JP6808986B2 - Multi-charged particle beam drawing device and its adjustment method - Google Patents

Multi-charged particle beam drawing device and its adjustment method Download PDF

Info

Publication number
JP6808986B2
JP6808986B2 JP2016115479A JP2016115479A JP6808986B2 JP 6808986 B2 JP6808986 B2 JP 6808986B2 JP 2016115479 A JP2016115479 A JP 2016115479A JP 2016115479 A JP2016115479 A JP 2016115479A JP 6808986 B2 JP6808986 B2 JP 6808986B2
Authority
JP
Japan
Prior art keywords
shape
charged particle
stage
deflection
aperture member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016115479A
Other languages
Japanese (ja)
Other versions
JP2017220615A (en
Inventor
修 飯塚
修 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2016115479A priority Critical patent/JP6808986B2/en
Priority to TW106116132A priority patent/TWI639895B/en
Priority to US15/616,462 priority patent/US10109458B2/en
Priority to KR1020170071390A priority patent/KR101945959B1/en
Publication of JP2017220615A publication Critical patent/JP2017220615A/en
Application granted granted Critical
Publication of JP6808986B2 publication Critical patent/JP6808986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31766Continuous moving of wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、マルチ荷電粒子ビーム描画装置及びその調整方法に関する。 The present invention relates to a multi-charged particle beam drawing apparatus and a method for adjusting the same.

LSIの高集積化に伴い、半導体デバイスの回路線幅はさらに微細化されてきている。これらの半導体デバイスへ回路パターンを形成するための露光用マスク(ステッパやスキャナで用いられるものはレチクルともいう。)を形成する方法として、優れた解像性を有する電子ビーム描画技術が用いられている。 With the increasing integration of LSIs, the circuit line width of semiconductor devices has been further miniaturized. As a method of forming an exposure mask (the one used in a stepper or a scanner is also called a reticle) for forming a circuit pattern on these semiconductor devices, an electron beam drawing technique having excellent resolution is used. There is.

例えば、マルチビームを使った描画装置がある。マルチビームを用いることで、1本の電子ビームで描画する場合に比べて、一度(1回のショット)に多くのビームを照射できるので、スループットを大幅に向上させることができる。マルチビーム方式の描画装置では、例えば、電子銃から放出された電子ビームを複数の穴を持ったアパーチャ部材に通してマルチビームを形成し、各ビームのブランキング制御を行い、遮蔽されなかった各ビームが光学系で縮小され、移動可能なステージ上に載置された基板に照射される。 For example, there is a drawing device using a multi-beam. By using the multi-beam, it is possible to irradiate a large number of beams at one time (one shot) as compared with the case of drawing with one electron beam, so that the throughput can be significantly improved. In a multi-beam type drawing device, for example, an electron beam emitted from an electron gun is passed through an aperture member having a plurality of holes to form a multi-beam, blanking control of each beam is performed, and each unshielded drawing device is used. The beam is reduced by the optical system and irradiates the substrate placed on the movable stage.

マルチビーム方式の描画装置は、ビームを偏向して基板上でのビーム照射位置を決定する主偏向器及び副偏向器を有する。主偏向器でマルチビーム全体を基板上の所定の場所に位置決めし、副偏向器でビームピッチを埋めるように偏向する。 The multi-beam type drawing apparatus has a main deflector and a sub-deflector that deflect the beam and determine the beam irradiation position on the substrate. The main deflector positions the entire multi-beam in place on the substrate and the sub-deflector deflects it to fill the beam pitch.

このようなマルチビーム方式の描画装置では、複数のビームを一度に照射し、アパーチャ部材の同じ穴又は異なる穴を通過して形成されたビーム同士をつなげていき、所望の図形形状のパターンを描画する。基板上に照射されるマルチビーム全体像の形状(以下、「ビーム形状」と記載することもある)が描画図形のつなぎ精度となって現れるため、マルチビーム全体像の縮小率(伸縮率)や歪みの調整が重要であった。 In such a multi-beam type drawing apparatus, a plurality of beams are irradiated at once, and the beams formed by passing through the same hole or different holes of the aperture member are connected to draw a pattern of a desired graphic shape. To do. Since the shape of the entire multi-beam image (hereinafter, also referred to as "beam shape") irradiated on the substrate appears as the connection accuracy of the drawn figures, the reduction ratio (expansion / contraction ratio) of the entire multi-beam image and Adjustment of distortion was important.

マルチビーム全体像の縮小率等は、ビーム形状に基づいて調整されるため、ビーム形状を正確に測定する必要がある。ビーム形状は、オンするビームを順に切り替えてステージ上の反射マークをスキャンし、各ビームの位置を検出することで測定される。 Since the reduction ratio of the entire multi-beam image is adjusted based on the beam shape, it is necessary to accurately measure the beam shape. The beam shape is measured by switching the on beams in order, scanning the reflection marks on the stage, and detecting the position of each beam.

しかし、ステージ上の反射マークをスキャンする際、主偏向器によるビーム偏向量が大きくなり、ビームの軌道が変わってビーム形状に歪みが生じ、ビーム形状の測定精度を低下させるという問題があった。 However, when scanning the reflection mark on the stage, there is a problem that the amount of beam deflection by the main deflector becomes large, the trajectory of the beam changes, the beam shape is distorted, and the measurement accuracy of the beam shape is lowered.

特開平10−106931号公報Japanese Unexamined Patent Publication No. 10-106931 特開2006−86182号公報Japanese Unexamined Patent Publication No. 2006-86182 特開2002−353113号公報JP-A-2002-353113

本発明は、ビーム形状を精度良く測定し、調整することができるマルチ荷電粒子ビーム描画装置及びその調整方法を提供することを課題とする。 An object of the present invention is to provide a multi-charged particle beam drawing apparatus capable of accurately measuring and adjusting a beam shape and an adjusting method thereof.

本発明の一態様によるマルチ荷電粒子ビーム描画装置は、基板を載置する、連続移動可能なステージと、荷電粒子ビームを放出する放出部と、複数の開口部が形成され、前記複数の開口部全体が含まれる領域に前記荷電粒子ビームの照射を受け、前記複数の開口部を前記荷電粒子ビームの一部がそれぞれ通過することにより、マルチビームを形成するアパーチャ部材と、前記アパーチャ部材の複数の開口部を通過したマルチビームのうち、それぞれ対応するビームのオン/オフを切り替えるブランキング偏向を行う複数のブランカが配置されたブランキングプレートと、ブランキング偏向されたビームを、前記ステージの移動に追従して各ビームの描画位置に偏向する主偏向器と、前記主偏向器により偏向されたビームを前記ステージ上に設けられたマークに対して走査し、反射する荷電粒子の強度の変化と、前記ステージの位置とから、ビーム位置を検出する検出部と、前記ブランカによりオンビームを切り替え、該オンビームを前記マークに対して走査し、オンビームのビーム位置から前記ステージ上でのマルチビーム全体像の形状を算出するビーム形状算出部と、を備え、前記ビーム形状算出部は、前記主偏向器によるビーム偏向位置に依存したビーム位置のずれ量を表現する多項式であって、前記オンビーム毎に異なる多項式を用いて、前記オンビーム毎に前記主偏向器による偏向領域の形状を補正し、前記偏向領域の形状が補正された前記オンビームを前記マークに対して走査し、前記マルチビーム全体像の形状を算出するものである。 In the multi-charged particle beam drawing apparatus according to one aspect of the present invention, a continuously movable stage on which a substrate is placed, a emitting portion for emitting a charged particle beam, and a plurality of openings are formed, and the plurality of openings are formed. An aperture member that forms a multi-beam by receiving irradiation of the charged particle beam in a region including the whole and a part of the charged particle beam passing through the plurality of openings, and a plurality of the aperture members. Of the multi-beams that have passed through the opening, the blanking plate on which multiple blankers that perform blanking deflection to switch the corresponding beam on / off and the blanking-deflected beam are used to move the stage. A main deflector that follows and deflects to the drawing position of each beam, and a change in the intensity of charged particles that are reflected by scanning the beam deflected by the main deflector against a mark provided on the stage. The on-beam is switched by the blanker and the detection unit that detects the beam position from the position of the stage, the on-beam is scanned against the mark, and the shape of the entire image of the multi-beam on the stage from the beam position of the on-beam. The beam shape calculation unit is provided with a beam shape calculation unit that calculates the amount of deviation of the beam position depending on the beam deflection position by the main deflector, and is a polypoly that is different for each on- beam. It is used to correct the shape of the deflection region by the main deflector for each on -beam, scan the on -beam with the corrected shape of the deflection region against the mark, and calculate the shape of the entire image of the multi-beam. It is a thing.

本発明の一態様によるマルチ荷電粒子ビーム描画装置は、前記アパーチャ部材の複数の前記開口部に対応する複数組の前記多項式の係数を格納する記憶装置と、前記記憶装置から、前記オンビームを形成する前記開口部に対応する係数を取得する係数取得部と、をさらに備える。 The multi-charged particle beam drawing apparatus according to one aspect of the present invention forms the on-beam from a storage device that stores a plurality of sets of coefficients of the polynomial corresponding to the plurality of openings of the aperture member and the storage device. A coefficient acquisition unit for acquiring a coefficient corresponding to the opening is further provided.

本発明の一態様によるマルチ荷電粒子ビーム描画装置において、前記係数取得部は、前記記憶装置から、前記オンビームを形成する開口部の周囲の複数の開口部に対応する複数組の係数を取得し、複数組の係数を線形補間して前記補正用の多項式を生成する。 In the multi-charged particle beam drawing device according to one aspect of the present invention, the coefficient acquisition unit acquires a plurality of sets of coefficients corresponding to the plurality of openings around the openings forming the on-beam from the storage device. A polynomial for the correction is generated by linearly interpolating a plurality of sets of coefficients.

本発明の一態様によるマルチ荷電粒子ビーム描画装置は、前記アパーチャ部材の開口部の位置から前記多項式の係数を算出する関数を格納する記憶装置と、前記関数に、前記オンビームを形成する前記開口部の位置を代入して前記多項式の係数を求める係数取得部と、をさらに備える。 The multi-charged particle beam drawing device according to one aspect of the present invention includes a storage device that stores a function for calculating the coefficient of the polynomial from the position of the opening of the aperture member, and the opening that forms the on-beam in the function. Further includes a coefficient acquisition unit for obtaining the coefficient of the polynomial by substituting the position of.

本発明の一態様によるマルチ荷電粒子ビーム描画装置の調整方法は、荷電粒子ビームを放出する工程と、アパーチャ部材の複数の開口部を前記荷電粒子ビームが通過することにより、マルチビームを形成する工程と、複数のブランカを用いて、前記マルチビームのうち、それぞれ対応するビームのオン/オフを切り替えるブランキング偏向を行う工程と、主偏向器を用いて、ブランキング偏向されたビームを、基板を載置可能なステージの移動に追従して各ビームの描画位置に偏向する工程と、前記主偏向器により偏向されたビームを前記ステージ上に設けられたマークに対して走査し、反射する荷電粒子の強度の変化と、前記ステージの位置とから、ビーム位置を検出する工程と、前記ブランカによりオンビームを切り替え、該オンビームを前記マークに対して走査し、オンビームのビーム位置から前記ステージ上でのマルチビーム全体像の形状を算出する工程と、算出したマルチビームの形状に基づいて、マルチビーム全体像の寸法を調整する工程と、を備え、前記主偏向器によるビーム偏向位置に依存したビーム位置のずれ量を表現する多項式であって、前記オンビーム毎に異なる多項式を用いて、前記オンビーム毎に前記主偏向器による偏向領域の形状を補正し、前記偏向領域の形状が補正された前記オンビームを前記マークに対して走査し、前記マルチビーム全体像の形状を算出するものである。 The method for adjusting the multi-charged particle beam drawing device according to one aspect of the present invention is a step of emitting a charged particle beam and a step of forming a multi-beam by passing the charged particle beam through a plurality of openings of an aperture member. A step of performing blanking deflection for switching on / off of the corresponding beam among the multi-beams using a plurality of blankers, and a blanking-deflected beam using a main deflector on the substrate. The process of deflecting each beam to the drawing position following the movement of the stage on which it can be placed, and the charged particles that scan and reflect the beam deflected by the main deflector with respect to the mark provided on the stage. The step of detecting the beam position from the change in intensity and the position of the stage, and the on-beam is switched by the blanker, the on-beam is scanned with respect to the mark, and the multi on the stage from the beam position of the on-beam. calculating a shape of the beam overall picture, based on the calculated shape of the multi-beam, comprising the steps of adjusting the size of the multi-beam whole picture, a beam position dependent on the beam deflection position by the main deflector The on- beam, which is a polymorphic expression for the amount of deviation and is different for each on-beam , corrects the shape of the deflection region by the main deflector for each on-beam , and corrects the shape of the deflection region. The mark is scanned to calculate the shape of the entire image of the multi-beam .

本発明によれば、ビーム形状を精度良く測定し、調整することができる。 According to the present invention, the beam shape can be accurately measured and adjusted.

本発明の実施形態による描画装置の概略構成図である。It is a schematic block diagram of the drawing apparatus according to embodiment of this invention. アパーチャ部材の構成を示す概念図である。It is a conceptual diagram which shows the structure of the aperture member. ビーム位置の測定方法を説明する図である。It is a figure explaining the measuring method of a beam position. 主偏向感度の測定方法を説明する図である。It is a figure explaining the measuring method of the main deflection sensitivity. ビーム形状の測定方法を説明する図である。It is a figure explaining the measuring method of a beam shape. (a)(b)はビーム形状に歪みがない場合の主偏向領域を示す図である。(A) and (b) are diagrams showing a main deflection region when there is no distortion in the beam shape. (a)〜(c)はビーム形状に歪みがある場合の主偏向領域の例を示す図である。(A) to (c) are diagrams showing an example of a main deflection region when the beam shape is distorted. (a)(b)は主偏向領域の形状の補正例を示す図である。(A) and (b) are diagrams showing an example of correcting the shape of the main deflection region. 同実施形態による主偏向補正係数の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the main deflection correction coefficient by this embodiment. 同実施形態によるビーム形状の測定方法を説明するフローチャートである。It is a flowchart explaining the measurement method of the beam shape by the same embodiment.

以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは電子ビームに限るものでなく、イオンビーム等の荷電粒子ビームでもよい。 Hereinafter, in the embodiment, a configuration using an electron beam will be described as an example of a charged particle beam. However, the charged particle beam is not limited to the electron beam, and may be a charged particle beam such as an ion beam.

図1は、本実施形態における描画装置の構成を示す概念図である。図1において、描画装置100は、描画部150と制御部160を備えている。描画装置100は、マルチ荷電粒子ビーム描画装置の一例である。描画部150は、鏡筒102と描画室103を備えている。鏡筒102内には、電子銃201、照明レンズ202、アパーチャ部材203、ブランキングプレート204、縮小レンズ205、制限アパーチャ部材206、対物レンズ207、コイル208、主偏向器209、及び副偏向器(図示略)が配置されている。 FIG. 1 is a conceptual diagram showing a configuration of a drawing apparatus according to the present embodiment. In FIG. 1, the drawing device 100 includes a drawing unit 150 and a control unit 160. The drawing device 100 is an example of a multi-charged particle beam drawing device. The drawing unit 150 includes a lens barrel 102 and a drawing chamber 103. Inside the lens barrel 102, an electron gun 201, an illumination lens 202, an aperture member 203, a blanking plate 204, a reduction lens 205, a limiting aperture member 206, an objective lens 207, a coil 208, a main deflector 209, and a sub-deflector ( (Not shown) is arranged.

描画室103内には、検出器212及びXYステージ105が配置される。XYステージ105上には、描画対象となる基板101が配置される。基板101には、半導体装置を製造する際の露光用マスク、或いは、半導体装置が製造される半導体基板(シリコンウェハ)等が含まれる。また、基板101には、レジストが塗布された、まだ何も描画されていないマスクブランクスが含まれる。 A detector 212 and an XY stage 105 are arranged in the drawing chamber 103. A substrate 101 to be drawn is arranged on the XY stage 105. The substrate 101 includes an exposure mask for manufacturing a semiconductor device, a semiconductor substrate (silicon wafer) on which a semiconductor device is manufactured, and the like. In addition, the substrate 101 includes mask blanks coated with resist and not yet drawn.

XYステージ105上には、XYステージ105の位置測定用のミラー210が配置される。また、XYステージ105上には、ビームキャリブレーション用のマークMが設けられている。マークMは、電子ビームで走査することで位置を検出しやすいように例えば十字型の形状になっている(図3参照)。検出器212は、マークMの十字を電子ビームで走査する際に、マークMからの反射電子を検出する。 A mirror 210 for measuring the position of the XY stage 105 is arranged on the XY stage 105. Further, a mark M for beam calibration is provided on the XY stage 105. The mark M has, for example, a cross shape so that the position can be easily detected by scanning with an electron beam (see FIG. 3). The detector 212 detects reflected electrons from the mark M when scanning the cross of the mark M with an electron beam.

制御部160は、制御計算機110、偏向制御回路130、デジタル・アナログ変換(DAC)アンプ131、コイル制御回路132、レンズ制御回路133、検出アンプ134、ステージ位置検出器135、磁気ディスク装置等の記憶装置140及び142を有している。 The control unit 160 stores a control computer 110, a deflection control circuit 130, a digital-to-analog conversion (DAC) amplifier 131, a coil control circuit 132, a lens control circuit 133, a detection amplifier 134, a stage position detector 135, a magnetic disk device, and the like. It has devices 140 and 142.

偏向制御回路130、コイル制御回路132、レンズ制御回路133、検出アンプ134、ステージ位置検出器135、記憶装置140及び142は、バスを介して制御計算機110に接続されている。記憶装置140には、描画データが外部から入力され、格納されている。記憶装置142には、後述の主偏向補正係数データが格納されている。 The deflection control circuit 130, the coil control circuit 132, the lens control circuit 133, the detection amplifier 134, the stage position detector 135, and the storage devices 140 and 142 are connected to the control computer 110 via a bus. Drawing data is input from the outside and stored in the storage device 140. The storage device 142 stores the main deflection correction coefficient data described later.

偏向制御回路130には、DACアンプ131が接続される。DACアンプ131は主偏向器209に接続される。コイル制御回路132には、コイル208が接続されている。レンズ制御回路133には、対物レンズ207が接続されている。 A DAC amplifier 131 is connected to the deflection control circuit 130. The DAC amplifier 131 is connected to the main deflector 209. A coil 208 is connected to the coil control circuit 132. An objective lens 207 is connected to the lens control circuit 133.

制御計算機110は、描画データ処理部111、描画制御部112、ビーム位置検出部113、係数取得部114、ビーム形状算出部115及び調整部116を備える。制御計算機110の各部の機能は、ハードウェアで実現されてもよいし、ソフトウェアで実現されてもよい。ソフトウェアで構成する場合には、制御計算機110の少なくとも一部の機能を実現するプログラムを記録媒体に収納し、電気回路を含むコンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 The control computer 110 includes a drawing data processing unit 111, a drawing control unit 112, a beam position detection unit 113, a coefficient acquisition unit 114, a beam shape calculation unit 115, and an adjustment unit 116. The functions of each part of the control computer 110 may be realized by hardware or software. When configured by software, a program that realizes at least a part of the functions of the control computer 110 may be stored in a recording medium, read by a computer including an electric circuit, and executed. The recording medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed recording medium such as a hard disk device or a memory.

図2は、アパーチャ部材203の構成を示す概念図である。図2に示すように、アパーチャ部材203には、縦(y方向)m列×横(x方向)n列(m,n≧2)の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。図2では、縦横(x,y方向)に512×512列の穴22が形成される。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ径の円形であっても構わない。 FIG. 2 is a conceptual diagram showing the configuration of the aperture member 203. As shown in FIG. 2, in the aperture member 203, holes (openings) 22 of vertical (y direction) m row × horizontal (x direction) n row (m, n ≧ 2) are arranged in a matrix with a predetermined arrangement pitch. Is formed in. In FIG. 2, holes 22 in 512 × 512 rows are formed in the vertical and horizontal directions (x, y directions). Each hole 22 is formed by a rectangle having the same size and shape. Alternatively, it may be a circle having the same diameter.

電子ビーム200が、アパーチャ部材203の複数の穴22をそれぞれ通過することによって、例えば矩形形状の複数の電子ビーム(マルチビーム)20が形成される。 When the electron beam 200 passes through the plurality of holes 22 of the aperture member 203, for example, a plurality of rectangular electron beams (multi-beams) 20 are formed.

穴22の配列の仕方は、図2のように、縦横が格子状に配置される場合に限るものではない。例えば、縦方向(y方向)k段目の列と、k+1段目の列の穴同士が、横方向(x方向)にずれて配置されてもよい。 The method of arranging the holes 22 is not limited to the case where the holes 22 are arranged in a grid pattern as shown in FIG. For example, the holes in the k-th row in the vertical direction (y direction) and the holes in the k + 1-th row may be arranged so as to be offset in the horizontal direction (x direction).

ブランキングプレート204には、図2に示したアパーチャ部材203の各穴22に対応する位置にマルチビームの各ビームが通過する通過孔(開口部)が形成されている。各通過孔の近傍には、ビームを偏向するブランキング偏向用の電極(ブランカ:ブランキング偏向器)が配置されている。 The blanking plate 204 is formed with passing holes (openings) through which each beam of the multi-beam passes at a position corresponding to each hole 22 of the aperture member 203 shown in FIG. An electrode for blanking deflection (blanker: blanking deflector) for deflecting the beam is arranged in the vicinity of each passage hole.

各通過孔を通過する電子ビーム20は、それぞれ独立に、ブランカから印加される電圧によって偏向される。この偏向によってブランキング制御が行われる。このように、複数のブランカが、アパーチャ部材203の複数の穴22(開口部)を通過したマルチビームのうち、それぞれ対応するビームのブランキング偏向を行う。 The electron beam 20 passing through each through hole is independently deflected by the voltage applied from the blanker. Blanking control is performed by this deflection. In this way, the plurality of blankers perform blanking deflection of the corresponding beam among the multi-beams that have passed through the plurality of holes 22 (openings) of the aperture member 203.

次に、描画部150の動作について説明する。電子銃201(放出部)から放出された電子ビーム200は、照明レンズ202によりほぼ垂直にアパーチャ部材203全体を照明する。電子ビーム200が、アパーチャ部材203の複数の穴22をそれぞれ通過することによって、マルチビーム20が形成される。マルチビーム20は、それぞれブランキングプレート204の対応する通過孔を通過する。 Next, the operation of the drawing unit 150 will be described. The electron beam 200 emitted from the electron gun 201 (emission unit) illuminates the entire aperture member 203 substantially vertically by the illumination lens 202. The multi-beam 20 is formed by the electron beam 200 passing through the plurality of holes 22 of the aperture member 203, respectively. Each of the multi-beams 20 passes through the corresponding through holes of the blanking plate 204.

ブランキングプレート204を通過したマルチビーム20は、縮小レンズ205によって、縮小され、制限アパーチャ部材206に形成された中心の穴に向かって進む。ここで、ブランキングプレート204のブランカによってビームOFFとなるように偏向された電子ビーム20は、制限アパーチャ部材206(ブランキングアパーチャ部材)の中心の穴から位置がはずれ、制限アパーチャ部材206によって遮蔽される。一方、ブランキングプレート204のブランカによってビームオンとなるように偏向された電子ビーム20は、制限アパーチャ部材206の中心の穴を通過する。 The multi-beam 20 that has passed through the blanking plate 204 is reduced by the reduction lens 205 and travels toward the central hole formed in the limiting aperture member 206. Here, the electron beam 20 deflected so as to be turned off by the blanker of the blanking plate 204 is displaced from the central hole of the limiting aperture member 206 (blanking aperture member) and is shielded by the limiting aperture member 206. To. On the other hand, the electron beam 20 deflected to be beam-on by the blanker of the blanking plate 204 passes through the central hole of the limiting aperture member 206.

このように、制限アパーチャ部材206は、ブランカによってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ部材206を通過したビームにより、1回分のショットのビームが形成される。 In this way, the limiting aperture member 206 shields each beam deflected by the blanker so that the beam is turned off. Then, a beam for one shot is formed by a beam that has passed through the limiting aperture member 206, which is formed from when the beam is turned on to when the beam is turned off.

制限アパーチャ部材206を通過したマルチビーム20は、コイル208によりアライメント調整され、対物レンズ207により焦点が合わされて所望の縮小率のパターン像となる。主偏向器209は、制限アパーチャ部材206を通過した各ビーム(マルチビーム全体)を同方向にまとめて偏向し、基板101上の描画位置(照射位置)に照射する。 The multi-beam 20 that has passed through the limiting aperture member 206 is aligned and adjusted by the coil 208 and focused by the objective lens 207 to obtain a pattern image having a desired reduction ratio. The main deflector 209 deflects each beam (the entire multi-beam) that has passed through the limiting aperture member 206 in the same direction, and irradiates the drawing position (irradiation position) on the substrate 101.

XYステージ105が連続移動している時、ビームの描画位置(照射位置)がXYステージ105の移動に追従するように主偏向器209によってトラッキング制御される。XYステージ105の位置は、ステージ位置検出器135からXYステージ105上のミラー210に向けてレーザを照射し、その反射光を用いて測定される。 When the XY stage 105 is continuously moving, the main deflector 209 controls the drawing position (irradiation position) of the beam so as to follow the movement of the XY stage 105. The position of the XY stage 105 is measured by irradiating a laser from the stage position detector 135 toward the mirror 210 on the XY stage 105 and using the reflected light.

一度に照射されるマルチビームは、理想的にはアパーチャ部材203の複数の穴22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。副偏向器(図示略)は、ビームピッチを埋めるようにマルチビーム全体を偏向する。 Ideally, the multi-beams irradiated at one time are arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 22 of the aperture member 203 by the desired reduction ratio described above. The sub-deflector (not shown) deflects the entire multi-beam to fill the beam pitch.

制御計算機110の描画データ処理部111は、記憶装置140から描画データを読み出し、複数段のデータ変換をおこなって、ショットデータを生成する。ショットデータには、基板101の描画面を例えばビームサイズで格子状の複数の照射領域に分割した各照射領域への照射有無、及び照射時間等が定義される。 The drawing data processing unit 111 of the control computer 110 reads the drawing data from the storage device 140, performs data conversion in a plurality of stages, and generates shot data. In the shot data, for example, the presence / absence of irradiation to each irradiation region obtained by dividing the drawing surface of the substrate 101 into a plurality of irradiation regions in a grid pattern according to the beam size, the irradiation time, and the like are defined.

描画制御部112は、ショットデータ及びステージ位置情報に基づいて、偏向制御回路130に制御信号を出力する。偏向制御回路130は、制御信号に基づいて、ブランキングプレート204の各ブランカの印加電圧を制御する。また、偏向制御回路130は、XYステージ105の移動に追従するようにビーム偏向するための偏向量データ(トラッキング偏向データ)を演算する。デジタル信号であるトラッキング偏向データは、DACアンプ131に出力され、DACアンプ131は、デジタル信号をアナログ信号に変換の上、増幅して、トラッキング偏向電圧として主偏向器209に印加する。 The drawing control unit 112 outputs a control signal to the deflection control circuit 130 based on the shot data and the stage position information. The deflection control circuit 130 controls the applied voltage of each blanker of the blanking plate 204 based on the control signal. Further, the deflection control circuit 130 calculates the deflection amount data (tracking deflection data) for beam deflection so as to follow the movement of the XY stage 105. The tracking deflection data, which is a digital signal, is output to the DAC amplifier 131, and the DAC amplifier 131 converts the digital signal into an analog signal, amplifies it, and applies it to the main deflector 209 as a tracking deflection voltage.

マルチビーム方式の描画装置では、描画対象の基板101に、アパーチャ部材203の複数の穴22の配列ピッチに所定の縮小率を乗じたピッチで並んだ多数のビームを一度に照射し、ビーム同士をつなげてビームピッチを埋めることで、所望の図形形状のパターンを描画する。そのため、描画処理の前に、ビーム位置を検出して、主偏向器209の主偏向感度の校正を行ったり、ビーム形状を測定して寸法を調整したりする必要がある。 In the multi-beam type drawing apparatus, the substrate 101 to be drawn is irradiated with a large number of beams arranged at a pitch obtained by multiplying the arrangement pitch of the plurality of holes 22 of the aperture member 203 by a predetermined reduction ratio at a time, and the beams are aligned with each other. By connecting and filling the beam pitch, a pattern with a desired graphic shape is drawn. Therefore, before the drawing process, it is necessary to detect the beam position and calibrate the main deflection sensitivity of the main deflector 209, or measure the beam shape and adjust the dimensions.

ビーム位置を検出する場合は、図3に示すように、主偏向器209で電子ビーム20を前後左右(x方向及びy方向)へと偏向して、マークMの十字を走査し、反射電子を検出器212で検出し、検出アンプ134で増幅してデジタルデータに変換した上で、測定データを制御計算機110に出力する。 When detecting the beam position, as shown in FIG. 3, the main deflector 209 deflects the electron beam 20 in the front-back and left-right directions (x direction and y direction), scans the cross of the mark M, and transmits the reflected electrons. It is detected by the detector 212, amplified by the detection amplifier 134, converted into digital data, and then the measurement data is output to the control computer 110.

ビーム位置検出部113は、測定された反射電子を時系列で並べたプロファイルと、その時のステージ位置とから、ビームの位置を計算することができる。 The beam position detection unit 113 can calculate the position of the beam from the profile in which the measured reflected electrons are arranged in time series and the stage position at that time.

主偏向感度を測定する場合は、特定のビームのみオンし、主偏向器209の偏向量を変えながらビーム位置を測定する。例えば、図4に示すように、アパーチャ部材203の中心の穴22を通過するビームのみオンし、オンビームの直下の位置P1にマークMを移動し、マークMの十字を走査してビーム位置を計算する。 When measuring the main deflection sensitivity, only a specific beam is turned on, and the beam position is measured while changing the deflection amount of the main deflector 209. For example, as shown in FIG. 4, only the beam passing through the central hole 22 of the aperture member 203 is turned on, the mark M is moved to the position P1 directly below the on-beam, and the cross of the mark M is scanned to calculate the beam position. To do.

次に、マークMを主偏向領域(主偏向器209による偏向領域)R1内の別の位置P2に移動し、同様にビーム位置を計算する。その後、マークMをさらに別の位置P3、P4、P5に順に移動し、各位置においてビーム位置を計算する。主偏向器209による偏向量と、算出されたビーム位置とを比較することで、主偏向感度を校正できる。 Next, the mark M is moved to another position P2 in the main deflection region (deflection region by the main deflector 209) R1, and the beam position is calculated in the same manner. After that, the mark M is moved to another position P3, P4, P5 in order, and the beam position is calculated at each position. The main deflection sensitivity can be calibrated by comparing the amount of deflection by the main deflector 209 with the calculated beam position.

ビーム形状を測定する場合は、図5に示すように、アパーチャ部材203の中心と四隅のように、オンするビームを順に切り替えて、主偏向感度測定と同様の測定を行う。ビームサイズの設計値に基づいて、オンビームの直下にマークMを移動することができる。 When measuring the beam shape, as shown in FIG. 5, the on beam is switched in order like the center and the four corners of the aperture member 203, and the same measurement as the main deflection sensitivity measurement is performed. The mark M can be moved directly under the on-beam based on the design value of the beam size.

図6(a)(b)はビーム形状に歪みが無い場合の主偏向領域R2、R3を示している。図6(a)はアパーチャ部材203の中心の穴22を通過するビームのみオンした場合を示し、図6(b)はアパーチャ部材203の四隅の穴22の1つを通過するビームのみオンした場合を示している。主偏向領域R2、R3の形状は同じ正方形となっている。 6 (a) and 6 (b) show the main deflection regions R2 and R3 when there is no distortion in the beam shape. FIG. 6A shows a case where only the beam passing through the central hole 22 of the aperture member 203 is turned on, and FIG. 6B shows a case where only the beam passing through one of the four corner holes 22 of the aperture member 203 is turned on. Is shown. The shapes of the main deflection regions R2 and R3 are the same square.

実際の描画装置では、ビーム形状に多少の歪みが生じる。また、ビーム形状測定時は主偏向器209の偏向量が大きく、主偏向器209による偏向位置に依存したビーム位置のずれによるビーム形状の歪みも加わる。 In an actual drawing device, the beam shape is slightly distorted. Further, when measuring the beam shape, the amount of deflection of the main deflector 209 is large, and the beam shape is distorted due to the deviation of the beam position depending on the deflection position by the main deflector 209.

図7(a)〜(c)はビーム形状に歪みがある場合の主偏向領域R4〜R6を示している。図7(a)はアパーチャ部材203の中心の穴22を通過するビームのみオンした場合を示し、図7(b)(c)はアパーチャ部材203の四隅の穴22の1つを通過するビームのみオンした場合を示している。主偏向領域R4の形状は正方形となっているのに対し、主偏向領域R5、R6の形状は歪んで台形になっている。 7 (a) to 7 (c) show the main deflection regions R4 to R6 when the beam shape is distorted. FIG. 7A shows a case where only the beam passing through the central hole 22 of the aperture member 203 is turned on, and FIGS. 7B and 7C show only the beam passing through one of the four corner holes 22 of the aperture member 203. Indicates when it is turned on. While the shape of the main deflection region R4 is square, the shapes of the main deflection regions R5 and R6 are distorted and trapezoidal.

このように、ビームが通過するアパーチャ部材203の穴22が違うことで主偏向領域R4〜R6の形状が異なると、ビーム形状の測定精度を劣化させる。そのため、本実施形態では、図8に示すように、アパーチャ部材203の異なる穴22を通過したビームの主偏向領域の形状が互いに同じになるように、主偏向領域の形状を補正する。例えば、図8に示す補正後の主偏向領域R5´の形状は、図7(a)に示す主偏向領域R4と同じ正方形になっている。 As described above, if the shapes of the main deflection regions R4 to R6 are different due to the difference in the holes 22 of the aperture member 203 through which the beam passes, the measurement accuracy of the beam shape is deteriorated. Therefore, in the present embodiment, as shown in FIG. 8, the shape of the main deflection region is corrected so that the shapes of the main deflection regions of the beams passing through the different holes 22 of the aperture member 203 are the same. For example, the shape of the corrected main deflection region R5'shown in FIG. 8 is the same square as the main deflection region R4 shown in FIG. 7A.

主偏向器209による偏向位置(x、y)に依存したビーム位置のずれ量(主偏向歪み)Δx、Δyは、アパーチャ部材203の穴22毎に以下のような高次多項式で表現することができる。なお、本実施形態では4次式で表現しているが、3次式でもよいし、5次式以上でもよい。 The amount of deviation (main deflection distortion) Δx, Δy of the beam position depending on the deflection position (x, y) by the main deflector 209 can be expressed by the following high-order polynomial for each hole 22 of the aperture member 203. it can. In this embodiment, it is expressed by a quaternary equation, but it may be a cubic equation or a quaternary equation or higher.

Δx=a+(a+1)x+ay+a+axy+a+a+ay+axy+a+・・・+a14
Δy=b+bx+(b+1)y+b+bxy+b+b+by+bxy+b+・・・+b14
Δx = a 0 + (a 1 + 1) x + a 2 y + a 3 x 2 + a 4 xy + a 5 y 2 + a 6 x 3 + a 7 x 2 y + a 8 xy 2 + a 9 y 3 + ... + a 14 y 4
Δy = b 0 + b 1 x + (b 2 + 1) y + b 3 x 2 + b 4 xy + b 5 y 2 + b 6 x 3 + b 7 x 2 y + b 8 xy 2 + b 9 y 3 + ... + b 14 y 4

この多項式の係数a〜a14、b〜b14が上述の主偏向補正係数であり、アパーチャ部材203の穴22毎に主偏向補正係数a〜a14、b〜b14を規定したデータが記憶装置142に格納されている。例えば、記憶装置142は、アパーチャ部材203の中心と四隅の計5箇所の穴22の各々について、主偏向補正係数a〜a14、b〜b14を格納する。 The coefficients a 0 to a 14 and b 0 to b 14 of this polynomial are the above-mentioned main deflection correction coefficients, and the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 are defined for each hole 22 of the aperture member 203. The stored data is stored in the storage device 142. For example, the storage device 142 stores the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 for each of the five holes 22 at the center and the four corners of the aperture member 203.

主偏向補正係数は予め算出して、記憶装置142に格納しておく。図9は、主偏向補正係数の算出方法を説明するフローチャートである。まず、オンするビームを決定する(ステップS101)。例えば、アパーチャ部材203の中心の穴22を通過するビームをオンすると決定する。 The main deflection correction coefficient is calculated in advance and stored in the storage device 142. FIG. 9 is a flowchart illustrating a method of calculating the main deflection correction coefficient. First, the beam to be turned on is determined (step S101). For example, it is determined to turn on the beam passing through the central hole 22 of the aperture member 203.

XYステージ105を移動し、マークMの十字を走査する(ステップS102、S103)。検出器212が反射電子を検出し、ビーム位置検出部113が、検出された反射電子を時系列で並べたプロファイルと、その時のステージ位置とから、ビームの位置を計算する。主偏向補正係数の算出に十分な測定点数となるまで、ステージ移動及びマークMのスキャンを繰り返す(ステップS102〜S104)。例えば、図4の位置P1〜P5にマークMを順に移動してスキャンし、ビーム位置を計算する。 The XY stage 105 is moved and the cross of the mark M is scanned (steps S102 and S103). The detector 212 detects the reflected electrons, and the beam position detection unit 113 calculates the position of the beam from the profile in which the detected reflected electrons are arranged in time series and the stage position at that time. The stage movement and the scan of the mark M are repeated until the number of measurement points is sufficient for calculating the main deflection correction coefficient (steps S102 to S104). For example, the mark M is moved in order to the positions P1 to P5 in FIG. 4 and scanned to calculate the beam position.

主偏向領域内の複数の位置へマークMを移動し、計算したビーム位置から、主偏向補正係数a〜a14、b〜b14を求める(ステップS105)。オンするビームを切り替えて、同様の測定を繰り返し行う(ステップS101〜S106)。例えば、アパーチャ部材203の四隅の穴22を通過するビームを1つずつ順にオンビームにする。これにより、アパーチャ部材203の穴22毎に主偏向補正係数a〜a14、b〜b14を求めることができる(ステップS107)。各穴22に対応する主偏向補正係数a〜a14、b〜b14は記憶装置142に格納される。例えば、アパーチャ部材203の中心と四隅のそれぞれの穴22に対応する5セットの主偏向補正係数a〜a14、b〜b14が記憶装置142に格納される。 The mark M is moved to a plurality of positions in the main deflection region, and the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 are obtained from the calculated beam positions (step S105). The beam to be turned on is switched, and the same measurement is repeated (steps S101 to S106). For example, the beams passing through the holes 22 at the four corners of the aperture member 203 are turned on in order one by one. As a result, the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 can be obtained for each hole 22 of the aperture member 203 (step S107). The main deflection correction coefficients a 0 to a 14 and b 0 to b 14 corresponding to each hole 22 are stored in the storage device 142. For example, five sets of main deflection correction coefficients a 0 to a 14 and b 0 to b 14 corresponding to the holes 22 at the center and the four corners of the aperture member 203 are stored in the storage device 142.

主偏向補正係数を用いてビーム形状を測定する方法を図10に示すフローチャートを用いて説明する。まず、オンするビームを決定する(ステップS201)。例えば、アパーチャ部材203の中心の穴22を通過するビームをオンすると決定する。 A method of measuring the beam shape using the main deflection correction coefficient will be described with reference to the flowchart shown in FIG. First, the beam to be turned on is determined (step S201). For example, it is determined to turn on the beam passing through the central hole 22 of the aperture member 203.

次に、XYステージ105を移動し、オンビームの直下にマークMを移動する(ステップS202)。係数取得部114が、オンビームのアパーチャ部材203の穴22の位置に対応する主偏向補正係数を記憶装置142から取得する(ステップS203)。続いて、マークMの十字を走査する(ステップS204)。ビーム形状算出部115は、マークMを走査する際、取得された主偏向補正係数を用いた上述の多項式から主偏向歪み量を計算し、主偏向領域の形状が正方形となるように主偏向器209の偏向量を補正する。 Next, the XY stage 105 is moved, and the mark M is moved directly under the on-beam (step S202). The coefficient acquisition unit 114 acquires the main deflection correction coefficient corresponding to the position of the hole 22 of the on-beam aperture member 203 from the storage device 142 (step S203). Subsequently, the cross of the mark M is scanned (step S204). When scanning the mark M, the beam shape calculation unit 115 calculates the amount of main deflection strain from the above-mentioned polynomial using the acquired main deflection correction coefficient, and the main deflector so that the shape of the main deflection region becomes square. The deflection amount of 209 is corrected.

検出器212が反射電子を検出し、ビーム位置検出部113が、検出された反射電子を時系列で並べたプロファイルと、その時のステージ位置とから、ビームの位置を計算する。 The detector 212 detects the reflected electrons, and the beam position detection unit 113 calculates the position of the beam from the profile in which the detected reflected electrons are arranged in time series and the stage position at that time.

オンするビームを切り替えて、同様の測定を繰り返し行う(ステップS201〜S205)。例えば、アパーチャ部材203の四隅の穴22を通過するビームを1つずつ順にオンビームにする。ステップS203では、係数取得部114が、オンビームのアパーチャ部材203の穴22の位置に応じて、それぞれ異なる主偏向補正係数を記憶装置142から取得する。ビーム形状算出部115が、各ビームの位置から、ビーム形状を算出する(ステップS206)。 The beam to be turned on is switched, and the same measurement is repeated (steps S201 to S205). For example, the beams passing through the holes 22 at the four corners of the aperture member 203 are turned on in order one by one. In step S203, the coefficient acquisition unit 114 acquires different main deflection correction coefficients from the storage device 142 according to the positions of the holes 22 of the on-beam aperture member 203. The beam shape calculation unit 115 calculates the beam shape from the position of each beam (step S206).

本実施形態によれば、アパーチャ部材203の異なる穴22を通過したビームの主偏向領域の形状が互いに同じになるように、主偏向領域の形状を補正し、主偏向器209の偏向に起因するビーム形状の歪みを抑制するため、ビーム形状を精度良く測定することができる。 According to the present embodiment, the shape of the main deflection region is corrected so that the shapes of the main deflection regions of the beams passing through the different holes 22 of the aperture member 203 are the same as each other, which is caused by the deflection of the main deflector 209. Since the distortion of the beam shape is suppressed, the beam shape can be measured with high accuracy.

調整部116は、測定されたビーム形状に基づいて、ビームの縮小率等を調整する。そのため、基板101に照射されるマルチビームの形状や寸法を精度良く調整することができ、描画図形のつなぎ精度を向上させることができる。 The adjusting unit 116 adjusts the reduction rate of the beam and the like based on the measured beam shape. Therefore, the shape and dimensions of the multi-beam irradiated on the substrate 101 can be adjusted with high accuracy, and the connection accuracy of the drawn figures can be improved.

上記実施形態では、ビーム形状の測定に使用するビームに対応する主偏向補正係数a〜a14、b〜b14を記憶装置142に格納していた。例えば、アパーチャ部材203の中心と四隅の穴22を通過した5つのビームを使用する場合、各穴22に対応する5セットの主偏向補正係数a〜a14、b〜b14を記憶装置142に格納していた。 In the above embodiment, the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 corresponding to the beam used for measuring the beam shape are stored in the storage device 142. For example, when using five beams that have passed through the holes 22 at the center and four corners of the aperture member 203, five sets of main deflection correction coefficients a 0 to a 14 and b 0 to b 14 corresponding to each hole 22 are stored in the storage device. It was stored in 142.

主偏向補正係数a〜a14、b〜b14が格納されている穴22とは異なる穴22を通過したビームをビーム形状の測定に使用してもよい。この場合、係数取得部114は、ビーム形状の測定に使用するビームが通過する穴22の周囲(近傍)に位置する複数の穴22に対応する複数セットの主偏向補正係数を記憶装置142から取り出し、線形補間(バイリニア補間)して主偏向補正係数を算出する。 A beam that has passed through a hole 22 different from the hole 22 in which the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 are stored may be used for measuring the beam shape. In this case, the coefficient acquisition unit 114 extracts from the storage device 142 a plurality of sets of main deflection correction coefficients corresponding to the plurality of holes 22 located around (near) the holes 22 through which the beam used for measuring the beam shape passes. , Linear interpolation (bilinear interpolation) is performed to calculate the main deflection correction coefficient.

また、主偏向補正係数a〜a14、b〜b14をアパーチャ部材203の穴22の位置を変数とした関数で表現し、この関数を記憶装置142に格納してもよい。係数取得部114は、記憶装置142から関数を取り出し、オンビームが通過する穴22の位置を代入して、主偏向補正係数a〜a14、b〜b14を算出する。 Further, the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 may be expressed by a function in which the position of the hole 22 of the aperture member 203 is used as a variable, and this function may be stored in the storage device 142. The coefficient acquisition unit 114 takes out the function from the storage device 142, substitutes the position of the hole 22 through which the on-beam passes, and calculates the main deflection correction coefficients a 0 to a 14 and b 0 to b 14 .

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

100 制御装置
110 制御計算機
150 描画部
160 制御部
209 主偏向器
212 検出器
100 Control device 110 Control computer 150 Drawing unit 160 Control unit 209 Main deflector 212 Detector

Claims (5)

基板を載置する、連続移動可能なステージと、
荷電粒子ビームを放出する放出部と、
複数の開口部が形成され、前記複数の開口部全体が含まれる領域に前記荷電粒子ビームの照射を受け、前記複数の開口部を前記荷電粒子ビームの一部がそれぞれ通過することにより、マルチビームを形成するアパーチャ部材と、
前記アパーチャ部材の複数の開口部を通過したマルチビームのうち、それぞれ対応するビームのオン/オフを切り替えるブランキング偏向を行う複数のブランカが配置されたブランキングプレートと、
ブランキング偏向されたビームを、前記ステージの移動に追従して各ビームの描画位置に偏向する主偏向器と、
前記主偏向器により偏向されたビームを前記ステージ上に設けられたマークに対して走査し、反射する荷電粒子の強度の変化と、前記ステージの位置とから、ビーム位置を検出する検出部と、
前記ブランカによりオンビームを切り替え、該オンビームを前記マークに対して走査し、オンビームのビーム位置から前記ステージ上でのマルチビーム全体像の形状を算出するビーム形状算出部と、
を備え、
前記ビーム形状算出部は、前記主偏向器によるビーム偏向位置に依存したビーム位置のずれ量を表現する多項式であって、前記オンビーム毎に異なる多項式を用いて、前記オンビーム毎に前記主偏向器による偏向領域の形状を補正し、前記偏向領域の形状が補正された前記オンビームを前記マークに対して走査し、前記マルチビーム全体像の形状を算出することを特徴とするマルチ荷電粒子ビーム描画装置。
A continuously movable stage on which the board is placed,
An emission part that emits a charged particle beam,
A plurality of openings are formed, the region including the entire plurality of openings is irradiated with the charged particle beam, and a part of the charged particle beam passes through the plurality of openings, whereby the multi-beam is formed. The aperture member that forms the
Among the multi-beams that have passed through the plurality of openings of the aperture member, a blanking plate on which a plurality of blankers that perform blanking deflection for switching on / off of the corresponding beams are arranged.
A main deflector that deflects the blanking-deflected beam to the drawing position of each beam by following the movement of the stage.
A detection unit that scans the beam deflected by the main deflector against a mark provided on the stage and detects the beam position from the change in the intensity of the reflected charged particles and the position of the stage.
A beam shape calculation unit that switches the on-beam with the blanker, scans the on-beam with respect to the mark, and calculates the shape of the entire image of the multi-beam on the stage from the beam position of the on-beam.
With
The beam shape calculation unit is a polynomial that expresses the amount of deviation of the beam position depending on the beam deflection position by the main deflector, and uses a polynomial different for each on-beam, and the main deflector is used for each on-beam. A multi-charged particle beam drawing apparatus comprising correcting the shape of a deflection region , scanning the on -beam with the corrected shape of the deflection region against the mark, and calculating the shape of the entire image of the multi-beam .
前記アパーチャ部材の複数の前記開口部に対応する複数組の前記多項式の係数を格納する記憶装置と、
前記記憶装置から、前記オンビームを形成する前記開口部に対応する係数を取得する係数取得部と、
をさらに備えることを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
A storage device that stores a plurality of sets of coefficients of the polynomial corresponding to the plurality of openings of the aperture member, and
A coefficient acquisition unit that acquires a coefficient corresponding to the opening forming the on-beam from the storage device, and a coefficient acquisition unit.
The multi-charged particle beam drawing apparatus according to claim 1, further comprising.
前記係数取得部は、前記記憶装置から、前記オンビームを形成する開口部の周囲の複数の開口部に対応する複数組の係数を取得し、複数組の係数を線形補間して前記補正用の多項式を生成することを特徴とする請求項2に記載のマルチ荷電粒子ビーム描画装置。 The coefficient acquisition unit acquires a plurality of sets of coefficients corresponding to the plurality of openings around the openings forming the on-beam from the storage device, linearly interpolates the plurality of sets of coefficients, and performs the correction polynomial. The multi-charged particle beam drawing apparatus according to claim 2, wherein the multi-charged particle beam drawing apparatus is produced. 前記アパーチャ部材の開口部の位置から前記多項式の係数を算出する関数を格納する記憶装置と、
前記関数に、前記オンビームを形成する前記開口部の位置を代入して前記多項式の係数を求める係数取得部と、
をさらに備えることを特徴とする請求項1に記載のマルチ荷電粒子ビーム描画装置。
A storage device that stores a function that calculates the coefficient of the polynomial from the position of the opening of the aperture member, and
A coefficient acquisition unit for obtaining the coefficient of the polynomial by substituting the position of the opening forming the on-beam into the function,
The multi-charged particle beam drawing apparatus according to claim 1, further comprising.
荷電粒子ビームを放出する工程と、
アパーチャ部材の複数の開口部を前記荷電粒子ビームが通過することにより、マルチビームを形成する工程と、
複数のブランカを用いて、前記マルチビームのうち、それぞれ対応するビームのオン/オフを切り替えるブランキング偏向を行う工程と、
主偏向器を用いて、ブランキング偏向されたビームを、基板を載置可能なステージの移動に追従して各ビームの描画位置に偏向する工程と、
前記主偏向器により偏向されたビームを前記ステージ上に設けられたマークに対して走査し、反射する荷電粒子の強度の変化と、前記ステージの位置とから、ビーム位置を検出する工程と、
前記ブランカによりオンビームを切り替え、該オンビームを前記マークに対して走査し、オンビームのビーム位置から前記ステージ上でのマルチビーム全体像の形状を算出する工程と、
算出したマルチビームの形状に基づいて、マルチビーム全体像の寸法を調整する工程と、
を備え、
前記主偏向器によるビーム偏向位置に依存したビーム位置のずれ量を表現する多項式であって、前記オンビーム毎に異なる多項式を用いて、前記オンビーム毎に前記主偏向器による偏向領域の形状を補正し、前記偏向領域の形状が補正された前記オンビームを前記マークに対して走査し、前記マルチビーム全体像の形状を算出することを特徴とするマルチ荷電粒子ビーム描画装置の調整方法。
The process of emitting a charged particle beam and
A step of forming a multi-beam by passing the charged particle beam through a plurality of openings of the aperture member, and
A process of performing blanking deflection for switching on / off of the corresponding beam among the multi-beams by using a plurality of blankers, and
A process of using a main deflector to deflect a blanking-deflected beam to the drawing position of each beam by following the movement of the stage on which the substrate can be placed.
A step of scanning a beam deflected by the main deflector against a mark provided on the stage and detecting the beam position from the change in the intensity of the reflected charged particles and the position of the stage.
A step of switching the on-beam by the blanker, scanning the on-beam with respect to the mark, and calculating the shape of the entire image of the multi-beam on the stage from the beam position of the on-beam.
The process of adjusting the dimensions of the overall image of the multi-beam based on the calculated shape of the multi-beam,
With
It is a polynomial that expresses the amount of deviation of the beam position depending on the beam deflection position by the main deflector, and the shape of the deflection region by the main deflector is corrected for each on-beam by using a polynomial different for each on- beam. A method for adjusting a multi-charged particle beam drawing apparatus, which comprises scanning the on -beam whose shape of the deflection region has been corrected with respect to the mark and calculating the shape of the entire image of the multi-beam .
JP2016115479A 2016-06-09 2016-06-09 Multi-charged particle beam drawing device and its adjustment method Active JP6808986B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016115479A JP6808986B2 (en) 2016-06-09 2016-06-09 Multi-charged particle beam drawing device and its adjustment method
TW106116132A TWI639895B (en) 2016-06-09 2017-05-16 Multi-charged particle beam drawing device and adjusting method thereof
US15/616,462 US10109458B2 (en) 2016-06-09 2017-06-07 Multi charged-particle beam writing apparatus and adjustment method for the same
KR1020170071390A KR101945959B1 (en) 2016-06-09 2017-06-08 Multi-charged particle beam writing apparatus and adjusting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016115479A JP6808986B2 (en) 2016-06-09 2016-06-09 Multi-charged particle beam drawing device and its adjustment method

Publications (2)

Publication Number Publication Date
JP2017220615A JP2017220615A (en) 2017-12-14
JP6808986B2 true JP6808986B2 (en) 2021-01-06

Family

ID=60572975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115479A Active JP6808986B2 (en) 2016-06-09 2016-06-09 Multi-charged particle beam drawing device and its adjustment method

Country Status (4)

Country Link
US (1) US10109458B2 (en)
JP (1) JP6808986B2 (en)
KR (1) KR101945959B1 (en)
TW (1) TWI639895B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791051B2 (en) * 2017-07-28 2020-11-25 株式会社ニューフレアテクノロジー Multi-charged particle beam drawing device and multi-charged particle beam drawing method
JP6863208B2 (en) * 2017-09-29 2021-04-21 株式会社ニューフレアテクノロジー Multi-charged particle beam drawing device and multi-charged particle beam drawing method
JP7074479B2 (en) * 2018-01-11 2022-05-24 株式会社ニューフレアテクノロジー Multi-beam inspection equipment
JP2019220559A (en) * 2018-06-19 2019-12-26 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography apparatus and beam evaluation method of the same
JP7031516B2 (en) * 2018-07-06 2022-03-08 株式会社ニューフレアテクノロジー Irradiation amount correction amount acquisition method, charged particle beam drawing method, and charged particle beam drawing device
CN111381436B (en) * 2018-12-27 2024-03-08 中芯国际集成电路制造(上海)有限公司 Method for manufacturing photomask with pattern
JP7180515B2 (en) * 2019-04-11 2022-11-30 株式会社ニューフレアテクノロジー Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP7388237B2 (en) 2020-02-20 2023-11-29 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography method and multi-charged particle beam lithography device
US20240304407A1 (en) * 2023-03-08 2024-09-12 Ims Nanofabrication Gmbh Device and Method for Calibrating a Charged-Particle Beam

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927620B2 (en) * 1996-06-12 2007-06-13 キヤノン株式会社 Electron beam exposure method and device manufacturing method using the same
JPH10106931A (en) * 1996-10-03 1998-04-24 Hitachi Ltd Electron beam exposure method and manufacture of semiconductor integrated circuit device using the method
JP4756776B2 (en) 2001-05-25 2011-08-24 キヤノン株式会社 Charged particle beam exposure apparatus, charged particle beam exposure method and device manufacturing method
JP3940310B2 (en) * 2002-04-04 2007-07-04 株式会社日立ハイテクノロジーズ Electron beam drawing method, drawing apparatus, and semiconductor manufacturing method using the same
JP4421836B2 (en) * 2003-03-28 2010-02-24 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP4563756B2 (en) * 2004-09-14 2010-10-13 株式会社日立ハイテクノロジーズ Electron beam drawing method and electron beam drawing apparatus
JP2008085120A (en) * 2006-09-28 2008-04-10 Nuflare Technology Inc Position correction coefficient calculating method of charged particle beam drawing apparatus, and position correction coefficient updating method of charged particle beam drawing apparatus
JP5828610B2 (en) * 2007-07-12 2015-12-09 株式会社ニューフレアテクノロジー Charged particle beam drawing method and charged particle beam drawing apparatus
JP5859778B2 (en) * 2011-09-01 2016-02-16 株式会社ニューフレアテクノロジー Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP5956797B2 (en) * 2012-03-22 2016-07-27 株式会社ニューフレアテクノロジー Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP5977629B2 (en) * 2012-04-05 2016-08-24 株式会社ニューフレアテクノロジー Method for acquiring deflection shape error of charged particle beam and charged particle beam writing method
JP6147528B2 (en) * 2012-06-01 2017-06-14 株式会社ニューフレアテクノロジー Multi-charged particle beam writing method and multi-charged particle beam writing apparatus
JP6293435B2 (en) * 2013-08-08 2018-03-14 株式会社ニューフレアテクノロジー Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP2016072497A (en) * 2014-09-30 2016-05-09 株式会社ニューフレアテクノロジー Correction method for acceleration voltage drift, drift correction method for charged particle beam, and charged particle beam lithography device
JP2016082131A (en) * 2014-10-20 2016-05-16 株式会社ニューフレアテクノロジー Charged particle beam lithography device, lithography method using charged particle beam, and shot correction method in charged particle beam lithography
JP2016103571A (en) * 2014-11-28 2016-06-02 株式会社ニューフレアテクノロジー Multi-charged particle beam drawing apparatus and multi-charged particle beam drawing method

Also Published As

Publication number Publication date
JP2017220615A (en) 2017-12-14
KR101945959B1 (en) 2019-02-08
KR20170139459A (en) 2017-12-19
US20170358425A1 (en) 2017-12-14
TW201809895A (en) 2018-03-16
US10109458B2 (en) 2018-10-23
TWI639895B (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6808986B2 (en) Multi-charged particle beam drawing device and its adjustment method
JP6293435B2 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP5956797B2 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
KR101698894B1 (en) Beam position measuring method for multi-charged particle beam and multi-charged particle beam writing apparatus
JP6863208B2 (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
US9466461B2 (en) Rotation angle measuring method of multi-charged particle beam image, rotation angle adjustment method of multi-charged particle beam image, and multi-charged particle beam writing apparatus
JP6791051B2 (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
KR20130025348A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
US20150235807A1 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
KR102432752B1 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP7388237B2 (en) Multi-charged particle beam lithography method and multi-charged particle beam lithography device
KR102468348B1 (en) Multi-beam writing method and multi-beam writing apparatus
JP2020205314A (en) Multi-charged particle beam drawing method and multi-charged particle beam drawing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6808986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250