JP6484520B2 - Vehicle steering system - Google Patents

Vehicle steering system Download PDF

Info

Publication number
JP6484520B2
JP6484520B2 JP2015141913A JP2015141913A JP6484520B2 JP 6484520 B2 JP6484520 B2 JP 6484520B2 JP 2015141913 A JP2015141913 A JP 2015141913A JP 2015141913 A JP2015141913 A JP 2015141913A JP 6484520 B2 JP6484520 B2 JP 6484520B2
Authority
JP
Japan
Prior art keywords
steering
steered
vehicle speed
upper limit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015141913A
Other languages
Japanese (ja)
Other versions
JP2017024452A (en
Inventor
義人 中村
義人 中村
建一 桐原
建一 桐原
俊輔 渡邊
俊輔 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015141913A priority Critical patent/JP6484520B2/en
Publication of JP2017024452A publication Critical patent/JP2017024452A/en
Application granted granted Critical
Publication of JP6484520B2 publication Critical patent/JP6484520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、ステア・バイ・ワイヤ方式の車両用操舵装置に関する。   The present invention relates to a steer-by-wire vehicle steering apparatus.

最近の車両には、ステア・バイ・ワイヤ(Steer By Wire)と呼ばれる方式の車両用操舵装置を搭載したものがある。ステア・バイ・ワイヤ方式(以下、「SBW方式」と省略する。)の車両用操舵装置では、操向ハンドル(以下、「ハンドル」と省略する。)及び操舵反力モータを有する操舵部と、転舵モータ及び転舵輪を有する転舵部との間が、機械的に切り離されている。   Some recent vehicles are equipped with a vehicle steering device of the type called Steer By Wire. In a steer-by-wire (hereinafter abbreviated as “SBW method”) vehicle steering apparatus, a steering unit having a steering handle (hereinafter abbreviated as “handle”) and a steering reaction force motor; The steering motor and the steered portion having the steered wheels are mechanically disconnected.

例えば特許文献1には、SBW方式の車両用操舵装置を搭載した荷役車両(フォークリフト)において、停車時又は微速走行時に大きな操舵角の操舵がなされると、目標転舵角を、制限を受けていない平常時の値と零との間の制限値に制限する技術が開示されている。   For example, in Patent Document 1, in a cargo handling vehicle (forklift) equipped with a SBW-type vehicle steering device, when a large steering angle is steered when the vehicle is stopped or traveling at a low speed, the target turning angle is limited. A technique for limiting to a limit value between a normal value and zero is disclosed.

特許文献1に係るSBW方式の車両用操舵装置によれば、停車時又は微速走行時に大きな操舵角の操舵がなされると、目標転舵角を前記制限値に制限するため、次に停車時から発進する際や微速から走行速度を増加させる際に、実際の転舵角の絶対値が過度に大きい走行状態となる事態が抑制される結果、走行抵抗を低減することができる。   According to the vehicle steering apparatus of the SBW system according to Patent Document 1, when steering with a large steering angle is performed at the time of stopping or at a low speed, the target turning angle is limited to the limit value. When starting or increasing the traveling speed from a very low speed, a situation in which the actual steering angle becomes excessively large is suppressed, and as a result, the traveling resistance can be reduced.

特開2010−264833号公報JP 2010-264833 A

ところが、停車時又は微速走行時に操舵部材の操作がなされる据え切り時に大きな操舵角の操舵がなされると、ある問題が生じる。すなわち、目標転舵角を制限値に制限する構成の特許文献1に係る技術では、実転舵角が転舵可能範囲を規定する終端転舵角の付近である際に、例えば、転舵輪が縁石等の障害物に当たることで転舵が不可能となったケースにおいて、目標転舵角が制限値に到達するまでの間、転舵モータに過大な電流が流れ続けてしまう。つまり、特許文献1に係る技術では、前記のケースにおいて、省電力の要請に応えることができないという課題があった。   However, a problem arises when steering with a large steering angle is performed when the steering member is operated when the vehicle is stopped or traveling at a low speed. That is, in the technology according to Patent Document 1 configured to limit the target turning angle to the limit value, when the actual turning angle is near the terminal turning angle that defines the steerable range, for example, In a case where turning is impossible by hitting an obstacle such as a curb, excessive current continues to flow through the turning motor until the target turning angle reaches the limit value. In other words, the technique according to Patent Document 1 has a problem that in the above-described case, the request for power saving cannot be satisfied.

本発明は、前記実情に鑑みてなされたものであり、据え切り時において転舵角が終端転舵角の付近にある際に、仮に転舵輪が障害物に当たることで転舵が不可能となるケースに遭遇しても、省電力の要請に応えることが可能な車両用操舵装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and when the turning angle is in the vicinity of the terminal turning angle at the time of stationary, turning becomes impossible because the turning wheel hits an obstacle. It is an object of the present invention to provide a vehicle steering apparatus that can meet the demand for power saving even if it encounters a case.

前記課題を解決するために、(1)に係る発明は、車両の転舵輪を転舵する際に操作される操舵部材を有する操舵部と、前記転舵輪を転舵するための転舵力を付与する転舵モータを有し、前記操舵部に対して機械的に切り離された状態で前記転舵輪を転舵可能な転舵部と、前記転舵輪に係る転舵角を検出する転舵角検出部と、前記車両の車速を検出する車速検出部と、前記転舵輪に係る転舵角を、前記操舵部材の操作に基づく目標転舵角に追従させるように前記転舵モータの駆動制御を行う制御部と、前記転舵輪が静止状態から転がり始める始動時を予測する予測部と、を備え、前記制御部は、前記車速が所定の車速閾値未満であり、かつ、前記転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、前記車速が前記車速閾値以上である際の前記転舵モータの電流上限値である走行時電流上限値と比べて低い据え切り時電流上限値を用いて当該転舵モータの駆動制御を行い、前記予測部により前記転舵輪の始動時が予測された場合に、当該始動時を含む所定の期間において、前記据え切り時電流上限値と比べて低い始動時電流上限値を用いて当該転舵モータの駆動制御を行うことを最も主要な特徴とする。 In order to solve the above-mentioned problem, the invention according to (1) provides a steering unit having a steering member operated when turning a steered wheel of a vehicle, and a turning force for turning the steered wheel. A turning unit that has a turning motor to be applied and is capable of turning the steered wheels in a state where the steered wheels are mechanically separated from the steering unit; and a steered angle that detects a steered angle associated with the steered wheels A detection unit; a vehicle speed detection unit that detects a vehicle speed of the vehicle; and a drive control of the steering motor so that a turning angle of the steered wheel follows a target turning angle based on an operation of the steering member. And a control unit that predicts a start time at which the steered wheels start rolling from a stationary state, and the control unit has a vehicle speed that is less than a predetermined vehicle speed threshold and that is associated with the steered wheels. When the absolute value of the steering angle exceeds a predetermined turning angle threshold, the vehicle speed is equal to or higher than the vehicle speed threshold. There row drive control of the steering motor with a maximum current when outright laid lower than the traveling time of the current upper limit value is a current upper limit value of the steering motor during some, of the steered wheels by the prediction unit When the start time is predicted, the steering motor drive control is most preferably performed using a start current upper limit value lower than the stationary current upper limit value in a predetermined period including the start time. Main features.

(1)に係る発明は、据え切り時において転舵角が終端転舵角の付近である際に、転舵輪が障害物に当たることで転舵が不可能となるケースを想定し、こうしたケースでの省電力を図るものである。
そこで、(1)に係る発明では、車速が所定の車速閾値未満であり、かつ、転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合、すなわち、据え切り時の実転舵角が終端転舵角の付近である場合に、制御部は、車速が車速閾値以上である際の走行時電流上限値と比べて低い据え切り時電流上限値を用いて転舵モータの駆動制御を行うこととした。
ちなみに、操舵部材の操作に基づく目標転舵角が終端転舵角に設定されている際でも、走行時電流上限値と比べて低い据え切り時電流上限値を用いて転舵モータの駆動制御が行われると、転舵輪は、駆動力の不足により終端転舵角まで転舵されずに、終端転舵角付近に位置付けられることになる。ただし、据え切り時において転舵角が終端転舵角の付近にある際に、前記のように転舵輪が終端転舵角まで転舵されずに、終端転舵角付近に位置付けられたとしても、特段の不具合は生じないであろう。
また、(1)に係る発明は、転舵輪の始動時にラック軸周りの転舵部において生じがちな機械的な異音の発生を抑制するものである。
タイヤが装着された転舵輪が、据え切り時電流上限値を用いた転舵モータの駆動制御によって終端転舵角付近に位置付けられている状態で、静止状態から転がり始める始動時には、ラック軸の軸方向に作用する力(タイヤ軸力)が解放される等の影響により、ラック軸周りの転舵部において機械的な異音を生じがちである。
そこで、(1)に係る発明では、予測部によって転舵輪の始動時を、例えばブレーキ踏力の解放や車両の加速度等から予測し、予測部により転舵輪の始動時が予測された場合に、始動時を含む所定の期間において、据え切り時電流上限値と比べて低い始動時電流上限値を用いて転舵モータの駆動制御を行うこととした。
The invention according to (1) assumes a case where turning is impossible when the turning wheel hits an obstacle when the turning angle is close to the terminal turning angle at the time of stationary, and in such a case It is intended to save power.
Therefore, in the invention according to (1), when the vehicle speed is less than the predetermined vehicle speed threshold value and the absolute value of the turning angle related to the steered wheels exceeds the predetermined turning angle threshold value, that is, at the time of stationary operation. When the turning angle is in the vicinity of the terminal turning angle, the control unit uses the stationary current upper limit value that is lower than the traveling current upper limit value when the vehicle speed is equal to or higher than the vehicle speed threshold. Drive control was performed.
By the way, even when the target turning angle based on the operation of the steering member is set to the terminal turning angle, the drive control of the turning motor is performed using the current upper limit value at stationary time that is lower than the current upper limit value at traveling. When this is done, the steered wheels are positioned in the vicinity of the final turning angle without being steered to the final turning angle due to insufficient driving force. However, when the turning angle is in the vicinity of the final turning angle at the time of stationary, even if the steered wheel is not steered to the final turning angle as described above, it may be positioned near the final turning angle. No particular problem will occur.
Moreover, the invention which concerns on (1) suppresses generation | occurrence | production of the mechanical noise which tends to arise in the turning part around a rack axis | shaft at the time of the start of a turning wheel.
At the time of start-up where the steered wheels equipped with tires start to roll from a stationary state while being positioned near the final steered angle by the drive control of the steered motor using the upper limit current value during stationary, Due to the effect of releasing the force acting on the direction (tire axial force), mechanical noise tends to be generated in the steered portion around the rack shaft.
Therefore, in the invention according to (1), when the prediction unit predicts the start time of the steered wheels from, for example, the release of the brake pedal force or the acceleration of the vehicle, the start time of the steered wheels is predicted by the prediction unit. In a predetermined period including time, the driving control of the steered motor is performed using a starting current upper limit value lower than the stationary current upper limit value.

(1)に係る発明によれば、据え切り時において転舵角が終端転舵角の付近にある際に、走行時電流上限値と比べて低い据え切り時電流上限値を用いて転舵モータの駆動制御が行われるため、仮に、転舵輪が障害物に当たることで転舵が不可能となるケースに遭遇しても、省電力の要請に応えることができる。
また、(1)に係る発明によれば、転舵輪の始動時を含む所定の期間において、据え切り時電流上限値と比べて低い始動時電流上限値を用いて転舵モータの駆動制御が行われるため、始動時にラック軸周りの転舵部において生じがちな機械的な異音の発生を抑制することができる。
According to the invention according to (1), when the turning angle is in the vicinity of the terminal turning angle at the time of stationary, a steering motor is used by using a stationary current upper limit value that is lower than the traveling current upper limit value. Therefore, even if a case where the steered wheel hits an obstacle makes it impossible to steer, the power saving request can be met.
Further, according to the invention according to (1), the driving control of the steered motor is performed using a starting current upper limit value lower than the stationary current upper limit value in a predetermined period including the starting time of the steered wheels. Therefore, it is possible to suppress the occurrence of mechanical noise that tends to occur in the steered portion around the rack shaft at the start.

また、(2)に係る発明は、(1)に係る発明に記載の車両用操舵装置であって、前記制御部は、前記車速が前記車速閾値以上から当該車速閾値未満に漸減しており、かつ、前記転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、前記車速の前記漸減の度合いに応じて漸減する特性を有する前記据え切り時電流上限値を用いて当該転舵モータの駆動制御を行うことを特徴とする。 The invention according to (2) is the vehicle steering apparatus according to the invention according to (1) , wherein the control unit gradually decreases the vehicle speed from the vehicle speed threshold value to less than the vehicle speed threshold value, And when the absolute value of the turning angle related to the steered wheel exceeds a predetermined turning angle threshold value, the current upper limit value at the time of stationary use having a characteristic of gradually decreasing according to the degree of gradually decreasing the vehicle speed is used. The driving control of the steering motor is performed.

ここで、転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、車速が車速閾値以上から車速閾値未満に漸減するケースにおいて、(1)に係る発明を適用したとする。この際に、走行時電流上限値と据え切り時電流上限値との大きさが離れていると、走行時電流上限値から据え切り時電流上限値への切り替わり時に転舵レスポンスが遅れる違和感を運転者が抱くおそれがある。
そこで、(2)に係る発明では、制御部は、車速が車速閾値以上から車速閾値未満に漸減しており、かつ、転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、車速の漸減の度合いに応じて漸減する特性を有する据え切り時電流上限値を用いて転舵モータの駆動制御を行うこととした。
Here, when the absolute value of the steered angle related to the steered wheel exceeds a predetermined steered angle threshold, the vehicle speed gradually decreases from the vehicle speed threshold to less than the vehicle speed threshold, and the invention according to (1) is applied. To do. At this time, if the driving current upper limit value is far from the stationary current upper limit value, the driver feels uncomfortable that the steering response is delayed when switching from the traveling current upper limit value to the stationary current upper limit value. There is a risk that the person will hold.
Therefore, in the invention according to (2) , the control unit gradually decreases the vehicle speed from the vehicle speed threshold value to less than the vehicle speed threshold value, and the absolute value of the turning angle related to the steered wheels exceeds a predetermined turning angle threshold value. In this case, the driving control of the steered motor is performed using the stationary current upper limit value having a characteristic of gradually decreasing according to the degree of gradually decreasing the vehicle speed.

(2)に係る発明によれば、車速が車速閾値以上から車速閾値未満に漸減しており、かつ、転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、車速の漸減の度合いに応じて漸減する特性を有する据え切り時電流上限値を用いて転舵モータの駆動制御が行われるため、走行時電流上限値から据え切り時電流上限値への切り替わり時に転舵レスポンスが遅れる違和感を運転者が抱く事態を一掃することができる。 According to the invention according to (2) , when the vehicle speed is gradually decreased from the vehicle speed threshold value to less than the vehicle speed threshold value, and the absolute value of the turning angle related to the steered wheels exceeds a predetermined turning angle threshold value, the vehicle speed Steering motor drive control is performed using the stationary current upper limit value that has a characteristic that gradually decreases in accordance with the degree of gradual decrease, so that the steering is turned when switching from the traveling current upper limit value to the stationary current upper limit value. The situation where the driver feels uncomfortable with a delayed response can be cleared.

本発明によれば、据え切り時において転舵角が終端転舵角の付近にある際に、仮に転舵輪が障害物に当たることで転舵が不可能となるケースに遭遇しても、省電力の要請に応えることができる。また、始動時にラック軸周りの転舵部において生じがちな機械的な異音の発生を抑制することができる。 According to the present invention, even when the turning angle is in the vicinity of the terminal turning angle at the time of stationary, even if a case in which turning is impossible due to the turning wheel hitting an obstacle, power saving is achieved. Can respond to the request. In addition, it is possible to suppress the occurrence of mechanical noise that tends to occur in the steered portion around the rack shaft at the start.

本発明の実施形態に係る車両用操舵装置の概略構成図である。1 is a schematic configuration diagram of a vehicle steering apparatus according to an embodiment of the present invention. 走行時及び据え切り時における、転舵角の変化に対する転舵モータの電流上限特性を対比して表す説明図である。It is explanatory drawing which compares and represents the electric current upper limit characteristic of the turning motor with respect to the change of a turning angle at the time of driving | running | working and stationary. 走行シーンの変化に応じて時々刻々と変化する転舵モータの電流上限特性を経時的に表す説明図である。It is explanatory drawing showing the electric current upper limit characteristic of a steering motor which changes every moment according to the change of a driving | running | working scene with time.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
図1は、本発明の実施形態に係る車両用操舵装置の概略構成図である。
車両用操舵装置11は、ステア・バイ・ワイヤ(SBW)方式の操舵装置である。この車両用操舵装置11は、後記する転舵モータ29の駆動により転舵力を発生させる機能(SBWモード)、後記する操舵反力モータ16の失陥時において、転舵モータ29の駆動により運転者の手動による操舵に係る補助力を発生させる電動パワーステアリング(Electronic Power steering:EPS)機能(EPSモード)、並びに、操舵反力モータ16及び転舵モータ29の失陥時において、運転者の手動による操舵を行わせる機能(マニュアルステアリングモード)を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a vehicle steering apparatus according to an embodiment of the present invention.
The vehicle steering device 11 is a steer-by-wire (SBW) type steering device. This vehicle steering device 11 is operated by driving the steering motor 29 when the steering reaction motor 16 described later has a function of generating a steering force by driving the steering motor 29 (SBW mode). When an electric power steering (EPS) function (EPS mode) that generates an assisting force related to manual steering by the driver, and when the steering reaction force motor 16 and the steering motor 29 fail, the driver's manual (Manual steering mode).

前記の諸機能を実現するために、車両用操舵装置11は、図1に示すように、ハンドル13と、操舵反力発生装置15と、転舵装置17と、クラッチ装置19と、を備える。車両用操舵装置11は、車両Vに搭載されている。車両Vは、一対の転舵輪21a,21bを備える。   In order to realize the various functions described above, the vehicle steering device 11 includes a handle 13, a steering reaction force generating device 15, a steering device 17, and a clutch device 19, as shown in FIG. The vehicle steering device 11 is mounted on the vehicle V. The vehicle V includes a pair of steered wheels 21a and 21b.

ハンドル13は、運転者の操舵に係る運転意図にしたがって操作される部材である。ハンドル13は、本発明の「操舵部材」に相当する。ハンドル13には、操舵軸23が設けられている。操舵軸23は、運転者によるハンドル13の操作にしたがって、軸周りに回転するように構成されている。   The handle 13 is a member that is operated in accordance with a driving intention related to the steering of the driver. The handle 13 corresponds to the “steering member” of the present invention. A steering shaft 23 is provided on the handle 13. The steering shaft 23 is configured to rotate around the shaft in accordance with the operation of the handle 13 by the driver.

操舵反力発生装置15は、車両用操舵装置11がSBWモードで動作している際に、ハンドル13を握る運転者の手元に操舵に係る反力(手応え)を発生させる機能を有する。操舵反力発生装置15は、操舵反力モータ16を有する。操舵反力モータ16には、操舵軸23が連結されている。操舵反力モータ16は、操舵軸23を軸周りに回転させるための操舵トルクを発生させる。これにより、車両用操舵装置11がSBWモードで動作している際に、ハンドル13を握る運転者の手元には、操舵に係る反力(手応え)が伝えられるようになっている。
ハンドル13、操舵軸23、及び、操舵反力モータ16を有する操舵反力発生装置15は、本発明の「操舵部」に相当する。
The steering reaction force generating device 15 has a function of generating a reaction force (response) related to steering at the driver's hand holding the handle 13 when the vehicle steering device 11 is operating in the SBW mode. The steering reaction force generator 15 has a steering reaction force motor 16. A steering shaft 23 is connected to the steering reaction force motor 16. The steering reaction force motor 16 generates a steering torque for rotating the steering shaft 23 around the axis. Thereby, when the vehicle steering device 11 is operating in the SBW mode, a reaction force (responsiveness) related to steering is transmitted to the hand of the driver who holds the handle 13.
The steering reaction force generator 15 having the handle 13, the steering shaft 23, and the steering reaction force motor 16 corresponds to the “steering unit” of the present invention.

転舵装置17は、ラック・アンド・ピニオン機構(不図示)を介して、転舵軸25の回転運動をラック軸27の直線運動に変換する機能を有する。転舵装置17は、転舵モータ29を有する。転舵モータ29には、転舵軸25及びラック軸27が連結されている。転舵モータ29は、ラック軸27を軸方向に沿って直線運動させるための転舵トルクを発生させる。ラック軸27には、図示しないタイロッドを介して一対の転舵輪21a,21bが連結されている。一対の転舵輪21a,21bは、ラック軸27の直線運動によって転舵されるようになっている。
転舵軸25、ラック軸27、及び、転舵モータ29を有する転舵装置17は、本発明の「転舵部」に相当する。
The steered device 17 has a function of converting the rotational motion of the steered shaft 25 into the linear motion of the rack shaft 27 via a rack and pinion mechanism (not shown). The steering device 17 has a steering motor 29. A steered shaft 25 and a rack shaft 27 are connected to the steered motor 29. The turning motor 29 generates a turning torque for causing the rack shaft 27 to linearly move along the axial direction. A pair of steered wheels 21a and 21b are connected to the rack shaft 27 via tie rods (not shown). The pair of steered wheels 21 a and 21 b are steered by a linear motion of the rack shaft 27.
The steered device 17 having the steered shaft 25, the rack shaft 27, and the steered motor 29 corresponds to the “steered portion” of the present invention.

クラッチ装置19は、操舵軸23及び転舵軸25の間を連結し又は切り離す機能を有する。こうした機能を実現するために、クラッチ装置19は、遊星歯車機構31を備える。この遊星歯車機構31は、内歯歯車31aと、遊星歯車31bと、太陽歯車31cと、遊星キャリア31dと、を有して構成されている。   The clutch device 19 has a function of connecting or disconnecting the steering shaft 23 and the steered shaft 25. In order to realize such a function, the clutch device 19 includes a planetary gear mechanism 31. The planetary gear mechanism 31 includes an internal gear 31a, a planetary gear 31b, a sun gear 31c, and a planet carrier 31d.

また、クラッチ装置19は、ロック用歯車33及びロック装置35を備える。ロック装置35は、ロック用歯車33の歯溝に係合するロックピン39と、ロックピン39を駆動する電磁ソレノイド37と、から構成される。   The clutch device 19 includes a locking gear 33 and a locking device 35. The lock device 35 includes a lock pin 39 that engages with a tooth groove of the lock gear 33, and an electromagnetic solenoid 37 that drives the lock pin 39.

内歯歯車31aは、操舵軸23のうち転舵装置17の側端部に固定され、操舵軸23と一体に回転するように構成される。太陽歯車31cは、転舵軸25と同軸の回転軸周りに自在に回転するように構成される。遊星歯車31bは、太陽歯車31c及び内歯歯車31aのそれぞれに係合するように複数設けられる。複数の遊星歯車31bのそれぞれは、転舵軸25と一体に回転する遊星キャリア31dに対して回転自在に軸支されている。   The internal gear 31 a is fixed to a side end portion of the steering device 17 in the steering shaft 23 and is configured to rotate integrally with the steering shaft 23. The sun gear 31c is configured to freely rotate around a rotation axis coaxial with the steered shaft 25. A plurality of planetary gears 31b are provided so as to engage with each of the sun gear 31c and the internal gear 31a. Each of the plurality of planetary gears 31b is rotatably supported with respect to a planet carrier 31d that rotates integrally with the steered shaft 25.

ロック用歯車33は、外歯歯車である。ロック用歯車33は、太陽歯車31cと一体に回転するように構成される。ロックピン39は、不図示の付勢手段によってロック用歯車33に近接する方向に付勢されている。ロックピン39がロック用歯車33の歯溝に係合すると、ロック用歯車33の回転運動が規制されるようになっている。
電磁ソレノイド37は、励磁電流の供給によってロックピン39を引き込むように変位させることで、ロックピン39とロック用歯車33との係合を解除するように動作する。
ロック装置35は、制御装置40から送られてくる制御信号にしたがって動作するように構成される。制御装置40は、電磁ソレノイド37に励磁電流を供給することで、ロック用歯車33に対するロックピン39の係合を解除するように動作する。
The locking gear 33 is an external gear. The locking gear 33 is configured to rotate integrally with the sun gear 31c. The lock pin 39 is urged in a direction close to the locking gear 33 by an urging means (not shown). When the lock pin 39 is engaged with the tooth groove of the locking gear 33, the rotational movement of the locking gear 33 is restricted.
The electromagnetic solenoid 37 operates to release the engagement between the lock pin 39 and the locking gear 33 by displacing the lock pin 39 by supplying the exciting current.
The locking device 35 is configured to operate according to a control signal sent from the control device 40. The control device 40 operates to release the engagement of the lock pin 39 with the locking gear 33 by supplying an excitation current to the electromagnetic solenoid 37.

次に、クラッチ装置19の作用について説明する。ロックピン39がロック用歯車33の歯溝に係合すると、ロック用歯車33と一体に回転する太陽歯車31cの回転運動が規制される。
太陽歯車31cの回転運動が規制された状態で、運転者がハンドル13を操作すると、操舵軸23の回転に伴って内歯歯車31aが回転する。このとき、太陽歯車31cの回転運動が規制されているため、遊星歯車31bは自転しながら太陽歯車31cの周囲を公転する。遊星歯車31bの公転によって、遊星歯車31bを軸支する遊星キャリア31d及びこの遊星キャリア31dと一体に回転する転舵軸25が回転する。
Next, the operation of the clutch device 19 will be described. When the lock pin 39 engages with the tooth groove of the locking gear 33, the rotational movement of the sun gear 31c that rotates together with the locking gear 33 is restricted.
When the driver operates the handle 13 in a state where the rotational movement of the sun gear 31 c is restricted, the internal gear 31 a rotates as the steering shaft 23 rotates. At this time, since the rotational movement of the sun gear 31c is restricted, the planetary gear 31b revolves around the sun gear 31c while rotating. Due to the revolution of the planetary gear 31b, the planetary carrier 31d that pivotally supports the planetary gear 31b and the turning shaft 25 that rotates integrally with the planetary carrier 31d rotate.

要するに、ロックピン39がロック用歯車33の歯溝に係合した状態では、クラッチ装置19は、操舵軸23及び転舵軸25の間を連結する連結状態になる。このとき、操舵軸23の回転力は、転舵軸25へと伝えられる。   In short, in a state where the lock pin 39 is engaged with the tooth groove of the locking gear 33, the clutch device 19 is in a connected state in which the steering shaft 23 and the steered shaft 25 are connected. At this time, the rotational force of the steering shaft 23 is transmitted to the steered shaft 25.

一方、ロック用歯車33の歯溝に対するロックピン39の係合が解除されると、ロック用歯車33と一体に回転する太陽歯車31cは回転自在な状態になる。
太陽歯車31cが回転自在な状態で、運転者がハンドル13を操作すると、操舵軸23の回転に伴って内歯歯車31aが回転する。このとき、遊星歯車31bは、自転しながら太陽歯車31cの周囲を公転しようとする。しかし、遊星キャリア31dには、転舵軸25及びラック軸27を介して転舵輪21a,21bが連結されている。このため、遊星キャリア31dの回転に対する抵抗力は、回転自在の状態にある太陽歯車31cの回転に対する抵抗力と比べてはるかに大きい。したがって、遊星歯車31bが自転すると、太陽歯車31cの方が回転(自転)し、遊星キャリア31dは回転しない。つまり、転舵軸25は回転しない。
On the other hand, when the engagement of the lock pin 39 with the tooth groove of the locking gear 33 is released, the sun gear 31c that rotates integrally with the locking gear 33 becomes rotatable.
When the driver operates the handle 13 with the sun gear 31c being rotatable, the internal gear 31a is rotated with the rotation of the steering shaft 23. At this time, the planetary gear 31b tries to revolve around the sun gear 31c while rotating. However, the steered wheels 21 a and 21 b are connected to the planetary carrier 31 d via the steered shaft 25 and the rack shaft 27. For this reason, the resistance force against the rotation of the planet carrier 31d is much larger than the resistance force against the rotation of the sun gear 31c in a rotatable state. Therefore, when the planetary gear 31b rotates, the sun gear 31c rotates (rotates), and the planet carrier 31d does not rotate. That is, the steered shaft 25 does not rotate.

要するに、ロック用歯車33の歯溝に対するロックピン39の係合が解除された状態では、クラッチ装置19は、操舵軸23及び転舵軸25の間を切り離した切離状態になる。このとき、操舵軸23の回転力は、転舵軸25へと伝えられない。   In short, in a state where the engagement of the lock pin 39 with the tooth groove of the locking gear 33 is released, the clutch device 19 is in a disconnected state in which the steering shaft 23 and the steered shaft 25 are disconnected. At this time, the rotational force of the steering shaft 23 is not transmitted to the steered shaft 25.

次に、制御装置40に対する入出力系統について説明する。
制御装置40には、入力系統として、操舵角センサ41、操舵トルクセンサ43、操舵反力モータレゾルバ45、転舵モータレゾルバ47、ラックストロークセンサ49、車速センサ51、ヨーレートセンサ53、及び、加速度センサ55が接続されている。
Next, an input / output system for the control device 40 will be described.
The control device 40 includes, as input systems, a steering angle sensor 41, a steering torque sensor 43, a steering reaction force motor resolver 45, a steered motor resolver 47, a rack stroke sensor 49, a vehicle speed sensor 51, a yaw rate sensor 53, and an acceleration sensor. 55 is connected.

操舵角センサ41及び操舵トルクセンサ43は、操舵軸23に設けられている。操舵角センサ41は、運転者によるハンドル13の操舵角を検出し、検出した操舵角情報を制御装置40に与える。また、操舵トルクセンサ43は、運転者によるハンドル13の操舵トルクを検出し、検出した操舵トルク情報を制御装置40に与える。   The steering angle sensor 41 and the steering torque sensor 43 are provided on the steering shaft 23. The steering angle sensor 41 detects the steering angle of the steering wheel 13 by the driver, and gives the detected steering angle information to the control device 40. The steering torque sensor 43 detects the steering torque of the handle 13 by the driver, and provides the detected steering torque information to the control device 40.

操舵反力モータレゾルバ45は、操舵反力モータ16に設けられている。操舵反力モータレゾルバ45は、操舵反力モータ16の回転動作量(操舵角)を検出し、検出した操舵角情報を制御装置40に与える。   The steering reaction force motor resolver 45 is provided in the steering reaction force motor 16. The steering reaction force motor resolver 45 detects the rotational operation amount (steering angle) of the steering reaction force motor 16 and supplies the detected steering angle information to the control device 40.

転舵モータレゾルバ47は、転舵モータ29に設けられている。転舵モータレゾルバ47は、転舵モータ29の回転動作量(転舵角)を検出し、検出した転舵角情報を制御装置40に与える。転舵モータレゾルバ47は、本発明の「転舵角検出部」に相当する。   The steered motor resolver 47 is provided in the steered motor 29. The steered motor resolver 47 detects the rotational operation amount (steered angle) of the steered motor 29 and provides the detected steered angle information to the control device 40. The steered motor resolver 47 corresponds to the “steering angle detector” of the present invention.

ラックストロークセンサ49は、ラック軸27に設けられている。ラックストロークセンサ49は、ラック軸27の直線移動量であるラックストローク(転舵角)を検出し、検出した転舵角情報を制御装置40に与える。ラックストロークセンサ49も、転舵モータレゾルバ47と同様に、本発明の「転舵角検出部」に相当する。   The rack stroke sensor 49 is provided on the rack shaft 27. The rack stroke sensor 49 detects a rack stroke (steering angle), which is a linear movement amount of the rack shaft 27, and provides the detected turning angle information to the control device 40. The rack stroke sensor 49 is also equivalent to the “steering angle detector” of the present invention, like the steered motor resolver 47.

車速センサ51は、車両Vの速度(車速)VSを検出し、検出した車速情報を制御装置40に与える。車速センサ51は、本発明の「車速検出部」に相当する。ヨーレートセンサ53は、車両Vのヨーレートを検出し、検出したヨーレート情報を制御装置40に与える。そして、加速度センサ55は、車両Vの横加速度(横G)及び縦加速度(縦G)を検出し、検出した横G情報及び縦G情報を制御装置40に与える。   The vehicle speed sensor 51 detects the speed (vehicle speed) VS of the vehicle V and gives the detected vehicle speed information to the control device 40. The vehicle speed sensor 51 corresponds to the “vehicle speed detector” of the present invention. The yaw rate sensor 53 detects the yaw rate of the vehicle V and provides the detected yaw rate information to the control device 40. The acceleration sensor 55 detects the lateral acceleration (lateral G) and the longitudinal acceleration (vertical G) of the vehicle V, and gives the detected lateral G information and vertical G information to the control device 40.

一方、制御装置40には、出力系統として、操舵反力モータ16、転舵モータ29、及び、電磁ソレノイド37が接続されている。   On the other hand, the control device 40 is connected to the steering reaction force motor 16, the steering motor 29, and the electromagnetic solenoid 37 as an output system.

制御装置40は、入力系統を介して入力した検出信号、及び、車両用操舵装置11の各種構成部材に係る異常診断結果などに基づいて、車両用操舵装置11の操舵モードを、SBWモード、EPSモード、又は、マニュアルステアリングモードのいずれかに決定する機能、決定した操舵モードにしたがって、操舵反力モータ16、転舵モータ29、及び、電磁ソレノイド37の駆動制御をおこなうための制御信号をそれぞれ生成する機能、並びに、生成した制御信号に基づいて、操舵反力モータ16、転舵モータ29、及び、電磁ソレノイド37の駆動制御を行う機能を有する。   The control device 40 sets the steering mode of the vehicle steering device 11 to the SBW mode, the EPS based on the detection signal input via the input system and the abnormality diagnosis result related to various components of the vehicle steering device 11. A control signal for controlling the driving of the steering reaction force motor 16, the steering motor 29, and the electromagnetic solenoid 37 is generated according to the function for determining either the mode or the manual steering mode and the determined steering mode. And a function of performing drive control of the steering reaction force motor 16, the steered motor 29, and the electromagnetic solenoid 37 based on the generated control signal.

制御装置40は、車両用操舵装置11がSBWモードで動作している際に、操舵反力モータ16の駆動制御を行うことにより、ハンドル13を握る運転者の手元に対し、適切な操舵に係る反力(手応え)を伝えるように動作する。   When the vehicle steering device 11 is operating in the SBW mode, the control device 40 controls driving of the steering reaction force motor 16 so as to perform appropriate steering with respect to the driver's hand holding the handle 13. Operates to convey reaction force (response).

また、制御装置40は、車両用操舵装置11がSBWモードで動作している際に、転舵輪21a,21bの転舵角を、操舵角及び操舵トルク等に基づき算出される目標転舵角に追従させるように転舵モータ29の駆動制御を行うことにより、運転者の運転意図にしたがって転舵輪21a,21bを転舵するように動作する。   Further, when the vehicle steering device 11 is operating in the SBW mode, the control device 40 sets the turning angles of the steered wheels 21a and 21b to a target turning angle calculated based on the steering angle, the steering torque, and the like. By performing drive control of the steered motor 29 so as to follow, the steered wheels 21a and 21b are steered according to the driver's driving intention.

また、制御装置40は、転舵輪21a,21bの転舵角が、転舵輪21a,21bに係る転舵可能範囲の終端部を規定する終端転舵角SAend (図2参照)に近づくにつれて、操舵反力を増大させることで壁反力をつくりだすように操舵反力モータ16の駆動制御を行うことにより、運転者に対し、転舵輪21a,21bに係る転舵可能範囲を、操舵反力の増加による手応え感として顕現するように動作する。
なお、終端転舵角SAend は、転舵機構の設計要件にしたがって設定される固定値である。
Further, the control device 40 steers as the turning angles of the steered wheels 21a and 21b approach the end turning angle SAend (see FIG. 2) that defines the end of the steerable range related to the steered wheels 21a and 21b. By performing drive control of the steering reaction force motor 16 so as to create a wall reaction force by increasing the reaction force, the steerable range related to the steered wheels 21a and 21b can be increased for the driver by increasing the steering reaction force. It works to manifest itself as a feeling of responsiveness.
The end turning angle SAend is a fixed value set according to the design requirements of the turning mechanism.

さらに、制御装置40は、省電力の要請に応えるために、車両Vの車速VS、転舵輪21a,21bに係る転舵角の絶対値SAの変化を含む走行シーンの変化に応じて時々刻々と変化する転舵モータ29の電流上限特性(図3参照)を用いて転舵モータ29の駆動制御を行う。   Furthermore, in order to respond to a request for power saving, the control device 40 is constantly changing according to a change in the running scene including a change in the vehicle speed VS of the vehicle V and the absolute value SA of the turning angle related to the steered wheels 21a and 21b. The drive control of the steered motor 29 is performed using the current upper limit characteristic (see FIG. 3) of the steered motor 29 that changes.

前記諸機能を実現するために、制御装置40は、予測部61、電流上限特性記憶部63、及び、制御部65を備えて構成される。   In order to realize the various functions, the control device 40 includes a prediction unit 61, a current upper limit characteristic storage unit 63, and a control unit 65.

予測部61は、例えば、ブレーキペダル(不図示)の操作量を検出するブレーキセンサ(不図示)によるブレーキ操作情報や、加速度センサ55による車両Vの加速度情報等に基づいて、転舵輪21a,21bが静止状態から転がり始める始動時を予測する機能を有する。具体的には、予測部61は、ブレーキ踏力が解放された旨のブレーキ操作情報や、車両Vが発進した旨の加速度情報を受けたタイミングを、転舵輪21a,21bの始動時とみなす。   The predicting unit 61 is based on, for example, brake operation information by a brake sensor (not shown) that detects an operation amount of a brake pedal (not shown), acceleration information of the vehicle V by the acceleration sensor 55, and the like. Has a function of predicting the starting time when the motor starts rolling from a stationary state. Specifically, the prediction unit 61 regards the timing of receiving brake operation information indicating that the brake pedal force has been released and acceleration information indicating that the vehicle V has started as the start time of the steered wheels 21a and 21b.

電流上限特性記憶部63は、車両Vの車速VS、転舵輪21a,21bに係る転舵角の絶対値SAの変化を含む走行シーンの変化に応じて時々刻々と変化する転舵モータ29の電流上限特性(図3参照)を記憶する機能を有する。電流上限特性記憶部63に記憶された、走行シーンの変化に応じて変化する転舵モータ29の電流上限特性は、制御部65において、転舵モータ29の駆動制御を行う際に参照される。
なお、転舵モータ29の電流上限特性について、詳しくは後記する。
The current upper limit characteristic storage unit 63 is a current of the turning motor 29 that changes from moment to moment according to changes in the running scene including changes in the vehicle speed VS of the vehicle V and the absolute value SA of the turning angle related to the turning wheels 21a and 21b. It has a function of storing the upper limit characteristic (see FIG. 3). The current upper limit characteristic of the steered motor 29 that is stored in the current upper limit characteristic storage unit 63 and changes according to the change of the traveling scene is referred to when the control unit 65 performs drive control of the steered motor 29.
The current upper limit characteristic of the steered motor 29 will be described later in detail.

制御部65は、図1〜図3に示すように、車両Vの車速VSが所定の車速閾値VSth未満であり、かつ、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、車速VSが車速閾値VSth以上である際の転舵モータ29の電流上限値である走行時電流上限値Irn_maxと比べて低い据え切り時電流上限値Isp_maxを用いて転舵モータ29の駆動制御を行う。
なお、車速閾値VSthとしては、例えば時速5Km/h等の極低速値を適宜設定すればよい。
As shown in FIGS. 1 to 3, the control unit 65 is configured such that the vehicle speed VS of the vehicle V is less than a predetermined vehicle speed threshold value VSth, and the absolute value SA of the turning angle related to the steered wheels 21a and 21b When the steering angle threshold value SAth1 is exceeded, the stationary current upper limit value Isp_max is lower than the traveling current upper limit value Irn_max that is the current upper limit value of the steering motor 29 when the vehicle speed VS is equal to or higher than the vehicle speed threshold value VSth. Drive control of the steering motor 29 is performed.
As the vehicle speed threshold VSth, for example, an extremely low speed value such as 5 km / h may be set as appropriate.

さらに、制御部65は、図1〜図3に示すように、車両Vの車速VSが車速閾値Vth以上から車速閾値Vth未満に漸減しており(図3の時刻t1参照)、かつ、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合(図2参照)に、車速VSの漸減の度合いに応じて漸減する特性を有する据え切り時電流上限値Isp_max(図2及び図3参照)を用いて転舵モータ29の駆動制御を行う。   Further, as shown in FIGS. 1 to 3, the control unit 65 gradually decreases the vehicle speed VS of the vehicle V from the vehicle speed threshold value Vth to less than the vehicle speed threshold value Vth (see time t <b> 1 in FIG. 3). When the absolute value SA of the turning angle relating to 21a and 21b exceeds the first turning angle threshold value SAth1 (see FIG. 2), the stationary current upper limit value has a characteristic of gradually decreasing according to the degree of gradually decreasing the vehicle speed VS. The drive control of the steered motor 29 is performed using Isp_max (see FIGS. 2 and 3).

そして、制御部65は、図1〜図3に示すように、転舵輪21a,21bが静止状態から転がり始める始動時t3(図3参照)が予測された場合に、当該始動時t3(図3参照)を含む始動期間Tst(図3参照)において、据え切り時電流上限値Isp_maxと比べて低い始動時電流上限値Ist_maxを用いて転舵モータ29の駆動制御を行う。   Then, as shown in FIGS. 1 to 3, when the start time t3 (see FIG. 3) at which the steered wheels 21 a and 21 b start rolling from the stationary state is predicted, the control unit 65 starts the start time t3 (FIG. 3). In the starting period Tst (see FIG. 3) including the reference), the driving control of the steered motor 29 is performed using the starting current upper limit value Ist_max which is lower than the stationary current upper limit value Isp_max.

次に、車両用操舵装置11の操舵モードがSBWモードである際の制御装置40の動作について、図2及び図3を参照して説明する。図2は、走行時及び据え切り時における、転舵角SAの変化に対する転舵モータ29の電流上限特性を対比して表す説明図である。図3は、走行シーンの変化に応じて時々刻々と変化する転舵モータ29の電流上限特性を経時的に表す説明図である。   Next, the operation of the control device 40 when the steering mode of the vehicle steering device 11 is the SBW mode will be described with reference to FIGS. FIG. 2 is an explanatory view showing the current upper limit characteristic of the steered motor 29 relative to the change in the steered angle SA during traveling and stationary. FIG. 3 is an explanatory diagram showing the current upper limit characteristic of the steered motor 29 that changes from moment to moment according to changes in the driving scene over time.

車速VSが車速閾値VSth以上である車両Vの走行時(VS≧VSth)において、図2及び図3に示すように、転舵モータ29の電流上限特性は、転舵輪21a,21bに係る転舵角の絶対値SAの大きさに関わらず、固定値である走行時電流上限値Irn_maxに設定される。ここで、固定値である転舵モータ29の走行時電流上限値Irn_maxは、車両Vの走行時(VS≧VSth)において、運転者に特段の違和感を与えないこと、車両Vの最小回転半径に影響を与えないこと、及び、転舵可能範囲を規定する両終端部まで転舵輪21a,21bを迅速に転舵可能なことの諸条件を考慮した適宜の値に設定される。   When the vehicle V is traveling with a vehicle speed VS equal to or higher than the vehicle speed threshold VSth (VS ≧ VSth), as shown in FIGS. 2 and 3, the current upper limit characteristic of the steered motor 29 is the steered wheels 21a and 21b. Regardless of the magnitude of the absolute value SA of the corner, the traveling current upper limit value Irn_max, which is a fixed value, is set. Here, the traveling current upper limit value Irn_max of the steering motor 29, which is a fixed value, does not give the driver a particular sense of discomfort when the vehicle V is traveling (VS ≧ VSth), and is the minimum turning radius of the vehicle V. It is set to an appropriate value in consideration of various conditions that the steerable wheels 21a and 21b can be steered quickly to both end portions that define no steerable range.

車両Vの走行中に、車両Vの車速VSが車速閾値Vth以上から車速閾値Vth未満に減速(図3の時刻t1〜t2参照)したとする。すると、車速VSが車速閾値VSth未満である同時刻t1〜t2(VS<VSth)において、転舵モータ29の電流上限特性は、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、走行時電流上限値Irn_maxと比べて低い可変値である据え切り時電流上限値Isp_maxに設定される。
なお、車速VSが車速閾値VSth未満であるが、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 以下の場合には、転舵モータ29の電流上限特性は、走行時電流上限値Irn_maxをそのまま維持する。
It is assumed that the vehicle speed VS of the vehicle V is decelerated from the vehicle speed threshold value Vth to the vehicle speed threshold value Vth (see times t1 to t2 in FIG. 3) while the vehicle V is traveling. Then, at the same time t1 to t2 (VS <VSth) when the vehicle speed VS is less than the vehicle speed threshold value VSth, the current upper limit characteristic of the steered motor 29 is the first absolute value SA of the steered angle related to the steered wheels 21a and 21b. When the turning angle threshold value SAth1 is exceeded, the stationary current upper limit value Isp_max, which is a variable value lower than the traveling current upper limit value Irn_max, is set.
When the vehicle speed VS is less than the vehicle speed threshold value VSth, but the absolute value SA of the turning angle related to the steered wheels 21a and 21b is equal to or less than the first turning angle threshold value SAth1, the current upper limit characteristic of the turning motor 29 is The traveling current upper limit value Irn_max is maintained as it is.

ここで、可変値である据え切り時電流上限値Isp_maxは、制御装置40が有する転舵モータ29の加熱抑制制御機能を作動させない転舵モータ29の電流値を考慮して適宜の値に設定される。
具体的には、図2に示すように、転舵輪21a,21bに係る転舵角の絶対値SAの大きさが第1転舵角閾値SAth1 〜第2転舵角閾値SAth2(ただし、SAth1 <SAth2 )の範囲において、転舵角の絶対値SAの大きさが大きいほど小さい値に設定される。
なお、転舵輪21a,21bに係る転舵角の絶対値SAの大きさが第2転舵角閾値SAth2 (SAth1 <SAth2 )を超える範囲(SAth2 <SA≦SAend )では、転舵モータ29の電流上限特性は、図2に示すように、据え切り時電流上限値Isp_maxの最小値(SA=SAth2 である際の据え切り時電流上限値Isp_max)をそのまま維持する。
Here, the stationary upper limit current value Isp_max, which is a variable value, is set to an appropriate value in consideration of the current value of the turning motor 29 that does not operate the heating suppression control function of the turning motor 29 included in the control device 40. The
Specifically, as shown in FIG. 2, the magnitude of the absolute value SA of the steered angles relating to the steered wheels 21a and 21b ranges from a first steered angle threshold SAth1 to a second steered angle threshold SAth2 (where SAth1 < In the range of SAth2), the larger the absolute value SA of the turning angle, the smaller the value is set.
In the range (SAth2 <SA ≦ SAend) where the absolute value SA of the steered angle relating to the steered wheels 21a and 21b exceeds the second steered angle threshold value SAth2 (SAth1 <SAth2), the current of the steered motor 29 As shown in FIG. 2, the upper limit characteristic maintains the minimum value of the stationary current upper limit value Isp_max (the stationary current upper limit value Isp_max when SA = SAth2).

また、可変値である据え切り時電流上限値Isp_maxは、図3に示すように、転舵輪21a,21bに係る転舵角の絶対値SAの大きさが第1転舵角閾値SAth1 を超え、かつ、車速VSが車速閾値VSth未満である場合に、車速VSが低いほど小さい値に設定される。
要するに、可変値である据え切り時電流上限値Isp_maxは、車両Vの車速VS、及び、転舵輪21a,21bに係る転舵角の絶対値SAの関数として設定される。
ただし、可変値である据え切り時電流上限値Isp_maxを、車両Vの車速VS、及び、転舵輪21a,21bに係る転舵角の絶対値SAのうちいずれか一方の関数として設定する構成を採用してもよい。
Further, the stationary current upper limit value Isp_max, which is a variable value, is such that the absolute value SA of the turning angle associated with the steered wheels 21a and 21b exceeds the first turning angle threshold value SAth1, as shown in FIG. When the vehicle speed VS is less than the vehicle speed threshold VSth, the vehicle speed VS is set to a smaller value as the vehicle speed VS is lower.
In short, the stationary current upper limit value Isp_max, which is a variable value, is set as a function of the vehicle speed VS of the vehicle V and the absolute value SA of the turning angle associated with the steered wheels 21a and 21b.
However, a configuration is adopted in which the stationary current upper limit value Isp_max, which is a variable value, is set as a function of one of the vehicle speed VS of the vehicle V and the absolute value SA of the turning angle associated with the steered wheels 21a and 21b. May be.

次いで、車両Vが停車(VS=0、図3の時刻t2〜t3参照)したとする。すると、車両Vが停車中(VS=0)である同時刻t2〜t3において、転舵モータ29の電流上限特性は、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、走行時電流上限値Irn_maxと比べて低い可変値である据え切り時電流上限値Isp_maxに設定される。
なお、車両Vが停車中(VS=0)である同時刻t2〜t3において、可変値である据え切り時電流上限値Isp_maxを、転舵輪21a,21bに係る転舵角の絶対値SAの大きさが第1転舵角閾値SAth1 〜第2転舵角閾値SAth2(SAth1 <SA<SAth2 )の範囲において、転舵角の絶対値SAの大きさが大きいほど小さい値に設定する構成を採用してもよい。
Next, it is assumed that the vehicle V stops (VS = 0, see times t2 to t3 in FIG. 3). Then, at the same time t2 to t3 when the vehicle V is stopped (VS = 0), the current upper limit characteristic of the steered motor 29 is that the absolute value SA of the steered angle related to the steered wheels 21a and 21b is the first steered. When the angle threshold value SAth1 is exceeded, the stationary current upper limit value Isp_max, which is a variable value lower than the traveling current upper limit value Irn_max, is set.
Note that, at the same time t2 to t3 when the vehicle V is stopped (VS = 0), the stationary current upper limit value Isp_max, which is a variable value, is set to the magnitude of the absolute value SA of the turning angle related to the steered wheels 21a and 21b. In the range of the first turning angle threshold value SAth1 to the second turning angle threshold value SAth2 (SAth1 <SA <SAth2), a configuration is adopted in which the larger the absolute value SA of the turning angle is, the smaller the value is set. May be.

次いで、車両Vの転舵輪21a,21bが静止状態から転がり始めた(始動時、図3の時刻t3〜t4に係る「始動期間Tst」参照)とする。すると、同時刻t3〜t4に係る始動期間Tst(例えば1秒等の適宜の期間)において、転舵モータ29の電流上限特性は、据え切り時電流上限値Isp_maxの最小値(SA=SAth2 である際の据え切り時電流上限値Isp_max)と比べて低い値である始動時電流上限値Ist_maxに設定される。
なお、始動時電流上限値Ist_maxは、(予測部61により予測された)転舵輪21a,21bの始動時において、同始動時におけるラック軸27周りの転舵装置(転舵部)17において機械的な異音を抑制可能な転舵モータ29の電流値を考慮して適宜の値に設定される。
Next, it is assumed that the steered wheels 21a and 21b of the vehicle V start rolling from a stationary state (when starting, refer to “starting period Tst” related to times t3 to t4 in FIG. 3). Then, in the start period Tst (for example, an appropriate period such as 1 second) related to the same time t3 to t4, the current upper limit characteristic of the steered motor 29 is the minimum value (SA = SAth2) of the stationary current upper limit value Isp_max. Is set to the starting current upper limit value Ist_max, which is lower than the current stationary current upper limit value Isp_max).
The starting current upper limit value Ist_max is mechanically determined in the turning device (steering unit) 17 around the rack shaft 27 at the time of starting the steered wheels 21a and 21b (predicted by the predicting unit 61). It is set to an appropriate value in consideration of the current value of the steering motor 29 capable of suppressing such abnormal noise.

次いで、車両Vが、始動時から車速閾値Vthに到達する車速VSまで加速(図3の時刻t4〜t5参照)したとする。すると、車速VSが車速閾値Vthに到達するまでの期間(始動期間Tstの経過後)である同時刻t4〜t5(VS<VSth)において、転舵モータ29の電流上限特性は、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、走行時電流上限値Irn_maxと比べて低い可変値である据え切り時電流上限値Isp_maxに設定される。
なお、可変値である据え切り時電流上限値Isp_maxの設定手法について、図3の時刻t1〜t2の設定手法と同様であるため、重複する説明を省略する。
Next, it is assumed that the vehicle V has accelerated to the vehicle speed VS that reaches the vehicle speed threshold value Vth from the start (see times t4 to t5 in FIG. 3). Then, at the same time t4 to t5 (VS <VSth), which is a period until the vehicle speed VS reaches the vehicle speed threshold value Vth (after the start period Tst has elapsed), the current upper limit characteristics of the steered motor 29 are the steered wheels 21a, When the absolute value SA of the turning angle according to 21b exceeds the first turning angle threshold value SAth1, the stationary current upper limit value Isp_max, which is a variable value lower than the traveling current upper limit value Irn_max, is set.
Note that the setting method of the stationary current upper limit value Isp_max, which is a variable value, is the same as the setting method at the times t1 to t2 in FIG.

次いで、車両Vが車速閾値VSth以上の車速VSで走行中(VS≧VSth、図3の時刻t5〜参照)であるとする。すると、転舵モータ29の電流上限特性は、図3の時刻t1以前と同様に、転舵輪21a,21bに係る転舵角の絶対値SAの大きさに関わらず、固定値である走行時電流上限値Irn_maxに設定される。   Next, it is assumed that the vehicle V is traveling at a vehicle speed VS equal to or higher than the vehicle speed threshold VSth (VS ≧ VSth, see time t5 in FIG. 3). Then, the current upper limit characteristic of the steered motor 29 is a fixed current value regardless of the magnitude of the absolute value SA of the steered angle relating to the steered wheels 21a and 21b, as before time t1 in FIG. The upper limit value Irn_max is set.

〔本発明の実施形態に係る車両用操舵装置11の作用効果〕
第1の観点(請求項1に対応)に基づく車両用操舵装置11は、車両Vの転舵輪21a,21bを転舵する際に操作されるハンドル(操舵部材)13を有する操舵反力発生装置(操舵部)15と、転舵輪21a,21bを転舵するための転舵力を付与する転舵モータ29を有し、操舵反力発生装置(操舵部)15に対して機械的に切り離された状態で転舵輪21a,21bを転舵可能な転舵装置(転舵部)17と、転舵輪21a,21bに係る転舵角を検出する転舵モータレゾルバ(転舵角検出部)47と、車両Vの車速VSを検出する車速センサ(転舵角検出部)51と、転舵輪21a,21bに係る転舵角を、ハンドル(操舵部材)13の操作に基づく目標転舵角に追従させるように転舵モータ29の駆動制御を行う制御部65と、転舵輪21a,21bが静止状態から転がり始める始動時を予測する予測部61と、を備える。
制御部65は、車両Vの車速VSが所定の車速閾値VSth未満であり、かつ、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1を超える場合に、車速VSが車速閾値VSth以上である際の転舵モータ29の電流上限値である走行時電流上限値Irn_maxと比べて低い据え切り時電流上限値Isp_maxを用いて転舵モータ29の駆動制御を行う。また、制御部65は、予測部61により転舵輪の始動時が予測された場合に、当該始動時を含む始動期間Tstにおいて、据え切り時電流上限値Isp_maxと比べて低い始動時電流上限値Ist_maxを用いて転舵モータ29の駆動制御を行う。
[Operational Effects of the Vehicle Steering Device 11 According to the Embodiment of the Present Invention]
The vehicle steering device 11 based on the first aspect (corresponding to claim 1) has a steering reaction force generator having a handle (steering member) 13 operated when turning the steered wheels 21a, 21b of the vehicle V. (Steering portion) 15 and a steering motor 29 for applying a turning force for turning the steered wheels 21a and 21b, which are mechanically separated from the steering reaction force generating device (steering portion) 15. A steerable device (steering portion) 17 capable of steering the steered wheels 21a, 21b in a state of being turned, and a steered motor resolver (steering angle detecting portion) 47 for detecting the steered angles related to the steered wheels 21a, 21b; The vehicle speed sensor (steering angle detection unit) 51 that detects the vehicle speed VS of the vehicle V and the turning angles of the steered wheels 21a and 21b are made to follow the target turning angle based on the operation of the handle (steering member) 13. a control unit 65 for controlling the drive of the steering motor 29 as the steering Comprising 21a, a prediction unit 61 for 21b to predict a time of starting to start rolling from a stationary state, the.
When the vehicle speed VS of the vehicle V is less than the predetermined vehicle speed threshold value VSth and the absolute value SA of the turning angle related to the steered wheels 21a and 21b exceeds the first turning angle threshold value SAth1, the control unit 65 The drive control of the steered motor 29 is performed by using a stationary current upper limit value Isp_max that is lower than the traveling current upper limit value Irn_max that is the current upper limit value of the steered motor 29 when VS is equal to or higher than the vehicle speed threshold value VSth. In addition, when the prediction unit 61 predicts the start time of the steered wheels, the control unit 65 has a starting current upper limit value Ist_max that is lower than the stationary current upper limit value Isp_max in the starting period Tst including the starting time. Is used to control the drive of the steering motor 29.

第1の観点に基づく車両用操舵装置11によれば、据え切り時において転舵角(の絶対値)SAが終端転舵角SAend (図2参照)の付近にある際に、図2及び図3に示すように、走行時電流上限値Irn_maxと比べて低い据え切り時電流上限値Isp_maxを用いて転舵モータ29の駆動制御が行われるため、仮に、転舵輪21a,21bが障害物に当たることで転舵が不可能となるケースに遭遇しても、省電力の要請(車両Vの燃費・電費向上)に応えることができる。
また、第1の観点に基づく車両用操舵装置11によれば、転舵輪21a,21bの始動時を含む始動期間Tstにおいて、据え切り時電流上限値Isp_maxと比べて低い始動時電流上限値Ist_maxを用いて転舵モータ29の駆動制御が行われるため、転舵輪21a,21bの始動時にラック軸27周りの転舵装置(転舵部)17において生じがちな機械的な異音の発生を抑制することができる。
According to the vehicle steering apparatus 11 based on the first aspect, when the turning angle (absolute value) SA is in the vicinity of the terminal turning angle SAend (see FIG. 2) at the time of stationary, FIG. 2 and FIG. As shown in FIG. 3, since the driving control of the steered motor 29 is performed using the stationary current upper limit value Isp_max that is lower than the traveling current upper limit value Irn_max, the steered wheels 21a and 21b temporarily hit the obstacle. Even if the vehicle encounters a case where it is impossible to turn the vehicle, it can respond to a request for power saving (improvement of fuel consumption and power consumption of the vehicle V).
Further, according to the vehicle steering device 11 based on the first aspect, the starting current upper limit value Ist_max is lower than the stationary current upper limit value Isp_max in the starting period Tst including the starting time of the steered wheels 21a and 21b. Since the driving control of the steered motor 29 is performed, the mechanical noise that tends to occur in the steered device (steered portion) 17 around the rack shaft 27 when the steered wheels 21a and 21b are started is suppressed. be able to.

また、第2の観点(請求項2に対応)に基づく車両用操舵装置11は、第1の観点に基づく車両用操舵装置11であって、制御部65は、車速VSが車速閾値Vth以上から車速閾値Vth未満に漸減しており、かつ、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、車速VSの漸減の度合いに応じて漸減する特性を有する据え切り時電流上限値Isp_maxを用いて転舵モータ29の駆動制御を行う。 Further, the vehicle steering apparatus 11 based on the second aspect (corresponding to claim 2 ) is the vehicle steering apparatus 11 based on the first aspect, and the control unit 65 is configured so that the vehicle speed VS is greater than or equal to the vehicle speed threshold value Vth. When the absolute value SA of the steered angle relating to the steered wheels 21a and 21b exceeds the first steered angle threshold value SAth1 gradually decreasing below the vehicle speed threshold Vth, the vehicle speed VS gradually decreases according to the degree of gradual decrease. The drive control of the steered motor 29 is performed using the stationary current upper limit value Isp_max having characteristics.

第2の観点に基づく車両用操舵装置11によれば、車速VSが車速閾値Vth以上から車速閾値Vth未満に漸減しており、かつ、転舵輪21a,21bに係る転舵角の絶対値SAが第1転舵角閾値SAth1 を超える場合に、車速VSの漸減の度合いに応じて漸減する特性を有する据え切り時電流上限値Isp_max(図3の時刻t1〜t2参照)を用いて転舵モータ29の駆動制御が行われるため、走行時電流上限値Irn_maxから据え切り時電流上限値Isp_maxへの切り替わり時に転舵レスポンスが遅れる違和感を運転者が抱く事態を一掃することができる。 According to the vehicle steering device 11 based on the second aspect , the vehicle speed VS gradually decreases from the vehicle speed threshold value Vth to less than the vehicle speed threshold value Vth, and the absolute value SA of the turning angle related to the steered wheels 21a and 21b is obtained. When the first turning angle threshold value SAth1 is exceeded, the turning motor 29 is used by using the stationary current upper limit value Isp_max (see times t1 to t2 in FIG. 3) having a characteristic of gradually decreasing according to the degree of gradually decreasing the vehicle speed VS. Therefore, the situation where the driver feels uncomfortable that the turning response is delayed when the traveling current upper limit value Irn_max is switched to the stationary current upper limit value Isp_max can be eliminated.

〔その他の実施形態〕
以上説明した実施形態は、本発明の具現化の例を示したものである。したがって、これによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨又はその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
[Other Embodiments]
The embodiments described above show examples of realization of the present invention. Therefore, the technical scope of the present invention should not be limitedly interpreted by this. This is because the present invention can be implemented in various forms without departing from the gist or main features thereof.

例えば、本発明の実施形態に係る説明において、遊星歯車機構31を有するクラッチ装置19を設ける例をあげて説明したが、本発明はこの例に限定されない。クラッチ装置19の構成は、操舵軸23及び転舵軸25の間を連結し又は切り離すことが可能であれば、いかなるものでも構わない。   For example, in the description according to the embodiment of the present invention, an example in which the clutch device 19 having the planetary gear mechanism 31 is provided has been described, but the present invention is not limited to this example. The clutch device 19 may have any configuration as long as the steering shaft 23 and the steered shaft 25 can be connected or disconnected.

11 車両用操舵装置
13 ハンドル(操舵部材)
15 操舵反力発生装置(操舵部)
17 転舵装置(転舵部)
21a,21b 転舵輪
25 転舵軸(転舵部)
27 ラック軸(転舵部)
29 転舵モータ
47 転舵モータレゾルバ(転舵角検出部)
49 ラックストロークセンサ(転舵角検出部)
61 予測部
65 制御部
V 車両
11 Vehicle Steering Device 13 Handle (Steering Member)
15 Steering reaction force generator (steering part)
17 Steering device (steering part)
21a, 21b Steering wheel 25 Steering shaft (steering part)
27 Rack shaft (steering part)
29 Steering motor 47 Steering motor resolver (steering angle detector)
49 Rack stroke sensor (steering angle detector)
61 Predictor 65 Controller V Vehicle

Claims (2)

車両の転舵輪を転舵する際に操作される操舵部材を有する操舵部と、
前記転舵輪を転舵するための転舵力を付与する転舵モータを有し、前記操舵部に対して機械的に切り離された状態で前記転舵輪を転舵可能な転舵部と、
前記転舵輪に係る転舵角を検出する転舵角検出部と、
前記車両の車速を検出する車速検出部と、
前記転舵輪に係る転舵角を、前記操舵部材の操作に基づく目標転舵角に追従させるように前記転舵モータの駆動制御を行う制御部と、
前記転舵輪が静止状態から転がり始める始動時を予測する予測部と、を備え、
前記制御部は、前記車速が所定の車速閾値未満であり、かつ、前記転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、前記車速が前記車速閾値以上である際の前記転舵モータの電流上限値である走行時電流上限値と比べて低い据え切り時電流上限値を用いて当該転舵モータの駆動制御を行い、
前記予測部により前記転舵輪の始動時が予測された場合に、当該始動時を含む所定の期間において、前記据え切り時電流上限値と比べて低い始動時電流上限値を用いて当該転舵モータの駆動制御を行う
ことを特徴とする車両用操舵装置。
A steering unit having a steering member operated when turning the steered wheels of the vehicle;
A steering unit that provides a steering force for steering the steered wheels, and capable of steering the steered wheels in a state of being mechanically separated from the steering unit; and
A turning angle detector for detecting a turning angle associated with the steered wheel;
A vehicle speed detector for detecting the vehicle speed of the vehicle;
A control unit that performs drive control of the steered motor so that the steered angle related to the steered wheel follows the target steered angle based on the operation of the steering member;
A prediction unit that predicts a start time when the steered wheels start rolling from a stationary state , and
The control unit is configured such that when the vehicle speed is less than a predetermined vehicle speed threshold and the absolute value of the turning angle related to the steered wheel exceeds a predetermined turning angle threshold, the vehicle speed is equal to or higher than the vehicle speed threshold. There row drive control of the steering motor with a maximum current when outright laid lower than the traveling time of the current upper limit value is a current upper limit value of the steering motor when,
When the start time of the steered wheels is predicted by the prediction unit, the steered motor using a start current upper limit value lower than the current upper limit current value during the predetermined period including the start time The vehicle steering apparatus characterized by performing drive control of this .
請求項1に記載の車両用操舵装置であって、
前記制御部は、前記車速が前記車速閾値以上から当該車速閾値未満に漸減しており、かつ、前記転舵輪に係る転舵角の絶対値が所定の転舵角閾値を超える場合に、前記車速の前記漸減の度合いに応じて漸減する特性を有する前記据え切り時電流上限値を用いて当該転舵モータの駆動制御を行う
ことを特徴とする車両用操舵装置。
The vehicle steering device according to claim 1,
The controller is configured to reduce the vehicle speed when the vehicle speed gradually decreases from the vehicle speed threshold value to less than the vehicle speed threshold value, and the absolute value of the turning angle related to the steered wheels exceeds a predetermined turning angle threshold value. A vehicle steering apparatus, wherein drive control of the steered motor is performed using the stationary current upper limit value having a characteristic of gradually decreasing according to the degree of gradually decreasing.
JP2015141913A 2015-07-16 2015-07-16 Vehicle steering system Expired - Fee Related JP6484520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141913A JP6484520B2 (en) 2015-07-16 2015-07-16 Vehicle steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141913A JP6484520B2 (en) 2015-07-16 2015-07-16 Vehicle steering system

Publications (2)

Publication Number Publication Date
JP2017024452A JP2017024452A (en) 2017-02-02
JP6484520B2 true JP6484520B2 (en) 2019-03-13

Family

ID=57944984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141913A Expired - Fee Related JP6484520B2 (en) 2015-07-16 2015-07-16 Vehicle steering system

Country Status (1)

Country Link
JP (1) JP6484520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323301B2 (en) * 2019-02-27 2023-08-08 株式会社ジェイテクト steering controller

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165098A (en) * 1993-12-13 1995-06-27 Nippondenso Co Ltd Power-driven rear wheel steering device
JP3572038B2 (en) * 2001-08-30 2004-09-29 三菱電機株式会社 Steering control device
JP4367383B2 (en) * 2005-07-08 2009-11-18 トヨタ自動車株式会社 Vehicle steering assist device
JP5392550B2 (en) * 2009-05-13 2014-01-22 株式会社ジェイテクト Vehicle steering system
JP5769006B2 (en) * 2011-05-25 2015-08-26 株式会社ジェイテクト Vehicle steering system and cargo handling vehicle
JP5948843B2 (en) * 2011-12-14 2016-07-06 株式会社ジェイテクト Vehicle steering system

Also Published As

Publication number Publication date
JP2017024452A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP4420036B2 (en) Vehicle steering control device
JP6760569B2 (en) Vehicle control device, vehicle control method and electric power steering device
JP4301050B2 (en) Vehicle power steering device
JP4932558B2 (en) Electric power steering device
US9434404B2 (en) Vehicle steering device
JP6630252B2 (en) Vehicle control device
JP2020083059A (en) Control device of vehicle
JP2017210213A (en) Vehicular steering apparatus
US20130116890A1 (en) Vehicle steering system and material handling vehicle
JP2007261550A (en) Electric power steering device
JP5416722B2 (en) Electric power steering device
JP6484520B2 (en) Vehicle steering system
JP7488164B2 (en) Steering gear
JP5013312B2 (en) Steering system
JP6140091B2 (en) Vehicle steering system
JP5050402B2 (en) Vehicle steering control device
JP4639796B2 (en) Vehicle steering system
JP4424181B2 (en) Vehicle steering control device
JP5675560B2 (en) Steering device and forklift
JP4378998B2 (en) Power steering device
JP2011251640A (en) Vehicle steering device
JP5427796B2 (en) Electric power steering device
JP5427797B2 (en) Electric power steering device
JP6775894B2 (en) Parking support device
JP5769006B2 (en) Vehicle steering system and cargo handling vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6484520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees