JP6303795B2 - Route search system and route search method - Google Patents
Route search system and route search method Download PDFInfo
- Publication number
- JP6303795B2 JP6303795B2 JP2014101295A JP2014101295A JP6303795B2 JP 6303795 B2 JP6303795 B2 JP 6303795B2 JP 2014101295 A JP2014101295 A JP 2014101295A JP 2014101295 A JP2014101295 A JP 2014101295A JP 6303795 B2 JP6303795 B2 JP 6303795B2
- Authority
- JP
- Japan
- Prior art keywords
- link
- driver
- vehicle
- degree
- route
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Instructional Devices (AREA)
- Navigation (AREA)
Description
本発明は、運転者の不得意な走行経路を回避する経路案内を行うための、経路探索システム及び経路探索方法に関する。 The present invention relates to a route search system and a route search method for performing route guidance that avoids a driving route that a driver is not good at.
出発地から目的地までの最適経路を探索するナビゲーションシステムとして、例えば、特許文献1に記載されている技術のように、運転者が苦手な道路属性を経路探索や経路案内から避けるように用いることで、運転者にとって安心な走行環境を提供する技術がある。
As a navigation system that searches for an optimal route from a departure place to a destination, for example, as in the technique described in
しかしながら、特許文献1に記載されている技術では、運転者が苦手な道路属性を蓄積している苦手候補データベースと照合させて、苦手な道路の属性を特定する。このため、苦手候補データベースに蓄積されていない道路、すなわち、運転者が過去に走行していない未走行の道路に対し、運転者が苦手であり不得意な道路として検索できないという課題があった。
本発明は、上記のような問題点に着目してなされたもので、運転者が未走行の道路に対し、運転者が不得意な道路としての検索が可能な、経路探索システム及び経路探索方法を提供することを目的とする。
However, in the technique described in
The present invention has been made paying attention to the above-described problems, and is capable of searching for a road that the driver is not good at as a road that the driver is not good at. The purpose is to provide.
上記課題を解決するために、本発明は、複数の運転者が行った運転操作を各運転者で個別に検出した運転操作データを分析して、各運転者の不得意度を個別に算出する。そして、算出した不得意度で各運転者を分類して各運転者の類型を設定する。これに加え、案内経路の提供要求を行った運転者の不得意度から案内経路を探索する第一の経路探索処理と、提供要求を行った運転者と同一の類型に設定した他の運転者の不得意度から案内経路を探索する第二の経路探索処理のうち一方を選択的に行う。さらに、探索した案内経路を示す案内経路情報を、提供要求を行った運転者へ提供する。 In order to solve the above problems, the present invention analyzes driving operation data obtained by individually detecting driving operations performed by a plurality of drivers by each driver, and individually calculates the unsatisfactory degree of each driver. . Then, each driver is classified based on the calculated degree of weakness and the type of each driver is set. In addition to this, the first route search process for searching for a guide route based on the weakness of the driver who requested the provision of the guide route, and another driver set to the same type as the driver who made the provision request One of the second route search processes for searching for a guide route based on the degree of weakness of the user is selectively performed. Furthermore, the guide route information indicating the searched guide route is provided to the driver who has made the provision request.
本発明によれば、各運転者の運転操作を分析して、不得意度を各運転者に対して個別に算出し、さらに、算出した不得意度から、各運転者を類型化することが可能となる。
これにより、同一の類型に設定した他の運転者の不得意度を用いて、案内経路の提供要求を行った運転者が未走行の道路を、運転者が不得意な道路として検索することが可能となるため、未走行の道路に対する、不得意度に応じた案内経路の探索が可能となる。
According to the present invention, it is possible to analyze each driver's driving operation, individually calculate the unsatisfactory degree for each driver, and further classify each driver from the calculated unsatisfactory degree. It becomes possible.
This makes it possible to search for a road on which the driver who requested the provision of the guidance route has not traveled as a road that the driver is not good at using the other driver's unsatisfactory degree set to the same type. As a result, it becomes possible to search for a guidance route according to the degree of unsatisfaction with an untraveled road.
以下、本発明の実施形態について、図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.
(第一実施形態)
以下、本発明の第一実施形態(以下、本実施形態と記載する)について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention (hereinafter referred to as the present embodiment) will be described with reference to the drawings.
(経路探索システムの全体構成)
図1中に示すように、経路探索システムSは、車載装置1と、情報作成・配信装置2を備える。
車載装置1は、公知のナビゲーション装置を用いて形成し、各車両Cが搭載する。なお、車載装置1の詳細な構成は、後述する。
情報作成・配信装置2は、データセンター4(基地局)が備える。なお、情報作成・配信装置2の詳細な構成は、後述する。
また、情報作成・配信装置2は、携帯電話網等の無線通信路で形成する通信路を介して、複数台の車両が個別に備える車載装置1と、情報信号(情報)の送信及び受信を行なう。
(Overall configuration of route search system)
As shown in FIG. 1, the route search system S includes an in-
The in-
The information creation /
In addition, the information creation /
なお、車載装置1と情報作成・配信装置2との通信方式は、任意に選択することが可能であり、例えば、通信接続は、直接的な接続のみならず、車車間通信、路車間通信、衛星通信を経由した接続でもよい。
本実施形態では、一例として、複数台の車両Cとデータセンター4とを、通信路を介して情報を送信または受信可能に接続する場合を説明する。また、図1中には、車載装置1を搭載する車両として、三台の車両(車両C1〜C3)を図示しているが、本実施形態では、図示しない他の車両も、通信路を介して、データセンター4と情報の送信または受信を行なう。また、図示しない他の車両の構成は、図1中に示す車両Cと同様の構成である。
The communication method between the in-
In the present embodiment, as an example, a case will be described in which a plurality of vehicles C and the data center 4 are connected via a communication path so that information can be transmitted or received. In FIG. 1, three vehicles (vehicles C1 to C3) are illustrated as vehicles on which the in-
(車載装置の構成)
図1を参照して、車載装置1の構成について説明する。
車載装置1は、車両情報取得部6と、経路案内部8と、車両側データ送受信部10を備える。
車両情報取得部6は、図示しない車内LAN(Local Area Network)等を介して、車両Cが備える各種のセンサ(図示せず)が検出した、車両Cの挙動に関するデータの入力を受ける。
(Configuration of in-vehicle device)
With reference to FIG. 1, the structure of the vehicle-mounted
The in-
The vehicle
なお、車両Cの挙動に関するデータには、例えば、車速センサが検出した車速データ、加速度センサが検出した加速度データ、操舵角センサが検出した、操舵操作子(ステアリングホイール)の操舵角データを含む。これに加え、車両Cの挙動に関するデータには、例えば、ブレーキ圧力センサが検出した制動圧データ、アクセル開度センサが検出したアクセルペダルの開度(アクセル開度)データを含む。 The data related to the behavior of the vehicle C includes, for example, vehicle speed data detected by the vehicle speed sensor, acceleration data detected by the acceleration sensor, and steering angle data of the steering operator (steering wheel) detected by the steering angle sensor. In addition, the data relating to the behavior of the vehicle C includes, for example, braking pressure data detected by the brake pressure sensor and accelerator pedal opening (accelerator opening) data detected by the accelerator opening sensor.
また、車両情報取得部6は、図示しない車内LAN等を介して、例えば、GNSS(Global Navigation Satellite System)を用いて取得した車両Cの現在位置のデータの入力を受ける。なお、GNSSは、例えば、GPS(Global Positioning System)受信機である。
そして、車両情報取得部6は、入力を受けた各種のデータを含む情報信号(以降の説明では、「車両情報データ信号」と記載する場合がある)を、車両側データ送受信部10に出力する。
Moreover, the vehicle
And the vehicle
経路案内部8は、例えば、画像等を表示可能であるとともに、利用者によるタッチ入力が可能な画面を有するタッチディスプレイ(タッチパネル)を備える、ナビゲーション装置で形成する。
なお、経路案内部8は、利用者に案内経路を提供可能なデバイスを用いて形成すればよく、ナビゲーション装置以外にも、例えば、PND(Personal Navigation Device)やSmartphone等を用いて形成してもよい。
The
The
また、経路案内部8を形成するタッチディスプレイには、運転者等、車両Cの乗員に対して、目的地を入力するための文字や選択肢を含む画像を表示する。そして、経路案内部8は、目的地の入力を受けると、目的地を示すデータ(座標等)を含む情報信号(以降の説明では、「目的地データ信号」と記載する場合がある)を、車両側データ送受信部10に出力する。
In addition, an image including characters and options for inputting a destination is displayed on the touch display forming the
すなわち、目的地データ信号は、現在地から目的地への案内経路の提供要求を行った運転者が運転する車両Cが出力する。
また、経路案内部8は、車両側データ送受信部10から、案内経路信号の入力を受けると、タッチディスプレイに、地図の画像に案内経路信号が含む案内経路を重畳させた画像を表示する。なお、案内経路信号及び案内経路の説明は、後述する。
That is, the destination data signal is output by the vehicle C driven by the driver who has requested to provide the guidance route from the current location to the destination.
In addition, when receiving a guidance route signal from the vehicle-side data transmission /
なお、経路案内部8の構成は、タッチディスプレイに限定するものではなく、例えば、画像を表示可能なディスプレイに加え、ボタンやレバー等の可動部を有するスイッチを用いて形成してもよい。
車両側データ送受信部10は、車両情報取得部6から車両情報データ信号の入力を受け、経路案内部8から目的地データ信号の入力を受ける。そして、車両側データ送受信部10は、入力を受けた車両情報データ信号と目的地データ信号を、車両Cの固有IDを示す情報(車両ID等)を付加した状態で、予め設定した間隔でデータセンター4に出力する。
また、車両側データ送受信部10は、データセンター4から、案内経路信号の入力を受けると、入力を受けた案内経路信号を、経路案内部8に出力する。なお、経路案内部8の入力は、予め設定した間隔で受ける。
Note that the configuration of the
The vehicle-side data transmission /
Further, when receiving the input of the guidance route signal from the data center 4, the vehicle-side data transmission /
(情報作成・配信装置の構成)
図1及び図2を参照して、情報作成・配信装置2の構成について説明する。
情報作成・配信装置2は、センター側データ送受信部12と、プローブカーデータベース14と、地図データベース16と、不得意リンク管理部18と、経路探索部20を備える。なお、図中及び以降の説明では、それぞれ、プローブカーデータベース14を「プローブカーDB14」と示し、地図データベース16を「地図DB16」と示す場合がある。
(Configuration of information creation / distribution device)
The configuration of the information creation /
The information creation /
センター側データ送受信部12は、車両側データ送受信部10から、車両Cの固有IDを示す情報を付加した車両情報データ信号と目的地データ信号の入力を受ける。そして、センター側データ送受信部12は、プローブカーDB14と、不得意リンク管理部18と、経路探索部20に、車両Cの固有IDを示す情報を付加した車両情報データ信号と目的地データ信号を出力する。
The center side data transmitting / receiving
また、センター側データ送受信部12は、経路探索部20から案内経路信号の入力を受けると、入力を受けた案内経路信号を、車両側データ送受信部10に出力する。
プローブカーDB14は、センター側データ送受信部12と、不得意リンク管理部18から、情報信号の入力を受ける。また、プローブカーDB14は、車両Cに固有のデータとして、リンクの走行履歴と、リンク毎の不得意度と、車両Cの類型を記憶して蓄積する。すなわち、プローブカーDB14は、複数の運転者が複数のリンクで行った運転操作を各運転者及び各リンクで個別に検出した、運転操作データを蓄積する。
When the center side data transmission /
The
ここで、上述したように、車両情報取得部6が入力を受ける、車両Cの挙動に関するデータには、車速データ、加速度データ、操舵角データ、制動圧データ、アクセル開度データを含む。
すなわち、複数の運転者が複数のリンクで行った運転操作は、運転者による加減速操作と、運転者による操舵操作を含む。
Here, as described above, the data related to the behavior of the vehicle C, which is received by the vehicle
That is, driving operations performed by a plurality of drivers through a plurality of links include acceleration / deceleration operations by the driver and steering operations by the driver.
地図DB16は、地図データを記憶している。また、地図DB16が記憶している地図データは、例えば、一定の期間等に応じて更新する。なお、地図DB16が記憶している地図データには、例えば、道路を交差点や一定間隔等で分割した各リンクのリンク長(距離)、各リンクの車線数、各リンクの車線幅、各リンクの規制速度を含む。また、各道路及び各リンクは、固有IDを示す情報(道路ID、リンクID等)を付加した状態で、地図データとして地図DB16が記憶している。
The
不得意リンク管理部18は、リンク走行履歴データベース22と、リンク走行履歴比較演算部24と、不得意リンクデータベース26と、類型化演算部28を備える。なお、図中及び以降の説明では、それぞれ、リンク走行履歴データベース22を「リンク走行履歴DB22」と示し、不得意リンクデータベース26を「不得意リンクDB26」と示す場合がある。
The weak
リンク走行履歴DB22は、センター側データ送受信部12から入力を受けた車両情報データ信号が含む車両Cの現在位置を、地図DB16が記憶しているリンクと対応付ける。そして、リンク走行履歴DB22は、全てのリンク毎に、各車両Cの走行状態を個別に記憶して蓄積する。したがって、リンク走行履歴DB22は、全てのリンク毎に、各車両Cの走行状態、すなわち、各車両Cの運転者が行った運転操作のデータ(運転操作データ)を、個別に記憶して蓄積する。
The link
ここで、リンク走行履歴DB22には、図2中に示すように、リンク走行履歴DB22に蓄積する走行状態として、各車両C(各ユーザー)の、リンク毎の走行状態を示す値と、リンク毎の走行状態を示す値の統計から算出した平均値が記録されて蓄積されている。これに加え、リンク走行履歴DB22には、図2中に示すように、全ての車両C(全ユーザー)の、リンク毎の走行状態を示す値の統計から算出した平均値が記録されて蓄積されている。
Here, in the link
なお、本実施形態では、一例として、図2中に示すように、リンク走行履歴DB22に蓄積する走行状態が、ブレーキ圧力センサが検出した制動圧、車速センサが検出した車速、操舵角センサが検出した操舵角を用いた操舵角速度を含む場合を説明する。したがって、本実施形態では、一例として、図2中に示すように、リンク毎の走行状態を示す値の統計から算出した平均値が、制動圧の平均値(制動圧平均値)と、車速平均値(車速平均値)と、操舵角速度の平均値(操舵角速度平均値)を含む場合を説明する。
In this embodiment, as an example, as shown in FIG. 2, the traveling state accumulated in the link traveling
リンク走行履歴比較演算部24は、リンク走行履歴DB22に蓄積しているリンク毎の各車両Cの走行状態を取得する。そして、リンク走行履歴DB22に蓄積しているリンク毎の各車両Cの走行状態について、選択したリンクで収集した全ての車両Cの走行状態と、選択した一台の車両C(例えば、車両C1)の走行状態を比較する。
さらに、リンク走行履歴比較演算部24は、比較結果に応じて、選択した一台の車両Cを運転する運転者の、選択したリンクにおける不得意度を演算する。これに加え、リンク走行履歴比較演算部24は、演算した不得意度を含む情報信号(以降の説明では、「不得意度信号」と記載する場合がある)を、プローブカーDB14と、不得意リンクDB26に出力する。
The link travel history
Further, the link travel history
なお、リンク走行履歴比較演算部24が行う処理については、後述する。
また、不得意度の表現は任意でよく、例えば、点数評価や、五段階評価等を用いることが可能である。
本実施形態では、一例として、不得意度を五段階の評価で算出する場合について説明する。
The processing performed by the link travel history
Also, the degree of weakness may be expressed arbitrarily, and for example, score evaluation, five-level evaluation, etc. can be used.
In the present embodiment, as an example, a case where the degree of weakness is calculated by five-level evaluation will be described.
すなわち、本実施形態では、各運転者の不得意度を、複数段階の評価で算出する場合について説明する。
不得意リンクDB26は、リンク走行履歴比較演算部24から入力を受けた不得意度信号が含む不得意度を演算したリンクに、演算した不得意度のデータを関連付けたデータ(不得意度演算リンクデータ)を記憶して蓄積する。
That is, in the present embodiment, a case will be described in which the unsatisfactory degree of each driver is calculated by multiple stages of evaluation.
The
類型化演算部28は、不得意リンクDB26から不得意度演算リンクデータを取得し、各車両Cのリンク毎の不得意度を参照して、各車両Cを運転する運転者を類型化する処理を行う。そして、類型化演算部28は、各車両Cを運転する運転者を類型化したデータ(運転者類型データ)を含む情報信号(以降の説明では、「運転者類型データ信号」と記載する場合がある)を、プローブカーDB14に出力する。
The
なお、類型化演算部28が行う処理については、後述する。
経路探索部20は、センター側データ送受信部12から、目的地データ信号と車両情報データ信号の入力を受ける。そして、経路探索部20は、目的地データ信号が含む目的地と車両情報データ信号が含む車両Cの現在位置から、現在位置から目的地までの複数の走行経路を算出する。これに加え、不得意リンクDB26から不得意度演算リンクデータを取得して、目的地データ信号と車両情報データ信号を出力した一台の車両Cに対し、現在位置から目的地までの複数の走行経路上に存在するリンクの不得意度に応じて、案内経路を探索する。
Note that the processing performed by the
The
そして、経路探索部20は、探索した案内経路を含む情報信号である案内経路信号を、センター側データ送受信部12に出力する。
ここで、案内経路を探索する具体的な処理について説明する。
現在位置から目的地までの複数の走行経路に、目的地データ信号と車両情報データ信号を出力した一台の車両Cが過去に走行した道路が含まれている場合は、可能な限り、不得意なリンクを含まない道路を走行する経路として、案内経路を探索する。
The
Here, a specific process for searching for a guidance route will be described.
If a plurality of travel routes from the current position to the destination include roads on which a single vehicle C that has output the destination data signal and the vehicle information data signal has traveled in the past, it is as bad as possible. A guide route is searched for as a route on a road that does not include a simple link.
一方、現在位置から目的地までの複数の走行経路が、目的地データ信号と車両情報データ信号を出力した一台の車両Cが過去に走行した道路が含まれていない場合は、プローブカーDB14から、同一または近似した類型の車両Cの運転者類型データを取得する。そして、同一または近似した類型の車両が過去に走行した不得意度演算リンクデータを用いて、可能な限り、不得意なリンクを含まない道路を走行する経路として、案内経路を探索する。
On the other hand, if the plurality of travel routes from the current position to the destination does not include a road on which one vehicle C that has output the destination data signal and the vehicle information data signal has traveled in the past, from the
以上により、経路探索部20は、第一の経路探索処理と第二の経路探索処理の両者を実行可能であるとともに、いずれか一方の経路探索処理を選択的に行う。
ここで、第一の経路探索処理は、現在地から目的地への案内経路の提供要求を行った運転者の不得意度から案内経路を探索する処理である。また、第二の経路探索処理は、案内経路の提供要求を行った運転者と同一の類型に設定した他の運転者の不得意度から案内経路を探索する処理である。
As described above, the
Here, the first route search process is a process of searching for a guide route from a driver's weakness that has made a request to provide a guide route from the current location to the destination. The second route search process is a process for searching for a guide route based on the unsatisfactory degree of another driver set in the same type as the driver who has requested the provision of the guide route.
また、経路探索部20は、現在地から目的地への案内経路の提供要求を行った運転者の不得意度と、提供要求を行った運転者と同一の類型に設定した他の運転者の不得意度から、案内経路を探索する。これに加え、経路探索部20は、案内経路として、現在地から目的地への複数の走行経路から、他の運転者の不得意度が低いリンクを含む走行経路を選択して、案内経路を探索する。
また、経路探索部20は、案内経路の探索対象が案内経路の提供要求を行った運転者の不得意度が未算出のリンクを含む場合に、第二の経路探索処理を実行する。
In addition, the
In addition, the
(リンク走行履歴比較演算部24が行う処理)
図1及び図2を参照しつつ、図3を用いて、リンク走行履歴比較演算部24が行う処理について説明する。
なお、リンク走行履歴比較演算部24が行う処理は、任意の時期に実施可能であり、例えば、車両Cの走行状態を入手した時点(車両情報データ信号の入力を受けた時点)で逐次実施してもよい。また、例えば、昼間等と比較して計算の余裕が有る深夜に、まとめて実施してもよい。
また、以下に記載する、図3を用いた説明では、複数台の車両Cのうち選択した一台の車両C1に対して行う処理を説明するが、他の車両(車両C2、車両C3等)に対する処理も同様である。
(Processing performed by the link travel history comparison calculation unit 24)
Processing performed by the link travel history
Note that the processing performed by the link travel history
In addition, in the description using FIG. 3 described below, processing to be performed on one vehicle C1 selected from among a plurality of vehicles C will be described, but other vehicles (vehicle C2, vehicle C3, etc.) will be described. The processing for is also the same.
図3中に示すように、リンク走行履歴比較演算部24が処理を開始(START)すると、まず、ステップS100の処理を行う。
ステップS100では、複数台の車両Cのうち、選択した一台の車両C(例えば、車両C1)について、不得意度を算出する処理を行っていないリンクから選択した一つのリンクにおける不得意度の算出を開始するための処理を行う。すなわち、ステップS100では、複数台の車両Cのうち選択した一台の車両C(例えば、車両C1)の運転者について、不得意度の算出を開始するための処理(図中に示す「運転者D1について不得意度の算出を開始」)を行う。
As shown in FIG. 3, when the link travel history
In step S100, for one selected vehicle C (for example, vehicle C1) among the plurality of vehicles C, the degree of weakness in one link selected from the links that have not been subjected to the process of calculating the unsatisfactory degree. A process for starting the calculation is performed. That is, in step S100, for the driver of one vehicle C selected from among the plurality of vehicles C (for example, the vehicle C1), a process for starting calculation of the unsatisfactory degree ("driver shown in the figure""Start calculation of weakness for D1").
なお、図中及び以降の説明では、選択した一台の車両C1の運転者を、「運転者D1」または「D1」と記載する場合がある。ステップS100において、複数台の車両Cのうち選択した一台の車両Cの運転者について、不得意度の算出を開始するための処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS101へ移行する。
ステップS101では、リンク走行履歴DB22にアクセス(図中に示す「リンク走行履歴DBへアクセス」)する。そして、リンク走行履歴DB22から、選択した一つのリンクにおける、全ての車両Cの走行状態と、選択した一台の車両C1の走行状態を取得する処理を行う。ステップS101において、選択した一つのリンクにおける、全ての車両Cの走行状態と、選択した一台の車両C1の走行状態を取得する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS102へ移行する。
In the drawings and the following description, the driver of one selected vehicle C1 may be described as “driver D1” or “D1”. In step S100, when the process for starting the calculation of the unsatisfactory degree is performed for the driver of one vehicle C selected from the plurality of vehicles C, the process performed by the link travel history
In step S101, the link
ステップS102では、選択した一つのリンクにおける全ての車両Cの走行状態と、選択した一つのリンクにおける選択した一台の車両C1の走行状態を比較する処理を行う。すなわち、ステップS102では、選択した一つのリンクにおける、全ての車両Cの運転者の運転操作データと、選択した一台の車両C1の運転者D1の運転操作データを取得する処理(図中に示す「全運転者のデータと運転者D1のデータを取得」)を行う。ステップS102において、選択した一つのリンクにおける、全ての車両Cの運転者の運転操作データと、一人の運転者D1の運転操作データを取得する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS103へ移行する。
In step S102, a process of comparing the traveling state of all the vehicles C on one selected link with the traveling state of one selected vehicle C1 on the selected one link is performed. That is, in step S102, the process of obtaining the driving operation data of all the drivers of the vehicle C and the driving operation data of the driver D1 of the selected vehicle C1 in the selected one link (shown in the figure). “Obtain all driver data and driver D1 data”). In step S102, when the process of obtaining the driving operation data of all the drivers of the vehicle C and the driving operation data of one driver D1 in the selected one link is performed, the link travel history
ここで、本実施形態では、一例として、ステップS102で行う処理において、リンク走行履歴DB22に蓄積されている走行状態(運転操作データ)のうち、制動圧データを取得する場合を説明する。
ステップS103では、ステップS102の処理で取得した二つのデータを比較して、両者の差が閾値を超えているか否かを判定する処理(図中に示す「二つのデータ差が閾値を超える」)を行う。
Here, in the present embodiment, as an example, a case will be described in which the braking pressure data is acquired from the traveling state (driving operation data) accumulated in the link traveling
In step S103, the two data acquired in the process of step S102 are compared to determine whether or not the difference between the two exceeds the threshold ("two data difference exceeds the threshold" shown in the figure). I do.
具体的には、選択したリンクAにおける、全ユーザーの制動圧の平均値Apと、運転者D1の制動圧の平均値Apd1と、閾値Xpを、以下の式(1)に代入して比較する。
Apd1‐Ap > Xp … (1)
なお、上記の式(1)中において、Xpは任意の値であり、例えば、正規分布が期待される走行状態の値であれば、標準偏差等を用いて設定することが可能である。
Specifically, the average value Ap of the braking pressure of all users, the average value Apd1 of the braking pressure of the driver D1, and the threshold value Xp in the selected link A are substituted into the following formula (1) for comparison. .
Apd1-Ap> Xp (1)
In the above formula (1), Xp is an arbitrary value, and can be set using a standard deviation or the like as long as it is a value in a running state where a normal distribution is expected.
すなわち、ステップS103では、選択したリンクAにおいて、選択した一台の車両C1の制動圧の平均値Apd1が、全ての車両Cの制動圧の平均値Apを超えていれば、選択した一台の車両C1の運転者D1は、選択したリンクAが不得意であると判定する。
また、本実施形態では、一例として、走行状態(運転操作データ)を表す一つの値(制動圧)を用いて不得意度を判定するが、これに限定するものではなく、走行状態(運転操作データ)を表す複数の値を組み合わせて、不得意度を判定してもよい。
That is, in step S103, if the average braking pressure value Apd1 of the selected vehicle C1 exceeds the average braking pressure value Ap of all the vehicles C in the selected link A, the selected one vehicle C1 The driver D1 of the vehicle C1 determines that the selected link A is not good.
In the present embodiment, as one example, the degree of weakness is determined using one value (braking pressure) representing the driving state (driving operation data), but the present invention is not limited to this. The degree of weakness may be determined by combining a plurality of values representing (data).
ステップS103において、ステップS102の処理で取得した二つのデータ差(Apd1‐Ap)が閾値(Xp)を超えている(図中に示す「Yes」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS104へ移行する。
一方、ステップS103において、ステップS102の処理で取得した二つのデータ差(Apd1‐Ap)が閾値(Xp)を超えていない(図中に示す「No」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS105へ移行する。
In step S103, when it is determined that the two data difference (Appd1-Ap) acquired in the process of step S102 exceeds the threshold (Xp) (“Yes” shown in the figure), the link travel history
On the other hand, if it is determined in step S103 that the difference between the two data (Appd1-Ap) acquired in step S102 does not exceed the threshold (Xp) ("No" shown in the figure), the link travel history comparison calculation The processing performed by the
ステップS104では、ステップS103の判定結果から、選択した一つのリンクに対する不得意度を算出し、この算出した不得意度を不得意リンクDB26に格納する処理(図中に示す「不得意度を算出して不得意リンクDBに格納」)を行う。ステップS104において、選択した一つのリンクに対する不得意度を算出して不得意リンクDB26に格納する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS106へ移行する。
In step S104, the degree of weakness with respect to the selected link is calculated from the determination result in step S103, and the calculated degree of weakness is stored in the weakness link DB 26 ("calculation of degree of weakness shown in the figure"). And store in the weak link DB ”). In step S104, when the degree of weakness for the selected link is calculated and stored in the
ここで、選択した一つのリンクに対する不得意度の算出については、二段階評価(「得意」または「不得意」)であれば、閾値Xpを超えていることで不得意と算出することが可能である。また、選択した一つのリンクに対する不得意度を三段階以上で算出する場合は、差分結果をそのまま不得意度として算出する処理や、数字を段階的に丸めて不得意度として算出する処理を行ってもよい。 Here, regarding the calculation of the degree of weakness for one selected link, if it is a two-stage evaluation (“good” or “poor”), it can be calculated that it is poor because it exceeds the threshold value Xp. It is. In addition, when calculating the unsatisfactory degree for one selected link in three or more stages, the difference result is directly calculated as the unsatisfactory degree, or the number is rounded step by step to calculate the unsatisfactory degree. May be.
ステップS105では、選択した一つのリンクに対する不得意度が最小、例えば、選択した一つのリンクが不得意ではない情報を示すデータを不得意リンクDB26に格納する処理(図中に示す「不得意ではないデータを不得意リンクDBに格納」)を行う。ステップS105において、不得意ではないデータを不得意リンクDB26に格納する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS106へ移行する。
In step S105, the degree of unsatisfiedness with respect to one selected link is minimum. For example, data indicating information that the selected single link is unsatisfactory is stored in the unsatisfactory link DB 26 ("Unsatisfactory" Store no data in the weak link DB ”). If the process which stores the data which is not good in step S105 in the weak link DB26 is performed, the process which the link driving history
ステップS106では、不得意度を算出する処理を、全てのリンクに実施したか否かを判定する処理(図中に示す「全てのリンクに処理を実施」)を行う。
ステップS106において、不得意度を算出する処理を全てのリンクに実施している(図中に示す「Yes」)と判定した場合、リンク走行履歴比較演算部24が行なう処理を終了(END)する。
一方、ステップS106において、不得意度を算出する処理を全てのリンクに実施していない(図中に示す「No」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS100へ移行する。
In step S106, a process of determining whether or not the process of calculating the degree of weakness has been performed for all the links ("execute the process for all the links" shown in the drawing) is performed.
If it is determined in step S106 that the process of calculating the degree of weakness is performed on all links (“Yes” shown in the figure), the process performed by the link travel history
On the other hand, if it is determined in step S106 that the process of calculating the degree of weakness is not performed for all links ("No" shown in the figure), the process performed by the link travel history
(類型化演算部28が行う処理)
図1から図3を参照しつつ、図4から図6を用いて、類型化演算部28が行う処理について説明する。
なお、類型化演算部28が行う処理は、リンク走行履歴比較演算部24が行う処理と同様、任意の時期に実施可能であり、例えば、車両Cの走行状態を入手した時点(車両情報データ信号の入力を受けた時点)で逐次実施してもよい。また、例えば、昼間等と比較して計算の余裕が有る深夜に、まとめて実施してもよい。
(Processing performed by the categorization calculating unit 28)
The processing performed by the
The process performed by the
また、以下に記載する、図4を用いた説明では、複数台の車両Cのうち選択した一台の車両C1に対して行う処理を説明するが、他の車両(車両C2、車両C3等)に対する処理も同様である。
図4中に示すように、類型化演算部28が処理を開始(START)すると、まず、ステップS200の処理を行う。
ステップS200では、複数台の車両Cのうち、選択した一台の車両C(例えば、車両C1)の運転者(運転者D1)に対し、類型の演算を開始するための処理(図中に示す「運転者D1について類型の演算を開始」)を行う。ステップS200において、運転者D1に対し、類型の演算を開始するための処理を行うと、類型化演算部28が行なう処理は、ステップS201へ移行する。
In addition, in the description using FIG. 4 described below, processing to be performed on one vehicle C1 selected from among a plurality of vehicles C will be described, but other vehicles (vehicle C2, vehicle C3, etc.) will be described. The processing for is also the same.
As shown in FIG. 4, when the
In step S200, a process (shown in the figure) for starting a type of calculation for the driver (driver D1) of one selected vehicle C (for example, vehicle C1) among the plurality of vehicles C is shown. “Start type operation for driver D1”). In step S200, when the process for starting the type calculation is performed on the driver D1, the process performed by the
ステップS201では、不得意リンクDB26にアクセス(図中に示す「不得意リンクDBへアクセス」)する。そして、不得意リンクDB26から、全ての運転者の、各リンクに対する不得意度(不得意度演算リンクデータ)を取得する処理を行う。ステップS201において、全ての運転者の、各リンクに対する不得意度を取得する処理を行うと、類型化演算部28が行なう処理は、ステップS202へ移行する。
In step S201, the
ステップS202では、ステップS201で取得した不得意度演算リンクデータから、各リンクに対する不得意度が、運転者D1に合致、または、類似している他の運転者Dを検索する処理(図中に示す「不得意リンク構成類型検索」)を行う。ステップS202において、各リンクに対する不得意度が、運転者D1に合致、または、類似している他の運転者Dを検索する処理を行うと、類型化演算部28が行なう処理は、ステップS203へ移行する。
In step S202, a process of searching for another driver D whose degree of weakness with respect to each link matches or is similar to the driver D1 from the weakness degree calculation link data acquired in step S201 (in the figure). "Unfavorable link configuration type search") is performed. In step S202, when the process of searching for another driver D whose degree of weakness with respect to each link matches or is similar to the driver D1 is performed, the process performed by the
なお、類型化演算部28が行なう処理を実施する初期の段階では、取得可能な不得意度演算リンクデータが少ないため、検索対象は他の運転者Dとなる。しかしながら、ある程度の不得意度演算リンクデータが不得意リンクDB26に蓄積された後の段階では、各運転者はいくつかの類型に設定されているため、検索対象は類型そのもの(以降の説明では、「類型パターン」と記載する場合がある)となる。
It should be noted that at the initial stage when the processing performed by the
具体的には、ステップS202で行う処理では、例えば、図5中に示すように、全運転者に対する不得意度リスト(五段階評価)から、運転者D2と運転者D4(図示しない車両C4の運転者)の不得意度が合致していることを検索する。これに加え、運転者D2と運転者D4は、図6中に示す類型パターンリストから、類型Yに属することを検索する。
なお、上述した例では、運転者D2と運転者D4の不得意度が合致(類似度合いが100%)している場合を説明したが、これに限定するものではなく、例えば、類似度合いが80%以上である運転者同士を、同じ類型に属すると検索してもよい。すなわち、類似の度合の設定は、任意に設定すればよい。
Specifically, in the process performed in step S202, for example, as shown in FIG. 5, from the list of weaknesses for all drivers (five-level evaluation), driver D2 and driver D4 (of vehicle C4 not shown) Search that the driver's weakness matches. In addition, the driver D2 and the driver D4 search for belonging to the type Y from the type pattern list shown in FIG.
In the example described above, the case where the unsatisfactory degrees of the driver D2 and the driver D4 are matched (similarity is 100%) has been described. However, the present invention is not limited to this. For example, the similarity is 80 % Or more drivers may be searched as belonging to the same type. That is, the degree of similarity may be set arbitrarily.
ステップS203では、今回の処理でリンク走行履歴比較演算部24が新たに算出した運転者D1の不得意度が、前回までの処理(従来の処理)で算出した結果よりも不得意度が近い類型が有るか否かを判定する。すなわち、ステップS203では、従来よりも不得意度が近い類型があるか否かを判定する処理(図中に示す「従来よりも不得意度が近い類型がある」)を行う。
In step S203, the type of unsatisfactory degree of the driver D1 newly calculated by the link travel history
ステップS203で行う処理の具体例としては、リンク走行履歴比較演算部24が行なう処理において、運転者D1が、新たにリンクCについて不得意度が「2」であると算出され、不得意度リストの更新が発生した場合、類型パターンリストを参照する。そして、前回の処理では、どの類型パターンにも属していないと検索された運転者D1が、類型検索の結果、新たに、類型Xと類似であると判定すると、運転者D1が類型Xに属すると検索する。これにより、運転者D1が未走行であり、不得意度が蓄積されていない(図中に示す「データ無し」)リンクDに対する、運転者D1の不得意度が「3」である可能性が高いというデータを検出することが可能となる。
As a specific example of the process performed in step S203, in the process performed by the link travel history
ステップS203において、従来よりも不得意度が近い類型がある(図中に示す「Yes」)と判定した場合、類型化演算部28が行なう処理は、ステップS204へ移行する。
一方、ステップS203において、従来よりも不得意度が近い類型がない(図中に示す「No」)と判定した場合、類型化演算部28が行なう処理は、ステップS205へ移行する。
If it is determined in step S203 that there is a type with a weaker degree than before (“Yes” shown in the figure), the processing performed by the
On the other hand, if it is determined in step S203 that there is no type that is less familiar than the conventional type ("No" shown in the figure), the processing performed by the
ステップS204では、従来よりも不得意度が近い類型を、プローブカーDB14に格納されているデータから更新する処理(図中に示す「類型更新」)を行う。ステップS204において、従来よりも不得意度が近い類型を、プローブカーDB14に格納されているデータから更新する処理を行うと、類型化演算部28が行なう処理を終了(END)する。
In step S204, a process ("type update" shown in the figure) for updating a type having a weaker degree than the conventional one from data stored in the
ステップS205では、プローブカーDB14に格納されているデータを更新せずに維持する処理(図中に示す「類型維持」)を行う。ステップS205において、プローブカーDB14に格納されているデータを更新せずに維持する処理を行うと、類型化演算部28が行なう処理を終了(END)する。
以上により、本実施形態では、運転者D1が未走行のリンクが存在している場合であっても、類型化演算部28が行なう処理の結果、同一の類型である他の運転者の、運転者D1が未走行のリンクに対する不得意度を用いて、案内経路を探索することが可能となる。
また、以上説明したように、不得意リンク管理部18は、プローブカーDB14に蓄積した運転操作データを分析して、各リンクに対する各運転者の不得意度を各リンクに対して個別に算出する。これに加え、不得意リンク管理部18は、算出した不得意度を用いて各運転者を分類して、各運転者の類型を設定する。
In step S205, a process of maintaining the data stored in the
As described above, in the present embodiment, even if there is a link where the driver D1 has not traveled, as a result of the processing performed by the
In addition, as described above, the weak
(動作)
次に、図1から図6を参照しつつ、図7を用いて、本実施形態の経路探索システムSを用いて行なう動作を説明する。
図7中に示すように、経路探索システムSを用いて行なう動作を開始(START)すると、まず、ステップS300の処理を行う。
ステップS300では、経路探索部20により、各車両の現在位置から目的地までの間に存在する複数の走行経路を検出(図中に示す「走行経路取得」)する処理を行う。ステップS300において、複数の走行経路を検出する処理を行うと、経路探索システムSを用いて行なう動作は、ステップS301へ移行する。
(Operation)
Next, an operation performed using the route search system S of the present embodiment will be described with reference to FIGS. 1 to 6 and FIG.
As shown in FIG. 7, when the operation performed using the route search system S is started (START), first, the process of step S300 is performed.
In step S300, the
ステップS301では、不得意リンクDB26から不得意度演算リンクデータを取得し、さらに、ステップS300で検出した複数の走行経路が有するリンクのうち、運転者の不得意度が低いリンクを検索する(図中に示す「得意リンク検索」)処理を行う。ステップS301において、運転者の不得意度が低いリンクを検索する処理を行うと、経路探索システムSを用いて行なう動作は、ステップS302へ移行する。
In step S301, the weakness calculation link data is acquired from the
ステップS302では、経路探索部20により、ステップS301で検索した運転者の不得意度が低いリンクを可能な限り多く含む走行経路として、案内経路を設定する処理(図中に示す「案内経路設定」)を行う。ステップS302において、運転者の不得意度が低いリンクを可能な限り多く含む案内経路を設定する処理を行うと、経路探索システムSを用いて行なう動作は、ステップS303へ移行する。
In step S302, the
ステップS303では、ステップS302で設定した案内経路を含む案内経路信号を、車両側データ送受信部10を介して経路案内部8に出力する処理(図中に示す「案内経路信号出力」)を行う。ステップS303において、案内経路信号を経路案内部8に出力する処理を行うと、経路探索システムSを用いて行なう動作は、ステップS304へ移行する。
In step S303, a process of outputting a guidance route signal including the guidance route set in step S302 to the
ステップS304では、案内経路信号の入力を受けた経路案内部8が、タッチディスプレイに、地図の画像にステップS302で設定した案内経路を重畳させた画像を表示する処理(図中に示す「迂回路重畳画像表示」)を行う。ステップS304において、地図の画像にステップS302で設定した案内経路を重畳させた画像をタッチディスプレイに表示する処理を行うと、経路探索システムSを用いて行なう動作を終了(END)する。
したがって、経路案内部8を形成するタッチディスプレイは、案内経路情報を運転者へ提供する。
In step S304, the
Therefore, the touch display forming the
なお、ステップS304において、地図の画像にステップS302で設定した案内経路を重畳させた画像を含む情報に加え、ステップS302で設定した案内経路が運転者の不得意度が低い案内経路である内容を示す文字を含む情報を生成してもよい。ここで、ステップS302で設定した案内経路が運転者の不得意度が低い案内経路である内容を示す文字とは、例えば、「運転者が苦手な道路を回避する走行ルートを設定しました」等とする。 In addition, in step S304, in addition to the information including the image obtained by superimposing the guide route set in step S302 on the map image, the content that the guide route set in step S302 is a guide route with a low level of driver dissatisfaction. Information including the indicated characters may be generated. Here, the characters indicating the content that the guide route set in step S302 is a guide route with a low level of driver dissatisfaction are, for example, “A drive route that avoids a road that the driver is not good at” is set. And
なお、上述した不得意リンク管理部18は、不得意度算出部及び類型設定部に対応する。
また、上述した経路案内部8は、案内経路情報提供部に対応する。
また、上述したように、本実施形態の経路探索システムSの動作で実施する経路探索方法では、複数の運転者が行った運転操作を各運転者及び各リンクで個別に検出した運転操作データを分析する。さらに、分析した運転操作データを用いて、各リンクに対する各運転者の不得意度を、各リンクに対して個別に算出し、算出した不得意度で各運転者を分類して各運転者の類型を設定する。これに加え、第一の経路探索処理と第二の経路探索処理うち一方を選択的に行って案内経路を探索し、探索した案内経路を地図の画像に重畳させた画像をタッチディスプレイに表示して、案内経路の提供要求を行った運転者へ提供する。
なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
The
The
Further, as described above, in the route search method implemented by the operation of the route search system S of the present embodiment, driving operation data obtained by individually detecting driving operations performed by a plurality of drivers at each driver and each link is obtained. analyse. Furthermore, using the analyzed driving operation data, each driver's dissatisfaction degree for each link is calculated individually for each link, and each driver is classified according to the calculated dissatisfaction degree. Set the type. In addition, one of the first route search process and the second route search process is selectively performed to search for a guide route, and an image in which the searched guide route is superimposed on a map image is displayed on the touch display. To the driver who requested the provision of the guidance route.
The above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
(第一実施形態の効果)
本実施形態の経路探索システムSであれば、以下に記載する効果を奏することが可能となる。
(Effects of the first embodiment)
The route search system S of the present embodiment can achieve the effects described below.
(1)不得意リンク管理部18が、複数の運転者が行った運転操作を各運転者及び各リンクで個別に検出した運転操作データを分析して、各リンクに対する各運転者の不得意度を、各リンクに対して個別に算出する。さらに、算出した不得意度で各運転者を分類して各運転者の類型を設定する。
これに加え、経路探索部20が、第一の経路探索処理と第二の経路探索処理うち一方を選択的に行って、案内経路を探索する。さらに、地図の画像に、探索した案内経路を示す案内経路情報、すなわち、探索した案内経路を重畳させた画像をタッチディスプレイに表示して、提供要求を行った運転者へ提供する。
(1) The poor
In addition to this, the
このため、リンク毎に検出した各運転者の運転操作を分析して、各リンクに対する不得意度を各運転者に対して個別に算出し、さらに、算出した不得意度から、各運転者を類型化することが可能となる。
その結果、同一の類型に設定した他の運転者の不得意度を用いて、案内経路の提供要求を行った運転者が未走行の道路を、運転者が不得意な道路として検索することが可能となるため、未走行の道路に対する、不得意度に応じた案内経路の探索が可能となる。
For this reason, the driving operation of each driver detected for each link is analyzed, and the unsatisfactory degree for each link is calculated individually for each driver, and further, each driver is determined from the calculated unsatisfactory degree. It becomes possible to classify.
As a result, it is possible to search for a road on which the driver who has requested the provision of the guidance route has not traveled as a road that the driver is not good at using the degree of weakness of other drivers set to the same type. As a result, it becomes possible to search for a guidance route according to the degree of unsatisfaction with an untraveled road.
(2)経路探索部20が、案内経路の探索対象が、案内経路の提供要求を行った運転者の不得意度が未算出のリンクを含む場合に、第二の経路探索処理を実行する。
このため、案内経路の探索対象である道路に、案内経路の提供要求を行った運転者が未走行の道路が含まれている場合であっても、同一の類型に設定した他の運転者の不得意度を用いて、案内経路を探索することが可能となる。
その結果、案内経路の提供要求を行った運転者が未走行の道路を、運転者が不得意な道路として検索することが可能となるため、未走行の道路に対する、不得意度に応じた案内経路の探索が可能となる。
(2) The
For this reason, even when the driver who requested the provision of the guidance route includes a road that has not traveled on the road that is the target of the guidance route search, other drivers set to the same type It is possible to search for a guidance route using the degree of weakness.
As a result, it is possible for the driver who requested the provision of the guidance route to search for a road that has not traveled as a road that the driver is not good at. A route can be searched.
(3)複数の運転者が複数のリンクで行った運転操作が、加減速操作及び操舵操作のうち少なくとも一方を含む。すなわち、運転操作データは、加減速操作及び操舵操作のうち少なくとも一方のデータを含む。
このため、運転者が行う車両Cの加減速操作及び操舵操作のうち少なくとも一方を分析して、各リンクに対する各運転者の不得意度を、各リンクに対して個別に算出することが可能となる。
その結果、車両Cの運転に固有のパラメータである加減速操作及び操舵操作のうち少なくとも一方を反映させて、案内経路を探索することが可能となる。
(3) A driving operation performed by a plurality of drivers through a plurality of links includes at least one of an acceleration / deceleration operation and a steering operation. That is, the driving operation data includes at least one of the acceleration / deceleration operation and the steering operation.
Therefore, it is possible to analyze at least one of the acceleration / deceleration operation and the steering operation of the vehicle C performed by the driver, and to calculate the unsatisfactory degree of each driver for each link individually for each link. Become.
As a result, it is possible to search for a guide route while reflecting at least one of the acceleration / deceleration operation and the steering operation, which are parameters specific to the driving of the vehicle C.
(4)不得意リンク管理部18が、各運転者の不得意度を複数段階の評価で算出する。
このため、不得意度を一段段階の評価で算出する場合、すなわち、運転者のリンクに対する運転操作が得意か不得意か否かを二段階評価で算出する場合と比較して、不得意度を高い精度で算出することが可能となる。
その結果、案内経路を探索する精度を向上させることが可能となる。
(4) The unfavorable
For this reason, compared with the case of calculating the degree of weakness by one-step evaluation, that is, the case of calculating whether the driving operation for the driver's link is good or bad by two-step evaluation, It is possible to calculate with high accuracy.
As a result, it is possible to improve the accuracy of searching for a guidance route.
(5)本実施形態の経路探索システムSの動作で実施する経路探索方法では、複数の運転者が行った運転操作を各運転者及び各リンクで個別に検出した運転操作データを分析する。さらに、分析した運転操作データを用いて、各リンクに対する各運転者の不得意度を、各リンクに対して個別に算出する。
これに加え、算出した不得意度で各運転者を分類して各運転者の類型を設定し、第一の経路探索処理と第二の経路探索処理うち一方を選択的に行って、案内経路を探索する。そして、探索した案内経路を地図の画像に重畳させた画像を、タッチディスプレイに表示して、案内経路の提供要求を行った運転者へ提供する。
(5) In the route search method implemented by the operation of the route search system S of the present embodiment, driving operation data obtained by individually detecting driving operations performed by a plurality of drivers by each driver and each link is analyzed. Furthermore, using the analyzed driving operation data, the degree of weakness of each driver for each link is calculated individually for each link.
In addition to this, each driver is classified according to the calculated weakness, the type of each driver is set, one of the first route search processing and the second route search processing is selectively performed, and the guidance route is selected. Explore. Then, an image obtained by superimposing the searched guide route on the map image is displayed on the touch display and provided to the driver who has made the request for providing the guide route.
このため、リンク毎に検出した各運転者の運転操作を分析して、各リンクに対する不得意度を各運転者に対して個別に算出し、さらに、算出した不得意度から、各運転者を類型化することが可能となる。
その結果、同一の類型に設定した他の運転者の不得意度を用いて、案内経路の提供要求を行った運転者が未走行の道路を、運転者が不得意な道路として検索することが可能となるため、未走行の道路に対する、不得意度に応じた案内経路の探索が可能となる。
For this reason, the driving operation of each driver detected for each link is analyzed, and the unsatisfactory degree for each link is calculated individually for each driver, and further, each driver is determined from the calculated unsatisfactory degree. It becomes possible to classify.
As a result, it is possible to search for a road on which the driver who has requested the provision of the guidance route has not traveled as a road that the driver is not good at using the degree of weakness of other drivers set to the same type. As a result, it becomes possible to search for a guidance route according to the degree of unsatisfaction with an untraveled road.
(変形例)
(1)本実施形態では、車載装置1を、ナビゲーション装置を用いて形成したが、これに限定するものではない。
すなわち、携帯端末が、車両情報取得部6と、経路案内部8と、車両側データ送受信部10と、経路案内部8を備える構成としてもよい。なお、携帯端末は、例えば、アプリケーションを動作させることが可能であるとともに、タッチディスプレイを備える携帯情報端末(スマートフォン、タブレット等)である。
(Modification)
(1) In the present embodiment, the in-
That is, the mobile terminal may be configured to include the vehicle
(第二実施形態)
以下、本発明の第二実施形態(以下、本実施形態と記載する)について、図面を参照しつつ説明する。なお、上述した第一実施形態と同様の構成については、説明を省略する場合がある。
(Second embodiment)
Hereinafter, a second embodiment of the present invention (hereinafter referred to as the present embodiment) will be described with reference to the drawings. In addition, description may be abbreviate | omitted about the structure similar to 1st embodiment mentioned above.
(経路探索システムの全体構成)
図8中に示すように、経路探索システムSは、車載装置1と、クラウドサーバCSを備える。
車載装置1は、公知のナビゲーション装置を用いて形成し、各車両Cが搭載する。なお、車載装置1の詳細な構成は、後述する。
クラウドサーバCSは、インターネット(インターネットクラウド)を構成して、上述した第一実施形態の情報作成・配信装置2が有する機能を実施する。なお、クラウドサーバCSの詳細な構成は、後述する。
(Overall configuration of route search system)
As shown in FIG. 8, the route search system S includes an in-
The in-
The cloud server CS constitutes the Internet (Internet cloud) and implements the functions of the information creation /
(車載装置の構成)
図8を参照して、車載装置1の構成について説明する。
車載装置1は、車両情報取得部6と、経路案内部8と、車両側データ送受信部10を備える。
車両情報取得部6は、車内画像検出部30と、車内音声検出部32と、運転者生体反応検出部34と、自車位置検出部36と、CAN接続部38と、運転者心理推定部40を備える。
(Configuration of in-vehicle device)
With reference to FIG. 8, the structure of the vehicle-mounted
The in-
The vehicle
車内画像検出部30は、運転席に着座した運転者の表情を撮像可能なカメラを用いて形成し、各リンクを通過した際に、運転者の顔を撮像する。そして、車内画像検出部30は、撮像した運転者の顔を含む情報信号(以降の説明では、「運転者表情信号」と記載する場合がある)を、運転者心理推定部40に出力する。
車内音声検出部32は、車内の音を取得可能なマイクを用いて形成し、各リンクを通過した際に、車内で発生した音を取得する。そして、車内音声検出部32は、取得した車内の音を含む情報信号(以降の説明では、「車内音信号」と記載する場合がある)を、運転者心理推定部40に出力する。
The vehicle interior
The in-vehicle
運転者生体反応検出部34は、例えば、ステアリングホイールのうち、運転者が接触する可能性が高い位置に配置した心拍センサを用いて形成し、各リンクを通過した際に、運転者の心拍を検出する。そして、運転者生体反応検出部34は、検出した運転者の心拍を含む情報信号(以降の説明では、「運転者心拍信号」と記載する場合がある)を、運転者心理推定部40に出力する。
The driver's biological
なお、運転者生体反応検出部34は、心拍センサに限定するものではなく、例えば、運転者の発汗を検出可能なセンサ等、心拍以外の生体反応を検出可能なセンサを用いて形成してもよい。
自車位置検出部36は、例えば、GPS受信機であり、車両Cの現在位置を取得し、この取得した現在位置を含む情報信号(以降の説明では、「自己位置信号」と記載する場合がある)を、車内画像検出部30と、車内音声検出部32に出力する。これに加え、自己位置信号を、運転者生体反応検出部34と、CAN接続部38と、運転者心理推定部40と、経路案内部8と、車両側データ送受信部10に出力する。
The driver biological
The own vehicle
CAN接続部38は、車載したネットワーク(Controller Area Network)であり、車両Cが備える各種のセンサ(図示せず)が検出した、車両Cの挙動に関するデータの入力を受ける。そして、CAN接続部38は、入力を受けた各種のデータを含む車両情報データ信号を、車両側データ送受信部10に出力する。
運転者心理推定部40は、車内画像検出部30、車内音声検出部32、運転者生体反応検出部34、自車位置検出部36から、情報信号の入力を受ける。そして、運転者心理推定部40は、入力を受けた情報信号が含む各種の情報を用いて、各リンクを通過した際に、運転者が感じる不安等の精神状態を推定する。これに加え、運転者心理推定部40は、推定した各リンクを通過した際の精神状態を含む情報信号(以降の説明では、「リンク通過時精神状態信号」と記載する場合がある)を、車両側データ送受信部10に出力する。
The
The driver
具体的には、運転者表情信号の入力を受けた運転者心理推定部40は、運転者表情信号が含む表情から、運転者が感じる不安等の精神状態について分析する。この場合、例えば、運転者表情信号が含む表情に、緊張した表情が含まれている場合、各リンクを通過した際の運転者の精神状態が、不安であると推定する。
また、車内音信号の入力を受けた運転者心理推定部40は、車内音信号が含む車内の音から、運転者が感じる不安等の精神状態について分析する。この場合、例えば、車内音信号が含む車内の音に、運転者による舌打ちの音声や、「ヒヤリとした」、「焦った」等の音声が含まれている場合、各リンクを通過した際の運転者の精神状態が、不安であると推定する。
Specifically, the driver
In addition, the driver
また、運転者心拍信号の入力を受けた運転者心理推定部40は、運転者心拍信号が含む心拍から、運転者が感じる不安等の精神状態について分析する。この場合、例えば、運転者心拍信号が含む心拍に、平常時よりも激しい心拍が含まれている場合、各リンクを通過した際の運転者の精神状態が、不安であると推定する。
以上により、リンク通過時精神状態信号には、運転者が複数のリンクで行った、音声の発生、表情の変化、生体反応の変化等の行動履歴を各運転者及び各リンクで個別に検出した行動履歴のデータ(行動履歴データ)を含む。
In addition, the driver
As described above, in the mental state signal at the time of passing the link, the behavior history such as voice generation, change in facial expression, change in biological reaction, etc., performed by the driver on multiple links was detected individually for each driver and each link. Includes action history data (action history data).
なお、運転者心理推定部40が、運転者が感じる不安等の精神状態について分析する際には、例えば、運転者の精神状態が不安であると推定する情報を、予め設定した期間内で、同じリンクにおける複数回の入力を受けた場合に限定して、実施してもよい。
具体的には、同じリンクにおいて、一か月の間に、運転者心拍信号が含む心拍に、平常時よりも激しい心拍が含まれている状態を五回以上検出した場合、そのリンクを通過した際の運転者の精神状態が、不安であると推定してもよい。これは、運転者の精神状態が不安であると推定する情報を検出した回数が少ない場合は、例えば、歩行者が転倒した場合等、突発的な状況により、運転者の精神状態が不安であると推定する情報が検出される状況が想定されるためである。
When the driver
Specifically, on the same link, if the heart rate included in the driver's heart rate signal in the same link is detected more than 5 times more than normal, the link is passed. It may be estimated that the driver's mental state is anxious. This is because the driver's mental state is uneasy due to a sudden situation, such as when the information that estimates that the driver's mental state is uneasy is small, for example, when a pedestrian falls. This is because a situation is assumed in which information to be estimated is detected.
経路案内部8は、例えば、ナビゲーション装置で形成する。
また、経路案内部8を形成するタッチディスプレイには、運転者等、車両Cの乗員に対して、目的地を入力するための文字や選択肢を含む画像を表示する。そして、経路案内部8は、目的地の入力を受けると、目的地データ信号を、車両側データ送受信部10に出力する。
The
In addition, an image including characters and options for inputting a destination is displayed on the touch display forming the
また、経路案内部8を形成するタッチディスプレイには、運転者に対して、地図を示す画像上に、走行が不得意であるリンクが表示されている場合、走行が不得意であるリンクを示す箇所を選択する操作を促す画像を表示する。そして、走行が不得意であるリンクを示す箇所を選択する操作が行われると、選択された箇所を含む情報信号(以降の説明では、「不得意箇所信号」と記載する場合がある)を、車両側データ送受信部10に出力する。
In addition, on the touch display that forms the
また、経路案内部8は、車両側データ送受信部10から、案内経路信号の入力を受けると、タッチディスプレイに、地図の画像に案内経路信号が含む案内経路を重畳させた画像を表示する。
車両側データ送受信部10は、車両情報取得部6から車両情報データ信号及びリンク通過時精神状態信号の入力を受け、経路案内部8から目的地データ信号及び不得意箇所信号の入力を受ける。
In addition, when receiving a guidance route signal from the vehicle-side data transmission /
The vehicle-side data transmission /
そして、車両側データ送受信部10は、入力を受けた車両情報データ信号及びリンク通過時精神状態信号を、車両Cの固有IDを示す情報(車両ID等)を付加した状態で、予め設定した間隔でクラウドサーバCSに出力する。これに加え、車両側データ送受信部10は、入力を受けた目的地データ信号及び不得意箇所信号を、車両Cの固有IDを示す情報を付加した状態で、予め設定した間隔でクラウドサーバCSに出力する。
また、車両側データ送受信部10は、クラウドサーバCSから、案内経路信号の入力を受けると、入力を受けた案内経路信号を、経路案内部8に出力する。なお、経路案内部8の入力は、予め設定した間隔で受ける。
Then, the vehicle-side data transmitting / receiving
In addition, when receiving the input of the guidance route signal from the cloud server CS, the vehicle-side data transmission /
(クラウドサーバCSの構成)
図8及び図9を参照して、クラウドサーバCSの構成について説明する。
クラウドサーバCSは、サーバ側データ送受信部42と、プローブカーデータベース14と、地図データベース16と、不得意リンク管理部18と、不得意情報検索部44と、不得意度補正部46と、経路探索部20を備える。なお、図中及び以降の説明では、それぞれ、プローブカーデータベース14を「プローブカーDB14」と示し、地図データベース16を「地図DB16」と示す場合がある。
(Configuration of cloud server CS)
The configuration of the cloud server CS will be described with reference to FIGS. 8 and 9.
The cloud server CS includes a server-side data transmission /
サーバ側データ送受信部42は、車両側データ送受信部10から、車両Cの固有IDを示す情報を付加した車両情報データ信号と、リンク通過時精神状態信号と、目的地データ信号及び不得意箇所信号の入力を受ける。そして、サーバ側データ送受信部42は、プローブカーDB14と、不得意リンク管理部18と、経路探索部20に、車両Cの固有IDを示す情報を付加した車両情報データ信号と目的地データ信号を出力する。これに加え、サーバ側データ送受信部42は、不得意度補正部46に、車両Cの固有IDを示す情報を付加したリンク通過時精神状態信号及び不得意箇所信号を出力する。
The server-side data transmission /
また、サーバ側データ送受信部42は、経路探索部20から案内経路信号の入力を受けると、入力を受けた案内経路信号を、車両側データ送受信部10に出力する。
プローブカーDB14は、サーバ側データ送受信部42と、不得意リンク管理部18から、情報信号の入力を受ける。また、プローブカーDB14は、車両Cに固有のデータとして、リンクの走行履歴と、リンク毎の不得意度と、車両Cの類型を記憶して蓄積する。
したがって、プローブカーDB14は、運転者が複数のリンクで行った行動履歴を各運転者及び各リンクで個別に検出した行動履歴データを蓄積する。
Further, when receiving the input of the guidance route signal from the
The
Therefore, the
地図DB16は、地図データを記憶している。また、地図DB16が記憶している地図データは、例えば、一定の期間等に応じて更新する。なお、地図DB16が記憶している地図データには、例えば、道路を交差点や一定間隔等で分割した各リンクのリンク長(距離)、各リンクの車線数、各リンクの車線幅、各リンクの規制速度を含む。また、各道路及び各リンクは、固有IDを示す情報(道路ID、リンクID等)を付加した状態で、地図データとして地図DB16が記憶している。
The
不得意リンク管理部18は、リンク走行履歴データベース22と、リンク走行履歴比較演算部24と、不得意リンクデータベース26と、類型化演算部28を備える。なお、図中及び以降の説明では、それぞれ、リンク走行履歴データベース22を「リンク走行履歴DB22」と示し、不得意リンクデータベース26を「不得意リンクDB26」と示す場合がある。
The weak
リンク走行履歴DB22は、サーバ側データ送受信部42から入力を受けた車両情報データ信号が含む車両Cの現在位置を、地図DB16が記憶しているリンクと対応付ける。そして、リンク走行履歴DB22は、全てのリンク毎に、各車両Cの走行状態を個別に記憶して蓄積する。
ここで、リンク走行履歴DB22には、図9中に示すように、リンク走行履歴DB22に蓄積する走行状態として、各車両C(各ユーザー)の、リンク毎の走行状態を示す値と、リンク毎の走行状態を示す値の統計から算出した平均値が記録されて蓄積されている。これに加え、リンク走行履歴DB22には、図9中に示すように、全ての車両C(全ユーザー)の、リンク毎の走行状態を示す値の統計から算出した平均値が記録されて蓄積されている。
The link
Here, in the link
なお、本実施形態では、一例として、図9中に示すように、リンク走行履歴DB22に蓄積する走行状態が、ブレーキ圧力センサが検出した制動圧、車速センサが検出した車速、操舵角センサが検出した操舵角を用いた操舵角速度を含む場合を説明する。したがって、本実施形態では、一例として、図9中に示すように、リンク毎の走行状態を示す値の統計から算出した平均値が、制動圧の平均値(制動圧平均値)と、車速平均値(車速平均値)と、操舵角速度の平均値(操舵角速度平均値)を含む場合を説明する。
また、リンク走行履歴DB22には、図9中に示すように、蓄積したデータを予め設定した期間(例えば、一年間)毎にまとめて格納している。これにより、予め設定した期間でまとめたデータを最新のデータと比較して、運転者の運転技能が変化し、リンクに対して変化した不得意度を検出して、案内経路の探索に用いることが可能となる。
In this embodiment, as an example, as shown in FIG. 9, the traveling state accumulated in the link traveling
Further, as shown in FIG. 9, the link
リンク走行履歴比較演算部24は、リンク走行履歴DB22に蓄積しているリンク毎の各車両Cの走行状態を取得する。そして、リンク走行履歴DB22に蓄積しているリンク毎の各車両Cの走行状態について、選択したリンクで収集した全ての車両Cの走行状態と、選択した一台の車両C(例えば、車両C1)の走行状態を比較する。
さらに、リンク走行履歴比較演算部24は、比較結果に応じて、選択した一台の車両Cを運転する運転者の、選択したリンクにおける不得意度を演算する。これに加え、リンク走行履歴比較演算部24は、演算した不得意度を含む不得意度信号を、プローブカーDB14と、不得意リンクDB26と、不得意度補正部46に出力する。
なお、リンク走行履歴比較演算部24が行う処理については、後述する。
The link travel history
Further, the link travel history
The processing performed by the link travel history
また、不得意度の表現は任意でよく、例えば、点数評価や、五段階評価等を用いることが可能である。
不得意リンクDB26は、リンク走行履歴比較演算部24から入力を受けた不得意度信号が含む不得意度を演算したリンクに、演算した不得意度のデータを関連付けた不得意度演算リンクデータを記憶して蓄積する。
類型化演算部28は、不得意リンクDB26から不得意度演算リンクデータを取得し、各車両Cのリンク毎の不得意度を参照して、各車両Cを運転する運転者を類型化する処理を行う。そして、類型化演算部28は、各車両Cを運転する運転者を類型化した運転者類型データを含む運転者類型データ信号を、プローブカーDB14に出力する。
なお、類型化演算部28が行う処理については、後述する。
Also, the degree of weakness may be expressed arbitrarily, and for example, score evaluation, five-level evaluation, etc. can be used.
The
The
Note that the processing performed by the
不得意情報検索部44は、運転者がSNS(Social Networking Service)等を介してインターネットクラウド上に投稿した、地点情報を関連付けた不得意度に関するコメントを検索する。そして、インターネットクラウド上から、運転者による地点情報を関連付けた不得意度に関するコメントを検出すると、このコメントが含む地点情報及び不得意度を含む情報信号を、不得意度補正部46に出力する。
The unsatisfactory
なお、以降の説明では、運転者による地点情報を関連付けた不得意度に関するコメントを検出すると、このコメントが含む地点情報及び不得意度を含む情報信号を、「不得意コメント信号」と記載する場合がある。
また、地点情報を関連付けた不得意度に関するコメントとは、例えば、「○×街道の△□交差点は右折が難しい」等である。
不得意度補正部46は、不得意リンクDB26から不得意度演算リンクデータを取得する。これに加え、不得意度補正部46は、不得意情報検索部44から不得意コメント信号の入力を受け、サーバ側データ送受信部42から車両Cの固有IDを示す情報を付加したリンク通過時精神状態信号及び不得意箇所信号の入力を受ける。
In the following description, when a comment on the degree of dissatisfaction associated with point information by the driver is detected, the point information included in the comment and the information signal including the degree of dissatisfaction are described as “disappointing comment signal”. There is.
In addition, the comment on the degree of weakness associated with the point information is, for example, “It is difficult to turn right at the Δ □ intersection on the highway”.
The unsatisfactory
そして、不得意度補正部46は、不得意コメント信号が含む地点情報及び不得意度と、リンク通過時精神状態信号が含む各リンクを通過した際の精神状態と、不得意箇所信号が含む箇所を用いて、不得意度演算リンクデータを補正する。具体的には、不得意度演算リンクデータのうち、不得意箇所信号が含む箇所と、不安等の精神状態を推定したリンクのデータに対して、不得意度が高い評価となるように、算出済みの不得意度のデータを補正する。さらに、補正した不得意度演算リンクデータを含む情報信号(以降の説明では、「補正済み不得意度信号」と記載する場合がある)を、経路探索部20に出力する。
したがって、不得意度補正部46は、各リンクのうち不得意度の算出対象とするリンクで各運転者が行った行動履歴から、不得意リンク管理部18が算出した不得意度を補正する。
Then, the
Therefore, the unsatisfactory
経路探索部20は、サーバ側データ送受信部42から、目的地データ信号と車両情報データ信号の入力を受ける。そして、経路探索部20は、目的地データ信号が含む目的地と車両情報データ信号が含む車両Cの現在位置から、現在位置から目的地までの複数の走行経路を算出する。これに加え、不得意リンクDB26から不得意度演算リンクデータを取得して、目的地データ信号と車両情報データ信号を出力した一台の車両Cに対し、現在位置から目的地までの複数の走行経路上に存在するリンクの不得意度に応じて、案内経路を探索する。
さらに、経路探索部20は、不得意度補正部46から補正済み不得意度信号の入力を受けている場合、補正した不得意度演算リンクデータが含む不得意度に応じて、案内経路を探索する。
そして、経路探索部20は、探索した案内経路を含む情報信号である案内経路信号を、サーバ側データ送受信部42に出力する。
The
Furthermore, the
The
ここで、案内経路を探索する具体的な処理について説明する。
現在位置から目的地までの複数の走行経路に、目的地データ信号と車両情報データ信号を出力した一台の車両Cが過去に走行した道路が含まれている場合は、可能な限り、不得意なリンクを含まない道路を走行する経路として、案内経路を探索する。
一方、現在位置から目的地までの複数の走行経路が、目的地データ信号と車両情報データ信号を出力した一台の車両Cが過去に走行した道路が含まれていない場合は、プローブカーDB14から、同一または近似した類型の車両Cの運転者類型データを取得する。そして、同一または近似した類型の車両が過去に走行した不得意度演算リンクデータを用いて、可能な限り、不得意なリンクを含まない道路を走行する経路として、案内経路を探索する。
Here, a specific process for searching for a guidance route will be described.
If a plurality of travel routes from the current position to the destination include roads on which a single vehicle C that has output the destination data signal and the vehicle information data signal has traveled in the past, it is as bad as possible. A guide route is searched for as a route on a road that does not include a simple link.
On the other hand, if the plurality of travel routes from the current position to the destination does not include a road on which one vehicle C that has output the destination data signal and the vehicle information data signal has traveled in the past, from the
(リンク走行履歴比較演算部24が行う処理)
図1から図9を参照しつつ、図10及び図11を用いて、リンク走行履歴比較演算部24が行う処理について説明する。
なお、リンク走行履歴比較演算部24が行う処理は、任意の時期に実施可能であり、例えば、車両Cの走行状態を入手した時点(車両情報データ信号の入力を受けた時点)で逐次実施してもよい。また、例えば、昼間等と比較して計算の余裕が有る深夜に、まとめて実施してもよい。
また、以下に記載する、図10及び図11を用いた説明では、複数台の車両Cのうち選択した一台の車両C1に対して行う処理を説明するが、他の車両(車両C2、車両C3等)に対する処理も同様である。
(Processing performed by the link travel history comparison calculation unit 24)
Processing performed by the link travel history
Note that the processing performed by the link travel history
Further, in the description using FIG. 10 and FIG. 11 described below, processing to be performed on one vehicle C1 selected from among a plurality of vehicles C will be described. The same applies to the processing for C3 and the like.
本実施形態では、一例として、図10中に示す、各リンクの車速平均値を用いて、車両C1の運転者D1に対する不得意度の算出を行う場合について説明する。
図10中に示すように、連続するリンクAからリンクHまでの間における、運転者D1が運転する車両C1の、各リンクにおける過去に検出した車速平均値は、各リンクで変化している。
In the present embodiment, as an example, a case will be described in which the unsatisfactory degree for the driver D1 of the vehicle C1 is calculated using the vehicle speed average value of each link shown in FIG.
As shown in FIG. 10, the vehicle speed average value detected in the past in each link of the vehicle C1 driven by the driver D1 between the continuous link A and the link H changes in each link.
ここで、連続するリンクAからリンクHまでの間における、実際の道路状況は、リンクH付近に、信号の無い一時停止交差点へ向かう道路である。このため、リンクHに近づくにつれて、車両C1の車速が低下する。
しかしながら、図10中に示すように、リンクCにおける平均車速が、隣接する前後のリンク(リンクB、リンクD)よりも低下している。他車両や駐車車両等の一時的な外的影響は、過去統計の特質上から無視することが可能であるため、リンクCには、何等かの不得意要因があると推定される。このため、以下に、リンクCに何らかの不得意要因があると推定することを前提として、運転者D1のリンクCに対する不得意度の算出について説明する。
Here, the actual road condition between the continuous link A and the link H is a road heading to the temporary stop intersection without a signal in the vicinity of the link H. For this reason, as the vehicle approaches the link H, the vehicle speed of the vehicle C1 decreases.
However, as shown in FIG. 10, the average vehicle speed in the link C is lower than that of the adjacent links (link B, link D). Temporary external influences such as other vehicles and parked vehicles can be ignored due to the characteristics of past statistics, so it is presumed that link C has some unfavorable factors. For this reason, below, calculation of the weakness degree with respect to the link C of the driver | operator D1 is demonstrated on the assumption that there exists some weakness factor in the link C. FIG.
図11中に示すように、リンク走行履歴比較演算部24が処理を開始(START)すると、まず、ステップS400の処理を行う。
ステップS400では、複数台の車両Cのうち、選択した一台の車両C(例えば、車両C1)について、不得意度を算出する処理を行っていないリンクから選択した一つのリンクにおける不得意度の算出を開始するための処理を行う。すなわち、ステップS400では、複数台の車両Cのうち選択した一台の車両C(例えば、車両C1)の運転者について、不得意度の算出を開始するための処理(図中に示す「運転者D1について不得意度の算出を開始」)を行う。
As shown in FIG. 11, when the link travel history
In step S400, for one selected vehicle C (for example, vehicle C1) out of a plurality of vehicles C, the degree of weakness in one link selected from the links that have not been processed to calculate the unsatisfactory degree. A process for starting the calculation is performed. That is, in step S400, for the driver of one vehicle C (for example, vehicle C1) selected from the plurality of vehicles C, a process for starting the calculation of the unsatisfactory degree ("driver shown in the figure""Start calculation of weakness for D1").
なお、図中及び以降の説明では、選択した一台の車両C1の運転者を、「運転者D1」または「D1」と記載する場合がある。ステップS400において、複数台の車両Cのうち選択した一台の車両Cの運転者について、不得意度の分析を開始するための処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS401へ移行する。
ステップS401では、リンク走行履歴DB22にアクセス(図中に示す「リンク走行履歴DBへアクセス」)する。そして、リンク走行履歴DB22から、選択した複数のリンク(リンクAからリンクH)における、選択した一台の車両C1の走行状態を取得する処理を行う。ステップS401において、選択した複数のリンクにおける、選択した一台の車両C1の走行状態を取得する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS402へ移行する。
In the drawings and the following description, the driver of one selected vehicle C1 may be described as “driver D1” or “D1”. In step S400, when the process for starting the analysis of the unsatisfactory degree is performed for the driver of one vehicle C selected from the plurality of vehicles C, the process performed by the link travel history
In step S401, the link
ステップS402では、選択した一つのリンク(リンクC)と、選択した全てのリンク(リンクAからリンクH)のうち、ステップS403で選択した一つのリンクとの走行状態の比較対象とするリンクの範囲を設定する処理を行う。
ここで、ステップS402で設定する範囲は、リンクAからリンクHのうち、リンクCに隣接するリンクB及びリンクDと、同様な車両C1の走行状態(車速平均値v)を示す範囲とする。なお、図10中には、同様な車両C1の走行状態を示す閾値として、任意に設定可能な閾値Xvを示す。
In step S402, the range of links to be compared with the traveling state of one selected link (link C) and one of the selected links (link A to link H) selected in step S403. Process to set.
Here, the range set in step S402 is a range indicating the traveling state (vehicle speed average value v) of the vehicle C1 similar to the link B and the link D adjacent to the link C among the links A to H. In FIG. 10, a threshold value Xv that can be arbitrarily set is shown as a threshold value that indicates a similar traveling state of the vehicle C <b> 1.
すなわち、ステップS402で設定する範囲は、リンクAからリンクHのうち、リンクBの車速平均値vBと、リンクDの車速平均値vdと同様、車速平均値vが閾値Xv内を保持しているリンクの範囲である。したがって、図10中に示す例では、リンクB側はリンクBのみを設定する範囲とし、リンクD側はリンクEまでが設定する範囲とする。これは、車両C1の走行状態が近いリンク群を、選択した一つのリンクとの走行状態の比較対象とするリンクの範囲とすることで、比較的道路状況の近いリンクを、選択した一つのリンクとの走行状態の比較対象とするリンクの範囲とするためである。 That is, in the range set in step S402, the vehicle speed average value v is kept within the threshold value Xv in the same way as the vehicle speed average value vB of the link B and the vehicle speed average value vd of the link D among the links A to H. The range of the link. Therefore, in the example shown in FIG. 10, the link B side is set as a range in which only the link B is set, and the link D side is set as a range set up to the link E. This is because a group of links in which the driving state of the vehicle C1 is close is set as a range of links to be compared with the driving state of the selected link, so that a link having a relatively close road condition is selected. This is because the range of the link to be compared with the traveling state is set.
以上により、ステップS402では、選択した一つのリンクと隣接するリンクから、比較対象の範囲を設定する処理(図中に示す「隣接リンクの比較対象範囲を設定」)を行う。
ステップS403では、ステップS402で設定したリンクにおける車両C1の走行状態を比較する。そして、比較した両者の差が、任意に設定可能な閾値Yv未満であるか否かを判定する処理(図中に示す「隣接リンク同士の差が閾値未満」)を行う。
As described above, in step S402, the process of setting the comparison target range (“set comparison target range of adjacent link” shown in the figure) from the link adjacent to the selected one link is performed.
In step S403, the traveling state of the vehicle C1 on the link set in step S402 is compared. Then, processing for determining whether or not the difference between the two compared is less than a threshold Yv that can be arbitrarily set (“difference between adjacent links is less than threshold” shown in the figure) is performed.
具体的には、ステップS402で設定したリンクのうち、リンクCよりも前側のリンクの車速平均値(vB)と、リンクCよりも後側のリンクの車速平均値(vD、vE)と、閾値Yvを、以下の式(2)に代入して比較する。
|vB−{(vD+vE)/2}| < Yv … (2)
ステップS403において、ステップS402で設定したリンクにおける車両C1の走行状態を比較した両者の差が閾値Yv未満である(図中に示す「Yes」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS404へ移行する。
Specifically, among the links set in step S402, the vehicle speed average value (vB) of the link before the link C, the vehicle speed average value (vD, vE) of the link after the link C, and a threshold value Yv is substituted into the following formula (2) for comparison.
| VB − {(vD + vE) / 2} | <Yv (2)
In step S403, if it is determined that the difference between the two travel conditions of the vehicle C1 on the link set in step S402 is less than the threshold Yv (“Yes” in the figure), the link travel history
一方、ステップS403において、ステップS402で設定したリンクにおける車両C1の走行状態を比較した両者の差が閾値Yv以上である(図中に示す「No」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS406へ移行する。
ステップS404では、選択した一つのリンク(リンクC)における車両C1の走行状態と、ステップS402で設定したリンクにおける車両C1の走行状態を比較する。そして、比較した両者の差が、任意に設定可能な閾値Zvを超えているか否かを判定する処理(図中に示す「隣接リンク群との差が閾値を超えている」)を行う。
On the other hand, if it is determined in step S403 that the difference between the two travel conditions of the vehicle C1 on the link set in step S402 is equal to or greater than the threshold Yv ("No" in the figure), the link travel history comparison calculation unit The processing performed by 24 proceeds to step S406.
In step S404, the traveling state of the vehicle C1 on the selected link (link C) is compared with the traveling state of the vehicle C1 on the link set in step S402. Then, a process of determining whether or not the difference between the two compared exceeds a threshold Zv that can be arbitrarily set (“difference with adjacent link group exceeds the threshold” shown in the figure) is performed.
具体的には、選択した一つのリンクであるリンクCの車速平均値(vC)と、ステップS402で設定したリンクのうち、リンクCよりも前側のリンクの車速平均値(vB)と、閾値Zvを、以下の式(3)に代入して比較する。
vB−vC > Zv … (3)
これに加え、選択した一つのリンクであるリンクCの車速平均値(vC)と、ステップS402で設定したリンクのうち、リンクCよりも後側のリンクの車速平均値(vD、vE)と、閾値Zvを、以下の式(4)に代入して比較する。
{(vD+vE)/2}−vC > Zv … (4)
ステップS404において、二種類の車両C1の走行状態の差が閾値Zvを超えている(図中に示す「Yes」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS405へ移行する。
一方、ステップS404において、二種類の走行状態の差が閾値Zv以下である(図中に示す「No」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS406へ移行する。
Specifically, the vehicle speed average value (vC) of link C which is one selected link, the vehicle speed average value (vB) of the link ahead of link C among the links set in step S402, and the threshold value Zv. Is substituted into the following equation (3) for comparison.
vB-vC> Zv (3)
In addition to this, the vehicle speed average value (vC) of link C, which is one selected link, and the vehicle speed average value (vD, vE) of the link behind link C among the links set in step S402, The threshold value Zv is substituted into the following equation (4) for comparison.
{(VD + vE) / 2} -vC> Zv (4)
If it is determined in step S404 that the difference between the traveling states of the two types of vehicles C1 exceeds the threshold value Zv ("Yes" shown in the figure), the processing performed by the link traveling history
On the other hand, if it is determined in step S404 that the difference between the two types of travel states is equal to or less than the threshold value Zv ("No" in the figure), the processing performed by the link travel history
ステップS405では、ステップS404の判定結果から、選択した一つのリンクに対する不得意度を算出し、この算出した不得意度を不得意リンクDB26に格納する処理(図中に示す「不得意度を算出して不得意リンクDBに格納」)を行う。ステップS405において、選択した一つのリンクに対する不得意度を算出して不得意リンクDB26に格納する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS407へ移行する。
In step S405, the degree of weakness with respect to the selected link is calculated from the determination result in step S404, and the calculated degree of weakness is stored in the weakness link DB 26 ("calculation of weakness shown in the figure" And store in the weak link DB ”). In step S405, when the degree of weakness for the selected link is calculated and stored in the
ここで、選択した一つのリンクに対する不得意度の算出については、二段階評価(「得意」または「不得意」)であれば、閾値Zvを超えていることで不得意と算出することが可能である。また、選択した一つのリンクに対する不得意度を三段階以上で算出する場合は、差分結果をそのまま不得意度として算出する処理や、数字を段階的に丸めて不得意度として算出する処理を行ってもよい。 Here, regarding the calculation of the degree of weakness for a selected link, if it is a two-level evaluation (“good” or “poor”), it can be calculated as poor because it exceeds the threshold value Zv. It is. In addition, when calculating the unsatisfactory degree for one selected link in three or more stages, the difference result is directly calculated as the unsatisfactory degree, or the number is rounded step by step to calculate the unsatisfactory degree. May be.
ステップS406では、選択した一つのリンクに対する不得意度が最小、例えば、選択した一つのリンクが不得意ではない情報を示すデータを不得意リンクDB26に格納する処理(図中に示す「不得意ではないデータを不得意リンクDBに格納」)を行う。ステップS406において、不得意ではないデータを不得意リンクDB26に格納する処理を行うと、リンク走行履歴比較演算部24が行なう処理は、ステップS407へ移行する。
In step S406, the degree of unsatisfiedness with respect to one selected link is minimum. For example, data indicating information that the selected single link is unsatisfactory is stored in the unsatisfactory link DB 26 ("Unsatisfactory" Store no data in the weak link DB ”). If the process which stores the data which is not good in step S406 in the weak link DB26 is performed, the process which the link driving history
ステップS407では、不得意度を算出する処理を、全てのリンクに実施したか否かを判定する処理(図中に示す「全てのリンクに処理を実施」)を行う。
ステップS407において、不得意度を算出する処理を全てのリンクに実施している(図中に示す「Yes」)と判定した場合、リンク走行履歴比較演算部24が行なう処理を終了(END)する。
In step S407, a process of determining whether or not the process of calculating the degree of weakness has been performed for all the links ("execute the process for all the links" shown in the drawing) is performed.
In step S407, when it is determined that the process of calculating the degree of weakness is performed for all the links (“Yes” shown in the drawing), the process performed by the link travel history
一方、ステップS407において、不得意度を算出する処理を全てのリンクに実施していない(図中に示す「No」)と判定した場合、リンク走行履歴比較演算部24が行なう処理は、ステップS400へ移行する。
以上により、リンク走行履歴比較演算部24が行なう処理では、選択した一つのリンクに隣接するリンクについて、車両Cの走行状態の変化を検出するため、運転者の運転操作の変化に応じて、不得意度が変化したリンクを分析することが可能となる。
On the other hand, if it is determined in step S407 that the process of calculating the degree of weakness is not performed for all links ("No" shown in the figure), the process performed by the link travel history
As described above, in the process performed by the link travel history
(類型化演算部28が行う処理)
図1から図11を参照しつつ、図12及び図13を用いて、類型化演算部28が行う処理について説明する。
本実施形態の類型化演算部28が行う処理は、不得意度演算リンクデータから、各リンクに対する不得意度を検索する処理を除き、上述した第一実施形態と同様である。このため、以下の説明では、不得意度演算リンクデータから、各リンクに対する不得意度を検索する処理のみを記載する。
(Processing performed by the categorization calculating unit 28)
With reference to FIGS. 1 to 11, the processing performed by the
The processing performed by the
具体的には、不得意度演算リンクデータから、各リンクに対する不得意度を検索する処理では、例えば、図12中に示すように、各リンク及び全運転者に対する不得意度リスト(五段階評価)を参照する。そして、リンクAとリンクCが、各運転者Dの不得意度が類似であることを検索する。これに加え、地図DB16から、リンクA及びリンクCのリンク種別に関する情報を取得し、リンクA及びリンクCのリンク種別が狭路であることを検索する。これにより、図13中に示す類型パターンリストから、運転者D1の類型が類型Xに属することを検索する。
Specifically, in the process of searching for the degree of weakness for each link from the degree of weakness calculation link data, for example, as shown in FIG. ). And link A and link C search that each driver | operator D's weakness is similar. In addition to this, information about the link types of the link A and the link C is acquired from the
なお、リンク種別は、必ずしも100%合致する必要はなく、該当リンクでリンク種別が異なる場合があれば、数的に優位なリンク種別を採用して、リンク種別を決定してもよい。
また、本実施形態では、リンク種別の類型化を実施することで、全ての運転者が通過実績を持たないエリア(未走行エリア)についても、リンク種別に対する不得意度を用いて、案内経路を探索することが可能となる。これは、地図DB16等からリンク種別の情報を入手することが可能である条件が必須である。
Note that the link type does not necessarily match 100%, and if the link type is different for the corresponding link, the link type may be determined by adopting a numerically superior link type.
Also, in this embodiment, by categorizing the link type, the guidance route is determined using the unsatisfied degree with respect to the link type even in an area where all drivers do not have a passing record (non-running area). It becomes possible to search. This is indispensable under the condition that link type information can be obtained from the
以上説明したように、不得意リンク管理部18は、各リンクのうち不得意度の算出対象とするリンクで各運転者が行った運転操作と、算出対象とするリンクに隣接する複数のリンクで各運転者が行った運転操作を比較して、各運転者の不得意度を算出する。
また、不得意リンク管理部18は、比較対象とするデータを蓄積した期間を限定して、各運転者の不得意度を算出する。
さらに、不得意リンク管理部18は、リンクの種別を関連付けて、各運転者の不得意度を算出する。
また、経路探索部20は、案内経路の作成要求を行った運転者の、リンクの種別に対する不得意度と、他の運転者のリンクの種別に対する不得意度から、案内経路を探索する。
As described above, the poor
In addition, the poor
Further, the weak
Further, the
(動作)
本実施形態の経路探索システムSを用いて行なう動作は、上述した第一実施形態と同様であるため、その説明を省略する。
(Operation)
Since the operation performed using the route search system S of the present embodiment is the same as that of the first embodiment described above, the description thereof is omitted.
(第二実施形態の効果)
本実施形態の経路探索システムSであれば、上述した第一実施形態に記載した効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(Effect of the second embodiment)
In the route search system S of the present embodiment, in addition to the effects described in the first embodiment described above, the following effects can be achieved.
(1)不得意リンク管理部18が、不得意度の算出対象とするリンクと、不得意度の算出対象とするリンクに隣接する複数のリンクと、で各運転者が行った運転操作の運転操作データを比較して、各運転者の不得意度を算出する。
このため、運転者の運転操作をリンク毎に集計し、不得意度の算出対象とするリンクと隣接する二つ以上のリンクについて、運転者自身の情報を比較することが可能となる。
その結果、運転者自身の運転操作の変化を検出して、各リンクに対する不得意度を分析して算出することが可能となる。
(1) The driving of the driving operation performed by each driver by the poor
For this reason, the driver's driving operation is totaled for each link, and the driver's own information can be compared for two or more links adjacent to the link for which the degree of weakness is to be calculated.
As a result, it is possible to detect a change in the driving operation of the driver himself and to analyze and calculate the unsatisfactory degree for each link.
(2)不得意度補正部46が、複数のリンクで行った行動履歴を各運転者及び各リンクで個別に検出した行動履歴データを分析して、不得意リンク管理部18が算出した不得意度を補正する。
このため、運転者の行動履歴データを分析して、不得意リンク管理部18が算出した不得意度を補正することが可能となる。なお、行動履歴とは、例えば、不得意リンク地点にて不得意であることを申告することや、不得意リンクで舌打ち等を検出することや、SNS等を通じてインターネットクラウド上で地点に関して発した情報等である。
その結果、各リンクに対する不得意度を高い精度で補正して検索した案内経路を、案内経路の提供要求を行った運転者へ提供することが可能となる。
(2) The unsatisfactory degree calculated by the unsatisfactory
For this reason, it becomes possible to correct the unsatisfactory degree calculated by the poor
As a result, it is possible to provide the guide route searched by correcting the degree of weakness with respect to each link with high accuracy to the driver who has requested to provide the guide route.
(3)不得意リンク管理部18が、比較対象とするデータを蓄積した期間を限定して、各運転者の不得意度を算出する。
このため、一年間等の期間で限定したうちの最新のデータから、リンクの不得意度を分析して算出することが可能となる。
その結果、運転者の運転技能が変化(上達、劣化)した度合いを反映させて、リンクに対する不得意度に応じた案内経路を探索することが可能となる。
(3) The poor
For this reason, it becomes possible to analyze and calculate the degree of weakness of the link from the latest data limited for a period of one year or the like.
As a result, it is possible to search for a guide route according to the degree of weakness with respect to the link, reflecting the degree of change (improvement, deterioration) of the driver's driving skill.
(4)不得意リンク管理部18が、リンクの種別を関連付けて各運転者の不得意度を算出し、経路探索部20が、案内経路の提供要求を行った運転者の、リンクの種別に対する不得意度と、他の運転者のリンクの種別に対する不得意度から、案内経路を探索する。
このため、リンクの不得意度とリンクの種別を関連付けることにより、例えば、地図DB16が蓄積しているリンクの種別を参照して、全運転者が通過した履歴の無いエリアに対し、リンクの種別に対する不得意度に応じた案内経路を探索することが可能となる。
その結果、全ての運転者が未走行の道路に対し、地図DB16が蓄積しているリンクの種別から、不得意度に応じた案内経路の探索が可能となる。
(4) The poor
For this reason, by associating the link dissatisfaction level with the link type, for example, referring to the link type stored in the
As a result, it becomes possible to search for a guidance route according to the degree of weakness from the types of links accumulated in the
(変形例)
(1)本実施形態では、不得意度補正部46により、複数のリンクで行った行動履歴を各運転者及び各リンクで個別に検出した行動履歴データを分析して、不得意リンク管理部18が算出した不得意度を補正したが、これに限定するものではない。
すなわち、不得意リンク管理部18が、複数のリンクで行った行動履歴を各運転者及び各リンクで個別に検出した行動履歴データと、運転操作データを分析して、各リンクに対する各運転者の不得意度を、各リンクに対して個別に算出してもよい。
この場合、複数のリンクで行った行動履歴を各運転者及び各リンクで個別に検出した行動履歴データを、不得意度の算出へ即座に反映させることが可能となり、行動履歴データを反映させた不得意度に応じて、案内経路の探索が可能となる。
(Modification)
(1) In the present embodiment, the weakness
That is, the weak
In this case, it is possible to immediately reflect the action history data detected by each driver and each link with the action history performed by a plurality of links in the calculation of the unsatisfactory degree, and the action history data is reflected. The guide route can be searched according to the degree of weakness.
1…車載装置、2…情報作成・配信装置、4…データセンター、6…車両情報取得部、8…経路案内部、10…車両側データ送受信部、12…センター側データ送受信部、14…プローブカーデータベース(プローブカーDB)、16…地図データベース(地図DB)、18…不得意リンク管理部、20…経路探索部、22…リンク走行履歴データベース(リンク走行履歴DB)、24…リンク走行履歴比較演算部、26…不得意リンクデータベース(不得意リンクDB)、28…類型化演算部、30…車内画像検出部、32…車内音声検出部、34…運転者生体反応検出部、36…自車位置検出部、38…CAN接続部、40…運転者心理推定部、42…サーバ側データ送受信部、44…不得意情報検索部、46…不得意度補正部、S…経路探索システム、C…車両、CS…クラウドサーバ
DESCRIPTION OF
Claims (9)
前記算出した不得意度を用いて前記各運転者を分類して各運転者の類型を設定する類型設定部と、
現在地から目的地への案内経路の提供要求を行った運転者の不得意度から前記案内経路を探索する第一の経路探索処理と、前記提供要求を行った運転者と同一の類型に設定した他の運転者の不得意度から前記案内経路を探索する第二の経路探索処理と、の両者を実行可能であるとともに、いずれか一方の経路探索処理を選択的に行う経路探索部と、
前記探索した案内経路を示す案内経路情報を、前記提供要求を行った運転者へ提供する案内経路情報提供部と、備えることを特徴とする経路探索システム。 Analyzing driving operation data individually detected by each driver for driving operations performed by a plurality of drivers, and calculating the degree of weakness of each driver individually,
A type setting unit that classifies each driver using the calculated degree of weakness and sets a type of each driver;
The first route search process for searching for the guide route from the weakness of the driver who requested the provision of the guide route from the current location to the destination, and the same type as the driver who made the provision request were set. A route search unit capable of performing both of the second route search processing for searching for the guide route from the other driver's weakness, and selectively performing either one of the route search processing;
A route search system comprising: a guide route information providing unit that provides guide route information indicating the searched guide route to a driver who has made the provision request.
前記経路探索部は、前記案内経路の探索対象が前記提供要求を行った運転者の不得意度が未算出のリンクを含む場合に、前記第二の経路探索処理を実行することを特徴とする請求項1に記載した経路探索システム。 The unsatisfactory degree calculation unit analyzes driving operation data in which driving operations performed by a plurality of drivers are individually detected for each driver and each link, and determines the unsatisfactory degree of each driver for each link. , Calculate for each link individually,
The route search unit performs the second route search process when the search target of the guide route includes a link whose unsatisfied degree of the driver who has made the provision request has not been calculated. The route search system according to claim 1.
前記経路探索部は、前記提供要求を行った運転者の前記リンクの種別に対する不得意度と、前記提供要求を行った運転者と同一の類型に設定した他の運転者の前記リンクの種別に対する不得意度と、から前記案内経路を探索することを特徴とする請求項1から請求項6のうちいずれか1項に記載した経路探索システム。 The unsatisfactory degree calculation unit analyzes driving operation data in which driving operations performed by a plurality of drivers are individually detected for each driver and each link, and determines the unsatisfactory degree of each driver for each link. , By associating the link types, calculating each link individually,
The route search unit is unsatisfactory with respect to the type of the link of the driver who has made the provision request, and with respect to the type of the link of another driver set to the same type as the driver who has made the provision request. The route search system according to any one of claims 1 to 6, wherein the guide route is searched based on a degree of weakness.
前記算出した不得意度を用いて前記各運転者を分類して各運転者の類型を設定し、
現在地から目的地への案内経路の提供要求を行った運転者の不得意度から前記案内経路を探索する第一の経路探索処理と、前記提供要求を行った運転者と同一の類型に設定した他の運転者の不得意度から前記案内経路を探索する第二の経路探索処理と、の両者を実行可能であるとともに、いずれか一方の経路探索処理を選択的に行い、
前記探索した案内経路を示す案内経路情報を、前記提供要求を行った運転者へ提供することを特徴とする経路探索方法。 Analyzing driving operation data individually detected by each driver for driving operations performed by a plurality of drivers, individually calculating the degree of weakness of each driver,
Classify each driver using the calculated weakness and set the type of each driver,
The first route search process for searching for the guide route from the weakness of the driver who requested the provision of the guide route from the current location to the destination, and the same type as the driver who made the provision request were set. Both of the second route search processing for searching for the guide route from the other driver's unsatisfactory degree can be performed, and either one of the route search processing is selectively performed,
A route search method, characterized in that guide route information indicating the searched guide route is provided to a driver who has made the provision request.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014101295A JP6303795B2 (en) | 2014-05-15 | 2014-05-15 | Route search system and route search method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014101295A JP6303795B2 (en) | 2014-05-15 | 2014-05-15 | Route search system and route search method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015219055A JP2015219055A (en) | 2015-12-07 |
JP6303795B2 true JP6303795B2 (en) | 2018-04-04 |
Family
ID=54778554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014101295A Active JP6303795B2 (en) | 2014-05-15 | 2014-05-15 | Route search system and route search method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6303795B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019002789A (en) * | 2017-06-15 | 2019-01-10 | ヤフー株式会社 | Information processor, method for processing information, and program |
JP6399669B1 (en) * | 2017-07-28 | 2018-10-03 | 三菱ロジスネクスト株式会社 | Driving support system and driving support method |
JP7016578B2 (en) * | 2018-01-05 | 2022-02-07 | アルパイン株式会社 | Evaluation information generation system, evaluation information generation device, evaluation information generation method, and program |
JP7248552B2 (en) * | 2019-09-20 | 2023-03-29 | ヤフー株式会社 | Specific device, specific method and specific program |
JP2023537959A (en) | 2020-08-18 | 2023-09-06 | グーグル エルエルシー | Navigation guidance preview |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10300496A (en) * | 1997-04-25 | 1998-11-13 | Nec Home Electron Ltd | Navigation system |
JP3719310B2 (en) * | 1997-06-17 | 2005-11-24 | 三菱電機株式会社 | Navigation device |
JP2007093451A (en) * | 2005-09-29 | 2007-04-12 | Aisin Aw Co Ltd | Navigation system |
JP2008157891A (en) * | 2006-12-26 | 2008-07-10 | Denso It Laboratory Inc | Navigation device, navigation method and navigation program |
JP2009150821A (en) * | 2007-12-21 | 2009-07-09 | Alpine Electronics Inc | Onboard navigation device |
JP4504441B2 (en) * | 2008-06-27 | 2010-07-14 | 株式会社トヨタIt開発センター | Route search apparatus and route search method |
JP5674567B2 (en) * | 2011-06-28 | 2015-02-25 | 三菱電機株式会社 | Navigation device |
-
2014
- 2014-05-15 JP JP2014101295A patent/JP6303795B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015219055A (en) | 2015-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230219580A1 (en) | Driver and vehicle monitoring feedback system for an autonomous vehicle | |
US20220286811A1 (en) | Method for smartphone-based accident detection | |
JP7459891B2 (en) | Information processing device, information processing system, information processing method, and program | |
JP5233655B2 (en) | Tracking target vehicle search system, tracking target vehicle search method, and tracking target vehicle search program | |
US10919540B2 (en) | Driving assistance method, and driving assistance device, driving control device, vehicle, and recording medium using said method | |
JP5510007B2 (en) | Route search device and route guidance system | |
US12049218B2 (en) | Evaluating the safety performance of vehicles | |
EP3129970B1 (en) | Driving action classifying apparatus and driving action classifying method | |
JP4770521B2 (en) | Landmark presentation device, in-vehicle navigation device, and in-vehicle navigation system | |
JP6303795B2 (en) | Route search system and route search method | |
JP2012164025A (en) | Congestion determination device and vehicle control apparatus | |
WO2019030916A1 (en) | Traffic lane information management method, running control method, and traffic lane information management device | |
JP2015191256A (en) | Risk degree determination device, risk degree determination method and risk degree determination program | |
US20130131893A1 (en) | Vehicle-use information collection system | |
US20170122753A1 (en) | Route generation device and route generation method | |
JP2012128344A (en) | On-vehicle driving recognition training device | |
JP2014010461A (en) | Road surface state identification system, road surface state identification device, road surface state identification method and computer program | |
JP2018181386A (en) | Danger level judging device, risk degree judging method, and dangerous degree judging program | |
JP4919172B2 (en) | Vehicle guidance device | |
JP6079460B2 (en) | Navigation system, navigation device, and server | |
JP2009264880A (en) | Driver model creation device | |
US20220219699A1 (en) | On-board apparatus, driving assistance method, and driving assistance system | |
JP2022051921A (en) | Danger level judging device, risk degree judging method, and dangerous degree judging program | |
JP7333702B2 (en) | VEHICLE DANGEROUS SITUATION DETERMINATION DEVICE, VEHICLE DANGEROUS SITUATION DETERMINATION METHOD, AND PROGRAM | |
JP2006172012A (en) | Uneasiness detection device and uneasiness detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6303795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |