JP6326929B2 - Variable magnification imaging optical system with anti-vibration function - Google Patents
Variable magnification imaging optical system with anti-vibration function Download PDFInfo
- Publication number
- JP6326929B2 JP6326929B2 JP2014084179A JP2014084179A JP6326929B2 JP 6326929 B2 JP6326929 B2 JP 6326929B2 JP 2014084179 A JP2014084179 A JP 2014084179A JP 2014084179 A JP2014084179 A JP 2014084179A JP 6326929 B2 JP6326929 B2 JP 6326929B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- lens group
- refractive power
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 77
- 238000003384 imaging method Methods 0.000 title claims description 64
- 230000006641 stabilisation Effects 0.000 claims description 31
- 238000011105 stabilization Methods 0.000 claims description 31
- 230000014509 gene expression Effects 0.000 claims description 22
- 230000004075 alteration Effects 0.000 description 71
- 238000010586 diagram Methods 0.000 description 40
- 230000005499 meniscus Effects 0.000 description 34
- 238000006073 displacement reaction Methods 0.000 description 22
- 230000008859 change Effects 0.000 description 10
- 238000002955 isolation Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 206010010071 Coma Diseases 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Landscapes
- Adjustment Of Camera Lenses (AREA)
- Lenses (AREA)
Description
本発明は、スチルカメラ、ビデオカメラ等に用いられる変倍結像光学系に関し、特に画角が狭く、更に防振機能を備えた変倍結像光学系に関するものである。 The present invention relates to a variable magnification imaging optical system used for a still camera, a video camera, and the like, and more particularly to a variable magnification imaging optical system having a narrow angle of view and further having an image stabilization function.
デジタルスチルカメラ等に用いられる結像光学系への防振機能の搭載が進んでおり、超望遠レンズを用いた写真撮影でも手振れによる失敗が減少し、超望遠レンズが身近なものとなってきている。このため更に長い焦点距離を持ち画角の狭い結像光学系が要望されるようになってきている。 Anti-vibration functions are being installed in imaging optical systems used in digital still cameras, etc., and failure due to camera shake has decreased even in photography using super-telephoto lenses, making super-telephoto lenses familiar. Yes. For this reason, an imaging optical system having a longer focal length and a narrow angle of view has been demanded.
望遠端の画角が、35mm判に換算して焦点距離500乃至600mmに相当する半画角2度乃至2.5度程度の結像光学系が特許文献にも記載されている。 An imaging optical system in which the angle of view at the telephoto end corresponds to a focal length of 500 to 600 mm in terms of a 35 mm size is about 2 to 2.5 degrees is also described in the patent literature.
画角の狭い、長焦点の結像光学系においては、まず焦点距離に比べて光学系全長を短くすることが求められる。光学系の全長を焦点距離で割った値を望遠比と呼ぶが、この値が1を十分下回ることが望ましい。 In a long focus imaging optical system with a narrow angle of view, it is first required to shorten the entire length of the optical system compared to the focal length. A value obtained by dividing the total length of the optical system by the focal length is called a telephoto ratio, and it is desirable that this value is sufficiently less than 1.
望遠比を小さくするためにはもっとも物体側に正屈折力のレンズ群を配置し、正屈折力のレンズ群より像側に負屈折力のレンズ群を配置した、いわゆる望遠型またはテレフォトタイプと呼ばれる配置とし、更に望遠比を小さくするために前方の正群の屈折力を全系の屈折力に比べて強くし、後方の負群の結像倍率を大きくする。後方の負群の結像倍率が大きいため前方の正群での残存収差が拡大されて結像するので、前方の正群での残存収差を小さくする必要がある。 To reduce the telephoto ratio, a so-called telephoto type or telephoto type in which a lens unit having a positive refractive power is arranged closest to the object side and a lens unit having a negative refractive power arranged closer to the image side than the lens group having a positive refractive power is used. In order to further reduce the telephoto ratio, the refractive power of the front positive group is made stronger than the refractive power of the entire system, and the imaging magnification of the rear negative group is increased. Since the imaging magnification of the rear negative group is large, the residual aberration in the front positive group is enlarged to form an image, so it is necessary to reduce the residual aberration in the front positive group.
前方の正群内のレンズエレメントの数を保てば、各レンズエレメントの屈折力を強くする必要があり、各レンズエレメントの発生させる色収差や球面収差が大きくなる。色収差や球面収差は正レンズと負レンズを隣接させて組み合わせることにより補正を行うが、隣接する正レンズと負レンズそれぞれの発生させる収差の量が大きいと、隣接する正レンズと負レンズの位置関係のずれによる収差の変化が大きくなる。特に製造誤差による偏芯が発生する場合に影響が大きい。更に後方の負群の結像倍率が大きいため、前方の正群で発生した収差の変動を拡大してしまう。 If the number of lens elements in the front positive group is maintained, it is necessary to increase the refractive power of each lens element, and chromatic aberration and spherical aberration generated by each lens element increase. Chromatic aberration and spherical aberration are corrected by combining a positive lens and a negative lens adjacent to each other, but if the amount of aberration generated by the adjacent positive lens and negative lens is large, the positional relationship between the adjacent positive lens and negative lens The change in aberration due to the shift of becomes large. In particular, the influence is large when eccentricity due to manufacturing errors occurs. Further, since the imaging magnification of the rear negative group is large, the fluctuation of aberration generated in the front positive group is enlarged.
これらの問題のため、長焦点レンズの前方の正群においては特に偏芯を非常に小さなレベルに抑制しなければならない。レンズエレメントの径が小さければ隣接する正レンズと負レンズを接合することによって偏芯を抑制できる。しかし、径の大きなレンズエレメントを接合するとそれぞれのレンズエレメントの材質の膨張率の違いにより、温度変化が生じた際に接合レンズがはがれたり割れたりする危険性がある。このため、例えば35mm判で焦点距離500mmを超える長焦点では径の大きい前方の正群内では接合できないことが多い。 Because of these problems, the decentration must be suppressed to a very small level, particularly in the positive group in front of the long focus lens. If the diameter of the lens element is small, decentering can be suppressed by joining adjacent positive and negative lenses. However, when a lens element having a large diameter is joined, there is a risk that the joined lens may be peeled off or cracked when a temperature change occurs due to a difference in expansion coefficient of the material of each lens element. For this reason, for example, with a long focal length exceeding a focal length of 500 mm in a 35 mm size, it is often impossible to join in the front positive group having a large diameter.
このため、製造誤差による偏芯の影響を受けやすく、製造の精度が非常に高いレベルで求められ、コストが高くなるという問題がある。 For this reason, there is a problem that it is easily affected by the eccentricity due to the manufacturing error, the manufacturing accuracy is required at a very high level, and the cost is increased.
更に長焦点レンズにおいては特に物体側をはじめとして全体にレンズエレメントの径が大きくなり、防振レンズ群の重量が重くなる傾向にある。防振レンズ群の重量が増大した分、アクチュエータの駆動力を大きくするにはアクチュエータの大型化が必要となり鏡筒の更なる大型化を招く。逆にアクチュエータの駆動力が不足すれば応答性に問題が発生し手振れの補正精度が低下し、製品全体としての実用性に問題が出る。 Further, in the long focal length lens, the diameter of the lens element is increased as a whole, especially on the object side, and the weight of the anti-vibration lens group tends to increase. Since the weight of the anti-vibration lens group is increased, it is necessary to increase the size of the actuator in order to increase the driving force of the actuator, which further increases the size of the lens barrel. On the contrary, if the driving force of the actuator is insufficient, a problem occurs in the responsiveness, the accuracy of correcting the camera shake is lowered, and the practicality of the product as a whole appears.
また、超望遠レンズにおいては手振れに起因する像ぶれも大きくなって防振群の光軸直交方向への変位が大きくなる傾向にある。防振群の光軸直交方向への変位が大きくなると、防振稼動部やアクチュエータの径方向のサイズが増大し、鏡筒全体の径が太くなる。 In a super telephoto lens, image blur due to camera shake increases, and the displacement of the image stabilizing group in the direction perpendicular to the optical axis tends to increase. When the displacement of the vibration isolation group in the direction perpendicular to the optical axis increases, the radial size of the vibration isolation operation unit and the actuator increases, and the diameter of the entire lens barrel increases.
したがって防振群は出来る限り光線径を抑制して軽量に設定する必要があるとともに、防振群の光軸直交方向への変位に対する像の光軸直交方向への変位の比、すなわち防振係数を十分に大きくして必要な防振群の変位量を小さくしなければならない。 Therefore, it is necessary to set the vibration-proof group as light as possible by suppressing the beam diameter, and the ratio of the displacement of the image in the direction perpendicular to the optical axis to the displacement in the direction perpendicular to the optical axis, that is, the vibration-proof coefficient. Must be sufficiently large to reduce the required displacement of the vibration isolation group.
防振群と同様に、フォーカス群についても重量と変位量が長焦点レンズにおいて大きくなる傾向があり、光線径の抑制とフォーカス敏感度の確保が課題である。 Like the anti-vibration group, the focus group tends to have a large weight and displacement in the long focal length lens, and it is a problem to suppress the beam diameter and secure the focus sensitivity.
特許文献1に記載の光学系は望遠端での光学全長の短縮をよく達成しているが、防振群の径が大きく、また防振係数が小さいために鏡筒の径の抑制が難しい。また、第1レンズ群に接合レンズが含まれ、温度変化による割れまたははがれが生じる可能性がある。 Although the optical system described in Patent Document 1 achieves a good reduction in the optical total length at the telephoto end, it is difficult to suppress the diameter of the lens barrel because the vibration isolation group has a large diameter and a low vibration isolation coefficient. In addition, a cemented lens is included in the first lens group, and cracking or peeling due to temperature change may occur.
特許文献2に記載の光学系は望遠端での望遠比がおよそ0.77であるが更なる短縮を図りたい。更にフォーカス群の光線径が特に広角端において高いためフォーカス群重量に課題が残る。第1レンズ群のレンズが接合されずに構成されて温度変化による割れまたははがれの可能性はない光学系も記載されているが、最も物体側の負レンズとそのすぐ像側の正レンズの偏芯感度が非常に高く組み立て精度を高くする必要があり、コストが高くなる。 The optical system described in Patent Document 2 has a telephoto ratio at the telephoto end of approximately 0.77, but it is desired to further shorten it. Furthermore, since the light diameter of the focus group is particularly high at the wide-angle end, a problem remains in the weight of the focus group. There is also described an optical system in which the lens of the first lens group is configured without being joined and there is no possibility of cracking or peeling due to temperature change. However, there is a difference between the most negative lens on the object side and the positive lens on the image side. The core sensitivity is very high, and it is necessary to increase the assembly accuracy, which increases the cost.
特許文献3に記載の光学系は半径11mmほどのイメージサークルに対応し、望遠比が0.65を切り光学全長がきわめて短いが、防振については言及されていない。またイメージサークル半径を22mm程度に拡大して用いると第1レンズ群の径が大きくなるため、第1レンズ群に含まれる接合レンズに温度変化による割れまたははがれが生じる可能性がある。 The optical system described in Patent Document 3 corresponds to an image circle having a radius of about 11 mm, has a telephoto ratio of less than 0.65, and has a very short optical total length. However, there is no mention of image stabilization. Further, if the image circle radius is expanded to about 22 mm, the diameter of the first lens group becomes large, so that there is a possibility that the cemented lens included in the first lens group may crack or peel off due to temperature change.
特許文献4に記載の光学系は望遠比約0.65と光学全長が非常に短いが、防振群の径が大きすぎて、防振群が1枚の構成でありながらも軽量化が不十分である。また、第1レンズ群に接合レンズが含まれ、温度変化による割れまたははがれが生じる可能性がある。
The optical system described in
本発明はこのような状況に鑑みてなされたものであり、望遠端の半画角2度程度で、イメージサークルが大きく望遠端の焦点距離の長い変倍結像光学系において、前群の製造誤差感度を低減し、防振群の重量を抑制した、防振機能を備えた変倍結像光学系を提供することを目的とする。 The present invention has been made in view of such a situation. In a variable magnification imaging optical system having a half angle of view at the telephoto end of about 2 degrees, a large image circle, and a long focal length at the telephoto end, the front group is manufactured. An object of the present invention is to provide a variable magnification imaging optical system having an anti-vibration function with reduced error sensitivity and reduced weight of the anti-vibration group.
上記課題を解決するために第1の発明の防振機能を備えた変倍結像光学系では、物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、少なくとも二つのレンズ群から構成され、変倍の全域で全体として正の屈折力の後方レンズ群とから構成され、変倍時に前記各レンズ群の間の空気間隔が変化し、前記第1レンズ群は物体側から順に空気間隔を以って隔てられた第1負レンズ、第1正レンズ、第2正レンズの3枚のレンズから構成され、前記第2レンズ群は物体側から順に負の屈折力の2a群と負の屈折力の2b群より構成され、前記2b群を光軸と直行する方向に変位させることによって防振を行い、以下の条件を満足することとした。
(1) 2.40<(1/Rg21−1/fg1)*ft<4.25
(2) −0.95<β2b<−0.65
ただし、
fg1:第1負レンズの焦点距離
Rg21:第1正レンズの物体側の面の曲率半径
ft:全系の望遠端かつ無限遠方結像状態における合成焦点距離
β2b:2b群の望遠端かつ無限遠方結像状態における結像倍率
In order to solve the above problem, in the variable magnification imaging optical system having the image stabilization function according to the first aspect of the invention, in order from the object side, a first lens group having a positive refractive power and a second lens having a negative refractive power And a rear lens group having a positive refractive power as a whole over the entire range of zooming, the air spacing between the lens groups changes during zooming, and the first lens group is composed of at least two lens groups. One lens group is composed of three lenses, a first negative lens, a first positive lens, and a second positive lens, which are spaced in order from the object side with an air gap, and the second lens group is in order from the object side. It is composed of a negative refractive power group 2a and a negative refractive power group 2b, and the vibration is prevented by displacing the 2b group in a direction perpendicular to the optical axis, and the following conditions are satisfied.
(1) 2.40 <(1 / Rg21-1 / fg1) * ft <4.25
(2) −0.95 <β2b <−0.65
However,
fg1: Focal length Rg21 of the first negative lens: radius of curvature of the object-side surface of the first positive lens ft: synthetic focal length β2b in the entire system at the telephoto end and infinite distance imaging state: telephoto end and infinite distance in the group 2b Imaging magnification in imaging state
また、第2の発明の防振機能を備えた変倍結像光学系では、第1の発明において更に、以下の条件を満足することとした。
(3) 0.95<fp1/fp2<1.55
ただし、
fp1:第1正レンズの焦点距離
fp2:第2正レンズの焦点距離
In the variable magnification imaging optical system having the image stabilization function of the second invention, the following conditions are further satisfied in the first invention.
(3) 0.95 <fp1 / fp2 <1.55
However,
fp1: Focal length of the first positive lens fp2: Focal length of the second positive lens
また、第3の発明の防振機能を備えた変倍結像光学系では、第1または第2の発明において更に、前記第2レンズ群を変倍時に像面に対して固定することとした。 In the variable magnification imaging optical system having the image stabilization function of the third aspect of the invention, in the first or second aspect of the invention, the second lens group is fixed to the image plane at the time of zooming. .
また、第4の発明の防振機能を備えた変倍結像光学系では、第1ないし第3の発明において更に、前記後方レンズ群が最も物体側に正の屈折力の第3レンズ群を備えることとした。 In the variable magnification imaging optical system having the image stabilization function of the fourth invention, in the first to third inventions, the rear lens group further includes a third lens group having a positive refractive power closest to the object side. I decided to prepare.
また、第5の発明の防振機能を備えた変倍結像光学系では、第1ないし第4の発明において更に、前記後方レンズ群において、最も像側に設けたレンズ群全体、または、最も像側に設けたレンズ群のうちで最も像側に位置する部分レンズ群をフォーカシングレンズ群としてフォーカシングを行い、前記フォーカシングレンズ群は全体で負の屈折力を有することとした。 In the variable magnification imaging optical system having the image stabilization function of the fifth invention, in the first to fourth inventions, in the rear lens group, the entire lens group provided closest to the image side, or the most Among the lens groups provided on the image side, focusing is performed by using the partial lens group positioned closest to the image side as a focusing lens group, and the focusing lens group has a negative refractive power as a whole.
本発明によれば、望遠端の半画角2度程度で、イメージサークルが大きく望遠端の焦点距離の長い変倍結像光学系において、前群の製造誤差感度を低減し、防振群の重量を抑制した、防振機能を備えた変倍結像光学系を提供することができる。 According to the present invention, in a variable magnification imaging optical system having a half field angle of about 2 degrees at the telephoto end, a large image circle, and a long focal length at the telephoto end, the manufacturing error sensitivity of the front group is reduced, and A variable magnification imaging optical system having an anti-vibration function with reduced weight can be provided.
本発明の防振機能を備えた変倍結像光学系は、図1、図5、図9、図13、図17、および図21に示すレンズ構成図に示すとおり、物体側から順に正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、第2レンズ群G1に後続する少なくとも二つのレンズ群から構成されて変倍の全域で全体として正の屈折力の後方レンズ群Grより構成される。 The variable magnification imaging optical system having the image stabilization function of the present invention is positive in order from the object side as shown in the lens configuration diagrams shown in FIGS. 1, 5, 9, 13, 17, and 21. The first lens group G1 having a refractive power, the second lens group G2 having a negative refractive power, and at least two lens groups subsequent to the second lens group G1, and has a positive refractive power as a whole over the entire zoom range. The rear lens group Gr.
各レンズ群は空気間隔を以って隔てられ、変倍時に各レンズ群の間隔が変化する。第1レンズ群G1は物体側から順に空気間隔を以って隔てられた第1負レンズ、第1正レンズ、第2正レンズから構成される。第2レンズ群G2は物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群を光軸と直交する方向に変位させることによって防振を行う。 Each lens group is separated by an air interval, and the interval between the lens groups changes during zooming. The first lens group G1 includes a first negative lens, a first positive lens, and a second positive lens that are spaced apart from each other in order from the object side. The second lens group G2 includes a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in order from the object side, and performs vibration isolation by displacing the 2b group in a direction orthogonal to the optical axis.
本発明では、望遠端の焦点距離を長くしながら全長を抑制するために、物体側より順に正の屈折力の第1レンズ群G1と負の屈折力の第2レンズ群G2を配置して望遠型の屈折力配置を構成している。広角端から望遠端への変倍は、主として第1レンズ群G1と第2レンズ群G2の間隔を増加させることによって行う。 In the present invention, in order to suppress the total length while increasing the focal length at the telephoto end, the first lens group G1 having a positive refractive power and the second lens group G2 having a negative refractive power are arranged in order from the object side. This constitutes the refractive power arrangement of the mold. The zooming from the wide-angle end to the telephoto end is performed mainly by increasing the distance between the first lens group G1 and the second lens group G2.
また、広角端から望遠端への変倍に伴って第2レンズ群G2と後方レンズ群Grの間隔は減少し、第2レンズ群G2と後方レンズ群Grの合成系の屈折力は負の方向へ変化する。この作用によって第1レンズ群G1と、第2レンズ群G2および後方レンズ群Grの合成系の形成する望遠型屈折力配置が広角端から望遠端に向かって強くなることになる。広角端では全系の合成焦点距離に対して光学系全長が相対的に長く、望遠端では全系の合成焦点距離に対して光学系全長が相対的に短くなり、第1レンズ群G1の移動量の抑制が行える。 Further, with the zooming from the wide-angle end to the telephoto end, the distance between the second lens group G2 and the rear lens group Gr decreases, and the refractive power of the combined system of the second lens group G2 and the rear lens group Gr has a negative direction. To change. By this action, the telephoto refractive power arrangement formed by the combined system of the first lens group G1, the second lens group G2, and the rear lens group Gr becomes stronger from the wide-angle end toward the telephoto end. At the wide-angle end, the total length of the optical system is relatively long with respect to the total focal length of the entire system, and at the telephoto end, the total length of the optical system is relatively short with respect to the total focal length of the entire system. The amount can be reduced.
第1レンズ群G1は第1負レンズ、第1正レンズ、第2正レンズの3枚より構成し、3枚のレンズは空気間隔を以って隔てられ、接合されない。前述の通り長焦点の光学系の最も物体側のレンズの径は非常に大きくなり、温度変化に伴って硝材の膨張率の差による接合はがれ、割れが発生する可能性があるため、接合を用いない。しかし、隣接する正レンズと負レンズはお互いに収差を打ち消す関係にあり、その相対位置の誤差に伴う収差変動が著しい。特に最も物体側において隣接する正レンズと負レンズは球面収差の補正を担っており、偏芯誤差発生時に偏芯コマ収差が大きく発生する傾向にある。 The first lens group G1 includes three lenses, a first negative lens, a first positive lens, and a second positive lens. The three lenses are separated by an air interval and are not joined. As mentioned above, the diameter of the lens on the most object side of the long-focus optical system becomes very large, and there is a possibility that the glass material will be peeled off due to the difference in the expansion coefficient of the glass with temperature change, so that cracking may occur. Not in. However, the adjacent positive lens and negative lens cancel each other out aberrations, and the aberration variation due to the relative position error is significant. In particular, the positive lens and the negative lens that are closest to each other on the object side are responsible for correcting spherical aberration, and there is a tendency for decentration coma to occur greatly when decentration error occurs.
第1レンズ群G1内の正レンズの枚数を更に増加させれば正レンズ1枚あたりの収差の負担を減少させることができ、製造誤差による偏芯コマ収差の変動を抑制できるが、第1レンズ群G1の重量が増加してしまう。カメラから離れた第1レンズ群G1の重量が増加すると、カメラを中心としたモーメントが大きくなるため、撮影者が手持ちで鏡筒を保持する場合に負担を強いる。そのため第1レンズ群G1の枚数の増加は避けたい。 If the number of positive lenses in the first lens group G1 is further increased, the burden of aberration per positive lens can be reduced, and fluctuations in eccentric coma due to manufacturing errors can be suppressed. The weight of group G1 will increase. When the weight of the first lens group G1 away from the camera is increased, the moment around the camera is increased, which imposes a burden when the photographer holds the lens barrel by hand. Therefore, it is desirable to avoid an increase in the number of first lens group G1.
第2レンズ群G2は第1レンズ群G1に比べ大幅に光線径が低くなり、防振群として用いることで防振群の軽量化に適する。更に第2レンズ群G2を物体側から順に2a群G2aと2b群G2bに分割し、像側に配される光線径のより低い2b群G2bのみを防振に用いることにより防振群の更なる軽量化に適する。
The second lens group G2 has a significantly smaller beam diameter than the first lens group G1, and is suitable for reducing the weight of the image stabilizing group by using it as an image stabilizing group. Further, the second lens group G2 is divided into the 2a group G2a and the 2b group G2b in order from the object side, and only the 2b group G2b having a lower light beam diameter arranged on the image side is used for image stabilization. Suitable for weight reduction.
更に、2b群G2bにおける光線径と防振係数の関係について説明する。全系の入射瞳の半径をR、2b群G2bより物体側の合成系の焦点距離をff、2b群G2bの焦点距離をf2b、2b群G2bの物体側焦点から2b群G2bより物体側の合成系の焦点までの距離をz2b、2b群G2bの結像倍率をβ2b、全系の合成焦点距離をf、2b群G2bよりも像側の合成系の結像倍率をβrとしたとき、2b群G2bの物体側主平面における軸上マージナル光線の入射高さR2は以下の参考式(1)で表せる。 Further, the relationship between the beam diameter and the image stabilization coefficient in the 2b group G2b will be described. The radius of the entrance pupil of the entire system is R, the focal length of the synthesis system on the object side from the 2b group G2b is ff, the focal length of the 2b group G2b is f2b, the object side focus of the 2b group G2b is synthesized on the object side from the 2b group G2b When the distance to the focal point of the system is z2b, the imaging magnification of the 2b group G2b is β2b, the combined focal length of the entire system is f, and the imaging magnification of the synthesis system on the image side of the 2b group G2b is βr, the group 2b The incident height R2 of the axial marginal ray on the object side principal plane of G2b can be expressed by the following reference formula (1).
参考式(1) R2=(z2b−f2b)*R/ff
=(1/β2b−1)*f2b*R/{f/(β2b*βr)}
=(1−β2b)*βr*R*f2b/f
Reference formula (1) R2 = (z2b−f2b) * R / ff
= (1 / β2b-1) * f2b * R / {f / (β2b * βr)}
= (1-β2b) * βr * R * f2b / f
ここで、(1−β2b)*βrの値は防振群の光軸直交方向への変位に対する像の光軸直交方向への変位の比、すなわち防振係数として知られている。したがって防振係数が小さくなるほど防振群の径が小さくなる。 Here, the value of (1-β2b) * βr is known as the ratio of the displacement of the image in the direction perpendicular to the optical axis to the displacement in the direction orthogonal to the optical axis of the image stabilization group, that is, the image stabilization coefficient. Therefore, the smaller the anti-vibration coefficient, the smaller the diameter of the anti-vibration group.
また、2b群G2bより物体側の合成系の焦点距離をffおよび全系の焦点距離fを定数と仮定した場合、以下の参考式(2)の関係が成り立つ。 When it is assumed that the focal length of the synthesis system closer to the object side than the 2b group G2b is ff and the focal length f of the entire system is a constant, the relationship of the following reference equation (2) is established.
参考式(2) β2b*βr=f/ff=C(定数) Reference formula (2) β2b * βr = f / ff = C (constant)
これを参考式(1)に代入すれば、参考式(3)が導かれる。 Substituting this into reference equation (1) leads to reference equation (3).
参考式(3) R2=(1/β2b−1)*C*R*f2b/f Reference formula (3) R2 = (1 / β2b-1) * C * R * f2b / f
ここでβ2b<0を仮定した場合、β2bの絶対値が大きいと、2b群G2bの焦点から2b群G2bより物体側の合成系の焦点までの距離z2bは小さくなって2b群G2bの物体側主平面における軸上マージナル光線の高さR2が小さくなるが、その反面、防振係数の絶対値は小さくなって同じ像ぶれ量に対応する防振群の移動量が大きくなるという関係にある。 Assuming that β2b <0, if the absolute value of β2b is large, the distance z2b from the focal point of the 2b group G2b to the focal point of the composite system closer to the object side than the 2b group G2b becomes small, and the object side main of the 2b group G2b Although the height R2 of the on-axis marginal ray in the plane is reduced, on the other hand, the absolute value of the image stabilization coefficient is decreased, and the amount of movement of the image stabilization group corresponding to the same image blur amount is increased.
鏡筒の径を抑制するためには2b群G2bの結像倍率が大きすぎても小さすぎても不都合を生じる。また参考式(1)および(3)から明らかな通り、全系の合成焦点距離に対する2b群G2bの焦点距離の比が小さいほど2b群G2bの物体側主平面における軸上マージナル光線の高さR2が小さくなる。 In order to suppress the diameter of the lens barrel, inconvenience occurs if the imaging magnification of the 2b group G2b is too large or too small. As is clear from the reference equations (1) and (3), the smaller the ratio of the focal length of the 2b group G2b to the total focal length of the entire system, the higher the on-axis marginal ray height R2 in the object-side principal plane of the 2b group G2b. Becomes smaller.
本発明の防振機能を備えた変倍結像光学系が満たす条件式(1)は、第1負レンズと第1正レンズの相対偏芯による性能変化の抑制に関して望ましい範囲を規定するものである。
(1) 2.40<(1/Rg21−1/fg1)*ft<4.25
ただし、
fg1:第1負レンズの焦点距離
Rg21:第1正レンズの物体側の面の曲率半径
ft:全系の望遠端かつ無限遠方結像状態における合成焦点距離
Conditional expression (1) satisfied by the variable magnification imaging optical system having the image stabilization function of the present invention defines a desirable range for suppressing performance change due to relative decentering of the first negative lens and the first positive lens. is there.
(1) 2.40 <(1 / Rg21-1 / fg1) * ft <4.25
However,
fg1: focal length Rg21 of the first negative lens: radius of curvature of the object-side surface of the first positive lens ft: composite focal length at the telephoto end and infinitely far-end imaging state of the entire system
条件式(1)の上限を上回ると第1正レンズの物体側の面での軸上マージナル光線の入射角度がきつくなり、第1正レンズの物体側の面での球面収差の発生が大きくなって第1正レンズの偏芯に対する偏芯コマ収差変動の感度が非常に高くなる。 If the upper limit of conditional expression (1) is exceeded, the incident angle of the on-axis marginal ray on the object-side surface of the first positive lens becomes tight, and the occurrence of spherical aberration on the object-side surface of the first positive lens increases. Thus, the sensitivity of the fluctuation of the eccentric coma with respect to the eccentricity of the first positive lens becomes very high.
条件式(1)の下限を下回ると第1正レンズの物体側の面の曲率半径が大きくなる、または第1負レンズの屈折力が小さくなる。 Below the lower limit of conditional expression (1), the radius of curvature of the object-side surface of the first positive lens increases, or the refractive power of the first negative lens decreases.
第1正レンズの物体側の面の曲率半径が大きくなりすぎると、当該面の正屈折力の負担が減ってその分を他の面で負担することとなる。第1レンズ群G1全体の屈折力が変わらないままならば正屈折力を負担する面が減り、全系での球面収差の発生が増大して結像性能が悪化する。 If the radius of curvature of the object-side surface of the first positive lens becomes too large, the burden of the positive refracting power on the surface will be reduced, and that amount will be borne by other surfaces. If the refractive power of the entire first lens group G1 remains unchanged, the number of surfaces that bear positive refractive power decreases, and the generation of spherical aberration in the entire system increases, resulting in poor imaging performance.
第1負レンズの屈折力が小さくなりすぎると第1レンズ群G1の色収差補正が困難となり、やはり結像性能が悪化する。 If the refractive power of the first negative lens becomes too small, it becomes difficult to correct the chromatic aberration of the first lens group G1, and the imaging performance is also deteriorated.
防振時には、像面上で同一の位置に結像する光束の、第1レンズ群G1内を通過する位置が変動する。このため前記のような第1レンズ群G1での収差補正状況の悪化は、一般に防振時の収差変動を大きくする要因である。このため、防振機能を有する結像光学系において条件式(1)の下限を下回ると防振時の性能低下が大きくなるために特に望ましくない。 At the time of image stabilization, the position of the light beam that forms an image at the same position on the image plane passes through the first lens group G1 varies. For this reason, the deterioration of the aberration correction status in the first lens group G1 as described above is generally a factor for increasing the aberration fluctuation during the image stabilization. For this reason, in an imaging optical system having an anti-vibration function, if the value falls below the lower limit of conditional expression (1), the performance degradation at the time of anti-vibration becomes large, which is particularly undesirable.
条件式(1)の上限を4.2に、更に上限を4.0に、または条件式(1)の下限を2.7に、更に下限を2.9にすると前記の効果をより確実に達成できる。 If the upper limit of conditional expression (1) is set to 4.2, the upper limit is further set to 4.0, or the lower limit of conditional expression (1) is set to 2.7, and further the lower limit is set to 2.9, the above-mentioned effect is more reliably achieved. Can be achieved.
本発明の防振機能を備えた変倍結像光学系が満たす条件式(2)は2b群G2bの結像倍率に関し、2b群G2bの光線径の抑制と防振時の変位量について望ましい範囲を規定するものである。
(2) −0.95<β2b<−0.65
ただし、
β2b:2b群G2bの望遠端かつ無限遠方結像状態における結像倍率
Conditional expression (2) satisfied by the variable magnification imaging optical system having the image stabilization function of the present invention relates to the imaging magnification of the 2b group G2b, and a desirable range for the suppression of the beam diameter of the 2b group G2b and the displacement amount during image stabilization. It prescribes.
(2) −0.95 <β2b <−0.65
However,
β2b: Imaging magnification in the telephoto end and infinitely far-end imaging state of the 2b group G2b
条件式(2)の上限を上回ると防振群の必要な移動量が増加するため鏡筒の径の抑制が困難になる。近軸結像関係よりβ2b=f2b/z2bであり、f2b<0、β2b<0よりz2b>0であるので、条件式(2)の下限を下回るとz2bの値が大きくなって、2b群G2bより物体側の合成系の焦点位置は2b群G2bの物体側焦点に対してより像側に移動し、2b群G2bから離れる。そのため望遠端における2b群G2bでの軸上光線径の抑制が難しくなり、防振群の軽量化に関して不利となる。 If the upper limit of conditional expression (2) is exceeded, the necessary amount of movement of the vibration isolation group increases, and it becomes difficult to suppress the diameter of the lens barrel. Since β2b = f2b / z2b from the paraxial imaging relationship, and f2b <0 and z2b> 0 from β2b <0, the value of z2b increases below the lower limit of the conditional expression (2), and the 2b group G2b The focal position of the object side synthesizing system moves further to the image side with respect to the object side focal point of the 2b group G2b and moves away from the 2b group G2b. Therefore, it is difficult to suppress the axial beam diameter in the 2b group G2b at the telephoto end, which is disadvantageous in terms of weight reduction of the vibration proof group.
条件式(2)の上限を−0.72に、更に上限を−0.75に、または条件式(2)の下限を−0.93に、更に下限を−0.91とすると前記の効果をより確実に達成できる。 When the upper limit of conditional expression (2) is -0.72, the upper limit is further -0.75, the lower limit of conditional expression (2) is -0.93, and the lower limit is -0.91, the above-mentioned effect Can be achieved more reliably.
更に本発明の防振機能を備えた変倍結像光学系は条件式(3)を満たすことが望ましい。条件式(3)は第1正レンズと第2正レンズのパワーの比に関し、特に第1正レンズの偏芯による性能変化の抑制に関して望ましい範囲を規定するものである。
(3) 0.95<fp1/fp2<1.55
ただし、
fp1:第1正レンズの焦点距離
fp2:第2正レンズの焦点距離
Further, it is desirable that the variable magnification imaging optical system having the image stabilization function of the present invention satisfies the conditional expression (3). Conditional expression (3) relates to the power ratio between the first positive lens and the second positive lens, and in particular defines a desirable range for suppressing performance change due to eccentricity of the first positive lens.
(3) 0.95 <fp1 / fp2 <1.55
However,
fp1: Focal length of the first positive lens fp2: Focal length of the second positive lens
第1負レンズと隣接する第1正レンズに比べて、第2正レンズの偏芯は大きな収差変動を発生させづらい。したがって第1正レンズに比べて第2正レンズの屈折力を大きくすることで第1正レンズの屈折力を削減し、第1正レンズの発生させる球面収差を抑制することで第1負レンズと第1正レンズの相対偏芯に伴う偏芯コマ収差の変動を抑制することが出来る。 Compared to the first positive lens adjacent to the first negative lens, the eccentricity of the second positive lens is less likely to cause large aberration fluctuations. Therefore, the refractive power of the first positive lens is reduced by increasing the refractive power of the second positive lens compared to the first positive lens, and the spherical aberration generated by the first positive lens is suppressed, thereby reducing the refractive power of the first negative lens. It is possible to suppress the fluctuation of the eccentric coma accompanying the relative eccentricity of the first positive lens.
条件式(3)の上限値を超えて第1正レンズの屈折力が小さくなると、第2正レンズに屈折力の負担が集中しすぎて第2正レンズでの球面収差の発生が大きくなり、系全体としての球面収差が悪化する。 When the refractive power of the first positive lens decreases beyond the upper limit value of conditional expression (3), the burden of refractive power is excessively concentrated on the second positive lens, and the generation of spherical aberration in the second positive lens increases. The spherical aberration of the entire system is deteriorated.
条件式(3)の下限値を超えて第1正レンズの屈折力が大きくなると、第1正レンズの発生させる球面収差の抑制が不十分となり、第1レンズ群の偏芯に伴う偏芯コマ収差の感度が高くなりすぎる。 If the refractive power of the first positive lens increases beyond the lower limit of conditional expression (3), the suppression of spherical aberration generated by the first positive lens becomes insufficient, and the eccentric coma accompanying the eccentricity of the first lens group. Aberration sensitivity is too high.
条件式(3)の上限を1.5に、更に上限を1.45に、または条件式(3)の下限を0.98に、更に下限を1.00に設定すると前記の効果をより確実に達成できる。 If the upper limit of conditional expression (3) is set to 1.5, the upper limit is further set to 1.45, or the lower limit of conditional expression (3) is set to 0.98, and the lower limit is further set to 1.00, the above-mentioned effect will be more sure. Can be achieved.
更に本発明の防振機能を備えた変倍結像光学系は、変倍時に第2レンズ群が像面に対して固定されていることが望ましい。第2レンズ群は防振群である2b群を含み、防振群が固定されていることによって制御用の配線の配置がしやすい利点がある。また、変倍時のレンズ群の移動機構も簡素化できる。 Further, in the variable magnification imaging optical system having the image stabilization function of the present invention, it is desirable that the second lens group is fixed with respect to the image plane at the time of zooming. The second lens group includes the 2b group that is a vibration-proof group, and there is an advantage that the wiring for control can be easily arranged by fixing the vibration-proof group. In addition, the moving mechanism of the lens unit during zooming can be simplified.
更に本発明の防振機能を備えた変倍結像光学系は、後方レンズ群の最も物体側に正の屈折力の第3レンズ群を備えることが望ましい。望遠端において負の屈折力の第2レンズ群に対して正の屈折力の第3レンズ群を接近させることにより、望遠端での第2レンズ群と第3レンズ群の合成系の負の屈折力を強くでき、望遠端での光学全長の短縮のために有効である。 Furthermore, it is desirable that the variable magnification imaging optical system having the image stabilization function of the present invention includes the third lens group having a positive refractive power on the most object side of the rear lens group. By making the third lens group having a positive refractive power approach the second lens group having a negative refractive power at the telephoto end, the negative refraction of the combined system of the second lens group and the third lens group at the telephoto end is achieved. This is effective for shortening the total optical length at the telephoto end.
更に本発明の防振機能を備えた変倍結像光学系は、前記後方レンズ群において、最も像側に設けたレンズ群全体、または、最も像側に設けたレンズ群のうちで最も像側に位置する部分レンズ群をフォーカシングレンズ群としてフォーカシングを行い、前記フォーカシングレンズ群は全体で負の屈折力を有することが望ましい。 Further, the variable magnification imaging optical system having the image stabilization function of the present invention is the entire lens group provided closest to the image side or the most image side of the lens groups provided closest to the image side in the rear lens group. It is desirable that focusing is performed with the partial lens group positioned at a focusing lens group, and the focusing lens group as a whole has a negative refractive power.
長焦点レンズにおいては近距離へのフォーカシングのためのデフォーカス量が大きくなる。オートフォーカスの駆動の速度の向上を鑑みれば、第1にフォーカシングレンズ群は軽量であること、第2にフォーカシングレンズ群の単位移動量に対する像面の移動量が大きいこと、の2点が達成されることが望ましい。 In the long focus lens, the defocus amount for focusing to a short distance becomes large. Considering the improvement of the autofocus drive speed, two points are achieved: first, the focusing lens group is lightweight, and second, the amount of movement of the image plane relative to the unit movement amount of the focusing lens group is large. It is desirable.
結像光学系の光学全長を焦点距離に比べて短縮するためには、結像光学系の最も像側に強い負の屈折力のレンズ群または部分レンズ群を設けることが有効である。光学系全長短縮のために強い負の屈折力となったレンズ群または部分レンズ群をフォーカシングレンズ群とすることでフォーカシングレンズ群の単位移動量あたりの像面の移動量を大きくできる。 In order to shorten the total optical length of the imaging optical system compared to the focal length, it is effective to provide a lens group or partial lens group having a strong negative refractive power on the most image side of the imaging optical system. By using a lens group or partial lens group that has a strong negative refractive power to shorten the overall length of the optical system as a focusing lens group, the amount of movement of the image plane per unit movement amount of the focusing lens group can be increased.
同時に像側であるために光束が収斂されてその径が小さくなっている。この負の屈折力のレンズ群または部分レンズ群をフォーカシングレンズ群として使用とすることで前記の課題を同時に達成することができる At the same time, since it is on the image side, the light beam is converged and its diameter is reduced. By using this negative refractive power lens group or partial lens group as a focusing lens group, the above-mentioned problems can be achieved simultaneously.
本発明の結像光学系では、以下の構成を伴うことがより効果的である。 In the imaging optical system of the present invention, it is more effective to accompany the following configuration.
後方レンズ群は物体側より順に正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群からなることがより望ましい。 More preferably, the rear lens group includes a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power in order from the object side.
2b群は正レンズ1枚を含む3枚以下のレンズから構成されることがより望ましい。4枚以上の枚数とした場合には防振群の重量の抑制が困難となってしまう。 The 2b group is more preferably composed of three or less lenses including one positive lens. When the number is four or more, it is difficult to suppress the weight of the vibration isolation group.
また、2b群の色収差を補正して防振時の横色収差の発生を抑えるために、2b群内に少なくとも1枚の正レンズを有することが望ましい。また、2b群内に2枚の負レンズを有することで2b群の負の屈折力を十分に保ちながら、特に球面収差やコマ収差等の発生を抑制することが望ましい。 In addition, in order to correct the chromatic aberration of the 2b group and suppress the occurrence of lateral chromatic aberration during image stabilization, it is desirable to have at least one positive lens in the 2b group. In addition, it is desirable to suppress the occurrence of spherical aberration, coma aberration, and the like while maintaining the negative refractive power of the 2b group sufficiently by having two negative lenses in the 2b group.
次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, a lens configuration of an example according to the imaging optical system of the present invention will be described. In the following description, the lens configuration is described in order from the object side to the image side.
図1は、本発明の実施例1の結像光学系のレンズ構成図である。 FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成される。第3レンズ群G3から第5レンズ群G5までの合成系が後方レンズ群Grにあたる。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 has a negative refractive power. A synthesis system from the third lens group G3 to the fifth lens group G5 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた正メニスカスレンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、正メニスカスレンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the positive meniscus lens L3 corresponds to the second positive lens.
第2レンズ群G2は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは両凹レンズL4から構成される。2b群G2bは両凹レンズL5と、両凹レンズL6と両凸レンズL7からなる接合レンズとから構成される。 The second lens group G2 is composed of a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in this order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. I do. The 2a group G2a is composed of a biconcave lens L4. The 2b group G2b includes a biconcave lens L5 and a cemented lens including a biconcave lens L6 and a biconvex lens L7.
第3レンズ群G3は両凸レンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸レンズL10と両凹レンズL11と両凸レンズL12の3枚からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズと、両凹レンズL15と両凸レンズL16からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L8, a positive meniscus lens L9 having a convex surface directed toward the object side, a cemented lens composed of a biconvex lens L10, a biconcave lens L11, and a biconvex lens L12, a biconvex lens L13, and a biconcave lens. The lens includes a cemented lens composed of L14 and a cemented lens composed of a biconcave lens L15 and a biconvex lens L16.
第4レンズ群G4は、両凸レンズL17と、両凸レンズL18と両凹レンズL19からなる接合レンズとから構成される。 The fourth lens group G4 includes a biconvex lens L17 and a cemented lens including a biconvex lens L18 and a biconcave lens L19.
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL20と、両凸レンズL21と両凹レンズL22からなる接合レンズと、両凹レンズL23と両凸レンズL24からなる接合レンズとから構成される。第5レンズ群G5は、全体が無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a negative meniscus lens L20 having a convex surface directed toward the object side, a cemented lens including a biconvex lens L21 and a biconcave lens L22, and a cemented lens including a biconcave lens L23 and a biconvex lens L24. The entire fifth lens group G5 moves toward the image side during focusing from infinity to a short distance.
図5は、本発明の実施例2の結像光学系のレンズ構成図である。 FIG. 5 is a lens configuration diagram of the imaging optical system according to the second embodiment of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成される。第3レンズ群G3から第5レンズ群G5までの合成系が後方レンズ群Grにあたる。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 has a negative refractive power. A synthesis system from the third lens group G3 to the fifth lens group G5 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた正メニスカスレンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、正メニスカスレンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the positive meniscus lens L3 corresponds to the second positive lens.
第2レンズ群G2は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは両凹レンズL4から構成される。2b群G2bは両凹レンズL5と、両凹レンズL6と両凸レンズL7からなる接合レンズとから構成される。 The second lens group G2 is composed of a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in this order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. I do. The 2a group G2a is composed of a biconcave lens L4. The 2b group G2b includes a biconcave lens L5 and a cemented lens including a biconcave lens L6 and a biconvex lens L7.
第3レンズ群G3は両凸レンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸レンズL10と両凹レンズL11と両凸レンズL12の3枚からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズと、両凹レンズL15と両凸レンズL16からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L8, a positive meniscus lens L9 having a convex surface directed toward the object side, a cemented lens composed of a biconvex lens L10, a biconcave lens L11, and a biconvex lens L12, a biconvex lens L13, and a biconcave lens. The lens includes a cemented lens composed of L14 and a cemented lens composed of a biconcave lens L15 and a biconvex lens L16.
第4レンズ群G4は、両凸レンズL17と、両凸レンズL18と両凹レンズL19からなる接合レンズとから構成される。 The fourth lens group G4 includes a biconvex lens L17 and a cemented lens including a biconvex lens L18 and a biconcave lens L19.
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL20と、両凸レンズL21と両凹レンズL22からなる接合レンズと、両凹レンズL23と両凸レンズL24からなる接合レンズとから構成される。第5レンズ群G5は、全体が無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a negative meniscus lens L20 having a convex surface directed toward the object side, a cemented lens including a biconvex lens L21 and a biconcave lens L22, and a cemented lens including a biconcave lens L23 and a biconvex lens L24. The entire fifth lens group G5 moves toward the image side during focusing from infinity to a short distance.
図9は、本発明の実施例3の結像光学系のレンズ構成図である。 FIG. 9 is a lens configuration diagram of the imaging optical system according to Example 3 of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。第3レンズ群G3から第4レンズ群G4までの合成系が後方レンズ群Grにあたる。 In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group G4 having a positive refractive power. Composed. A synthesis system from the third lens group G3 to the fourth lens group G4 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、両凸レンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、両凸レンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconvex lens L2, and a biconvex lens L3. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the biconvex lens L3 corresponds to the second positive lens.
第2レンズ群G2は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは物体側に凸面を向けた正メニスカスレンズL4と両凹レンズL5とから構成される。2b群G2bは両凹レンズL6と物体側に凸面を向けた正メニスカスレンズL7からなる接合レンズと、像側に凸面を向けた負メニスカスレンズL8とから構成される。 The second lens group G2 is composed of a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in this order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. I do. The 2a group G2a includes a positive meniscus lens L4 having a convex surface directed toward the object side and a biconcave lens L5. The 2b group G2b includes a cemented lens including a biconcave lens L6, a positive meniscus lens L7 having a convex surface facing the object side, and a negative meniscus lens L8 having a convex surface facing the image side.
第3レンズ群G3は両凸レンズL9と、両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L9, a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, and a cemented lens including a biconvex lens L13 and a biconcave lens L14.
第4レンズ群G4は物体側から順に正の屈折力の4a群G4aと負の屈折力の4b群G4bとから構成される。4a群G4aと4b群G4bは変倍に際して一体となって移動し、無限遠方から近距離へのフォーカシングに際して4b群G4bのみが像側へ移動する。 The fourth lens group G4 includes, in order from the object side, a 4a group G4a having a positive refractive power and a 4b group G4b having a negative refractive power. The 4a group G4a and the 4b group G4b move together during zooming, and only the 4b group G4b moves toward the image side during focusing from an infinite distance to a short distance.
4a群G4aは、両凸レンズL15と、両凸レンズL16と両凹レンズL17からなる接合レンズとから構成される。4b群G4bは、物体側に凸面を向けた負メニスカスレンズG18と、両凹レンズG19と両凸レンズG20からなる接合レンズとから構成される。 The 4a group G4a includes a biconvex lens L15 and a cemented lens including a biconvex lens L16 and a biconcave lens L17. The 4b group G4b includes a negative meniscus lens G18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens G19 and a biconvex lens G20.
図13は、本発明の実施例4の結像光学系のレンズ構成図である。 FIG. 13 is a lens configuration diagram of the imaging optical system according to Example 4 of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。第3レンズ群G3から第4レンズ群G4までの合成系が後方レンズ群Grにあたる。 In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group G4 having a positive refractive power. Composed. A synthesis system from the third lens group G3 to the fourth lens group G4 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、両凸レンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、両凸レンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconvex lens L2, and a biconvex lens L3. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the biconvex lens L3 corresponds to the second positive lens.
第2レンズ群G2は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは物体側に凸面を向けた正メニスカスレンズL4と両凹レンズL5とから構成される。2b群G2bは両凹レンズL6と物体側に凸面を向けた正メニスカスレンズL7からなる接合レンズと、像側に凸面を向けた負メニスカスレンズL8とから構成される。 The second lens group G2 is composed of a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in this order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. I do. The 2a group G2a includes a positive meniscus lens L4 having a convex surface directed toward the object side and a biconcave lens L5. The 2b group G2b includes a cemented lens including a biconcave lens L6, a positive meniscus lens L7 having a convex surface facing the object side, and a negative meniscus lens L8 having a convex surface facing the image side.
第3レンズ群G3は両凸レンズL9と、両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L9, a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, and a cemented lens including a biconvex lens L13 and a biconcave lens L14.
第4レンズ群G4は物体側から順に正の屈折力の4a群G4aと負の屈折力の4b群G4bとから構成される。4a群G4aと4b群G4bは変倍に際して一体となって移動し、無限遠方から近距離へのフォーカシングに際して4b群G4bのみが像側へ移動する。 The fourth lens group G4 includes, in order from the object side, a 4a group G4a having a positive refractive power and a 4b group G4b having a negative refractive power. The 4a group G4a and the 4b group G4b move together during zooming, and only the 4b group G4b moves toward the image side during focusing from an infinite distance to a short distance.
4a群G4aは、両凸レンズL15と、両凸レンズL16と両凹レンズL17からなる接合レンズとから構成される。4b群G4bG4bは、物体側に凸面を向けた負メニスカスレンズG18と、両凹レンズG19と両凸レンズG20からなる接合レンズとから構成される。 The 4a group G4a includes a biconvex lens L15 and a cemented lens including a biconvex lens L16 and a biconcave lens L17. The 4b group G4bG4b includes a negative meniscus lens G18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens G19 and a biconvex lens G20.
図17は、本発明の実施例5の結像光学系のレンズ構成図である。 FIG. 17 is a lens configuration diagram of the imaging optical system according to Example 5 of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、および正の屈折力の第4レンズ群G4から構成される。第3レンズ群G3から第4レンズ群G4までの合成系が後方レンズ群Grにあたる。 In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, and the fourth lens group G4 having a positive refractive power. Composed. A synthesis system from the third lens group G3 to the fourth lens group G4 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、両凸レンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、両凸レンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a biconvex lens L2, and a biconvex lens L3. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the biconvex lens L3 corresponds to the second positive lens.
第2レンズ群G2は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは物体側に凸面を向けた正メニスカスレンズL4と両凹レンズL5とから構成される。2b群G2bは両凹レンズL6と物体側に凸面を向けた正メニスカスレンズL7からなる接合レンズと、像側に凸面を向けた負メニスカスレンズL8とから構成される。 The second lens group G2 is composed of a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in this order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. I do. The 2a group G2a includes a positive meniscus lens L4 having a convex surface directed toward the object side and a biconcave lens L5. The 2b group G2b includes a cemented lens including a biconcave lens L6, a positive meniscus lens L7 having a convex surface facing the object side, and a negative meniscus lens L8 having a convex surface facing the image side.
第3レンズ群G3は両凸レンズL9と、両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L9, a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, and a cemented lens including a biconvex lens L13 and a biconcave lens L14.
第4レンズ群G4は物体側から順に正の屈折力の4a群G4aと負の屈折力の4b群G4bとから構成される。4a群G4aと4b群G4bは変倍に際して一体となって移動し、無限遠方から近距離へのフォーカシングに際して4b群G4bのみが像側へ移動する。 The fourth lens group G4 includes, in order from the object side, a 4a group G4a having a positive refractive power and a 4b group G4b having a negative refractive power. The 4a group G4a and the 4b group G4b move together during zooming, and only the 4b group G4b moves toward the image side during focusing from an infinite distance to a short distance.
4a群G4aは、両凸レンズL15と、両凸レンズL16と両凹レンズL17からなる接合レンズとから構成される。4b群G4bは、物体側に凸面を向けた負メニスカスレンズG18と、両凹レンズG19と両凸レンズG20からなる接合レンズとから構成される。 The 4a group G4a includes a biconvex lens L15 and a cemented lens including a biconvex lens L16 and a biconcave lens L17. The 4b group G4b includes a negative meniscus lens G18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens G19 and a biconvex lens G20.
図21は、本発明の実施例6の結像光学系のレンズ構成図である。 FIG. 21 is a lens configuration diagram of the imaging optical system according to Example 6 of the present invention.
物体側から順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成される。第3レンズ群G3から第5レンズ群G5までの合成系が後方レンズ群Grにあたる。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 has a negative refractive power. A synthesis system from the third lens group G3 to the fifth lens group G5 corresponds to the rear lens group Gr.
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた平凸レンズL3とから構成される。負メニスカスレンズL1が第1負レンズに、両凸レンズL2が第1正レンズに、平凸レンズL3が第2正レンズに、それぞれ対応する。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side. The negative meniscus lens L1 corresponds to the first negative lens, the biconvex lens L2 corresponds to the first positive lens, and the plano-convex lens L3 corresponds to the second positive lens.
第2レンズ群は、物体側から順に負の屈折力の2a群G2aと負の屈折力の2b群G2bより構成され、2b群G2bのみを光軸と直行する方向に変位させることにより防振を行う。2a群G2aは像側に凹面を向けた平凹レンズL4から構成される。2b群G2bは両凹レンズL5と、両凹レンズL6と両凸レンズL7からなる接合レンズとから構成される。 The second lens group includes a negative refractive power 2a group G2a and a negative refractive power 2b group G2b in order from the object side, and only the 2b group G2b is displaced in a direction perpendicular to the optical axis to prevent vibration. Do. The 2a group G2a includes a plano-concave lens L4 having a concave surface facing the image side. The 2b group G2b includes a biconcave lens L5 and a cemented lens including a biconcave lens L6 and a biconvex lens L7.
第3レンズ群G3は両凸レンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸レンズL10と両凹レンズL11と両凸レンズL12の3枚からなる接合レンズと、両凸レンズL13と両凹レンズL14からなる接合レンズと、両凹レンズL15と両凸レンズL16からなる接合レンズとから構成される。 The third lens group G3 includes a biconvex lens L8, a positive meniscus lens L9 having a convex surface directed toward the object side, a cemented lens composed of a biconvex lens L10, a biconcave lens L11, and a biconvex lens L12, a biconvex lens L13, and a biconcave lens. The lens includes a cemented lens composed of L14 and a cemented lens composed of a biconcave lens L15 and a biconvex lens L16.
第4レンズ群G4は、両凸レンズL17と、両凸レンズL18と両凹レンズL19からなる接合レンズとから構成される。 The fourth lens group G4 includes a biconvex lens L17 and a cemented lens including a biconvex lens L18 and a biconcave lens L19.
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL20と、両凸レンズL21と両凹レンズL22からなる接合レンズと、両凹レンズL23と両凸レンズL24からなる接合レンズとから構成される。第5レンズ群G5は、全体が無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a negative meniscus lens L20 having a convex surface directed toward the object side, a cemented lens including a biconvex lens L21 and a biconcave lens L22, and a cemented lens including a biconcave lens L23 and a biconvex lens L24. The entire fifth lens group G5 moves toward the image side during focusing from infinity to a short distance.
以下に、前述した本発明の結像光学系の各実施例の具体的な数値データを示す。 Specific numerical data of each embodiment of the imaging optical system of the present invention described above will be shown below.
[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数を示している。 In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, nd is the refractive index with respect to the d-line (wavelength 587.56 nm). , Vd indicate Abbe numbers for the d line.
面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面又は開口絞りに対する曲率半径には∞(無限大)を記入している。 The (diaphragm) attached to the surface number indicates that the aperture stop is located at that position. ∞ (infinity) is entered in the radius of curvature for a plane or aperture stop.
[各種データ]には、ズーム比及び各焦点距離状態における焦点距離等の値を示している。 [Various data] shows values such as the zoom ratio and the focal length in each focal length state.
[可変間隔データ]には、各焦点距離状態における可変間隔及びBFの値を示している。 [Variable interval data] indicates the variable interval and the value of BF in each focal length state.
[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 [Lens Group Data] indicates the surface number of the most object side constituting each lens group and the combined focal length of the entire group.
なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the values of the following specifications, the focal length f, the radius of curvature r, the lens surface interval d, and other length units described are in millimeters (mm) unless otherwise specified. In the system, the same optical performance can be obtained even in proportional expansion and proportional reduction, and the present invention is not limited to this.
また、これらの各実施例における条件式の対応値の一覧を示す。 In addition, a list of corresponding values of the conditional expressions in each of these examples is shown.
また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、△S、△Mはそれぞれサジタル像面、メリジオナル像面を表している。 In the aberration diagrams corresponding to each example, d, g, and C represent d-line, g-line, and C-line, respectively, and ΔS and ΔM represent sagittal image plane and meridional image plane, respectively. .
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
1 481.7525 3.0000 1.80611 40.73
2 198.6329 4.0183
3 358.8891 8.8572 1.43700 95.10
4 -355.7759 0.1500
5 130.4780 11.3725 1.43700 95.10
6 5914.4913 (d6)
7 -3492.1288 1.2000 1.48749 70.44
8 199.0207 7.9584
9 -261.4650 0.8000 1.69680 55.46
10 70.8680 3.1913
11 -70.5567 0.8000 1.69680 55.46
12 70.5567 3.1562 1.84666 23.78
13 -539.3451 (d13)
14 90.7782 3.2278 1.80610 33.27
15 -348.4940 0.1500
16 64.3291 3.3629 1.58913 61.25
17 539.6359 0.7294
18 51.6072 6.6909 1.49700 81.61
19 -89.3779 1.0000 1.80610 33.27
20 193.2822 4.0649 1.49700 81.61
21 -147.5437 1.5690
22 34.1240 4.6996 1.58144 40.89
23 -1023.3555 0.9000 1.91082 35.25
24 28.9467 3.4543
25 -57.9952 0.9000 2.00100 29.13
26 215.7552 2.3577 1.62004 36.30
27 -91.7648 2.0000
28(絞り) ∞ (d28)
29 78.5867 3.4125 1.64769 33.84
30 -59.9898 0.1500
31 37.3123 4.3027 1.48749 70.44
32 -56.5416 0.9000 1.95375 32.32
33 315.8381 (d33)
34 75.3458 0.8000 1.84666 23.78
35 26.1306 5.3276
36 255.6785 2.5624 1.69895 30.05
37 -57.2849 0.8000 1.72916 54.67
38 298.2516 2.2898
39 -34.6488 1.8081 1.49700 81.61
40 34.6488 5.7346 1.72342 37.99
41 -66.6029 (BF)
像面 ∞
[各種データ]
ズーム比 3.78
広角 中間 望遠
焦点距離 154.59 269.96 583.65
Fナンバ 5.06 5.83 6.49
全画角2ω 15.73 9.04 4.18
像高Y 21.63 21.63 21.63
レンズ全長 329.06 372.87 419.53
[可変間隔データ]
広角 中間 望遠
d6 99.5006 143.3142 189.9726
d13 29.3765 18.6488 3.5000
d28 24.1792 18.7262 13.4529
d33 11.7143 10.2186 2.0000
BF 56.5912 74.2676 102.9083
[レンズ群データ]
群 始面 焦点距離
G1 1 292.39
G2 7 -45.68
G3 14 68.63
G4 29 46.12
G5 34 -63.18
G2a 7 -386.20
G2b 9 -53.05
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd
1 481.7525 3.0000 1.80611 40.73
2 198.6329 4.0183
3 358.8891 8.8572 1.43700 95.10
4 -355.7759 0.1500
5 130.4780 11.3725 1.43700 95.10
6 5914.4913 (d6)
7 -3492.1288 1.2000 1.48749 70.44
8 199.0207 7.9584
9 -261.4650 0.8000 1.69680 55.46
10 70.8680 3.1913
11 -70.5567 0.8000 1.69680 55.46
12 70.5567 3.1562 1.84666 23.78
13 -539.3451 (d13)
14 90.7782 3.2278 1.80610 33.27
15 -348.4940 0.1500
16 64.3291 3.3629 1.58913 61.25
17 539.6359 0.7294
18 51.6072 6.6909 1.49700 81.61
19 -89.3779 1.0000 1.80610 33.27
20 193.2822 4.0649 1.49700 81.61
21 -147.5437 1.5690
22 34.1240 4.6996 1.58144 40.89
23 -1023.3555 0.9000 1.91082 35.25
24 28.9467 3.4543
25 -57.9952 0.9000 2.00100 29.13
26 215.7552 2.3577 1.62004 36.30
27 -91.7648 2.0000
28 (Aperture) ∞ (d28)
29 78.5867 3.4125 1.64769 33.84
30 -59.9898 0.1500
31 37.3123 4.3027 1.48749 70.44
32 -56.5416 0.9000 1.95375 32.32
33 315.8381 (d33)
34 75.3458 0.8000 1.84666 23.78
35 26.1306 5.3276
36 255.6785 2.5624 1.69895 30.05
37 -57.2849 0.8000 1.72916 54.67
38 298.2516 2.2898
39 -34.6488 1.8081 1.49700 81.61
40 34.6488 5.7346 1.72342 37.99
41 -66.6029 (BF)
Image plane ∞
[Various data]
Zoom ratio 3.78
Wide angle Medium telephoto Focal length 154.59 269.96 583.65
F number 5.06 5.83 6.49
Full angle of view 2ω 15.73 9.04 4.18
Image height Y 21.63 21.63 21.63
Total lens length 329.06 372.87 419.53
[Variable interval data]
Wide angle Medium telephoto
d6 99.5006 143.3142 189.9726
d13 29.3765 18.6488 3.5000
d28 24.1792 18.7262 13.4529
d33 11.7143 10.2186 2.0000
BF 56.5912 74.2676 102.9083
[Lens group data]
Group Start surface Focal length
G1 1 292.39
G2 7 -45.68
G4 29 46.12
G5 34 -63.18
G2a 7 -386.20
G2b 9 -53.05
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
1 470.0448 3.0000 1.80611 40.73
2 197.1039 2.1733
3 224.0673 9.9345 1.43700 95.10
4 -481.8622 0.1500
5 146.2879 10.2750 1.43700 95.10
6 3490.0146 (d6)
7 -771.9619 1.2000 1.48749 70.44
8 250.0604 7.8524
9 -257.4717 0.8000 1.69680 55.46
10 71.7759 3.2150
11 -70.6546 0.8000 1.69680 55.46
12 70.6546 3.1825 1.84666 23.78
13 -539.2856 (d13)
14 96.7403 3.2409 1.80610 33.27
15 -295.4003 0.1500
16 64.4066 3.4504 1.58913 61.25
17 653.8902 0.6964
18 52.0811 6.7751 1.49700 81.61
19 -88.3845 1.0000 1.80610 33.27
20 188.1399 4.1142 1.49700 81.61
21 -143.6178 1.7326
22 34.6483 4.7315 1.58144 40.89
23 -1279.6230 0.9000 1.91082 35.25
24 29.3759 3.4077
25 -59.5729 0.9000 2.00100 29.13
26 178.5135 2.4049 1.62004 36.30
27 -92.8394 2.0000
28(絞り) ∞ (d28)
29 80.0813 3.3996 1.64769 33.84
30 -61.1308 0.1500
31 36.6430 4.3044 1.48749 70.44
32 -59.1309 0.9000 1.95375 32.32
33 266.9103 (d33)
34 65.5638 0.8000 1.84666 23.78
35 25.3459 4.7233
36 358.1214 2.4992 1.69895 30.05
37 -55.4389 0.8000 1.72916 54.67
38 339.8716 2.2270
39 -33.9872 2.0000 1.49700 81.61
40 33.9872 5.7470 1.72342 37.99
41 -66.8780 (BF)
像面 ∞
[各種データ]
ズーム比 3.77
広角 中間 望遠
焦点距離 154.81 269.95 583.76
Fナンバ 5.03 5.82 6.49
全画角2ω 15.73 9.04 4.18
像高Y 21.63 21.63 21.63
レンズ全長 327.18 370.61 417.81
[可変間隔データ]
広角 中間 望遠
d6 99.5129 142.9445 190.1424
d13 29.8554 18.8172 3.5000
d28 24.6495 19.0107 13.9148
d33 11.3249 9.9932 2.0000
BF 56.2009 74.2096 102.6160
[レンズ群データ]
群 始面 焦点距離
G1 1 295.62
G2 7 -45.90
G3 14 67.64
G4 29 46.72
G5 34 -63.03
G2a 7 -387.30
G2b 9 -53.31
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd
1 470.0448 3.0000 1.80611 40.73
2 197.1039 2.1733
3 224.0673 9.9345 1.43700 95.10
4 -481.8622 0.1500
5 146.2879 10.2750 1.43700 95.10
6 3490.0146 (d6)
7 -771.9619 1.2000 1.48749 70.44
8 250.0604 7.8524
9 -257.4717 0.8000 1.69680 55.46
10 71.7759 3.2150
11 -70.6546 0.8000 1.69680 55.46
12 70.6546 3.1825 1.84666 23.78
13 -539.2856 (d13)
14 96.7403 3.2409 1.80610 33.27
15 -295.4003 0.1500
16 64.4066 3.4504 1.58913 61.25
17 653.8902 0.6964
18 52.0811 6.7751 1.49700 81.61
19 -88.3845 1.0000 1.80610 33.27
20 188.1399 4.1142 1.49700 81.61
21 -143.6178 1.7326
22 34.6483 4.7315 1.58144 40.89
23 -1279.6230 0.9000 1.91082 35.25
24 29.3759 3.4077
25 -59.5729 0.9000 2.00100 29.13
26 178.5135 2.4049 1.62004 36.30
27 -92.8394 2.0000
28 (Aperture) ∞ (d28)
29 80.0813 3.3996 1.64769 33.84
30 -61.1308 0.1500
31 36.6430 4.3044 1.48749 70.44
32 -59.1309 0.9000 1.95375 32.32
33 266.9103 (d33)
34 65.5638 0.8000 1.84666 23.78
35 25.3459 4.7233
36 358.1214 2.4992 1.69895 30.05
37 -55.4389 0.8000 1.72916 54.67
38 339.8716 2.2270
39 -33.9872 2.0000 1.49700 81.61
40 33.9872 5.7470 1.72342 37.99
41 -66.8780 (BF)
Image plane ∞
[Various data]
Zoom ratio 3.77
Wide angle Medium telephoto Focal length 154.81 269.95 583.76
F number 5.03 5.82 6.49
Full angle of view 2ω 15.73 9.04 4.18
Image height Y 21.63 21.63 21.63
Total lens length 327.18 370.61 417.81
[Variable interval data]
Wide angle Medium telephoto
d6 99.5129 142.9445 190.1424
d13 29.8554 18.8172 3.5000
d28 24.6495 19.0107 13.9148
d33 11.3249 9.9932 2.0000
BF 56.2009 74.2096 102.6160
[Lens group data]
Group Start surface Focal length
G1 1 295.62
G2 7 -45.90
G4 29 46.72
G5 34 -63.03
G2a 7 -387.30
G2b 9 -53.31
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
1 669.3235 3.0000 1.80611 40.73
2 212.9535 2.3719
3 254.4835 9.4211 1.49700 81.61
4 -553.1367 0.1500
5 149.0820 11.3382 1.43700 95.10
6 -18619.0506 (d6)
7 116.5577 8.4891 1.51680 64.20
8 3702.0555 30.2804
9 -418.1736 1.2000 1.65844 50.85
10 93.1948 4.2586
11 -156.7544 1.0000 1.69680 55.46
12 43.0795 3.0944 1.84666 23.78
13 95.9053 3.2357
14 -69.7580 1.0000 1.72916 54.67
15 -488.0709 (d15)
16 230.4409 3.8295 1.59349 67.00
17 -117.3821 0.1500
18 74.3374 4.2031 1.59282 68.62
19 -555.7421 0.1500
20 52.7873 5.9220 1.49700 81.61
21 -207.3663 1.0000 1.88100 40.14
22 192.7502 16.6624
23 57.7314 5.2538 1.58913 61.25
24 -289.2285 2.5000 1.88100 40.14
25 38.6019 3.4883
26(絞り) ∞ (d26)
27 50.1360 3.4936 1.60342 38.01
28 -84.6676 0.1500
29 40.2473 3.7776 1.51742 52.15
30 -76.0898 1.0000 1.95375 32.32
31 98.3899 2.0171
32 98.5144 1.0000 2.00100 29.13
33 34.3000 16.7622
34 -50.8248 1.0000 1.49700 81.61
35 45.0635 4.8877 1.69895 30.05
36 -85.7479 (BF)
像面 ∞
[各種データ]
ズーム比 3.81
広角 中間 望遠
焦点距離 153.63 270.03 584.96
Fナンバ 4.78 5.72 6.52
全画角2ω 15.79 9.01 4.17
像高Y 21.63 21.63 21.63
レンズ全長 318.17 359.70 406.77
[可変間隔データ]
広角 中間 望遠
d6 43.8964 85.4262 132.4974
d15 47.1598 30.9953 5.0000
d26 16.9147 10.0000 25.6742
BF 54.1136 77.1928 87.5134
[レンズ群データ]
群 始面 焦点距離
G1 1 305.74
G2 7 -51.23
G3 16 62.57
G4 27 221.11
G2a 7 -334.66
G2b 11 -52.39
G4a 27 56.12
G4b 32 -70.12
Numerical example 3
Unit: mm
[Surface data]
Surface number rd nd vd
1 669.3235 3.0000 1.80611 40.73
2 212.9535 2.3719
3 254.4835 9.4211 1.49700 81.61
4 -553.1367 0.1500
5 149.0820 11.3382 1.43700 95.10
6 -18619.0506 (d6)
7 116.5577 8.4891 1.51680 64.20
8 3702.0555 30.2804
9 -418.1736 1.2000 1.65844 50.85
10 93.1948 4.2586
11 -156.7544 1.0000 1.69680 55.46
12 43.0795 3.0944 1.84666 23.78
13 95.9053 3.2357
14 -69.7580 1.0000 1.72916 54.67
15 -488.0709 (d15)
16 230.4409 3.8295 1.59349 67.00
17 -117.3821 0.1500
18 74.3374 4.2031 1.59282 68.62
19 -555.7421 0.1500
20 52.7873 5.9220 1.49700 81.61
21 -207.3663 1.0000 1.88100 40.14
22 192.7502 16.6624
23 57.7314 5.2538 1.58913 61.25
24 -289.2285 2.5000 1.88100 40.14
25 38.6019 3.4883
26 (Aperture) ∞ (d26)
27 50.1360 3.4936 1.60342 38.01
28 -84.6676 0.1500
29 40.2473 3.7776 1.51742 52.15
30 -76.0898 1.0000 1.95375 32.32
31 98.3899 2.0171
32 98.5144 1.0000 2.00100 29.13
33 34.3000 16.7622
34 -50.8248 1.0000 1.49700 81.61
35 45.0635 4.8877 1.69895 30.05
36 -85.7479 (BF)
Image plane ∞
[Various data]
Zoom ratio 3.81
Wide angle Medium telephoto Focal length 153.63 270.03 584.96
F number 4.78 5.72 6.52
Full angle of view 2ω 15.79 9.01 4.17
Image height Y 21.63 21.63 21.63
Total lens length 318.17 359.70 406.77
[Variable interval data]
Wide angle Medium telephoto
d6 43.8964 85.4262 132.4974
d15 47.1598 30.9953 5.0000
d26 16.9147 10.0000 25.6742
BF 54.1136 77.1928 87.5134
[Lens group data]
Group Start surface Focal length
G1 1 305.74
G2 7 -51.23
G2a 7 -334.66
G2b 11 -52.39
G4b 32 -70.12
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
1 658.2373 3.0000 1.80611 40.73
2 212.2711 2.3437
3 252.0486 9.3905 1.49700 81.61
4 -572.8397 0.1500
5 149.8902 11.2659 1.43700 95.10
6 -21938.2447 (d6)
7 118.8124 8.0467 1.51680 64.20
8 9413.4438 30.1451
9 -724.6133 1.2000 1.65844 50.85
10 106.6999 4.1242
11 -191.7662 1.0000 1.69680 55.46
12 39.9337 3.0809 1.84666 23.78
13 79.0462 3.6807
14 -63.0037 1.0000 1.72916 54.67
15 -379.3249 (d15)
16 239.4881 3.8141 1.59349 67.00
17 -117.5575 0.1500
18 73.7202 4.2489 1.59282 68.62
19 -526.2145 0.1500
20 53.1861 6.2329 1.49700 81.61
21 -204.5635 1.0000 1.88100 40.14
22 193.8410 16.4575
23 57.2372 5.2872 1.58913 61.25
24 -262.7930 2.5000 1.88100 40.14
25 38.6284 3.4894
26(絞り) ∞ (d26)
27 50.8908 3.4889 1.60342 38.01
28 -85.0728 0.1500
29 40.0284 3.7984 1.51742 52.15
30 -77.7319 1.0000 1.95375 32.32
31 99.7231 2.0000
32 96.7061 1.0000 2.00100 29.13
33 34.0727 16.5788
34 -50.6525 1.0000 1.49700 81.61
35 44.4999 4.9080 1.69895 30.05
36 -86.6217 (BF)
像面 ∞
[各種データ]
ズーム比 3.81
広角 中間 望遠
焦点距離 153.65 270.03 584.97
Fナンバ 4.77 5.71 6.52
全画角2ω 15.78 9.01 4.17
像高Y 21.63 21.63 21.63
レンズ全長 317.42 359.69 407.23
[可変間隔データ]
広角 中間 望遠
d6 43.4647 85.7339 133.2753
d15 47.0863 30.9698 5.0000
d26 17.1846 10.4502 25.4857
BF 54.0057 76.8570 87.7917
[レンズ群データ]
群 始面 焦点距離
G1 1 308.07
G2 7 -51.57
G3 16 62.49
G4 27 219.97
G2a 7 -592.57
G2b 11 -48.48
G4a 27 55.87
G4b 32 -69.67
Numerical example 4
Unit: mm
[Surface data]
Surface number rd nd vd
1 658.2373 3.0000 1.80611 40.73
2 212.2711 2.3437
3 252.0486 9.3905 1.49700 81.61
4 -572.8397 0.1500
5 149.8902 11.2659 1.43700 95.10
6 -21938.2447 (d6)
7 118.8124 8.0467 1.51680 64.20
8 9413.4438 30.1451
9 -724.6133 1.2000 1.65844 50.85
10 106.6999 4.1242
11 -191.7662 1.0000 1.69680 55.46
12 39.9337 3.0809 1.84666 23.78
13 79.0462 3.6807
14 -63.0037 1.0000 1.72916 54.67
15 -379.3249 (d15)
16 239.4881 3.8141 1.59349 67.00
17 -117.5575 0.1500
18 73.7202 4.2489 1.59282 68.62
19 -526.2145 0.1500
20 53.1861 6.2329 1.49700 81.61
21 -204.5635 1.0000 1.88100 40.14
22 193.8410 16.4575
23 57.2372 5.2872 1.58913 61.25
24 -262.7930 2.5000 1.88100 40.14
25 38.6284 3.4894
26 (Aperture) ∞ (d26)
27 50.8908 3.4889 1.60342 38.01
28 -85.0728 0.1500
29 40.0284 3.7984 1.51742 52.15
30 -77.7319 1.0000 1.95375 32.32
31 99.7231 2.0000
32 96.7061 1.0000 2.00100 29.13
33 34.0727 16.5788
34 -50.6525 1.0000 1.49700 81.61
35 44.4999 4.9080 1.69895 30.05
36 -86.6217 (BF)
Image plane ∞
[Various data]
Zoom ratio 3.81
Wide angle Medium telephoto Focal length 153.65 270.03 584.97
F number 4.77 5.71 6.52
Full angle of view 2ω 15.78 9.01 4.17
Image height Y 21.63 21.63 21.63
Total lens length 317.42 359.69 407.23
[Variable interval data]
Wide angle Medium telephoto
d6 43.4647 85.7339 133.2753
d15 47.0863 30.9698 5.0000
d26 17.1846 10.4502 25.4857
BF 54.0057 76.8570 87.7917
[Lens group data]
Group Start surface Focal length
G1 1 308.07
G2 7 -51.57
G2a 7 -592.57
G2b 11 -48.48
G4b 32 -69.67
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
1 500.3284 3.0000 1.80611 40.73
2 203.0852 2.7962
3 263.4106 8.9920 1.45860 90.19
4 -619.3383 0.1500
5 147.2402 11.1573 1.43700 95.10
6 -2565.8567 (d6)
7 116.5228 8.1048 1.51680 64.20
8 1948.9837 30.6295
9 -414.2798 1.2000 1.65844 50.85
10 86.9503 4.3441
11 -149.3142 1.0000 1.69680 55.46
12 44.3756 3.1247 1.84666 23.78
13 105.8729 3.0885
14 -71.5955 1.0000 1.72916 54.67
15 -548.7698 (d15)
16 227.5254 3.8200 1.59349 67.00
17 -119.6480 0.1500
18 72.8346 4.2498 1.59282 68.62
19 -565.5973 0.1500
20 52.8080 6.3326 1.49700 81.61
21 -212.7227 1.0000 1.88100 40.14
22 183.8575 16.3770
23 56.2162 5.3086 1.58913 61.25
24 -267.7317 2.5000 1.88100 40.14
25 38.1107 3.5058
26(絞り) ∞ (d26)
27 49.6333 3.5116 1.60342 38.01
28 -84.9939 0.1500
29 39.9457 3.8150 1.51742 52.15
30 -75.5093 1.0000 1.95375 32.32
31 97.6946 2.0367
32 101.4402 1.0000 2.00100 29.13
33 34.6048 16.4633
34 -50.2934 1.0000 1.49700 81.61
35 45.7728 4.8917 1.69895 30.05
36 -83.5351 (BF)
像面 ∞
[各種データ]
ズーム比 3.81
広角 中間 望遠
焦点距離 153.61 270.03 584.96
Fナンバ 4.78 5.72 6.52
全画角2ω 15.79 9.01 4.17
像高Y 21.63 21.63 21.63
レンズ全長 318.85 359.91 406.28
[可変間隔データ]
広角 中間 望遠
d6 44.3689 85.4294 131.7960
d15 46.9680 30.8980 5.0000
d26 17.3910 10.3779 25.3074
BF 54.2750 77.3583 88.3264
[レンズ群データ]
群 始面 焦点距離
G1 1 302.65
G2 7 -50.72
G3 16 62.45
G4 27 214.44
G2a 7 -279.25
G2b 11 -54.18
G4a 27 55.79
G4b 32 -70.26
Numerical example 5
Unit: mm
[Surface data]
Surface number rd nd vd
1 500.3284 3.0000 1.80611 40.73
2 203.0852 2.7962
3 263.4106 8.9920 1.45860 90.19
4 -619.3383 0.1500
5 147.2402 11.1573 1.43700 95.10
6 -2565.8567 (d6)
7 116.5228 8.1048 1.51680 64.20
8 1948.9837 30.6295
9 -414.2798 1.2000 1.65844 50.85
10 86.9503 4.3441
11 -149.3142 1.0000 1.69680 55.46
12 44.3756 3.1247 1.84666 23.78
13 105.8729 3.0885
14 -71.5955 1.0000 1.72916 54.67
15 -548.7698 (d15)
16 227.5254 3.8200 1.59349 67.00
17 -119.6480 0.1500
18 72.8346 4.2498 1.59282 68.62
19 -565.5973 0.1500
20 52.8080 6.3326 1.49700 81.61
21 -212.7227 1.0000 1.88100 40.14
22 183.8575 16.3770
23 56.2162 5.3086 1.58913 61.25
24 -267.7317 2.5000 1.88100 40.14
25 38.1107 3.5058
26 (Aperture) ∞ (d26)
27 49.6333 3.5116 1.60342 38.01
28 -84.9939 0.1500
29 39.9457 3.8150 1.51742 52.15
30 -75.5093 1.0000 1.95375 32.32
31 97.6946 2.0367
32 101.4402 1.0000 2.00100 29.13
33 34.6048 16.4633
34 -50.2934 1.0000 1.49700 81.61
35 45.7728 4.8917 1.69895 30.05
36 -83.5351 (BF)
Image plane ∞
[Various data]
Zoom ratio 3.81
Wide angle Medium telephoto Focal length 153.61 270.03 584.96
F number 4.78 5.72 6.52
Full angle of view 2ω 15.79 9.01 4.17
Image height Y 21.63 21.63 21.63
Total lens length 318.85 359.91 406.28
[Variable interval data]
Wide angle Medium telephoto
d6 44.3689 85.4294 131.7960
d15 46.9680 30.8980 5.0000
d26 17.3910 10.3779 25.3074
BF 54.2750 77.3583 88.3264
[Lens group data]
Group Start surface Focal length
G1 1 302.65
G2 7 -50.72
G2a 7 -279.25
G2b 11 -54.18
G4b 32 -70.26
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
1 470.6943 3.0000 1.80611 40.73
2 197.0289 4.0352
3 305.6129 9.7960 1.43700 95.10
4 -418.0350 0.1500
5 134.5620 11.3770 1.43700 95.10
6 ∞ (d6)
7 ∞ 1.2000 1.48749 70.44
8 203.4443 8.3070
9 -241.7848 0.8000 1.69680 55.46
10 69.9172 5.0046
11 -70.1700 0.8000 1.69680 55.46
12 70.1700 3.0422 1.84666 23.78
13 -596.9631 (d13)
14 87.9761 3.5038 1.80610 33.27
15 -335.1456 0.7604
16 60.1082 3.2346 1.58913 61.25
17 338.5501 0.1500
18 52.1240 6.5435 1.49700 81.61
19 -89.6446 1.0000 1.80610 33.27
20 196.9200 3.9357 1.49700 81.61
21 -143.0492 1.4245
22 34.2633 4.6758 1.58144 40.89
23 -1378.5519 0.9000 1.91082 35.25
24 28.8531 3.4881
25 -57.4563 0.9000 2.00100 29.13
26 216.0181 2.2282 1.62004 36.30
27 -106.3573 2.0000
28(絞り) ∞ (d28)
29 72.5306 3.4923 1.64769 33.84
30 -60.9921 0.2256
31 38.7585 4.5618 1.48749 70.44
32 -51.3029 0.9000 1.95375 32.32
33 655.5770 (d33)
34 81.2303 0.8000 1.84666 23.78
35 26.7915 4.3683
36 231.1733 2.7824 1.69895 30.05
37 -58.2211 2.7008 1.72916 54.67
38 283.2378 2.3998
39 -35.0132 1.0000 1.49700 81.61
40 35.0132 5.6228 1.72342 37.99
41 -67.1722 (BF)
像面 ∞
[各種データ]
ズーム比 4.66
広角 中間 望遠
焦点距離 125.15 250.18 583.80
Fナンバ 4.86 5.84 6.50
全画角2ω 19.47 9.76 4.18
像高Y 21.63 21.63 21.63
レンズ全長 314.20 371.31 424.96
[可変間隔データ]
広角 中間 望遠
d6 79.8151 136.9189 190.5717
d13 33.4105 18.95 3.5013
d28 24.0103 18.6139 14.5576
d33 10.8965 10.7496 2.3209
BF 54.9618 74.9656 102.8995
[レンズ群データ]
群 始面 焦点距離
G1 1 292.29
G2 7 -44.57
G3 14 70.36
G4 29 44.70
G5 34 -61.99
G2a 7 -417.33
G2b 9 -51.10
Numerical example 6
Unit: mm
[Surface data]
Surface number rd nd vd
1 470.6943 3.0000 1.80611 40.73
2 197.0289 4.0352
3 305.6129 9.7960 1.43700 95.10
4 -418.0350 0.1500
5 134.5620 11.3770 1.43700 95.10
6 ∞ (d6)
7 ∞ 1.2000 1.48749 70.44
8 203.4443 8.3070
9 -241.7848 0.8000 1.69680 55.46
10 69.9172 5.0046
11 -70.1700 0.8000 1.69680 55.46
12 70.1700 3.0422 1.84666 23.78
13 -596.9631 (d13)
14 87.9761 3.5038 1.80610 33.27
15 -335.1456 0.7604
16 60.1082 3.2346 1.58913 61.25
17 338.5501 0.1500
18 52.1240 6.5435 1.49700 81.61
19 -89.6446 1.0000 1.80610 33.27
20 196.9200 3.9357 1.49700 81.61
21 -143.0492 1.4245
22 34.2633 4.6758 1.58144 40.89
23 -1378.5519 0.9000 1.91082 35.25
24 28.8531 3.4881
25 -57.4563 0.9000 2.00100 29.13
26 216.0181 2.2282 1.62004 36.30
27 -106.3573 2.0000
28 (Aperture) ∞ (d28)
29 72.5306 3.4923 1.64769 33.84
30 -60.9921 0.2256
31 38.7585 4.5618 1.48749 70.44
32 -51.3029 0.9000 1.95375 32.32
33 655.5770 (d33)
34 81.2303 0.8000 1.84666 23.78
35 26.7915 4.3683
36 231.1733 2.7824 1.69895 30.05
37 -58.2211 2.7008 1.72916 54.67
38 283.2378 2.3998
39 -35.0132 1.0000 1.49700 81.61
40 35.0132 5.6228 1.72342 37.99
41 -67.1722 (BF)
Image plane ∞
[Various data]
Zoom ratio 4.66
Wide angle Medium telephoto Focal length 125.15 250.18 583.80
F number 4.86 5.84 6.50
Full angle of view 2ω 19.47 9.76 4.18
Image height Y 21.63 21.63 21.63
Total lens length 314.20 371.31 424.96
[Variable interval data]
Wide angle Medium telephoto
d6 79.8151 136.9189 190.5717
d13 33.4105 18.95 3.5013
d28 24.0103 18.6139 14.5576
d33 10.8965 10.7496 2.3209
BF 54.9618 74.9656 102.8995
[Lens group data]
Group Start surface Focal length
G1 1 292.29
G2 7 -44.57
G4 29 44.70
G5 34 -61.99
G2a 7 -417.33
G2b 9 -51.10
[条件式対応値]
条件式/実施例 1 2 3 4 5 6
(1) (1/Rg21-1/fg1)*ft 3.01 3.98 3.80 3.82 3.59 3.29
(2) β2b -0.776 -0.758 -0.765 -0.902 -0.701 -0.789
(3) fp1/fp2 1.345 1.007 1.040 1.038 1.267 1.317
[Values for conditional expressions]
Conditional expression / Example 1 2 3 4 5 6
(1) (1 / Rg21-1 / fg1) * ft 3.01 3.98 3.80 3.82 3.59 3.29
(2) β2b -0.776 -0.758 -0.765 -0.902 -0.701 -0.789
(3) fp1 / fp2 1.345 1.007 1.040 1.038 1.267 1.317
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
Gr 後方レンズ群
G2a 第2a群
G2b 第2b群
G4a 第4a群
G4b 第4b群
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group Gr Back lens group G2a 2a group G2b 2b group G4a 4a group G4b 4b group
Claims (5)
変倍時に前記各レンズ群の間の空気間隔が変化し、
前記第1レンズ群は物体側から順に空気間隔を以って隔てられた第1負レンズ、第1正レンズ、第2正レンズの3枚のレンズから構成され、
前記第2レンズ群は物体側から順に負の屈折力の2a群と負の屈折力の2b群より構成され、
前記2b群を光軸と直行する方向に変位させることによって防振を行い、
下記の条件式を満足することを特徴とする防振機能を備えた変倍結像光学系。
(1) 2.40<(1/Rg21−1/fg1)*ft<4.25
(2) −0.95<β2b<−0.65
ただし、
fg1:第1負レンズの焦点距離
Rg21:第1正レンズの物体側の面の曲率半径
ft:全系の望遠端かつ無限遠方結像状態における合成焦点距離
β2b:2b群の望遠端かつ無限遠方結像状態における結像倍率 In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and at least two lens groups, the rear lens having a positive refractive power as a whole over the entire zoom range. Composed of groups and
The air gap between the lens groups changes at the time of zooming,
The first lens group includes three lenses, a first negative lens, a first positive lens, and a second positive lens, which are spaced apart from each other in order from the object side.
The second lens group includes, in order from the object side, a negative refractive power group 2a and a negative refractive power group 2b.
Vibration is prevented by displacing the group 2b in a direction perpendicular to the optical axis,
A variable magnification imaging optical system having an anti-vibration function that satisfies the following conditional expression:
(1) 2.40 <(1 / Rg21-1 / fg1) * ft <4.25
(2) −0.95 <β2b <−0.65
However,
fg1: Focal length Rg21 of the first negative lens: radius of curvature of the object-side surface of the first positive lens ft: synthetic focal length β2b in the entire system at the telephoto end and infinite distance imaging state: telephoto end and infinite distance in the group 2b Imaging magnification in imaging state
(3) 0.95<fp1/fp2<1.55
ただし、
fp1:第1正レンズの焦点距離
fp2:第2正レンズの焦点距離 2. The variable magnification imaging optical system having an image stabilization function according to claim 1, further satisfying the following conditional expression.
(3) 0.95 <fp1 / fp2 <1.55
However,
fp1: Focal length of the first positive lens fp2: Focal length of the second positive lens
前記フォーカシングレンズ群は全体で負の屈折力を有することを特徴とする請求項1ないし4のいずれかに記載の防振機能を備えた変倍結像光学系。 In the rear lens group, focusing is performed using the entire lens group provided closest to the image side, or a partial lens group positioned closest to the image side among the lens groups provided closest to the image side, as a focusing lens group,
5. A variable magnification imaging optical system having an image stabilization function according to claim 1, wherein the focusing lens group as a whole has a negative refractive power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014084179A JP6326929B2 (en) | 2014-04-16 | 2014-04-16 | Variable magnification imaging optical system with anti-vibration function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014084179A JP6326929B2 (en) | 2014-04-16 | 2014-04-16 | Variable magnification imaging optical system with anti-vibration function |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015203827A JP2015203827A (en) | 2015-11-16 |
JP2015203827A5 JP2015203827A5 (en) | 2017-06-01 |
JP6326929B2 true JP6326929B2 (en) | 2018-05-23 |
Family
ID=54597296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014084179A Active JP6326929B2 (en) | 2014-04-16 | 2014-04-16 | Variable magnification imaging optical system with anti-vibration function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6326929B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6610154B2 (en) | 2015-10-15 | 2019-11-27 | Tdk株式会社 | Switch drive device and switch drive method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08136862A (en) * | 1994-11-07 | 1996-05-31 | Canon Inc | Variable power optical system provided with vibration proofing function |
JP3536128B2 (en) * | 1994-05-31 | 2004-06-07 | 株式会社ニコン | Zoom lens with anti-vibration function |
JPH09230240A (en) * | 1996-02-27 | 1997-09-05 | Minolta Co Ltd | Zoom lens having camera shake correcting function |
JP2005292338A (en) * | 2004-03-31 | 2005-10-20 | Nikon Corp | Zoom lens |
JP2007298724A (en) * | 2006-04-28 | 2007-11-15 | Matsushita Electric Ind Co Ltd | Zoom lens system, imaging apparatus and camera |
KR101706266B1 (en) * | 2009-12-24 | 2017-02-27 | 삼성전자주식회사 | Zoom lens and photographing apparatus having the same |
JP5778275B2 (en) * | 2011-06-21 | 2015-09-16 | 富士フイルム株式会社 | Zoom lens and imaging device |
-
2014
- 2014-04-16 JP JP2014084179A patent/JP6326929B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015203827A (en) | 2015-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8619372B2 (en) | Zoom lens system, optical device with the zoom lens system, and method of manufacturing the zoom lens system | |
JP5836654B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5582303B2 (en) | Variable magnification optical system and optical apparatus having the variable magnification optical system | |
JPH06265826A (en) | Compact zoom lens with vibration proof function | |
JP6492517B2 (en) | Variable magnification imaging optical system with anti-vibration function | |
JP2013003240A5 (en) | ||
JP5544926B2 (en) | Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens | |
JP2019032353A (en) | Variable power imaging optical system | |
JP6515480B2 (en) | Variable magnification imaging optical system with anti-vibration function | |
JP5471487B2 (en) | Photographic lens and optical apparatus provided with the photographic lens | |
JP2017223778A (en) | Zoom imaging optical system with anti-shake capability | |
JPH09218346A (en) | Optical system | |
JP7270970B2 (en) | Variable-magnification imaging optical system with anti-vibration function | |
JPH09218348A (en) | Photographic lens | |
JP5578412B2 (en) | Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens | |
JP5545531B2 (en) | Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens | |
JP7114041B2 (en) | Variable magnification imaging optical system | |
JP6409361B2 (en) | Inner focusing type zoom lens | |
JP6326929B2 (en) | Variable magnification imaging optical system with anti-vibration function | |
JP6969784B2 (en) | Variable magnification imaging optical system | |
JP6518067B2 (en) | Optical system and imaging device | |
JP2018072581A (en) | Large-aperture telephoto zoom lens with anti-shake functionality | |
JP2020160100A (en) | Imaging optical system | |
JP2020020948A (en) | Zoom imaging optical system | |
US20230258914A1 (en) | Optical system, optical apparatus and method for manufacturing the optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170411 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6326929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |