JP6556349B2 - Manufacturing method of milling roll - Google Patents

Manufacturing method of milling roll Download PDF

Info

Publication number
JP6556349B2
JP6556349B2 JP2018520870A JP2018520870A JP6556349B2 JP 6556349 B2 JP6556349 B2 JP 6556349B2 JP 2018520870 A JP2018520870 A JP 2018520870A JP 2018520870 A JP2018520870 A JP 2018520870A JP 6556349 B2 JP6556349 B2 JP 6556349B2
Authority
JP
Japan
Prior art keywords
roll
thermal spray
coating
milling roll
milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018520870A
Other languages
Japanese (ja)
Other versions
JPWO2017208998A1 (en
Inventor
水津 竜夫
竜夫 水津
晃宏 神野
晃宏 神野
典之 安尾
典之 安尾
忠樹 横田
忠樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Publication of JPWO2017208998A1 publication Critical patent/JPWO2017208998A1/en
Application granted granted Critical
Publication of JP6556349B2 publication Critical patent/JP6556349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/30Shape or construction of rollers
    • B02C4/305Wear resistant rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Crushing And Grinding (AREA)

Description

本発明は小麦等の穀物の製粉工程で使用される製粉ロールの製造方法に関する。   The present invention relates to a method for producing a milling roll used in a milling process for grains such as wheat.

小麦等の穀物は精選工程、調質工程などを経た後、製粉工程にかけられる。現在、小麦等の穀物の製粉は、主にロール破砕方式で行われている。この方式は、19世紀後半に開発されたとされており、石臼方式に比べて生産性及び品質が大きく向上しており、製粉業の工業化に寄与している。   Grains such as wheat are subjected to a milling process after undergoing a selection process and a tempering process. Currently, milling of grains such as wheat is mainly performed by a roll crushing method. This method is said to have been developed in the latter half of the 19th century, and has greatly improved productivity and quality compared to the stone mill method, contributing to the industrialization of the milling industry.

ロール破砕方式による製粉工程では、まず、穀物をブレーキロールで大きく割って表皮を取り除いた後、スムースロールで粉砕、分級の作業を繰り返し、最終製品として仕上げられる。一般に、ブレーキロールに対しては、表面に目立て処理がなされて10mm程度のピッチの溝が形成され、スムースロールに対しては、回転する2つのロール間にメディアを投入し表面にマット加工を施すことで梨地状の凹凸面が形成される。スムースロールに対するマット加工は、特許文献1、2に記載がなされている。   In the milling process using the roll crushing method, first, the grain is largely broken with a brake roll to remove the outer skin, and then the process of pulverizing and classifying with a smooth roll is repeated to finish the final product. In general, the surface of a brake roll is sharpened to form a groove having a pitch of about 10 mm, and the surface of a smooth roll is matted by inserting media between two rotating rolls. As a result, a satin-like uneven surface is formed. The mat processing for the smooth roll is described in Patent Documents 1 and 2.

これらの製粉ロールには、表面硬度がビッカース硬さHVにして600程度のチルド鋼が用いられる。チルド鋼製の製粉ロールを長期間に渡って使用すると、表面に存在する凹凸が摩耗し、穀物を適切な大きさや形状に粉砕できなくなり、良質な粉末が得られなくなる。製粉ロールの表面粗さを復元するために、表面を修理、加工する必要が出てくるが、現在の手法では、まず研磨を行い、その後修繕、加工するため、非常に手間と時間がかかる。そのため、ロールそのものを交換してしまうケースになりがちであり、コストが嵩む。   For these milling rolls, chilled steel having a surface hardness of about 600 Vickers hardness HV is used. If a milling roll made of chilled steel is used for a long period of time, the unevenness present on the surface will be worn, and the grains cannot be pulverized into an appropriate size and shape, so that a high quality powder cannot be obtained. In order to restore the surface roughness of the milling roll, it is necessary to repair and process the surface. However, in the current method, polishing is performed first, and then repair and processing are performed. Therefore, it tends to be a case where the roll itself is replaced, and the cost increases.

特許文献3には、原料の噛み込み性を高め、効率よく原料を処理でき、良好な噛み込み性を長時間維持できる食品加工用ロールが記載されている。同文献では、レーザ加工によってロール表面に複数の溝を形成するか、ロール表面に肉盛溶接層を形成しておき、レーザ加工によって、その表面に複数の凹部を形成している。食品を噛み込むための形状を、ロールの平滑な外周面から窪ませた溝や凹部として、長期間の使用によりロールの摩耗が生じても、食品の噛み込み性を維持できるものとしている。   Patent Document 3 describes a food processing roll that can improve the biting property of raw materials, can efficiently process the raw materials, and can maintain good biting properties for a long time. In this document, a plurality of grooves are formed on the roll surface by laser processing, or a build-up weld layer is formed on the roll surface, and a plurality of concave portions are formed on the surface by laser processing. The shape for biting the food is a groove or a recess recessed from the smooth outer peripheral surface of the roll, so that the biting property of the food can be maintained even if the roll is worn due to long-term use.

特開平10−131948号公報JP-A-10-131948 特開平11−28621号公報Japanese Patent Laid-Open No. 11-28621 再公表特許公報WO2013/179356号Republished Patent Publication WO2013 / 179356

穀物の製粉過程では、製粉ロールの表面凹凸の摩耗以外に特有の問題がある。例えば、乾燥した小麦は硬く、粉砕すると飛び散り、目的とする形状、大きさの粉末が得られないため、小麦を粉砕する際には一定量の水分を含ませる。特許文献1、2に記載されたスムースロールや、特許文献3に記載された食品加工用ロールを小麦の製粉工程に用いた場合、小麦を介したロール間の摩擦及びロールと小麦との摩擦によって、次第にロールが熱を帯びてくる。ロールに蓄熱されると、その温度の影響によって小麦の水分が蒸発することになり、小麦に適切な水分量を保持させることができず、目的とする形状、大きさの良好な粉末を得ることができない。   In the grain milling process, there are specific problems other than wear on the surface irregularities of the milling roll. For example, dried wheat is hard and scatters when pulverized, and a powder of the desired shape and size cannot be obtained. Therefore, when pulverizing wheat, a certain amount of moisture is included. When the smooth roll described in Patent Documents 1 and 2 and the food processing roll described in Patent Document 3 are used in the flour milling process, friction between the rolls through wheat and friction between the rolls and wheat The roll gradually gets hot. When the heat is stored in the roll, the moisture of the wheat will evaporate due to the effect of the temperature, the wheat can not hold an appropriate amount of moisture, and obtain the desired shape and size of the powder I can't.

そこで本発明は従来技術の問題点に鑑み、製粉工程における穀物の乾燥を防いで、適切な水分量を保持させることで良好な穀物粉末を得ることができる製粉ロールの製造方法を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention provides a method for producing a milling roll capable of preventing grain drying in a milling process and obtaining a good grain powder by maintaining an appropriate amount of moisture. Objective.

本発明者らは、製粉工程における穀物の乾燥を防ぐ手段について検討したところ、製粉ロールの表面に溶射処理を施し、水分を保持する気孔を有する溶射皮膜を形成することで、穀物に適切な水分量を保持させることに成功し、これにより課題を解決するに至った。   The inventors of the present invention have studied the means for preventing grain drying in the milling process. As a result, the surface of the milling roll is subjected to thermal spraying to form a thermal spray coating having pores for retaining moisture. We have succeeded in maintaining the quantity, which has led to solving the problem.

即ち、本発明の製粉ロールの製造方法は、基材の表面に対し、ブラスト処理を行う粗面化工程と、粗面化された前記基材の表面上に溶射材料を吹き付け、水分を保持する気孔を有し、かつ平均気孔率が2.0%以上である溶射皮膜を形成する被覆工程と、を含むことを特徴とするものである。 That is, in the method for producing a milling roll of the present invention, the surface of the base material is subjected to a blasting process, and the sprayed material is sprayed onto the roughened surface of the base material to retain moisture. have a pore, and a coating step of forming a thermal spray coating is the average porosity of 2.0% or more, and characterized by comprising a.

本発明によれば、基材の表面に溶射皮膜を形成することから、製粉ロールを長期間使用したとしても表層の凹凸を維持することができ、粉砕性能が損なわれない。また、溶射によれば、溶射条件の調整によって、作られる皮膜中の気孔の大きさや存在比率を制御することができる。本発明によって形成される溶射皮膜は水分を保持する気孔を有するので、穀物に熱を伝わりにくくすることができ、かつ製粉ロールの表層における保水性が高められるので、穀物に対する冷却性が得られる。また、溶射皮膜を形成するのは、ブラスト処理を施すことで表面積及び表面粗さを増大させた基材であるため、溶射皮膜の剥がれを防ぐことができる。そのため、製粉ロールの表層における摩耗や溶射皮膜の剥がれの問題をなくすとともに、穀物に適切な水分量を保持させることが可能となり、良好な穀物粉末を得ることができる。   According to the present invention, since the thermal spray coating is formed on the surface of the substrate, the surface irregularities can be maintained even if the milling roll is used for a long time, and the pulverization performance is not impaired. In addition, according to the thermal spraying, the size and the existence ratio of the pores in the film to be produced can be controlled by adjusting the thermal spraying conditions. Since the thermal spray coating formed according to the present invention has pores for retaining moisture, it can be made difficult to transfer heat to the grain, and the water retention in the surface layer of the milling roll is enhanced, so that the cooling ability to the grain is obtained. Moreover, since it is the base material which increased the surface area and the surface roughness by performing a blasting process, the thermal spray coating can be prevented from peeling off. Therefore, the problem of abrasion on the surface layer of the milling roll and peeling of the sprayed coating can be eliminated, and an appropriate amount of moisture can be maintained in the grain, and a good grain powder can be obtained.

穀物の粉砕に適した製粉ロールの表面粗さRaの値は使用の目的に応じて異なる。製粉ロールをスムースロールとして使用する場合は、前記被覆工程後の表面粗さRaは5〜15μmであることが好ましい。一方、製粉ロールをブレーキロールとして使用する場合は、基材に刻み込まれた溝によって粉砕が可能であることからスムースロールほどの粗さは必要ではなく、耐久性を考慮して前記被覆工程後の表面粗さRaは2〜8μmであることが好ましい。   The value of the surface roughness Ra of the milling roll suitable for pulverizing grains varies depending on the purpose of use. When the milling roll is used as a smooth roll, the surface roughness Ra after the coating step is preferably 5 to 15 μm. On the other hand, when the milling roll is used as a brake roll, it is not necessary to be as rough as a smooth roll because it can be pulverized by grooves engraved in the base material. The surface roughness Ra is preferably 2 to 8 μm.

一般的にセラミックス及びサーメットは金属に比べて熱伝導率が低いことから、金属素材の基材表面にセラミックス又はサーメットを材料として溶射被覆して製造された製粉ロールは、粉砕過程で生じた摩擦熱を蓄積する傾向がある。そのため、溶射によって形成される溶射皮膜の厚みは大きくしすぎない方がよい。ただし一方で、小麦等の粉砕には一定以上の表面粗さを持つ凹凸が必要であり、そのような凹凸を溶射皮膜によって実現するには、一定以上の膜厚が必要になる。この問題は、基材の表面粗さが、製粉ロールの表面粗さに反映されるようにすれば解決できる。すなわち、前記基材の表面粗さRaは、被覆工程後の製粉ロールの表面粗さRaに対して−2〜+8μmの範囲内に調整することが好ましい。これにより、溶射皮膜の膜厚を最小限におさえるとともに、製粉ロールに対し、必要な表面粗さを付与することができる。   Generally, ceramics and cermets have a lower thermal conductivity than metals. Therefore, milling rolls manufactured by thermal spray coating of ceramics or cermets on the surface of metal substrates are made of frictional heat generated during the grinding process. Tend to accumulate. Therefore, it is better not to make the thickness of the thermal spray coating formed by thermal spraying too large. However, on the other hand, pulverization of wheat or the like requires irregularities having a surface roughness of a certain level or more, and in order to realize such irregularities with a sprayed coating, a film thickness of a certain level or more is necessary. This problem can be solved if the surface roughness of the substrate is reflected in the surface roughness of the milling roll. That is, it is preferable to adjust the surface roughness Ra of the base material within a range of −2 to +8 μm with respect to the surface roughness Ra of the milling roll after the coating step. Thereby, while keeping the film thickness of a sprayed coating to the minimum, required surface roughness can be provided with respect to a milling roll.

前記被覆工程後の製粉ロールの表面のビッカース硬さHVは1000よりも大きいことが好ましい。これにより、製粉ロールの耐摩耗性が格段に向上する。   The Vickers hardness HV of the surface of the milling roll after the coating step is preferably larger than 1000. Thereby, the abrasion resistance of the milling roll is significantly improved.

前記溶射材料は限定しないが、特に炭化物サーメットであることが好ましい。溶射材料を炭化物サーメットとすることで、製粉ロールの高い表面硬度(具体的には、ビッカース硬さHVで1000よりも大きい値)が容易に得られ、良好な耐摩耗性を付与することができる。   The thermal spray material is not limited, but is preferably a carbide cermet. By using a carbide cermet as the thermal spray material, a high surface hardness of the milling roll (specifically, a Vickers hardness HV value greater than 1000) can be easily obtained, and good wear resistance can be imparted. .

前記溶射皮膜の平均厚さは、10〜150μmであることが好ましい。溶射皮膜の平均厚さが10μm未満であると、長期間使用する場合の耐久性が懸念され、一方で、150μmよりも大きいと、摩擦熱の蓄積の問題が懸念される。   The average thickness of the sprayed coating is preferably 10 to 150 μm. If the average thickness of the thermal spray coating is less than 10 μm, there is a concern about durability when used for a long period of time, while if it is greater than 150 μm, there is a concern about the problem of frictional heat accumulation.

前記製粉ロールの製造方法においては、前記被覆工程後に後処理としてショットブラスト処理を行い、前記溶射皮膜の表面のうねり内の微細な凹凸を滑らかにする調整工程Aを含むようにしてもよい。これにより、溶射皮膜の表面のうねり内に粉砕した穀物が付着し、詰まることを防止することができる。   The method for producing a milling roll may include an adjustment step A in which a shot blast treatment is performed as a post-treatment after the coating step to smooth fine irregularities in the undulations on the surface of the sprayed coating. Thereby, it is possible to prevent the pulverized grains from adhering to the undulations on the surface of the sprayed coating and clogging.

前記製粉ロールの製造方法においては、前記被覆工程後に後処理としてピークカット処理を行い、前記溶射皮膜の表面の凸部の先端を平坦化する調整工程Bを含むようにしてもよい。これにより、溶射皮膜の表面の穀物に対して点接触となる部位が減り、耐摩耗性を向上させることができる。   In the manufacturing method of the said milling roll, you may make it include the adjustment process B which performs a peak cut process as a post-process after the said covering | coating process, and planarizes the front-end | tip of the convex part of the surface of the said thermal spray coating. Thereby, the site | part which becomes a point contact with respect to the grain of the surface of a sprayed coating reduces, and abrasion resistance can be improved.

本発明によって製造された製粉ロールによれば、表層に存在する保水機能を有する溶射皮膜によって穀物に対する冷却性が得られる。溶射皮膜を形成するのは、ブラスト処理を施すことで表面積及び表面粗さを増大させた基材であり、溶射皮膜の剥離を防ぐことができる。溶射皮膜の高い冷却性により、製粉工程において穀物が熱を帯びることが防止され、穀物の乾燥を抑えることができる。これにより、穀物に適切な水分量を保持させることが可能となり、良好な穀物粉末を得ることができる。   According to the milling roll manufactured by this invention, the cooling property with respect to a grain is acquired by the thermal spray coating which has a water retention function which exists in a surface layer. The thermal spray coating is formed on a base material whose surface area and surface roughness are increased by performing a blast treatment, and the thermal spray coating can be prevented from peeling off. Due to the high cooling property of the sprayed coating, the grain is prevented from being heated in the milling process, and drying of the grain can be suppressed. Thereby, it becomes possible to hold | maintain the suitable moisture content to a grain, and a favorable grain powder can be obtained.

本発明の第1実施形態に係る製粉ロールの製造方法で製造したスムースロールの斜視図である。It is a perspective view of the smooth roll manufactured with the manufacturing method of the milling roll concerning a 1st embodiment of the present invention. 図1のスムースロールの表層の拡大断面図である。It is an expanded sectional view of the surface layer of the smooth roll of FIG. 各供試材の表面温度が所定の温度に到達するまでの時間をグラフ化したものである。The time until the surface temperature of each specimen reaches a predetermined temperature is graphed. 粗面化工程におけるブラスト処理の概略図である。It is the schematic of the blast process in a roughening process. (a)はショットブラスト処理を行う前の表層の拡大断面図であり、(b)はショットブラスト処理を行った後の表層の拡大断面図である。(A) is an expanded sectional view of the surface layer before performing a shot blasting process, (b) is an enlarged sectional view of the surface layer after performing a shot blasting process. ピークカット処理を行う前後の表層の断面図である。It is sectional drawing of the surface layer before and behind performing a peak cut process. (a)は本発明の第2実施形態に係る製粉ロールの製造方法で製造したブレーキロールの一部分の斜視図であり、(b)はブレーキロールの表面部分の拡大断面図である。(A) is a perspective view of a part of a brake roll manufactured by a method for manufacturing a milling roll according to a second embodiment of the present invention, and (b) is an enlarged sectional view of a surface portion of the brake roll. 図7のブレーキロールの丸印部分の表層の拡大断面図である。It is an expanded sectional view of the surface layer of the circle mark part of the brake roll of FIG.

本発明の実施の形態について図面を参照して説明する。図1は本発明の第1実施形態に係る製粉ロールの製造方法で製造したスムースロール(製粉ロール)1の斜視図であり、図2はスムースロール1の表層の拡大断面図である。図1では2つのスムースロール1が平行して配置されている。本実施形態のスムースロール1は、断面円形状のロール基材2(基材)を備えており、このロール基材2の表面2aに溶射皮膜3が形成されている。なお、本発明の製粉ロールは、スムースロール、ブレーキロールの他、製粉工程で用いられるあらゆる態様のロールに適用される。実際の製粉工程の一例では、図1に示すスムースロール1が2つ並んで設置された状態で、互いに逆方向かつそれぞれを内側に回転させたロール間に穀物を供給し、穀物の粉砕、分級作業を行う。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a smooth roll (milling roll) 1 manufactured by the method for manufacturing a milling roll according to the first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the surface layer of the smooth roll 1. In FIG. 1, two smooth rolls 1 are arranged in parallel. A smooth roll 1 according to this embodiment includes a roll base 2 (base) having a circular cross section, and a thermal spray coating 3 is formed on a surface 2 a of the roll base 2. In addition, the milling roll of this invention is applied to the roll of all the aspects used at a milling process other than a smooth roll and a brake roll. In an example of an actual milling process, in the state where two smooth rolls 1 shown in FIG. 1 are installed side by side, grains are fed between rolls rotated in the opposite directions and inward, and the grains are crushed and classified. Do work.

本実施形態のスムースロール1では、あらゆる穀物が製粉可能である。穀物の具体例として、小麦、大麦、エンバク、ハトムギ、トウモロコシ、ライ麦、ソバ、ヒエ、アワ、キビ、ソルガム、モロコシ、マコモ等が挙げられる。これらの穀物の1種を単独で使用しても良く、2種以上を組み合わせて使用しても良い。これらの穀物の中でも特に、小麦、大麦への適用が好ましい。小麦由来の穀粉として、強力粉、準強力粉、中力粉、薄力粉、全粒粉、デュラムセモリナが挙げられる。   In the smooth roll 1 of this embodiment, all grains can be milled. Specific examples of cereals include wheat, barley, oat, pearl barley, corn, rye, buckwheat, millet, millet, millet, sorghum, sorghum, makomo and the like. One kind of these grains may be used alone, or two or more kinds may be used in combination. Among these grains, application to wheat and barley is particularly preferable. Examples of wheat-derived flour include strong flour, semi-strong flour, medium strength flour, weak flour, whole grain flour, and durum semolina.

スムースロール1のロール径、長さ等の各部の寸法及び形状は限定されない。溶射皮膜3が形成されるロール基材2を構成する素材は、製粉ロールに適用可能であり、各種の溶射皮膜を形成可能な素材であればよい。ロール基材2を構成する素材として、金属素材が好適に用いられる。金属素材の具体例として、例えばFe、Cr、Ni、Mo、Co、Cu、Mn、Zn、Ta、W、Al、Ti、Mgから選ばれる金属、又はこれらの金属を1種以上含む、チルド鋼、ステンレス鋼などの合金が挙げられる。このような金属素材は、押出成形、切削加工、塑性加工、鍛造等によって成形される。   The size and shape of each part such as the roll diameter and length of the smooth roll 1 are not limited. The material constituting the roll base 2 on which the thermal spray coating 3 is formed can be applied to a milling roll and may be any material that can form various thermal spray coatings. A metal material is suitably used as the material constituting the roll base 2. Specific examples of the metal material include, for example, a metal selected from Fe, Cr, Ni, Mo, Co, Cu, Mn, Zn, Ta, W, Al, Ti, and Mg, or chilled steel containing one or more of these metals. And alloys such as stainless steel. Such a metal material is formed by extrusion, cutting, plastic working, forging, or the like.

溶射皮膜3は、各種の溶射材料が軟化又は溶融した状態で、ロール基材2の表面2aに高速で衝突して堆積することで形成される。溶射材料は限定されないが、高硬度を有するセラミックス又はサーメットが好ましい。   The thermal spray coating 3 is formed by colliding and depositing on the surface 2a of the roll base 2 at a high speed in a state where various thermal spray materials are softened or melted. The thermal spray material is not limited, but ceramic or cermet having high hardness is preferable.

溶射材料としてセラミックスを使用する場合の具体例としては、Ni、Cr、Co、Al、Ta、Y、W、Nb、V、Ti、B、Si、Mo、Zr、Fe、Hf、Laの群から選択される元素の1種以上を含む酸化物系セラミックス、窒化物系セラミックス、炭化物系セラミックス、硼化物系セラミックス、これらの混合物が挙げられる。   Specific examples of using ceramics as the thermal spray material include Ni, Cr, Co, Al, Ta, Y, W, Nb, V, Ti, B, Si, Mo, Zr, Fe, Hf, and La. Examples thereof include oxide ceramics, nitride ceramics, carbide ceramics, boride ceramics, and mixtures thereof containing one or more selected elements.

酸化物系セラミックスとしては、Al、Cr、HfO、La、TiO、Y、ZrO、Al・SiO、NiO、ZrO・SiO、SiO、MgO、CaOが挙げられる。窒化物系セラミックスとしては、TiN、TaN、AlN、BN、Si、HfN、NbN、YN、ZrN、Mg、Caが挙げられる。炭化物系セラミックスとしては、TiC、WC、TaC、BC、SiC、HfC、ZrC、VC、Crが挙げられる。硼化物系セラミックスとしては、TiB、ZrB、HfB、VB、TaB、NbB、W、CrB、LaBが挙げられる。Examples of oxide ceramics include Al 2 O 3 , Cr 2 O 3 , HfO 2 , La 2 O 3 , TiO 2 , Y 2 O 3 , ZrO 2 , Al 2 O 3 .SiO 2 , NiO, and ZrO 2 .SiO. 2 , SiO 2 , MgO, and CaO. Examples of nitride ceramics include TiN, TaN, AlN, BN, Si 3 N 4 , HfN, NbN, YN, ZrN, Mg 3 N 2 , and Ca 3 N 2 . Examples of the carbide ceramics include TiC, WC, TaC, B 4 C, SiC, HfC, ZrC, VC, and Cr 3 C 2 . Examples of the boride-based ceramics include TiB 2 , ZrB 2 , HfB 2 , VB 2 , TaB 2 , NbB 2 , W 2 B 5 , CrB 2 , and LaB 6 .

金属材料とセラミックス材料を複合化したサーメット材料を溶射材料としてもよい。サーメット材料としては、Cr、TaC、WC、NbC、VC、TiC、BC、SiC、CrB、WB、MoB、ZrB、TiB、FeB、CrN、CrN、TaN、NbN、VN、TiN、BNの群から選択されるセラミックス材料を、Ni、Cr、Co、Al、Ta、Y、W、Nb、V、Ti、B、Si、Mo、Zr、Fe、Hf、Laの群から選択される金属材料と複合化したものなどが挙げられる。その中でも、特に炭化物サーメットは高硬度の皮膜が容易に得られやすく、好適である。A cermet material obtained by combining a metal material and a ceramic material may be used as the thermal spray material. As cermet materials, Cr 3 C 2 , TaC, WC, NbC, VC, TiC, B 4 C, SiC, CrB 2 , WB, MoB, ZrB 2 , TiB 2 , FeB 2 , CrN, Cr 2 N, TaN, Ceramic materials selected from the group of NbN, VN, TiN, BN are Ni, Cr, Co, Al, Ta, Y, W, Nb, V, Ti, B, Si, Mo, Zr, Fe, Hf, La And a composite material with a metal material selected from the group. Among them, carbide cermet is particularly preferable because a high-hardness film can be easily obtained.

溶射皮膜3の表面は封止されておらず、溶射皮膜3の内部には多数の気孔5が存在している。これらの気孔5の内部に水分が保持されることで、溶射皮膜3は高い保水性を有する。これにより、スムースロール1の表層に保水性が付与され、製粉工程において穀物が熱を帯びることが防止されるのと共に、穀物に対する冷却性が得られ、穀物の乾燥を抑えることができる。そして、穀物に適切な水分量が保持されたままスムースロール1の表面凹凸によって穀物が粉砕されることで、良好な穀物粉末を得ることができる。   The surface of the thermal spray coating 3 is not sealed, and a large number of pores 5 exist inside the thermal spray coating 3. By keeping moisture inside these pores 5, the thermal spray coating 3 has high water retention. Thereby, water retention is imparted to the surface layer of the smooth roll 1, and the grain is prevented from being heated in the milling process, and cooling performance for the grain is obtained, so that drying of the grain can be suppressed. And a favorable grain powder can be obtained by grind | pulverizing a grain by the surface unevenness | corrugation of the smooth roll 1 with the appropriate moisture content hold | maintained to a grain.

溶射皮膜3の平均気孔率は0.5〜15%程度であればよいが、好ましくは2.0〜10%である。平均気孔率の調整は溶射法及び溶射条件の選択によって行う。溶射皮膜3の内部の気孔5が良好に水分を保持することができる平均気孔率は、2.0%以上である。但し、平均気孔率が大きくなれば、保水性が上昇するものの、耐摩耗性の低下が懸念される。そのため、耐摩耗性を維持する観点から平均気孔率は10%以下が好ましい。   The average porosity of the thermal spray coating 3 may be about 0.5 to 15%, preferably 2.0 to 10%. The average porosity is adjusted by selecting the spraying method and the spraying conditions. The average porosity at which the pores 5 in the thermal spray coating 3 can retain moisture satisfactorily is 2.0% or more. However, if the average porosity is increased, the water retention is increased, but there is a concern about a decrease in wear resistance. Therefore, the average porosity is preferably 10% or less from the viewpoint of maintaining wear resistance.

溶射施工における気孔率の調整には以下の手法が有効である。すなわち皮膜形成に用いる溶射材料粒径の選定、溶射時の粒子速度の調整、溶射距離の調整である。例えば溶射皮膜の気孔率を低減し緻密質とする場合には、溶射材料として細かな粒径の粉末を用いると良く、さらに粒子速度は高いほうが好ましい。また、皮膜が熱影響により割れない程度の熱流束となるように溶射距離は短めに設定する方法も選択できる。一方、気孔率を増大させ多孔質膜を形成するためには、上記とは逆の方法で成膜する方法が有効である。ただし、上記の調整は、硬さや耐摩耗性、表面形状維持性など他の皮膜特性を損なわない程度の変更に留める必要がある。   The following methods are effective for adjusting the porosity in thermal spraying. That is, selection of the particle size of the thermal spray material used for film formation, adjustment of the particle velocity during thermal spraying, and adjustment of the thermal spray distance. For example, when reducing the porosity of the thermal spray coating to make it dense, it is better to use a powder with a fine particle size as the thermal spray material, and it is preferable that the particle velocity is higher. Further, it is possible to select a method in which the spraying distance is set to be short so that the coating has a heat flux that does not break due to the heat effect. On the other hand, in order to increase the porosity and form a porous film, a method of forming a film by a method opposite to the above is effective. However, the above-described adjustment needs to be limited to changes that do not impair other film properties such as hardness, wear resistance, and surface shape maintainability.

溶射皮膜の水分含有量に基づく熱伝達特性について検証するため、以下の実験を実施した。実験を行うに当たり、まず以下の供試材A〜Cを各2サンプルと、供試材Dを1サンプル用意した。
基材:ステンレス鋼
基材サイズ:5cm角、厚さ5mm
ブラスト条件:アルミナ粒子(#60)、圧力0.4MPa
溶射材料:WC−CrNi
溶射法:HVOF
気孔率:2〜4%(断面をSEMを用いて200倍で観察。測定箇所によってばらつきあり。断面SEM−BEI画像より、皮膜内部の黒色箇所を気孔とみなし、皮膜全体に対する気孔の割合を算出。)
溶射膜厚:50μm(供試材A1、A2)、100μm(供試材B1、B2)、150μm(供試材C1、C2)、溶射なし(供試材D)
In order to verify the heat transfer characteristics based on the moisture content of the thermal spray coating, the following experiment was conducted. In conducting the experiment, first, two samples each of the following test materials A to C and one sample of the test material D were prepared.
Base material: Stainless steel Base material size: 5cm square, thickness 5mm
Blasting conditions: Alumina particles (# 60), pressure 0.4 MPa
Thermal spray material: WC-CrNi
Thermal spraying method: HVOF
Porosity: 2 to 4% (The cross section was observed at 200 times using SEM. There were variations depending on the measurement location. From the cross section SEM-BEI image, the black portion inside the coating was regarded as the pore, and the ratio of the porosity to the entire coating was calculated. .)
Thermal sprayed film thickness: 50 μm (samples A1, A2), 100 μm (samples B1, B2), 150 μm (samples C1, C2), no thermal spray (sample D)

供試材A1、B1、C1のそれぞれの表面に水道水を垂らし、溶射皮膜に充分水分を含ませた。表面に残存した水分はキムタオルで軽くふき取った。100℃に保持したプレートヒータ上へ、水分を含ませた供試材A1〜C1を設置し、各供試材の表面温度を接触式温度計で計測した。表面温度が40℃、60℃、80℃に到達するまでの時間を計測し、記録した。   Tap water was hung on the surface of each of the test materials A1, B1, and C1, and the spray coating was sufficiently moistened. Moisture remaining on the surface was gently wiped with a Kim towel. On the plate heater maintained at 100 ° C., test materials A1 to C1 containing water were placed, and the surface temperature of each test material was measured with a contact thermometer. The time until the surface temperature reached 40 ° C., 60 ° C., and 80 ° C. was measured and recorded.

供試材A2、B2、C2、Dを100℃に保持したプレートヒータ上へ設置し、各供試材の表面温度を接触式温度計で計測した。表面温度が40℃、60℃、80℃に到達するまでの時間を計測し、記録した。   The specimens A2, B2, C2, and D were placed on a plate heater maintained at 100 ° C., and the surface temperature of each specimen was measured with a contact thermometer. The time until the surface temperature reached 40 ° C., 60 ° C., and 80 ° C. was measured and recorded.

これらの計測記録から、膜厚差、水分含有差に基づく熱伝達特性を検証した。表1および図3に示すとおり、いずれのサンプルも40℃までの温度上昇では水分の有無に関わらずほとんど差が出なかったが、80℃では水分を含ませた溶射皮膜のほうが目的の温度に到達するまでの時間が長くなるという結果が現れた。以上のことから、膜厚にかかわらず、水分を含ませた溶射皮膜のほうが温度上昇を抑えられることが分かった。

Figure 0006556349
From these measurement records, heat transfer characteristics based on film thickness difference and moisture content difference were verified. As shown in Table 1 and FIG. 3, in all samples, there was almost no difference when the temperature rose to 40 ° C., regardless of the presence or absence of moisture, but at 80 ° C., the sprayed coating containing moisture reached the target temperature. The result is that the time to reach is longer. From the above, it was found that the thermal spray coating containing water can suppress the temperature rise regardless of the film thickness.
Figure 0006556349

溶射皮膜3の平均厚さtは適宜設定され、好ましくは10〜150μmであり、より好ましくは20〜100μmである。溶射皮膜3の平均厚さtは、小さくしすぎると耐久性が懸念されるが、一方で大きくしすぎると、摩擦熱などによりロール基材2に蓄熱される熱量が大きくなり、製粉工程における穀物の乾燥を促進させてしまう。特に、セラミックス及びサーメットは一般的に金属よりも熱伝導率が低いため、金属素材に対し、セラミックス又はサーメットを溶射する場合には、この点に留意する。   The average thickness t of the thermal spray coating 3 is appropriately set, and is preferably 10 to 150 μm, more preferably 20 to 100 μm. If the average thickness t of the thermal spray coating 3 is too small, there is a concern about durability, but if it is too large, the amount of heat stored in the roll base material 2 due to frictional heat or the like increases, and the grain in the milling process It will accelerate the drying of. In particular, since ceramics and cermets generally have lower thermal conductivity than metals, this point should be noted when ceramics or cermets are thermally sprayed on metal materials.

ロール基材2の表面粗さRaは、最終的に狙うスムースロール1の表面粗さRaの値に対して−2〜+8μmの範囲となるように調整されている。言い換えると、スムースロール1の表面粗さRaは、ロール基材2の表面粗さRaが反映されたものとなっている。また、ロール基材2の表面粗さRaがスムースロール1の表面粗さRaが反映されるように、本実施形態の溶射皮膜3は厚さtを均一とするように成膜されている。ここでいう均一とは、同じ皮膜の最大厚さと最小厚さがそれぞれ、平均厚さの±30%以内に含まれるものをいう。   The surface roughness Ra of the roll base 2 is adjusted to be in the range of −2 to +8 μm with respect to the value of the surface roughness Ra of the smooth roll 1 that is finally aimed. In other words, the surface roughness Ra of the smooth roll 1 reflects the surface roughness Ra of the roll base 2. Moreover, the thermal spray coating 3 of this embodiment is formed so that the thickness t is uniform so that the surface roughness Ra of the roll base 2 reflects the surface roughness Ra of the smooth roll 1. Here, the term “uniform” means that the maximum thickness and the minimum thickness of the same film are each included within ± 30% of the average thickness.

また、溶射皮膜3を形成するのは、表面粗さを調整し、表面積及び表面粗さを増大させたロール基材2の表面2aであるため、溶射皮膜3の剥離を防止することができる。ロール基材2と溶射皮膜3との間に、密着性の向上等を目的として、アンダーコート層を設けてもよい。   Moreover, since it is the surface 2a of the roll base material 2 which adjusted the surface roughness and increased the surface area and the surface roughness, the thermal spray coating 3 can be prevented from peeling off. An undercoat layer may be provided between the roll substrate 2 and the thermal spray coating 3 for the purpose of improving adhesion.

穀物の粉砕、分級といった観点から、スムースロール1の表面粗さRaを5〜15μmとしている。これにより、良好な穀物粉末を得ることができる。スムースロール1の表面1aの表面硬度は高く、当該表面硬度はビッカース硬さHVで1000よりも大きい値に調整されている。これにより、スムースロール1の耐摩耗性を向上させることができる。   From the viewpoint of pulverization and classification of grains, the surface roughness Ra of the smooth roll 1 is set to 5 to 15 μm. Thereby, a good grain powder can be obtained. The surface hardness of the surface 1a of the smooth roll 1 is high, and the surface hardness is adjusted to a value larger than 1000 in terms of Vickers hardness HV. Thereby, the abrasion resistance of the smooth roll 1 can be improved.

溶射皮膜3を表面に形成したスムースロール1の製造方法の一例を挙げる。ロール基材2の表面2aを粗面化する粗面化工程、ロール基材2の表面2aの清浄化処理、ロール基材2上に溶射材料を吹き付け、水分を保持する気孔5を有する溶射皮膜3を形成する被覆工程をこの順に行う。基材の種類や溶射材料の種類によって予熱工程などの他の工程が含まれる場合もある。   An example of the manufacturing method of the smooth roll 1 which formed the sprayed coating 3 on the surface is given. A surface roughening step for roughening the surface 2a of the roll base material 2, a cleaning treatment for the surface 2a of the roll base material 2, a thermal spray coating having a pore 5 for spraying a spray material onto the roll base material 2 and retaining moisture. 3 is performed in this order. Other processes such as a preheating process may be included depending on the type of base material and the type of thermal spray material.

粗面化工程では、図4のようにロール基材2の表面2aに対して、ブラストノズル20から投射材21を衝突させるブラスト処理を行うことによって、ロール基材2の表面2aに凹凸を形成する。ブラストとは、表面が粗い粒子(グリット)を圧縮空気等で基材の表面に吹き付け、基材表面を粗面化する手法をいう。ロール基材2の表面2aの粗さは、後工程である被覆工程後の製粉ロールの表面粗さRaに対して−2〜+8μmの範囲内とする。加工条件としては、ブラスト材の種類及び粒度、噴射圧力、ブラスト処理時間等が適宜設定される。また、ブラスト処理によれば、ロール基材に対し、一本一本施工することができる。従来は、互いに逆方向に回転する2つのロール間にメディアを投入し、一対のロールのそれぞれに同様の表面粗さを付与する手法がとられていたが、ブラスト処理であれば、個々の製粉ロールの表面粗さRaを独自に規定することができるため、例えば一対の製粉ロール間でそれぞれ表面粗さRaを異ならせる等、使用の目的に応じて設計を柔軟に変更することが可能となる。   In the roughening step, the surface 2a of the roll base 2 is subjected to a blasting process for causing the projection material 21 to collide with the surface 2a of the roll base 2 as shown in FIG. To do. Blasting refers to a technique in which particles (grit) having a rough surface are sprayed onto the surface of a substrate with compressed air or the like to roughen the surface of the substrate. The roughness of the surface 2a of the roll base 2 is in the range of −2 to +8 μm with respect to the surface roughness Ra of the milling roll after the coating step, which is a subsequent step. As processing conditions, the type and particle size of the blast material, the injection pressure, the blasting time, and the like are set as appropriate. Moreover, according to a blast process, it can construct one by one with respect to a roll base material. Conventionally, a method has been adopted in which a medium is introduced between two rolls rotating in opposite directions, and a similar surface roughness is imparted to each of a pair of rolls. Since the surface roughness Ra of the roll can be uniquely defined, the design can be flexibly changed according to the purpose of use, for example, the surface roughness Ra is different between a pair of milling rolls, for example. .

被覆工程における溶射皮膜3を得るための溶射法として、大気プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法、ガスフレーム溶射法、アーク溶射法、爆発溶射法などが挙げられる。溶射皮膜3が水分を保持できるようにするために、これら溶射法を適切に選択するとともに、さらにその溶射方法に応じて、溶射材料の種類、熱源温度、溶射角度、溶射距離等の溶射条件が適宜設定される。   Examples of the thermal spraying method for obtaining the thermal spray coating 3 in the coating step include an atmospheric plasma spraying method, a low pressure plasma spraying method, a high-speed flame spraying method, a gas flame spraying method, an arc spraying method, and an explosion spraying method. In order to allow the thermal spray coating 3 to retain moisture, these thermal spraying methods are appropriately selected, and further, depending on the thermal spraying method, the thermal spraying conditions such as the type of thermal spray material, the heat source temperature, the thermal spray angle, the thermal spray distance, etc. Set as appropriate.

サーメットを溶射する場合には、特に高速フレーム溶射法(HVOF)が好適である。この溶射法は、燃焼ガスの燃焼エネルギーを熱源とする溶射法であり、燃焼室の圧力を高めることによって、爆発燃焼炎に匹敵する高速火炎を発生させ、この燃焼炎ジェット流の中心に溶射材料を供給して加速させ、溶融又は半溶融状態にし、高速度で連続噴射する溶射法である。溶融した溶射粒子が超音速度で基材に衝突するため、高密着力を有する溶射皮膜3を形成することができる。熱源として用いる燃料には、ケロシンや、燃焼ガスとしてHガスをはじめ、炭素と水素を主成分とするアセチレン、エチレン、プロパンなどが使用される。When spraying cermet, high-speed flame spraying (HVOF) is particularly suitable. This thermal spraying method is a thermal spraying method that uses the combustion energy of combustion gas as a heat source. By increasing the pressure in the combustion chamber, a high-speed flame comparable to an explosive combustion flame is generated, and a thermal spray material is formed at the center of this combustion flame jet stream. Is sprayed to be accelerated by supplying a molten or semi-molten state and continuously sprayed at a high speed. Since the molten sprayed particles collide with the substrate at supersonic speed, the sprayed coating 3 having high adhesion can be formed. As the fuel used as a heat source, kerosene, H 2 gas as a combustion gas, acetylene mainly composed of carbon and hydrogen, ethylene, propane, and the like are used.

セラミックスを溶射する場合には、特にプラズマ溶射法が好適である。プラズマ溶射法は溶射材料をプラズマで加熱し、溶融させて液状の溶射粒子とし、この溶射粒子をプラズマジェットで基材の被成膜面に高速で衝突させて行われる溶射法である。電気エネルギーを熱源とするプラズマ溶射法は、プラズマの発生源としてアルゴン、水素及び窒素などを利用して成膜するものであり、熱源温度が高く、フレーム速度が速いことから高融点の材料を成膜することが可能である。   When spraying ceramics, the plasma spraying method is particularly suitable. The plasma spraying method is a thermal spraying method in which a thermal spray material is heated with plasma and melted to form liquid thermal spray particles, and the thermal spray particles are collided with a film formation surface of a substrate at a high speed by a plasma jet. The plasma spraying method using electrical energy as a heat source is to form a film using argon, hydrogen, nitrogen, etc. as a plasma generation source. Since the heat source temperature is high and the frame speed is high, a high melting point material is formed. It is possible to membrane.

以上のようにロール基材2の表面2aに溶射皮膜3を形成した後、続いて、溶射皮膜3の表面形状を調整するための調整工程を行ってもよい。これにより、使用用途に応じた表面性状を得ることが可能となる。   After forming the thermal spray coating 3 on the surface 2a of the roll base 2 as described above, an adjustment step for adjusting the surface shape of the thermal spray coating 3 may be subsequently performed. Thereby, it becomes possible to obtain the surface property according to the intended use.

溶射皮膜3形成後は、ショットブラスト処理を施すことが好ましい(調整工程A)。ショットブラストとは、球状の粒子を圧縮空気等で基材の表面に吹き付け、基材の表面形状を調整する手法をいう。溶射皮膜3の表面のうねり内には、図5(a)のような微細な凹凸が存在する。ショットブラスト処理を施すことで図5(b)に示すように、溶射皮膜3の表面のうねり内の微細な凹凸を滑らかにすることができ、うねり内に粉砕した穀物が付着し、詰まることを防止することができる。   After the thermal spray coating 3 is formed, it is preferable to perform shot blasting (adjustment step A). Shot blasting is a method of adjusting the surface shape of a substrate by spraying spherical particles onto the surface of the substrate with compressed air or the like. Within the undulations on the surface of the thermal spray coating 3, there are fine irregularities as shown in FIG. By performing shot blasting, as shown in FIG. 5 (b), fine irregularities in the undulations on the surface of the sprayed coating 3 can be smoothed, and the crushed grains adhere to and clog the undulations. Can be prevented.

溶射皮膜3形成後は、必要に応じてピークカット処理を行ってもよい(調整工程B)。ピークカットの手法としては、バフ研磨等が挙げられる。ピークカット処理を施すことで図6に示すように、溶射皮膜3の表面の凸部の先端を平坦化することができ、耐摩耗性を向上させることができる。なお、ショットブラスト処理を行った後、ピークカット処理を行ってもよい。   After the thermal spray coating 3 is formed, peak cut processing may be performed as necessary (adjustment step B). Examples of the peak cutting method include buffing. By performing the peak cut treatment, as shown in FIG. 6, the tip of the convex portion on the surface of the thermal spray coating 3 can be flattened, and the wear resistance can be improved. Note that the peak cut process may be performed after the shot blast process.

このようなショットブラスト処理やピークカット処理は、製粉ロールに対し、一本一本施工することができる。これにより、個々の製粉ロールの表面形状を独自に調整することができるため、使用の目的に応じて設計を柔軟に変更することができる。なお、ピークカット処理によって、溶射皮膜3の表面粗さRaの値は変化することになるが、穀物の粉砕性能が損なわれないよう、ピークカット処理後であっても、上で述べたような数値範囲内におさまるようにすることが好ましい。   Such shot blasting and peak cut processing can be applied one by one to the milling roll. Thereby, since the surface shape of each milling roll can be adjusted independently, a design can be changed flexibly according to the purpose of use. In addition, although the value of the surface roughness Ra of the thermal spray coating 3 is changed by the peak cut treatment, as described above even after the peak cut treatment so as not to impair the pulverization performance of the grains. It is preferable to be within the numerical range.

上記本実施形態の製粉ロールの製造方法によれば、ロール基材2の表面2aに、溶射による溶射皮膜3を形成することから、スムースロール1を長期間使用したとしても表層の凹凸を維持することができ、粉砕性能が損なわれない。また、溶射によれば、溶射条件の調整によって、作られる皮膜中の気孔5の大きさや存在比率を制御することができる。   According to the method for producing a milling roll of the present embodiment, since the thermal spray coating 3 is formed on the surface 2a of the roll base 2 by spraying, the unevenness of the surface layer is maintained even if the smooth roll 1 is used for a long period of time. The grinding performance is not impaired. Moreover, according to the thermal spraying, the size and the existence ratio of the pores 5 in the film to be formed can be controlled by adjusting the thermal spraying conditions.

この製粉ロールの製造方法によって形成される溶射皮膜3は水分を保持する気孔5を有するので、穀物に熱を伝わりにくくすることができ、かつスムースロール1の表層における保水性が高められるので、穀物に対する冷却性が得られる。また、溶射によって溶射皮膜3を形成するのは、ブラスト処理を施すことで表面積及び表面粗さを増大させたロール基材2であるため、溶射皮膜3の剥がれを防ぐことができる。そのため、スムースロール1の表層における摩耗や溶射皮膜3の剥がれの問題をなくすとともに、保水性が向上し、穀物に対する冷却性が高められる。この高い冷却性により、製粉工程において穀物が熱を帯びることが防止され、穀物の乾燥を抑えることができる。これにより、穀物に適切な水分量を保持させることが可能となり、良好な穀物粉末を得ることができる。   Since the thermal spray coating 3 formed by this method for producing a milling roll has pores 5 for retaining moisture, heat transfer to the grain can be made difficult, and water retention in the surface layer of the smooth roll 1 is enhanced. Cooling performance against Moreover, since it is the roll base material 2 which increased the surface area and the surface roughness by performing the blasting process, the thermal spray coating 3 can be prevented from peeling off. Therefore, the problem of abrasion on the surface layer of the smooth roll 1 and peeling of the sprayed coating 3 is eliminated, the water retention is improved, and the cooling performance for the grain is enhanced. This high cooling property prevents the grain from being heated in the milling process and can suppress the drying of the grain. Thereby, it becomes possible to hold | maintain the suitable moisture content to a grain, and a favorable grain powder can be obtained.

上記実施形態の製粉ロールの製造方法は例示であって制限的なものではない。第1実施形態では、製粉ロールの製造方法をスムースロールに適用して説明したが、当該製造方法をブレーキロールに適用してもよい。図7(a)は本発明の第2実施形態に係る製粉ロールの製造方法で製造したブレーキロール10の一部分の斜視図であり、(b)はブレーキロール10の表面部分の拡大断面図である。このブレーキロール10の表面部分には、軸方向に沿って延びる多数の溝11が機械加工によって全周にわたって形成されている。各溝11は傾斜角度が異なる二つの傾斜面からなる断面V字状で形成されており、隣り合う溝11同士の間には、外周面となる頂部12が存在している。   The manufacturing method of the milling roll of the said embodiment is an illustration and is not restrictive. In 1st Embodiment, although the manufacturing method of the milling roll was applied and demonstrated to the smooth roll, you may apply the said manufacturing method to a brake roll. FIG. 7A is a perspective view of a part of the brake roll 10 manufactured by the method for manufacturing a milling roll according to the second embodiment of the present invention, and FIG. 7B is an enlarged sectional view of a surface portion of the brake roll 10. . A large number of grooves 11 extending along the axial direction are formed on the entire surface of the brake roll 10 by machining. Each groove 11 is formed in a V-shaped cross section composed of two inclined surfaces having different inclination angles, and a top portion 12 serving as an outer peripheral surface exists between adjacent grooves 11.

図8は図7(b)のブレーキロール10の丸印部分Mの表層の拡大断面図である。ブレーキロール10のロール基材13の表面13aには、溶射皮膜14が形成されている。ロール基材13を構成する素材、溶射皮膜14を形成するための溶射材料、溶射皮膜14の内部に存在する多数の気孔15の平均気孔率、溶射施工における気孔率の調整、溶射皮膜14の厚さtは、ブレーキロールの機能に応じ、上述した範囲内において適宜設定される。   FIG. 8 is an enlarged cross-sectional view of the surface layer of the circled portion M of the brake roll 10 of FIG. A sprayed coating 14 is formed on the surface 13 a of the roll base 13 of the brake roll 10. The material constituting the roll base 13, the thermal spray material for forming the thermal spray coating 14, the average porosity of a large number of pores 15 existing in the thermal spray coating 14, the adjustment of the porosity in the thermal spraying construction, the thickness of the thermal spray coating 14 The length t is appropriately set within the above-described range according to the function of the brake roll.

ブレーキロール10の表面10aの表面硬度、ロール基材13の表面粗さRaを、最終的に狙うブレーキロール10の表面粗さRaの値に対して−2〜+8μmの範囲となるように調整する点も上述した範囲内において適宜設定される。なお、スムースロールを用いる工程の前工程である、穀物の表皮除去といった観点から、ブレーキロール10の表面粗さRaを2〜8μmとしている。   The surface hardness of the surface 10a of the brake roll 10 and the surface roughness Ra of the roll base 13 are adjusted so as to be in the range of −2 to +8 μm with respect to the surface roughness Ra of the brake roll 10 that is finally aimed. The point is also appropriately set within the above-described range. Note that the surface roughness Ra of the brake roll 10 is set to 2 to 8 μm from the viewpoint of removing the skin of the grain, which is a pre-process of the process using the smooth roll.

溶射皮膜14を表面に形成したブレーキロール10の製造方法は第1実施形態と同様であり、ロール基材13の表面13aを粗面化する粗面化工程、ロール基材13の表面13aの清浄化処理、ロール基材13上に溶射材料を吹き付け、水分を保持する気孔15を有する溶射皮膜14を形成する被覆工程をこの順に行う。基材の種類や溶射材料の種類によって予熱工程などの他の工程が含まれる場合もある。ロール基材13の表面13aに溶射皮膜14を形成した後の、溶射皮膜14の表面形状を調整するための調整工程A及びBも、本実施形態の工程に含ませることができる。   The manufacturing method of the brake roll 10 having the sprayed coating 14 formed on the surface thereof is the same as that of the first embodiment, and a roughening step for roughening the surface 13a of the roll base 13 and the cleaning of the surface 13a of the roll base 13 are performed. The coating process of spraying a thermal spray material on the roll base 13 and forming the thermal spray coating 14 having pores 15 for retaining moisture is performed in this order. Other processes such as a preheating process may be included depending on the type of base material and the type of thermal spray material. Adjustment steps A and B for adjusting the surface shape of the thermal spray coating 14 after the thermal spray coating 14 is formed on the surface 13a of the roll base 13 can also be included in the steps of this embodiment.

製粉ロールの仕様、施工態様に応じて、製粉ロールの製造方法に他の工程が含まれていてもよい。上記実施形態で説明した構成及び工程は本発明の効果を損なわない限りにおいて変更可能であり、必要に応じて設けられる他の構成及び工程の形態も限定しない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   Depending on the specification and construction mode of the milling roll, other steps may be included in the method for manufacturing the milling roll. The configurations and processes described in the above embodiments can be changed as long as the effects of the present invention are not impaired, and other configurations and processes provided as needed are not limited. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 スムースロール
1a スムースロールの表面
2 ロール基材
2a ロール基材の表面
3 溶射皮膜
5 気孔
t 厚さ
10 ブレーキロール
10a ブレーキロールの表面
11 溝
12 頂部
13 ロール基材
13a ロール基材の表面
14 溶射皮膜
15 気孔
20 ブラストノズル
21 投射材
DESCRIPTION OF SYMBOLS 1 Smooth roll 1a Smooth roll surface 2 Roll base material 2a Roll base material 3 Thermal spray coating 5 Pore t Thickness 10 Brake roll 10a Brake roll surface 11 Groove 12 Top 13 Roll base material 13a Roll base material 14 Thermal spray Film 15 Pore 20 Blast nozzle 21 Projection material

Claims (8)

基材の表面に対し、ブラスト処理を行う粗面化工程と、
粗面化された前記基材の表面上に溶射材料を吹き付け、水分を保持する気孔を有し、かつ平均気孔率が2.0%以上である溶射皮膜を形成する被覆工程と、
を含むことを特徴とする製粉ロールの製造方法。
A roughening step for blasting the surface of the substrate;
Spraying spray material onto the surface of the roughened the substrate, a coating step of possess pores retain moisture, and to form a thermal spray coating is the average porosity of 2.0% or more,
The manufacturing method of the milling roll characterized by including.
前記被覆工程後の製粉ロールの表面粗さRaは、2〜15μmであることを特徴とする請求項1に記載の製粉ロールの製造方法。   The method for producing a milling roll according to claim 1, wherein the surface roughness Ra of the milling roll after the coating step is 2 to 15 µm. 前記粗面化工程後の前記基材の表面粗さRaは、前記被覆工程後の製粉ロールの表面粗さRaに対して−2〜+8μmの範囲内であることを特徴とする請求項1又は2に記載の製粉ロールの製造方法。   The surface roughness Ra of the base material after the roughening step is in the range of -2 to +8 μm with respect to the surface roughness Ra of the milling roll after the coating step. The manufacturing method of the milling roll of 2. 前記被覆工程後の製粉ロールの表面のビッカース硬さHVは、1000よりも大きいことを特徴とする請求項1〜3のいずれかに記載の製粉ロールの製造方法。   The method for producing a milling roll according to any one of claims 1 to 3, wherein the surface of the milling roll after the coating step has a Vickers hardness HV of greater than 1000. 前記溶射材料は、炭化物サーメットであることを特徴とする請求項1〜4のいずれかに記載の製粉ロールの製造方法。   The said thermal spray material is carbide cermet, The manufacturing method of the milling roll in any one of Claims 1-4 characterized by the above-mentioned. 前記溶射皮膜の平均厚さは、10〜150μmであることを特徴とする請求項1〜5のいずれかに記載の製粉ロールの製造方法。   The average thickness of the said thermal spray coating is 10-150 micrometers, The manufacturing method of the milling roll in any one of Claims 1-5 characterized by the above-mentioned. 前記被覆工程後にショットブラスト処理を行い、前記溶射皮膜の表面のうねり内の微細な凹凸を滑らかにする調整工程Aを含むことを特徴とする請求項1〜6のいずれかに記載の製粉ロールの製造方法。   The milling roll according to any one of claims 1 to 6, further comprising an adjustment step A for performing shot blasting after the coating step and smoothing fine irregularities in the undulations on the surface of the sprayed coating. Production method. 前記被覆工程後にピークカット処理を行い、前記溶射皮膜の表面の凸部の先端を平坦化する調整工程Bを含むことを特徴とする請求項1〜7のいずれかに記載の製粉ロールの製造方法。   The method for producing a milling roll according to any one of claims 1 to 7, further comprising an adjustment step B for performing a peak cut treatment after the coating step and flattening a tip of a convex portion on a surface of the sprayed coating. .
JP2018520870A 2016-06-03 2017-05-26 Manufacturing method of milling roll Active JP6556349B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016111410 2016-06-03
JP2016111410 2016-06-03
PCT/JP2017/019721 WO2017208998A1 (en) 2016-06-03 2017-05-26 Method for manufacturing of flour milling roll

Publications (2)

Publication Number Publication Date
JPWO2017208998A1 JPWO2017208998A1 (en) 2019-01-24
JP6556349B2 true JP6556349B2 (en) 2019-08-07

Family

ID=60477595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520870A Active JP6556349B2 (en) 2016-06-03 2017-05-26 Manufacturing method of milling roll

Country Status (4)

Country Link
US (1) US20190119802A1 (en)
JP (1) JP6556349B2 (en)
CN (1) CN109219671B (en)
WO (1) WO2017208998A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519308A1 (en) * 2016-10-28 2018-05-15 Gebrueder Busatis Ges M B H Conveying and processing roller for a harvester
US11479841B2 (en) * 2017-06-19 2022-10-25 Praxair S.T. Technology, Inc. Thin and texturized films having fully uniform coverage of a non-smooth surface derived from an additive overlaying process
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
DE102018111621B4 (en) * 2018-05-15 2020-01-23 Helmut Prihoda Processes to improve the productivity of grinding plants
JP7437128B2 (en) * 2018-10-25 2024-02-22 昭和産業株式会社 Pulverizer for producing flour and method for producing flour using the same
KR20210126730A (en) * 2019-02-24 2021-10-20 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 structured brake disc
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
EP3845053B1 (en) * 2020-01-06 2024-02-14 CNH Industrial Belgium N.V. Crop processor and a manufacturing process for a crop processor
CN113416909B (en) * 2021-05-07 2022-01-04 东华隆(广州)表面改质技术有限公司 Production method of metal plate belt calendering roller
DE102022103245A1 (en) * 2022-02-11 2023-08-17 Sms Group Gmbh Pipe section, pipe assembly, manufacturing method for pipe section and pipe assembly and use of a pipe assembly
FR3134824B1 (en) * 2022-04-25 2024-07-26 Safran Landing Systems Method of manufacturing a part comprising a metal substrate covered with a protective layer and a part manufactured according to this method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973230B2 (en) * 1990-11-08 1999-11-08 静岡製機株式会社 Grain moisture meter
DE59407047D1 (en) * 1993-07-20 1998-11-12 Koeppern & Co Kg Maschf ROLL PRESSES, IN PARTICULAR FOR THE CRUSHING OF STRONG ABRASIVE SUBSTANCES
JP3642126B2 (en) * 1996-10-28 2005-04-27 株式会社サタケ Smooth roll matting treatment method and smooth roll obtained by the treatment
JP3791135B2 (en) * 1997-07-04 2006-06-28 株式会社サタケ Method for forming smooth roll pear ground and smooth roll formed with pear ground by the formation method
KR19990010706A (en) * 1997-07-11 1999-02-18 배경주 Grinding Rollers for Agricultural Products
DE102006008115A1 (en) * 2006-02-20 2007-08-30 Siemens Ag Milling tool e.g. rod mill, for milling of stone, has coating that is made of wear-resistant material and has ductile metallic base material with hard material particles, where base material is nickel or nickel alloy
CN201283297Y (en) * 2008-09-25 2009-08-05 河南中原轧辊有限公司 Frosting grinder roll
JP5015991B2 (en) * 2008-11-11 2012-09-05 トーカロ株式会社 Printing roll and method for producing the same
CN102453910B (en) * 2010-11-02 2014-08-20 沈阳大陆激光技术有限公司 Roller surface laser strengthened coating powder material of roller type crusher
JP5868133B2 (en) * 2011-11-16 2016-02-24 新日鐵住金株式会社 Manufacturing method of hearth roll for continuous annealing furnace
JP6006513B2 (en) * 2012-03-23 2016-10-12 吉川工業株式会社 Abrasion resistant, heat resistant transport roll and method for producing the same
WO2013179356A1 (en) * 2012-05-31 2013-12-05 日鉄ハード株式会社 Food processing rollers and manufacturing method for food processing rollers
CN104162465A (en) * 2014-07-18 2014-11-26 李正安 Flour mill grinding roller
CN205182835U (en) * 2015-11-11 2016-04-27 中材装备集团有限公司 Combined type crushing roller

Also Published As

Publication number Publication date
CN109219671A (en) 2019-01-15
US20190119802A1 (en) 2019-04-25
WO2017208998A1 (en) 2017-12-07
JPWO2017208998A1 (en) 2019-01-24
CN109219671B (en) 2020-08-21

Similar Documents

Publication Publication Date Title
JP6556349B2 (en) Manufacturing method of milling roll
TWI682833B (en) Structure of blade leading edge of machining tool and its surface treatment method
TWI470088B (en) Hard alloy and cutting tools using it
CN110944776B (en) Coated cutting tool
WO2005092608A1 (en) Surface coating member and cutting tool
KR20140138711A (en) Surface coating cutting tool
JPS5988995A (en) Scraper or blade for controllably applying and leveling coating agent to continuous paper web
JP2011011331A (en) Coated cutting tool insert
CN108778584A (en) Surface-coated cutting tool
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6034579B2 (en) Durable coated tool
CN104002203B (en) A kind of thin band continuous casting crystallization roller adjustable controlled high roughness texturing surface preparation method
WO2012176827A1 (en) Surface coating cutting tool with excellent defect resistance and abrasion resistance
JP2010207921A (en) Surface coated cutting tool exhibiting excellent chip dischargeability
JP2011131348A (en) Surface coating cutting tool
JP5094368B2 (en) Cutting tools
JP2007224374A (en) Coated member
JP5991529B2 (en) Surface coated cutting tool with excellent fracture resistance and wear resistance
Almeida et al. Re-sharpenable thick CVD diamond-coated Si3N4 tools for hardmetal turning
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
WO2020194899A1 (en) Coated cutting tool
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7410385B2 (en) coated cutting tools
CN109440105A (en) A kind of preparation method of machining tool
KR100599552B1 (en) Thermal spray coating method on surface of spindle disk for abrasive wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250