JP6848199B2 - 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 - Google Patents
非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 Download PDFInfo
- Publication number
- JP6848199B2 JP6848199B2 JP2016076293A JP2016076293A JP6848199B2 JP 6848199 B2 JP6848199 B2 JP 6848199B2 JP 2016076293 A JP2016076293 A JP 2016076293A JP 2016076293 A JP2016076293 A JP 2016076293A JP 6848199 B2 JP6848199 B2 JP 6848199B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode material
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
第2発明の非水系電解質二次電池用正極材料は、第1発明において、前記ケイ酸リチウムが、Li2SiO3、Li4SiO4から選択される少なくとも1種であることを特徴とする。
第3発明の非水系電解質二次電池用正極材料は、第1発明または第2発明において、前記正極材料には、さらに非水系有機溶剤が含まれることを特徴とする。
第4発明の非水系電解質二次電池は、第1発明から第3発明のいずれかの非水系電解質二次電池用正極材料を含む正極を有することを特徴とする。
第5発明の非水系電解質二次電池用正極材料の製造方法は、一般式LizNi1−x−yCoxMyO2(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径が0.01〜0.5μmの範囲にあるケイ酸リチウムと、を混合し正極材料とする工程を含み、該正極材料に含まれるSi量が、前記リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0原子%であることを特徴とする。
第6発明の非水系電解質二次電池用正極材料の製造方法は、第5発明において、前記リチウム金属複合酸化物粉末と、前記ケイ酸リチウムと、を混合する工程の前に、前記リチウム金属複合酸化物粉末を水洗する工程を含むことを特徴とする。
第7発明の非水系電解質二次電池用正極材料の製造方法は、第5発明または第6発明のいずれかにおいて、前記ケイ酸リチウムが、Li2SiO3、Li4SiO4から選択される少なくとも1種であることを特徴とする。
第8発明の非水系電解質二次電池用正極材料の製造方法は、第5発明から第7発明のいずれかにおいて、前記リチウム金属複合酸化物粉末と、前記ケイ酸リチウムと、を混合する工程において、非水系有機溶剤を添加することを特徴とする。
また、正極材料に含まれるSi量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0原子%であることにより、非水系電解質二次電池の、高い充放電容量と出力特性を両立することができる。
第2発明によれば、ケイ酸リチウムが、Li2SiO3、Li4SiO4、から選択される少なくとも1種であることにより、これらの化合物が、高いリチウムイオン伝導率を有するものであるので、リチウム金属複合酸化物粉末と混合することで、非水系電解質二次電池の、より高い充放電量と出力特性を得ることができる。
第3発明によれば、正極材料には、さらに非水系有機溶剤が含まれることにより、微粒子であるケイ酸リチウムの凝集が抑制され、正極材料中でのケイ酸リチウムの分散性が一層向上する。
第4発明によれば、非水系電解質二次電池が、第1発明から第3発明のいずれかに記載の非水系電解質二次電池用正極材料を含む正極を有することにより、高容量とともに高出力な非水系電解質二次電池を得ることができる。
第5発明によれば、リチウム金属複合酸化物粉末と、粒径が0.01〜0.5μmの範囲にあるケイ酸リチウムと、を混合する、非水系電解質二次電池用正極材料の製造方法により、この製造方法により得られた正極材料が、電池の正極に用いられると、ケイ酸リチウムの正極材料内の分散性を向上させることができ、高容量とともに高出力な非水系電解質二次電池を実現することができる。
また、正極材料に含まれるSi量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0原子%であることにより、製造された非水系電解質二次電池において、高い充放電容量と出力特性を両立することができる。
第6発明によれば、リチウム金属複合酸化物粉末と、ケイ酸リチウムと、を混合する前に、リチウム金属複合酸化物粉末を水洗する工程を含むことにより、製造された正極材料の電池容量および安全性を向上させることができる。
第7発明によれば、前記ケイ酸リチウムが、Li2SiO3、Li4SiO4から選択される少なくとも1種であることにより、これらの化合物が、高いリチウムイオン伝導率を有するものであるので、これらの化合物がリチウム金属複合酸化物粉末と混合することで、非水系電解質二次電池の高い充放電量と出力特性を得ることができる。
第8発明によれば、リチウム金属複合酸化物粉末と、ケイ酸リチウムと、を混合する際に、非水系有機溶剤を添加することにより、微粒子であるケイ酸リチウムの凝集が抑制され、正極材料中でのケイ酸リチウムの分散性が一層向上する。
本発明の非水系電解質二次電池用正極材料は、一般式LizNi1−x−yCoxMyO2(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子と、一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.5μmのケイ酸リチウムと、の混合物を含むことを特徴とするものである。
本発明においては、母材となる正極活物質として上記一般式で表されるリチウム金属複合酸化物粉末を用いることにより、高い充放電容量が得られ、さらにリチウム金属複合酸化物粉末と、粒径が0.01〜0.5μmの範囲にあるケイ酸リチウムを混合することにより、充放電容量の低下を抑制しながら出力特性を向上させるものである。
一方で、リチウムイオン伝導率が高い化合物はリチウムイオンの移動を促す効果があるため、正極活物質の表面をこのような高リチウム伝導性物質で被覆することにより正極活物質の表面におけるインターカレーションの促進が可能である。しかし、従来の一般的な被覆手法では熱処理等の後処理が必要であり、正極活物質が有する優れた電池特性の劣化を招く恐れもある。
また、粒径が0.5μmを超えると、正極材料内にケイ酸リチウムを均一に分散させることができず、反応抵抗の低減効果が十分に得られない。粒径は、レーザー回折散乱法を用いて測定することができ、D10以上D90以下を粒径の範囲とする。ここで、D10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、D90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
なお、粒径が上記範囲を超える場合には、混合前に粉砕することが好ましい。
これらのケイ酸リチウムは、高いリチウムイオン伝導率を有するものであり、リチウム金属複合酸化物粉末と混合することで上記効果が十分に得られる。中でも、Li4SiO4が、他のケイ酸リチウムと比較して、高いリチウム伝導率を有するため、出力特性の改善の効果が大きく、より好ましいと考えられる。
Li/Meが0.97未満であると、上記正極材量を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Meが1.20を超えると、正極活材料の放電容量が低下するとともに、正極の反応抵抗も増加してしまう。そこで、より大きな放電容量を得るためには、Li/Meを1.10以下とすることが好ましい。
一方、Coの添加量を示すxが0.01未満になると、サイクル特性や熱安定性が十分に得られない。したがって、電池に用いたときに十分な電池容量を得るためには、Mの添加量を示すyを0.15以下とすることが好ましい。
リチウム金属複合酸化物粉末は、比表面積が0.5〜2m2/gであることが好ましい。比表面積が0.5m2/g未満になると、電解液との接触が十分に得られず、出力特性や電池容量が低下することがある。また、比表面積が2m2/gを超えると、電解液の分解が促進され熱安定性が低下することがある。比表面積を0.5〜2m2/gとすることにより、電解液との接触を高めて出力特性や電池容量をより良好なものとするとともに熱安定性も確保することができる。また、正極材料の好ましい態様においては、正極材料の比表面積はリチウム金属複合酸化物粉末と同程度となる。
リチウム金属複合酸化物粉末と、ケイ酸リチウムを混合することにより得られる効果は、たとえば、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物など、本発明で掲げた正極活物質だけでなく一般的に使用されるリチウム二次電池用正極活物質にも適用できる。
これにより、ケイ酸リチウムの微粒子を、リチウム金属複合酸化物粉末表面に均一に分布させることができる。
この水洗は、公知の方法および条件でよく、リチウム金属複合酸化物粉末から過度にリチウムが溶出して電池特性が劣化しない範囲で行えばよい。
水洗した場合には、ケイ酸リチウムと混合しても、固液分離のみで乾燥せずにケイ酸リチウムと混合した後、乾燥してもいずれの方法でもよい。
また乾燥は、公知の方法および条件でよく、リチウム金属複合酸化物の電池特性が劣化しない範囲で行えばよい。
本発明の非水系電解質二次電池は、正極、負極および非水系電解液などからなり、一般の非水系電解質二次電池と同様の構成要素により構成される。
なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
本発明による非水系電解質二次電池用正極材料を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
まず、粉末状の正極材料、導電材、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
ここで、正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。
そのため、溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60〜95質量部とし、導電材の含有量を1〜20質量部とし、結着剤の含有量を1〜20質量部とすることが望ましい。
このようにして、シート状の正極を作製することができる。
作製したシート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法によってもよい。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。
使用する溶剤としては、具体的には、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
正極と負極との間には、セパレータを挟み込んで配置する。
セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤等を含んでいてもよい。
以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
本発明の正極活物質を用いた非水系電解質二次電池は、高容量で高出力となる。
特により好ましい形態で得られた正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、さらに高容量で高出力である。また、熱安定性が高く、安全性においても優れているものである。
以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
得られた非水系電解質二次電池用正極活物質の評価は、以下のように図3に示す電池を作製し、正極界面抵抗とレート特性を測定することで行なった。
非水系電解質二次電池用正極材料52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚み100μmにプレス成形して、正極(評価用電極)1を作製した。
次に作製した正極1を真空乾燥機中120℃で12時間乾燥した。
乾燥した正極(評価用電極)1、負極2、セパレータ3および電解液とを用いて、図3のコイン型電池10を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。
負極2には、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用い、電解液には、1MのLiPF6を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(宇部興産株式会社製)を用いた。セパレータ3には膜厚25μmのポリエチレン多孔膜を用いた。また、コイン型電池10は、ガスケット4とウェーブワッシャー5を有し、正極缶6と負極缶7とでコイン状の電池に組み立てられた。
得られたインピーダンススペクトルには、高周波領域と中間周波領域とに2つの半円が観測され、低周波領域に直線が観察されていることから、図2に示す等価回路モデルを組んで正極界面抵抗を解析した。ここで、Rsはバルク抵抗、R1は正極被膜抵抗、Rctは電解液/正極界面抵抗(界面のLi+移動抵抗)、Wはワーブルグ成分、CPE1、CPE2は定相要素を示す。
ニッケルを主成分とする酸化物と水酸化リチウムを混合して焼成する公知の技術で得られたLi1.02Ni0.82Co0.15Al0.03O2で表されるリチウム金属複合酸化物粉末を1.5g/mlの条件で水洗して正極材料の母材とした。母材の比表面積は、1.35m2/gであった。
なお、組成はICP法により分析し、ケイ酸リチウムの粒径はレーザー回折散乱法により確認を行い、比表面積は窒素ガス吸着BET法を用いて評価した。
この正極材料中のSi含有量をICP法により分析したところ、ニッケル、コバルトおよびMの原子数の合計に対して0.3原子%の組成であることを確認した。
これより、ケイ酸リチウム粉末とリチウム金属複合酸化物粉末の混合物の配合と正極材料の組成が同等であることも確認した。
得られた正極材料を用いて形成された正極を有するコイン型電池10について、電池特性を評価した。
母材となるリチウム金属複合酸化物粉末にケイ酸リチウム(Li4SiO4)粉末0.124gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は0.5原子%であった。
母材となるリチウム金属複合酸化物粉末にケイ酸リチウム(Li4SiO4)粉末0.248gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は1.0原子%であった。
母材となるリチウム金属複合酸化物粉末にケイ酸リチウム(Li2SiO3)粉末0.186gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は1.0原子%であった。
実施例1で母材として用いたリチウム金属複合酸化物粉末を正極活物質(正極材料)に用いてコイン型電池を作成し、その電池評価を行った。
母材となるリチウム金属複合酸化物粉末に、自転・公転ミキサーによる粉砕を行わなかった粒径5〜40μmのケイ酸リチウム(Li4SiO4)粉末0.074gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は0.3原子%であった。
母材となるリチウム金属複合酸化物粉末に、自転・公転ミキサーによる粉砕を行わなかった粒径5〜40μmのケイ酸リチウム(Li4SiO4)粉末0.124gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は0.5原子%であった。
母材となるリチウム金属複合酸化物粉末に、自転・公転ミキサーによる粉砕を行わなかった粒径5〜40μmのケイ酸リチウム(Li4SiO4)粉末0.248gを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。この時のSi含有率は1.0原子%であった。
以上の実施例結果を纏めて表1に示す。
実施例1〜4の正極材料は、本発明に従って製造されたため、この正極材料を用いた非水系電解質二次電池は、初期放電容量が従来と変わらず大きく、かつ比較例に比べ正極界面抵抗が低いものとなっており、優れた特性を有した電池が得られることが確認された。実施例1〜3は、ケイ酸リチウムとしてLi4SiO4を添加しているが、実施例4ではLi2SiO3を添加している。このため、実施例4は、実施例1〜3より正極界面抵抗がやや大きくなっている。
特に実施例3は、正極界面抵抗が良好である。
比較例2〜4は、ケイ酸リチウムLi4SiO4の粒径が5〜40μmと本発明の範囲から外れていたため、正極界面抵抗の低下が不十分であり、高出力化の要求に対応することが困難である。
また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。
なお、本発明は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
2 負極
3 セパレータ
4 ガスケット
5 ウェーブワッシャー
6 正極缶
7 負極缶
10 コイン型電池
Claims (8)
- 一般式LizNi1−x−yCoxMyO2(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、
粒径が0.01〜0.5μmの範囲にあるケイ酸リチウムと、
の混合物を含んだ正極材料であって、
該正極材料に含まれるSi量が、
前記リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0原子%である、
ことを特徴とする非水系電解質二次電池用正極材料。 - 前記ケイ酸リチウムが、
Li2SiO3、Li4SiO4から選択される少なくとも1種である、
ことを特徴とする請求項1に記載の非水系電解質二次電池用正極材料。 - 前記正極材料には、さらに非水系有機溶剤が含まれる、
ことを特徴とする請求項1から2のいずれか1項に記載の非水系電解質二次電池用正極材料。 - 請求項1から3のいずれか1項に記載の非水系電解質二次電池用正極材料を含む正極を有する、
ことを特徴とする非水系電解質二次電池。 - 一般式LizNi1−x−yCoxMyO2(ただし、0.01≦x≦0.35、0y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、
粒径が0.01〜0.5μmの範囲にあるケイ酸リチウムと、を混合し正極材料とする工程を含み、
該正極材料に含まれるSi量が、
前記リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0原子%である、
ことを特徴とする非水系電解質二次電池用正極材料の製造方法。 - 前記リチウム金属複合酸化物粉末と、前記ケイ酸リチウムと、を混合する工程の前に、
前記リチウム金属複合酸化物粉末を水洗する工程を含む、
ことを特徴とする請求項5に記載の非水系電解質二次電池用正極材料の製造方法。 - 前記ケイ酸リチウムが、Li2SiO3、Li4SiO4から選択される少なくとも1種である、
ことを特徴とする請求項5または6に記載の非水系電解質二次電池用正極材料の製造方法。 - 前記リチウム金属複合酸化物粉末と、前記ケイ酸リチウムと、を混合する工程において、
非水系有機溶剤を添加する、
ことを特徴とする請求項5から7のいずれか1項に記載の非水系電解質二次電池用正極材
料の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016076293A JP6848199B2 (ja) | 2016-04-06 | 2016-04-06 | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016076293A JP6848199B2 (ja) | 2016-04-06 | 2016-04-06 | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017188312A JP2017188312A (ja) | 2017-10-12 |
JP6848199B2 true JP6848199B2 (ja) | 2021-03-24 |
Family
ID=60046470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016076293A Active JP6848199B2 (ja) | 2016-04-06 | 2016-04-06 | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6848199B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210066715A1 (en) * | 2017-10-30 | 2021-03-04 | SUMITOMO METAL MINiNG CO., LTC. | Cathode active material for non-aqueous electrolyte secondary battery, method of manufacturing cathode active material for non-aqueous electrolyte secondary battery, and method of evaluating lithium metal composition oxide powder |
JP6904892B2 (ja) * | 2017-11-28 | 2021-07-21 | トヨタ自動車株式会社 | 正極材料とこれを用いたリチウム二次電池 |
CN114583296B (zh) * | 2022-03-01 | 2023-05-12 | 松山湖材料实验室 | 锂离子电池及其正极补锂方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3491529B2 (ja) * | 1998-06-25 | 2004-01-26 | 新神戸電機株式会社 | 非水電解液二次電池 |
JP3966806B2 (ja) * | 2002-11-21 | 2007-08-29 | 株式会社東芝 | 膜電極複合体及び燃料電池 |
CN102227837A (zh) * | 2008-11-28 | 2011-10-26 | 住友化学株式会社 | 电极膜、电极及其制造方法、以及蓄电设备 |
JP2012023015A (ja) * | 2010-01-08 | 2012-02-02 | Mitsubishi Chemicals Corp | リチウム二次電池用正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 |
JP2011238354A (ja) * | 2010-05-06 | 2011-11-24 | Daido Steel Co Ltd | リチウム二次電池用負極の製造方法 |
KR101582394B1 (ko) * | 2011-05-23 | 2016-01-04 | 도요타 지도샤(주) | 정극 활물질 입자, 그리고 그것을 사용한 정극 및 전고체 전지 |
JP2013073832A (ja) * | 2011-09-28 | 2013-04-22 | Cosmo Oil Co Ltd | リチウムイオン二次電池用正極活物質 |
JP5772626B2 (ja) * | 2012-01-25 | 2015-09-02 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池 |
JP2014067508A (ja) * | 2012-09-25 | 2014-04-17 | Nichia Chem Ind Ltd | 非水電解液二次電池用正極活物質、それを用いた非水電解液二次電池及び非水電解液二次電池用正極活物質の製造方法 |
JP6374650B2 (ja) * | 2013-11-07 | 2018-08-15 | 旭化成株式会社 | 非水電解質二次電池 |
JP6467352B2 (ja) * | 2014-01-20 | 2019-02-13 | 住友化学株式会社 | 正極活物質およびその製造方法 |
JP6132164B2 (ja) * | 2014-04-25 | 2017-05-24 | 株式会社豊田自動織機 | 非水系二次電池用正極及び非水系二次電池 |
-
2016
- 2016-04-06 JP JP2016076293A patent/JP6848199B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017188312A (ja) | 2017-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101675208B1 (ko) | 비수계 전해질 이차 전지용 양극 재료와 그의 제조 방법, 및 이 양극 재료를 이용한 비수계 전해질 이차 전지 | |
JP5822708B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池 | |
JP5035712B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池 | |
JP6818225B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
US20170352885A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material | |
JP2013171785A5 (ja) | ||
JP6998107B2 (ja) | 非水系電解質二次電池用正極材料、正極合材、およびそれぞれを用いた非水系電解質二次電池 | |
JP2013152866A (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池 | |
JP2012079464A5 (ja) | ||
JP7055587B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP6582750B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP7135282B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池 | |
JP2019012654A (ja) | 非水系電解質二次電池用正極材料及びその製造方法並びに該正極材料を用いた非水系電解質二次電池 | |
JP6848199B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6730777B2 (ja) | 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池 | |
JP2022130698A (ja) | 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池 | |
JP2018195419A (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6819859B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP2020129499A (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池 | |
JP6819860B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP6919175B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP7310154B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池 | |
JP2020149901A (ja) | リチウムイオン二次電池用正極材料の製造方法、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極合材の製造方法、およびリチウムイオン二次電池 | |
JP6819861B2 (ja) | 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。 | |
JP2020140778A (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6848199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |