly relates to spherical aberration and coma aberration regarding the difference in refractive index between the material of the positive lens LFP and the material of the negative lens LFN included in the junction lens LF arranged on the object side adjacent to the aperture stop SP. Is for satisfactorily correcting. If it is less than the lower limit of the conditional expression (9), it becomes easy to correct the Petzval sum, but it becomes difficult to satisfactorily correct the spherical aberration and the coma aberration.
尚、各実施例において、収差補正上更に好ましくは、条件式(3)乃至(9)の数値範囲を次の如く設定するのが良い。
-0.30<NdnR-NdpR<-0.05 ・・・(3a)
-25.0<νdnR-νdpR<-5.0 ・・・(4a)
-0.93<fR/f<-0.72 ・・・(5a)
1.90<NdFP<2.50 ・・・(6a)
-0.02<θgFnF-(-0.00240νdnF+0.6694)<0.00
・・・(7a)
0.00<θgFpF-(-0.00083νdpF+0.5981)<0.02
・・・(8a)
0.05<NdnF-NdpF<0.30 ・・・(9a)
In each embodiment, it is more preferable to set the numerical range of the conditional expressions (3) to (9) as follows, more preferably for aberration correction.
-0.30 <NdnR-NdpR <-0.05 ... (3a)
-25.0 <νdnR-νdpR <-5.0 ... (4a)
-0.93 <fR / f <-0.72 ... (5a)
1.90 <NdFP <2.50 ... (6a)
-0.02 <θgFnF- (-0.00240νdnF + 0.6694) <0.00
... (7a)
0.00 <θgFpF- (-0.00083νdpF + 0.5981) <0.02
... (8a)
0.05 <NdnF-NdpF <0.30 ... (9a)
より更に好ましくは、条件式(3a)乃至(9a)の数値範囲を次の如く設定するのが良い。
-0.20<NdnR-NdpR<-0.05 ・・・(3b)
-20.0<νdnR-νdpR<-7.0 ・・・(4b)
-0.90<fR/f<-0.75 ・・・(5b)
1.90<NdFP<2.30 ・・・(6b)
-0.01<θgFnF-(-0.00240νdnF+0.6694)<0.00
・・・(7b)
0.00<θgFpF-(-0.00083νdpF+0.5981)<0.01
・・・(8b)
0.05<NdnF-NdpF<0.20 ・・・(9b)
Even more preferably, it is preferable to set the numerical range of the conditional expressions (3a) to (9a) as follows.
-0.20 <NdnR-NdpR <-0.05 ... (3b)
-20.0 <νdnR-νdpR <-7.0 ... (4b)
-0.90 <fR / f <-0.75 ... (5b)
1.90 <NdFP <2.30 ... (6b)
-0.01 <θgFnF- (-0.00240νdnF + 0.6694) <0.00
... (7b)
0.00 <θgFpF- (-0.00083νdpF + 0.5981) <0.01
... (8b)
0.05 <NdnF-NdpF <0.20 ... (9b)
各実施例では以上のように各レンズ群を構成することによって、Fナンバー1.4程度の大口径でありながら色収差を低減し高画質かつ小型でボケ味のきれいな撮像光学系を得ている。 In each embodiment, by configuring each lens group as described above, an image pickup optical system having a large aperture of about F number 1.4, reducing chromatic aberration, high image quality, small size, and clear bokeh is obtained.
次に実施例1、3、4、6の各レンズ群のレンズ構成について説明する。第1レンズ群L1は物体側のレンズ面が凹形状の負レンズ、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズLFPと負レンズLFNを接合した接合レンズLFを有する。更に開口絞りSP、正レンズLRPと負レンズLRNを接合した接合レンズLR、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズを接合した接合レンズより構成している。ここで負レンズLFNは正レンズLFPの像側に隣接して配置されている。 Next, the lens configuration of each lens group of Examples 1, 3, 4, and 6 will be described. The first lens group L1 has a negative lens having a concave lens surface on the object side, a bonded lens in which a positive lens and a negative lens are bonded, a positive lens, and a bonded lens LF in which a positive lens LFP and a negative lens LFN are bonded. Further, it is composed of an aperture aperture SP, a bonded lens LR in which a positive lens LRP and a negative lens LRN are bonded, a bonded lens in which a positive lens and a negative lens are bonded, and a bonded lens in which a negative lens and a positive lens are bonded. Here, the negative lens LFN is arranged adjacent to the image side of the positive lens LFP.
各実施例の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。 In the image pickup optical system of each embodiment, the refractive power of the first lens group L1 is strengthened within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and curvature of field, occur frequently in the first lens group L1.
そこで最も物体側に凹面を向けた負レンズを配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。特に開口絞りSP付近に配置した接合レンズには高部分分散材と低部分分散材を効果的に配置し、色収差を軽減している。 Therefore, by arranging a negative lens with the concave surface facing the object side most, the sagittal flare generated in the first lens group L1 is suppressed. Further, the occurrence of curvature of field is reduced by using a glass material having a high refractive index for the positive lens, and the occurrence of axial chromatic aberration and magnifying chromatic aberration is reduced by arranging a plurality of bonded lenses. In particular, the high partial dispersion material and the low partial dispersion material are effectively arranged in the junction lens arranged in the vicinity of the aperture stop SP to reduce chromatic aberration.
収差補正上、更に好ましくは、開口絞りSP付近の接合レンズの材料のアッベ数は負レンズの材料のアッベ数νdnが、
34.0<νdn<50.0
正レンズの材料のアッベ数νdpが、
42.0<νdp<70.0
の如く設定するのが良い。第2レンズ群L2は両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した接合レンズで構成している。
For aberration correction, more preferably, the Abbe number of the material of the junction lens near the aperture stop SP is the Abbe number νdn of the material of the negative lens.
34.0 <νdn <50.0
The Abbe number νdp of the material of the positive lens is
42.0 <νdp <70.0
It is better to set as follows. The second lens group L2 is composed of a biconvex positive lens and a junction lens in which a negative lens having a concave object side and a meniscus shape is joined.
各実施例の撮像光学系ではフォーカシングによる光学性能の変化を抑制、撮像素子への光線入射角を抑制するために第2レンズ群L2の屈折力を適切な範囲で強めている。各実施例では、接合レンズとすることによりフォーカス全域で色収差を軽減している。また、高屈折率の硝材を使用する事でペッツバール和の抑制、フォーカシングによるコマ収差の変動を軽減している。 In the image pickup optical system of each embodiment, the refractive power of the second lens group L2 is strengthened in an appropriate range in order to suppress the change in optical performance due to focusing and suppress the angle of light incident on the image pickup element. In each embodiment, chromatic aberration is reduced over the entire focus by using a bonded lens. Moreover, by using a glass material having a high refractive index, the Petzval sum is suppressed and the fluctuation of coma due to focusing is reduced.
尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。 For aberration correction, the junction lens may be composed of two lenses via an air lens, if necessary. Focusing is performed by the first lens group L1.
次に実施例2の各レンズ群のレンズ構成について説明する。第1レンズ群L1は物体側のレンズ面が凹形状の負レンズ、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズLFPと負レンズLFNを接合した接合レンズLFを有する。更に開口絞りSP、負レンズLRNと正レンズLRPを接合した接合レンズLR、正レンズと負レンズを接合した接合レンズ、負レンズ、正レンズより構成している。ここで負レンズLFNは正レンズLFPの像側に隣接して配置されている。 Next, the lens configuration of each lens group of the second embodiment will be described. The first lens group L1 has a negative lens having a concave lens surface on the object side, a bonded lens in which a positive lens and a negative lens are bonded, a positive lens, and a bonded lens LF in which a positive lens LFP and a negative lens LFN are bonded. Further, it is composed of an aperture stop SP, a bonded lens LR in which a negative lens LRN and a positive lens LRP are bonded, a bonded lens in which a positive lens and a negative lens are bonded, a negative lens, and a positive lens. Here, the negative lens LFN is arranged adjacent to the image side of the positive lens LFP.
実施例2の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。 In the image pickup optical system of the second embodiment, the refractive power of the first lens group L1 is strengthened within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and curvature of field, occur frequently in the first lens group L1.
そこで最も物体側に凹面を向けた負レンズを配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。特に開口絞りSP付近に配置した接合レンズには高部分分散材と低部分分散材を効果的に配置し、色収差を軽減している。 Therefore, by arranging a negative lens with the concave surface facing the object side most, the sagittal flare generated in the first lens group L1 is suppressed. Further, the occurrence of curvature of field is reduced by using a glass material having a high refractive index for the positive lens, and the occurrence of axial chromatic aberration and magnifying chromatic aberration is reduced by arranging a plurality of bonded lenses. In particular, the high partial dispersion material and the low partial dispersion material are effectively arranged in the junction lens arranged in the vicinity of the aperture stop SP to reduce chromatic aberration.
収差補正上、更に好ましくは、開口絞りSP付近の接合レンズの材料のアッベ数は負レンズの材料のアッベ数νdnが、
34.0<νdn<50.0
正レンズの材料のアッベ数νdpが、
42.0<νdp<70.0
の如く設定するのが良い。
For aberration correction, more preferably, the Abbe number of the material of the junction lens near the aperture stop SP is the Abbe number νdn of the material of the negative lens.
34.0 <νdn <50.0
The Abbe number νdp of the material of the positive lens is
42.0 <νdp <70.0
It is better to set as follows.
第2レンズ群L2は両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した接合レンズで構成している。実施例2の撮像光学系ではフォーカシングによる光学性能の変化を抑制、撮像素子への光線入射角を抑制するために第2レンズ群L2の屈折力を適切な範囲で強めている。実施例2では、接合レンズとすることによりフォーカス全域で色収差を軽減している。また、高屈折率の硝材を使用する事でペッツバール和の抑制、フォーカシングによるコマ収差の変動を軽減している。 The second lens group L2 is composed of a biconvex positive lens and a junction lens in which a negative lens having a concave object side and a meniscus shape is joined. In the image pickup optical system of the second embodiment, the refractive power of the second lens group L2 is strengthened in an appropriate range in order to suppress the change in optical performance due to focusing and suppress the angle of light incident on the image pickup element. In the second embodiment, chromatic aberration is reduced over the entire focus range by using a bonded lens. Moreover, by using a glass material having a high refractive index, the Petzval sum is suppressed and the fluctuation of coma due to focusing is reduced.
尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。 For aberration correction, the junction lens may be composed of two lenses via an air lens, if necessary. Focusing is performed by the first lens group L1.
次に実施例5の各レンズ群のレンズ構成について説明する。第1レンズ群L1は物体側のレンズ面が凹形状の負レンズ、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズLFPと負レンズLFNを接合した接合レンズLF、開口絞りSPを有する。更に正レンズLRPと負レンズLRNを接合した接合レンズLR、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズを接合した接合レンズ、両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した接合レンズより構成している。ここで負レンズLFNは正レンズLFPの像側に隣接して配置されている。 Next, the lens configuration of each lens group of Example 5 will be described. The first lens group L1 includes a negative lens having a concave lens surface on the object side, a bonded lens in which a positive lens and a negative lens are bonded, a positive lens, a bonded lens LF in which a positive lens LFP and a negative lens LFN are bonded, and an aperture aperture SP. Have. Furthermore, a bonded lens LR in which a positive lens LRP and a negative lens LRN are bonded, a bonded lens in which a positive lens and a negative lens are bonded, a bonded lens in which a negative lens and a positive lens are bonded, a biconvex positive lens and a meniscus shape with a concave object side. It is composed of a bonded lens in which the negative lenses of the above are bonded. Here, the negative lens LFN is arranged adjacent to the image side of the positive lens LFP.
実施例5の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。 In the image pickup optical system of Example 5, the refractive power of the first lens group L1 is strengthened within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and curvature of field, occur frequently in the first lens group L1.
そこで最も物体側に凹面を向けた負レンズを配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。特に開口絞りSP付近に配置した接合レンズには高部分分散材と低部分分散材を効果的に配置し、色収差を軽減している。 Therefore, by arranging a negative lens with the concave surface facing the object side most, the sagittal flare generated in the first lens group L1 is suppressed. Further, the occurrence of curvature of field is reduced by using a glass material having a high refractive index for the positive lens, and the occurrence of axial chromatic aberration and magnifying chromatic aberration is reduced by arranging a plurality of bonded lenses. In particular, the high partial dispersion material and the low partial dispersion material are effectively arranged in the junction lens arranged in the vicinity of the aperture stop SP to reduce chromatic aberration.
収差補正上、更に好ましくは、開口絞りSP付近の接合レンズの材料のアッベ数は負レンズの材料のアッベ数νdnが、
34.0<νdn<50.0
正レンズの材料のアッベ数νdpが、
42.0<νdp<70.0
の如く設定するのが良い。
For aberration correction, more preferably, the Abbe number of the material of the junction lens near the aperture stop SP is the Abbe number νdn of the material of the negative lens.
34.0 <νdn <50.0
The Abbe number νdp of the material of the positive lens is
42.0 <νdp <70.0
It is better to set as follows.
実施例5では、接合レンズとすることによりフォーカス全域で色収差を軽減している。また、高屈折率の硝材を使用する事でペッツバール和の抑制、フォーカシングによるコマ収差の変動を軽減している。尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。 In Example 5, chromatic aberration is reduced over the entire focus by using a bonded lens. Moreover, by using a glass material having a high refractive index, the Petzval sum is suppressed and the fluctuation of coma due to focusing is reduced. For aberration correction, the junction lens may be composed of two lenses via an air lens, if necessary. Focusing is performed by the first lens group L1.
実施例1乃至4、6では、無限遠から至近距離へのフォーカシングに際して矢印のように、第1レンズ群L1を物体側に移動することによって行う。フォーカシングに際して第2レンズ群L2は不動だが、収差補正上移動させても良い。実施例5では、無限遠から至近距離へのフォーカスに際して矢印のように、第1レンズ群L1(レンズ全体)を物体側に移動することによって行う。 In Examples 1 to 4 and 6, when focusing from infinity to a close distance, the first lens group L1 is moved toward the object side as shown by an arrow. The second lens group L2 is immovable during focusing, but it may be moved for aberration correction. In the fifth embodiment, when focusing from infinity to a close range, the first lens group L1 (the entire lens) is moved toward the object side as shown by an arrow.
次に本発明の撮像光学系を用いた撮像装置(デジタルカメラ)の実施例を図13を用いて説明する。図13において、30はカメラ本体、31は実施例1乃至6で説明したいずれかの撮像光学系である。撮像光学系31によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)はカメラ本体30内に内蔵されている。
Next, an example of an image pickup apparatus (digital camera) using the image pickup optical system of the present invention will be described with reference to FIG. In FIG. 13, 30 is a camera body, and 31 is any of the imaging optical systems described in Examples 1 to 6. A solid-state image pickup element (photoelectric conversion element) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the image pickup
以下、実施例1乃至6の具体的な数値データを示す。各数値データにおいてiは物体側から数えた順序を示している。riは物体側からi番目の面の曲率半径、diは物体側からi番目の面とi+1番目の面との間の面間隔、niは第i番目のレンズのd線における屈折率、νiは第i番目のレンズのd線におけるアッベ数を示すものとする。非球面形状はkを円錐定数、A4、A6、A8、A10、A12を4次、6次、8次、10次、12次の非球面係数とし、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとする。 Hereinafter, specific numerical data of Examples 1 to 6 will be shown. In each numerical data, i indicates the order counted from the object side. ri is the radius of curvature of the i-th surface from the object side, di is the surface distance between the i-th surface and the i + 1-th surface from the object side, ni is the refractive index of the i-th lens on the d line, and νi is. It shall indicate the Abbe number in the d-line of the i-th lens. For the aspherical shape, k is a conical constant, A4, A6, A8, A10, and A12 are 4th, 6th, 8th, 10th, and 12th aspherical coefficients, and the height h from the optical axis is used. Let x be the displacement in the optical axis direction with respect to the surface apex.
このとき、非球面形状は、
x=(h2/R)/[1+[1-(1+K)(h/R)2]1/2] +A4h4+A6h6+A8h8+A10h10+A12h12
で表示される。但し、Rは近軸曲率半径である。「e-X」は「×10-X」を意味している。尚、非球面は各表中の面番号の右側に*印を付している。また前述の各条件式と数値データとの関係を表1に示す。
At this time, the aspherical shape is
x = (h 2 / R) / [1 + [1- (1 + K) (h / R) 2 ] 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
It is displayed in. However, R is the radius of curvature of the paraxial axis. "E-X" means " x10 -X ". The aspherical surface is marked with * on the right side of the surface number in each table. Table 1 shows the relationship between each of the above conditional expressions and the numerical data.
数値データ1
単位 mm
面データ
面番号 r d nd νd θgF
1 -34.245 1.10 1.61340 44.3
2 51.752 1.16
3 136.382 6.98 1.91082 35.3
4 -22.773 1.00 1.85478 24.8
5 -69.705 0.30
6 28.667 5.32 1.91082 35.3
7 -255.377 0.30
8 33.178 6.27 1.59282 68.6 0.5441
9 -48.343 1.00 1.73800 32.3 0.5899
10 20.267 4.11
11(絞り) ∞ 4.08
12 -19.197 2.30 1.76385 48.5 0.5589
13 -12.710 0.72 1.67542 34.8 0.5825
14 177.418 0.30
15 32.469 7.65 1.88300 40.8
16 -15.160 0.78 1.67270 32.1
17 -42.629 1.52
18 -20.007 0.82 1.51742 52.4
19 40.687 3.81 1.85135 40.1
20* -122.383 (可変)
21 99.228 5.55 1.88300 40.8
22 -27.877 0.92 2.00069 25.5
23 -138.637 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 1
Unit mm
Surface data Surface number rd nd νd θgF
1 -34.245 1.10 1.61340 44.3
2 51.752 1.16
3 136.382 6.98 1.91082 35.3
4 -22.773 1.00 1.85478 24.8
5 -69.705 0.30
6 28.667 5.32 1.91082 35.3
7 -255.377 0.30
8 33.178 6.27 1.59282 68.6 0.5441
9 -48.343 1.00 1.73800 32.3 0.5899
10 20.267 4.11
11 (Aperture) ∞ 4.08
12 -19.197 2.30 1.76385 48.5 0.5589
13 -12.710 0.72 1.67542 34.8 0.5825
14 177.418 0.30
15 32.469 7.65 1.88300 40.8
16 -15.160 0.78 1.67270 32.1
17 -42.629 1.52
18 -20.007 0.82 1.51742 52.4
19 40.687 3.81 1.85135 40.1
20 * -122.383 (variable)
21 99.228 5.55 1.88300 40.8
22 -27.877 0.92 2.00069 25.5
23 -138.637 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞
非球面データ
第20面
K = 0.00000e+000 A 4= 2.81172e-005 A 6=-5.36397e-008 A 8= 1.08573e-009 A10=-7.33305e-012 A12= 1.98301e-014
各種データ
焦点距離 32.34
Fナンバー 1.45
半画角(度) 22.90
レンズ全長 68.28
BF 11.20
INF 至近
d20 1.10 9.71
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.53 49.52
2 21 84.74 6.47
近距離撮像倍率:-0.188
20th surface of aspherical data
K = 0.00000e + 000 A 4 = 2.81172e-005 A 6 = -5.36397e-008 A 8 = 1.08573e-009 A10 = -7.33305e-012 A12 = 1.98301e-014
Various data focal length 32.34
F number 1.45
Half angle of view (degrees) 22.90
Lens total length 68.28
BF 11.20
Close to INF
d20 1.10 9.71
Lens group data group Start surface Focal length Lens configuration length
1 1 38.53 49.52
2 21 84.74 6.47
Short-distance image magnification: -0.188
数値データ2
単位 mm
面データ
面番号 r d nd νd θgF
1 -36.349 1.05 1.61340 44.3
2 37.459 2.11
3 156.843 4.60 1.91082 35.3
4 -37.401 1.00 1.85478 24.8
5 -111.264 0.15
6 40.893 5.82 1.76385 48.5
7 -56.897 0.15
8 18.350 6.97 1.69700 48.5 0.5589
9 562.934 0.90 1.74951 35.3 0.5818
10 14.199 5.74
11(絞り) ∞ 3.18
12 -26.246 0.60 1.67300 38.2 0.5754
13 13.144 3.25 1.76385 48.5 0.5589
14 47.624 0.15
15 25.764 6.25 1.88300 40.8
16 -17.437 0.70 1.58144 40.8
17 258.711 3.12
18 -17.043 0.75 1.71736 29.5
19 -46.972 0.30
20 83.904 2.97 1.85135 40.1
21* -57.697 (可変)
22 74.180 3.92 1.80400 46.6
23 -46.887 0.90 2.00069 25.5
24 -184.643 8.52
25 ∞ 1.75 1.54400 60.0
26 ∞ 1.55
像面 ∞
Numerical data 2
Unit mm
Surface data Surface number rd nd νd θgF
1 -36.349 1.05 1.61340 44.3
2 37.459 2.11
3 156.843 4.60 1.91082 35.3
4-37.401 1.00 1.85478 24.8
5 -111.264 0.15
6 40.893 5.82 1.76385 48.5
7 -56.897 0.15
8 18.350 6.97 1.69700 48.5 0.5589
9 562.934 0.90 1.74951 35.3 0.5818
10 14.199 5.74
11 (Aperture) ∞ 3.18
12 -26.246 0.60 1.67300 38.2 0.5754
13 13.144 3.25 1.76385 48.5 0.5589
14 47.624 0.15
15 25.764 6.25 1.88300 40.8
16 -17.437 0.70 1.58144 40.8
17 258.711 3.12
18 -17.043 0.75 1.71736 29.5
19 -46.972 0.30
20 83.904 2.97 1.85135 40.1
21 * -57.697 (variable)
22 74.180 3.92 1.80400 46.6
23 -46.887 0.90 2.00069 25.5
24 -184.643 8.52
25 ∞ 1.75 1.54400 60.0
26 ∞ 1.55
Image plane ∞
非球面データ
第21面
K = 0.00000e+000 A 4= 3.46800e-005 A 6=-4.45749e-008 A 8= 9.40073e-010 A10=-3.72875e-012 A12= 8.03246e-015
各種データ
広角
焦点距離 32.00
Fナンバー 1.45
半画角(度) 23.12
レンズ全長 66.94
BF 11.20
INF 至近
d21 1.16 9.00
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.15 49.77
2 22 83.21 4.82
近距離撮像倍率:-0.173
21st surface of aspherical data
K = 0.00000e + 000 A 4 = 3.46800e-005 A 6 = -4.45749e-008 A 8 = 9.40073e-010 A10 = -3.72875e-012 A12 = 8.03246e-015
Various data
Wide angle
Focal length 32.00
F number 1.45
Half angle of view (degrees) 23.12
Lens total length 66.94
BF 11.20
Close to INF
d21 1.16 9.00
Lens group data group Start surface Focal length Lens configuration length
1 1 38.15 49.77
2 22 83.21 4.82
Short-distance image magnification: -0.173
数値データ3
単位 mm
面データ
面番号 r d nd νd θgF
1 -34.217 1.10 1.61340 44.3
2 51.992 1.16
3 137.147 6.98 1.91082 35.3
4 -22.754 1.00 1.85478 24.8
5 -69.791 0.30
6 28.676 5.32 1.91082 35.3
7 -257.267 0.30
8 33.160 6.27 1.59522 67.7 0.5442
9 -48.342 1.00 1.73800 32.3 0.5899
10 20.242 4.10
11(絞り) ∞ 4.08
12 -19.159 2.30 1.76385 48.5 0.5589
13 -12.686 0.72 1.67542 34.8 0.5825
14 179.943 0.30
15 32.368 7.65 1.88300 40.8
16 -15.173 0.78 1.67270 32.1
17 -43.332 1.53
18 -20.058 0.82 1.51742 52.4
19 40.757 3.81 1.85135 40.1
20* -120.561 (可変)
21 99.378 5.55 1.88300 40.8
22 -27.864 0.92 2.00069 25.5
23 -137.906 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 3
Unit mm
Surface data Surface number rd nd νd θgF
1 -34.217 1.10 1.61340 44.3
2 51.992 1.16
3 137.147 6.98 1.91082 35.3
4 -22.754 1.00 1.85478 24.8
5 -69.791 0.30
6 28.676 5.32 1.91082 35.3
7 -257.267 0.30
8 33.160 6.27 1.59522 67.7 0.5442
9 -48.342 1.00 1.73800 32.3 0.5899
10 20.242 4.10
11 (Aperture) ∞ 4.08
12 -19.159 2.30 1.76385 48.5 0.5589
13 -12.686 0.72 1.67542 34.8 0.5825
14 179.943 0.30
15 32.368 7.65 1.88300 40.8
16 -15.173 0.78 1.67270 32.1
17 -43.332 1.53
18 -20.058 0.82 1.51742 52.4
19 40.757 3.81 1.85135 40.1
20 * -120.561 (variable)
21 99.378 5.55 1.88300 40.8
22 -27.864 0.92 2.00069 25.5
23 -137.906 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞
非球面データ
第20面
K = 0.00000e+000 A 4= 2.83327e-005 A 6=-5.45082e-008 A 8= 1.10996e-009 A10=-7.56124e-012 A12= 2.06296e-014
各種データ
INF
焦点距離 32.34
Fナンバー 1.45
半画角(度) 22.90
レンズ全長 68.27
BF 11.20
INF 至近
d20 1.09 9.71
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.54 49.51
2 21 84.58 6.47
近距離撮像倍率:-0.188
20th surface of aspherical data
K = 0.00000e + 000 A 4 = 2.83327e-005 A 6 = -5.45082e-008 A 8 = 1.10996e-009 A10 = -7.56124e-012 A12 = 2.06296e-014
Various data
INF
Focal length 32.34
F number 1.45
Half angle of view (degrees) 22.90
Lens total length 68.27
BF 11.20
Close to INF
d20 1.09 9.71
Lens group data group Start surface Focal length Lens configuration length
1 1 38.54 49.51
2 21 84.58 6.47
Short-distance image magnification: -0.188
数値データ4
単位 mm
面データ
面番号 r d nd νd θgF
1 -34.023 1.10 1.61340 44.3
2 50.577 1.19
3 132.441 6.98 1.91082 35.3
4 -22.595 1.00 1.85478 24.8
5 -70.125 0.30
6 28.705 5.32 1.91082 35.3
7 -241.320 0.30
8 32.296 6.27 1.59282 68.6 0.5441
9 -47.599 1.00 1.73800 32.3 0.5899
10 19.941 4.16
11(絞り) ∞ 4.03
12 -19.667 2.30 1.74400 44.8 0.5655
13 -12.814 0.72 1.67542 34.8 0.5825
14 163.437 0.30
15 32.304 7.65 1.88300 40.8
16 -15.165 0.78 1.67270 32.1
17 -44.500 1.56
18 -20.105 0.82 1.51742 52.4
19 40.810 3.81 1.85135 40.1
20* -117.580 (可変)
21 97.529 5.55 1.88300 40.8
22 -26.508 0.92 2.00069 25.5
23 -134.491 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.56
像面 ∞
Numerical data 4
Unit mm
Surface data Surface number rd nd νd θgF
1 -34.023 1.10 1.61340 44.3
2 50.577 1.19
3 132.441 6.98 1.91082 35.3
4 -22.595 1.00 1.85478 24.8
5 -70.125 0.30
6 28.705 5.32 1.91082 35.3
7 -241.320 0.30
8 32.296 6.27 1.59282 68.6 0.5441
9 -47.599 1.00 1.73800 32.3 0.5899
10 19.941 4.16
11 (Aperture) ∞ 4.03
12 -19.667 2.30 1.74400 44.8 0.5655
13 -12.814 0.72 1.67542 34.8 0.5825
14 163.437 0.30
15 32.304 7.65 1.88300 40.8
16 -15.165 0.78 1.67270 32.1
17 -44.500 1.56
18 -20.105 0.82 1.51742 52.4
19 40.810 3.81 1.85135 40.1
20 * -117.580 (variable)
21 97.529 5.55 1.88300 40.8
22 -26.508 0.92 2.00069 25.5
23 -134.491 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.56
Image plane ∞
非球面データ
第20面
K = 0.00000e+000 A 4= 2.82111e-005 A 6=-6.19904e-008 A 8= 1.24472e-009 A10=-8.90674e-012 A12= 2.57258e-014
各種データ
焦点距離 32.40
Fナンバー 1.45
半画角(度) 22.86
レンズ全長 68.26
BF 11.20
INF 至近
d20 1.00 9.71
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.70 49.59
2 21 83.62 6.47
近距離撮像倍率:-0.188
20th surface of aspherical data
K = 0.00000e + 000 A 4 = 2.82111e-005 A 6 = -6.19904e-008 A 8 = 1.24472e-009 A10 = -8.90674e-012 A12 = 2.57258e-014
Various data focal length 32.40
F number 1.45
Half angle of view (degrees) 22.86
Lens total length 68.26
BF 11.20
Close to INF
d20 1.00 9.71
Lens group data group Start surface Focal length Lens configuration length
1 1 38.70 49.59
2 21 83.62 6.47
Short-distance image magnification: -0.188
数値データ5
単位 mm
面データ
面番号 r d nd νd θgF
1 -34.023 1.10 1.61340 44.3
2 52.627 1.11
3 131.949 6.98 1.91082 35.3
4 -22.855 1.00 1.85478 24.8
5 -69.772 0.30
6 28.622 5.32 1.91082 35.3
7 -268.400 0.30
8 33.304 6.27 1.59522 67.7 0.5442
9 -47.947 1.00 1.73800 32.3 0.5899
10 20.085 4.23
11(絞り) ∞ 3.97
12 -19.016 2.30 1.76385 48.5 0.5589
13 -12.535 0.72 1.67542 34.8 0.5825
14 218.291 0.30
15 32.261 7.65 1.88300 40.8
16 -15.189 0.78 1.67270 32.1
17 -42.579 1.53
18 -19.870 0.82 1.51742 52.4
19 40.110 3.81 1.85135 40.1
20* -167.450 1.18
21 97.367 5.55 1.88300 40.8
22 -27.249 0.92 2.00069 25.5
23 -115.681 (可変)
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 5
Unit mm
Surface data Surface number rd nd νd θgF
1 -34.023 1.10 1.61340 44.3
2 52.627 1.11
3 131.949 6.98 1.91082 35.3
4 -22.855 1.00 1.85478 24.8
5 -69.772 0.30
6 28.622 5.32 1.91082 35.3
7 -268.400 0.30
8 33.304 6.27 1.59522 67.7 0.5442
9 -47.947 1.00 1.73800 32.3 0.5899
10 20.085 4.23
11 (Aperture) ∞ 3.97
12 -19.016 2.30 1.76385 48.5 0.5589
13 -12.535 0.72 1.67542 34.8 0.5825
14 218.291 0.30
15 32.261 7.65 1.88300 40.8
16 -15.189 0.78 1.67270 32.1
17 -42.579 1.53
18 -19.870 0.82 1.51742 52.4
19 40.110 3.81 1.85135 40.1
20 * -167.450 1.18
21 97.367 5.55 1.88300 40.8
22 -27.249 0.92 2.00069 25.5
23 -115.681 (variable)
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞
非球面データ
第20面
K = 0.00000e+000 A 4= 2.84400e-005 A 6=-5.05232e-008 A 8= 9.88419e-010 A10=-6.60991e-012 A12= 1.76998e-014
各種データ
INF
焦点距離 32.58
Fナンバー 1.45
半画角(度) 22.75
レンズ全長 68.33
BF 11.20
INF 至近
d23 8.52 11.81
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 32.58 57.13
近距離撮像倍率:-0.101
20th surface of aspherical data
K = 0.00000e + 000 A 4 = 2.84400e-005 A 6 = -5.05232e-008 A 8 = 9.88419e-010 A10 = -6.60991e-012 A12 = 1.76998e-014
Various data
INF
Focal length 32.58
F number 1.45
Half angle of view (degrees) 22.75
Lens total length 68.33
BF 11.20
Close to INF
d23 8.52 11.81
Lens group data group Start surface Focal length Lens configuration length
1 1 32.58 57.13
Short-distance image magnification: -0.101
数値データ6
単位 mm
面データ
面番号 r d nd νd θgF
1 -33.557 1.10 1.61340 44.3
2 53.990 1.16
3 151.452 6.98 1.91082 35.3
4 -22.261 1.00 1.85478 24.8
5 -68.759 0.30
6 29.114 5.32 1.91082 35.3
7 -228.185 0.30
8 32.758 6.27 1.59282 68.6 0.5441
9 -46.226 1.00 1.73800 32.3 0.5899
10 20.399 4.08
11(絞り) ∞ 4.10
12 -18.889 2.30 1.76385 48.5 0.5589
13 -12.578 0.72 1.65412 39.7 0.5737
14 184.803 0.30
15 31.870 7.65 1.88300 40.8
16 -15.220 0.78 1.67270 32.1
17 -49.250 1.56
18 -20.733 0.82 1.54814 45.8
19 42.768 3.81 1.85135 40.1
20* -97.634 (可変)
21 84.211 5.55 1.88300 40.8
22 -27.365 0.92 2.00069 25.5
23 -167.024 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 6
Unit mm
Surface data Surface number rd nd νd θgF
1 -33.557 1.10 1.61340 44.3
2 53.990 1.16
3 151.452 6.98 1.91082 35.3
4 -22.261 1.00 1.85478 24.8
5 -68.759 0.30
6 29.114 5.32 1.91082 35.3
7 -228.185 0.30
8 32.758 6.27 1.59282 68.6 0.5441
9 -46.226 1.00 1.73800 32.3 0.5899
10 20.399 4.08
11 (Aperture) ∞ 4.10
12 -18.889 2.30 1.76385 48.5 0.5589
13 -12.578 0.72 1.65412 39.7 0.5737
14 184.803 0.30
15 31.870 7.65 1.88300 40.8
16 -15.220 0.78 1.67270 32.1
17 -49.250 1.56
18 -20.733 0.82 1.54814 45.8
19 42.768 3.81 1.85135 40.1
20 * -97.634 (variable)
21 84.211 5.55 1.88300 40.8
22 -27.365 0.92 2.00069 25.5
23 -167.024 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞
非球面データ
第20面
K = 0.00000e+000 A 4= 2.85526e-005 A 6=-5.30617e-008 A 8= 1.07497e-009 A10=-7.29660e-012 A12= 1.99428e-014
各種データ
焦点距離 32.15
Fナンバー 1.45
半画角(度) 23.02
レンズ全長 68.22
BF 11.20
INF 至近
d20 1.00 9.72
レンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.71 49.55
2 21 82.60 6.47
近距離撮像倍率:-0.187
20th surface of aspherical data
K = 0.00000e + 000 A 4 = 2.85526e-005 A 6 = -5.30617e-008 A 8 = 1.07497e-009 A10 = -7.29660e-012 A12 = 1.99428e-014
Various data focal length 32.15
F number 1.45
Half angle of view (degrees) 23.02
Lens total length 68.22
BF 11.20
Close to INF
d20 1.00 9.72
Lens group data group Start surface Focal length Lens configuration length
1 1 38.71 49.55
2 21 82.60 6.47
Short-distance image magnification: -0.187
LF 接合レンズ LR 接合レンズ LFP 正レンズ
LFN 負レンズ LRP 正レンズ LRN 負レンズ
L1 第1レンズ群 L2 第2レンズ群
SP 開口絞り
LF Bonded Lens LR Bonded Lens LFP Positive Lens LFN Negative Lens LRP Positive Lens LRN Negative Lens L1 1st Lens Group L2 2nd Lens Group SP Aperture Aperture
Claims (11)
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpR、前記接合レンズLRの焦点距離をfR、全系の焦点距離をf、前記前群に含まれる正レンズの材料の屈折率をNdFPとするとき、
θgFnR-(-0.00240νdnR+0.6694)<0.0
30.0<νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)
42.0<νdpR<80.0
-0.95<fR/f<-0.70
1.90<NdFP
なる条件式を満足することを特徴とする撮像光学系。 In an imaging optical system composed of a front group, an aperture stop, and a rear group arranged in order from the object side to the image side.
The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
The Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR , respectively, and the focal lengths of the junction lens LR are fR. When the focal length of the entire system is f and the refractive index of the material of the positive lens included in the front group is NdFP ,
θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0 <νdnR
0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0 <νdpR <80.0
-0.95 <fR / f <-0.70
1.90 <NdFP
An imaging optical system characterized by satisfying the conditional expression.
NdnR-NdpR<-0.05
なる条件式を満足することを特徴とする請求項1に記載の撮像光学系。 When the refractive index of the material of the negative lens LRN is NdnR and the refractive index of the material of the positive lens LRP is NdpR,
NdnR-NdpR <-0.05
The imaging optical system according to claim 1, wherein the conditional expression is satisfied.
-30.0<νdnR-νdpR<-5.0
なる条件式を満足することを特徴とする撮像光学系。 In the imaging optical system according to claim 1 or 2.
-30.0 <νdnR-νdpR <-5.0
An imaging optical system characterized by satisfying the conditional expression.
前記負レンズLFNと前記正レンズLFPの材料のアッベ数を各々νdnF、νdpF、前記負レンズLFNと前記正レンズLFPの材料の部分分散比を各々θgFnF、θgFpFとするとき、
θgFnF-(-0.00240νdnF+0.6694)<0.0
30.0<νdnF
0.0<θgFpF-(-0.00083νdpF+0.5981)
42.0<νdpF<80.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の撮像光学系。 The front group has a bonded lens LF arranged adjacent to the aperture stop, and the bonded lens LF is configured by bonding a negative lens LFN and a positive lens LFP.
When the Abbe numbers of the materials of the negative lens LFN and the positive lens LFP are νdnF and νdpF, respectively, and the partial dispersion ratios of the materials of the negative lens LFN and the positive lens LFP are θgFnF and θgFpF, respectively.
θgFnF- (-0.00240νdnF + 0.6694) <0.0
30.0 <νdnF
0.0 <θgFpF- (-0.00083νdpF + 0.5981)
42.0 <νdpF <80.0
The imaging optical system according to any one of claims 1 to 3 , wherein the conditional expression is satisfied.
0.05<NdnF-NdpF
なる条件式を満足することを特徴とする請求項4または5に記載の撮像光学系。 When the refractive index of the material of the negative lens LFN is NdnF and the refractive index of the material of the positive lens LFP is NdpF,
0.05 <NdnF-NdpF
The imaging optical system according to claim 4 or 5 , wherein the conditional expression is satisfied.
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpR、前記接合レンズLRの焦点距離をfR、全系の焦点距離をf、前記負レンズLRNの材料の屈折率をNdnR、前記正レンズLRPの材料の屈折率をNdpRとするとき、The Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR, respectively, and the focal distances of the junction lens LR are fR. When the focal distance of the entire system is f, the refractive index of the material of the negative lens LRN is NdnR, and the refractive index of the material of the positive lens LRP is NdpR.
θgFnR-(-0.00240νdnR+0.6694)<0.0θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0<νdnR30.0 <νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0<νdpR<80.042.0 <νdpR <80.0
-0.95<fR/f<-0.70-0.95 <fR / f <-0.70
NdnR-NdpR<-0.05NdnR-NdpR <-0.05
なる条件式を満足することを特徴とする撮像光学系。An imaging optical system characterized by satisfying the conditional expression.
前記前群に含まれ前記開口絞りに隣接して配置されたレンズは、像側のレンズ面が凹形状であり、前記後群の最も物体側には接合レンズLRが配置され、The lens included in the front group and arranged adjacent to the aperture diaphragm has a concave lens surface on the image side, and the junction lens LR is arranged on the most object side of the rear group.
前記接合レンズLRは物体側のレンズ面が凹形状であり、負レンズLRNと正レンズLRPが接合されて構成されており、The bonded lens LR has a concave lens surface on the object side, and is configured by bonding a negative lens LRN and a positive lens LRP.
前記前群は、前記開口絞りに隣接して配置された接合レンズLFを有し、該接合レンズLFは負レンズLFNと正レンズLFPが接合されて構成されており、The front group has a bonded lens LF arranged adjacent to the aperture stop, and the bonded lens LF is configured by bonding a negative lens LFN and a positive lens LFP.
前記負レンズLRNと前記正レンズLRPの材料のアッベ数を各々νdnR、νdpR、前記負レンズLRNと前記正レンズLRPの材料の部分分散比を各々θgFnR、θgFpR、前記接合レンズLRの焦点距離をfR、全系の焦点距離をf、前記負レンズLFNと前記正レンズLFPの材料のアッベ数を各々νdnF、νdpF、前記負レンズLFNと前記正レンズLFPの材料の部分分散比を各々θgFnF、θgFpFとするとき、The Abbe numbers of the materials of the negative lens LRN and the positive lens LRP are νdnR and νdpR, respectively, the partial dispersion ratios of the materials of the negative lens LRN and the positive lens LRP are θgFnR and θgFpR, respectively, and the focal distances of the junction lens LR are fR. The focal distance of the entire system is f, the Abbe numbers of the materials of the negative lens LFN and the positive lens LFP are νdnF and νdpF, respectively, and the partial dispersion ratios of the materials of the negative lens LFN and the positive lens LFP are θgFnF and θgFpF, respectively. and when,
θgFnR-(-0.00240νdnR+0.6694)<0.0θgFnR- (-0.00240νdnR + 0.6694) <0.0
30.0<νdnR30.0 <νdnR
0.0<θgFpR-(-0.00083νdpR+0.5981)0.0 <θgFpR- (-0.00083νdpR + 0.5981)
42.0<νdpR<80.042.0 <νdpR <80.0
-0.95<fR/f<-0.70-0.95 <fR / f <-0.70
θgFnF-(-0.00240νdnF+0.6694)<0.0θgFnF- (-0.00240νdnF + 0.6694) <0.0
30.0<νdnF30.0 <νdnF
0.0<θgFpF-(-0.00083νdpF+0.5981)0.0 <θgFpF- (-0.00083νdpF + 0.5981)
42.0<νdpF<80.042.0 <νdpF <80.0
なる条件式を満足することを特徴とする撮像光学系。An imaging optical system characterized by satisfying the conditional expression.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017081260A JP6991732B2 (en) | 2017-04-17 | 2017-04-17 | Imaging optical system and imaging equipment using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017081260A JP6991732B2 (en) | 2017-04-17 | 2017-04-17 | Imaging optical system and imaging equipment using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018180366A JP2018180366A (en) | 2018-11-15 |
JP6991732B2 true JP6991732B2 (en) | 2022-02-03 |
Family
ID=64276591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017081260A Active JP6991732B2 (en) | 2017-04-17 | 2017-04-17 | Imaging optical system and imaging equipment using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6991732B2 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351973A (en) | 2004-06-08 | 2005-12-22 | Konica Minolta Business Technologies Inc | Reading lens |
JP2008026593A (en) | 2006-07-21 | 2008-02-07 | Fujinon Corp | Image reading lens, image reading optical system and image reader |
JP2010266577A (en) | 2009-05-13 | 2010-11-25 | Canon Inc | Optical system and optical equipment having the same |
JP2011053663A (en) | 2009-08-04 | 2011-03-17 | Konica Minolta Opto Inc | Optical system, image projection apparatus including the same and image pickup device |
JP2011253050A (en) | 2010-06-02 | 2011-12-15 | Canon Inc | Optical system and optical equipment having the same |
JP2011013469A5 (en) | 2009-07-02 | 2012-08-02 | ||
JP2013041205A (en) | 2011-08-19 | 2013-02-28 | Fujifilm Corp | Image reading lens and image reading apparatus |
JP2014081457A (en) | 2012-10-16 | 2014-05-08 | Ricoh Imaging Co Ltd | Large diameter telephoto lens system |
JP2015034892A (en) | 2013-08-09 | 2015-02-19 | キヤノン株式会社 | Zoom lens |
US20150241670A1 (en) | 2012-11-19 | 2015-08-27 | Fujifilm Corporation | Projection zoom lens and projection type display device |
DE102015112993B3 (en) | 2015-08-06 | 2017-01-19 | Jos. Schneider Optische Werke Gmbh | Photographic lens |
JP2017032809A (en) | 2015-08-03 | 2017-02-09 | 株式会社シグマ | Image forming optics |
JP2018005099A (en) | 2016-07-07 | 2018-01-11 | 株式会社シグマ | Large-aperture lens |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5424745B2 (en) * | 2009-07-02 | 2014-02-26 | キヤノン株式会社 | Optical system and optical apparatus having the same |
-
2017
- 2017-04-17 JP JP2017081260A patent/JP6991732B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351973A (en) | 2004-06-08 | 2005-12-22 | Konica Minolta Business Technologies Inc | Reading lens |
JP2008026593A (en) | 2006-07-21 | 2008-02-07 | Fujinon Corp | Image reading lens, image reading optical system and image reader |
JP2010266577A (en) | 2009-05-13 | 2010-11-25 | Canon Inc | Optical system and optical equipment having the same |
JP2011013469A5 (en) | 2009-07-02 | 2012-08-02 | ||
JP2011053663A (en) | 2009-08-04 | 2011-03-17 | Konica Minolta Opto Inc | Optical system, image projection apparatus including the same and image pickup device |
JP2011253050A (en) | 2010-06-02 | 2011-12-15 | Canon Inc | Optical system and optical equipment having the same |
JP2013041205A (en) | 2011-08-19 | 2013-02-28 | Fujifilm Corp | Image reading lens and image reading apparatus |
JP2014081457A (en) | 2012-10-16 | 2014-05-08 | Ricoh Imaging Co Ltd | Large diameter telephoto lens system |
US20150241670A1 (en) | 2012-11-19 | 2015-08-27 | Fujifilm Corporation | Projection zoom lens and projection type display device |
JP2015034892A (en) | 2013-08-09 | 2015-02-19 | キヤノン株式会社 | Zoom lens |
JP2017032809A (en) | 2015-08-03 | 2017-02-09 | 株式会社シグマ | Image forming optics |
DE102015112993B3 (en) | 2015-08-06 | 2017-01-19 | Jos. Schneider Optische Werke Gmbh | Photographic lens |
JP2018005099A (en) | 2016-07-07 | 2018-01-11 | 株式会社シグマ | Large-aperture lens |
Also Published As
Publication number | Publication date |
---|---|
JP2018180366A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6566646B2 (en) | Zoom lens and imaging apparatus having the same | |
US10670834B2 (en) | Zoom lens and image pickup apparatus | |
JP6391315B2 (en) | Zoom lens and imaging apparatus having the same | |
US8958007B2 (en) | Zoom lens and image pickup apparatus having the same | |
JP2005215385A (en) | Zoom lens and imaging device having same | |
JP2009288618A (en) | Zoom lens and imaging apparatus equipped with the same | |
JP7123579B2 (en) | Zoom lens and imaging device | |
JP2008158320A (en) | Zoom lens | |
CN111796406A (en) | Zoom lens and imaging apparatus having the same | |
JP2019158960A (en) | Zoom lens and image capturing device | |
JP5127352B2 (en) | Zoom lens and imaging apparatus having the same | |
WO2013031180A1 (en) | Zoom lens and imaging device | |
JP5136776B2 (en) | PHOTOGRAPHIC LENS, OPTICAL DEVICE EQUIPPED WITH THIS PHOTOGRAPHIC LENS, AND IMAGE-FORMING METHOD | |
JP6164894B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6779710B2 (en) | Zoom lens and imaging device with it | |
JP6108733B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6598147B2 (en) | Zoom lens | |
JP2020204744A (en) | Optical system and optical device | |
JP2020181071A (en) | Optical system and image capturing device having the same | |
JP2014202806A5 (en) | ||
JP5767330B2 (en) | Zoom lens and imaging device | |
JP2017116702A (en) | Zoom lens and imaging apparatus including the same | |
JP2009058818A (en) | Zoom lens | |
JP6436653B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6995492B2 (en) | Imaging optical system and imaging equipment using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20191203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211208 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6991732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |