JP6157947B2 - Anti-elution agent for harmful substances and elution prevention method using the same - Google Patents

Anti-elution agent for harmful substances and elution prevention method using the same Download PDF

Info

Publication number
JP6157947B2
JP6157947B2 JP2013129183A JP2013129183A JP6157947B2 JP 6157947 B2 JP6157947 B2 JP 6157947B2 JP 2013129183 A JP2013129183 A JP 2013129183A JP 2013129183 A JP2013129183 A JP 2013129183A JP 6157947 B2 JP6157947 B2 JP 6157947B2
Authority
JP
Japan
Prior art keywords
elution
calcium aluminate
cao
fluorine
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129183A
Other languages
Japanese (ja)
Other versions
JP2014133865A (en
Inventor
林 浩志
浩志 林
英典 礒田
英典 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2013129183A priority Critical patent/JP6157947B2/en
Publication of JP2014133865A publication Critical patent/JP2014133865A/en
Application granted granted Critical
Publication of JP6157947B2 publication Critical patent/JP6157947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、石灰成分を含む廃棄物からの有害物質の溶出を効果的に防止できる溶出防止剤およびそれを用いた溶出防止方法に関する。   The present invention relates to an elution inhibitor capable of effectively preventing elution of harmful substances from waste containing lime components, and an elution prevention method using the same.

近年、廃棄物の有効利用に関する様々な取組みが行われているが、その実績は十分とはいえない。例えば、石炭火力発電所または石炭ボイラーなどで石炭の燃焼にともない発生する石炭灰は年間約1千万t発生しており、一部はセメント原料あるいは土工材料として埋め戻し土、路盤材、コンクリ−ト製品用混和材などに利用されているものの、その多くは産業廃棄物として地中又は海面に埋立て処分されている。今後、廃棄物処分場の逼迫や環境負荷低減という社会情勢に対応するためには、このような廃棄物を土工材料等に有効利用する取り組みを進めていく必要がある。しかし、石炭灰などの廃棄物には重金属類や有害物質の溶出という環境安全面の課題があり、具体的には、主にふっ素、ほう素、砒素、セレンの溶出量が土壌環境基準(環境庁告示第46号)を超える恐れがあることが土工材料等に有効利用する上での課題となっている。また、廃棄物によっては六価クロムの溶出が問題になる場合もある。表1に土壌環境基準(環境庁告示第46号)に規定されているふっ素、ほう素、砒素、セレン及び六価クロムの溶出量を示す。   In recent years, various efforts have been made regarding the effective use of waste, but the results are not sufficient. For example, about 10 million tons of coal ash is generated annually due to coal combustion in coal-fired power plants or coal boilers, and some of it is backfilled as cement raw materials or earthwork materials, roadbed materials, concrete Although most of these are used as admixtures for industrial products, most of them are disposed of as landfills in the ground or sea as industrial waste. In the future, in order to respond to the social situation such as the tightness of the waste disposal site and the reduction of the environmental burden, it is necessary to promote efforts to effectively use such waste as earthwork materials. However, waste such as coal ash has environmental safety issues such as the elution of heavy metals and harmful substances. Specifically, the amount of elution of fluorine, boron, arsenic, and selenium is mainly based on soil environmental standards (environmental The possibility of exceeding the Office Notification No. 46) is an issue in the effective use of earthwork materials. In some wastes, elution of hexavalent chromium may be a problem. Table 1 shows the elution amounts of fluorine, boron, arsenic, selenium and hexavalent chromium specified in the soil environment standards (Environment Agency Notification No. 46).

Figure 0006157947
Figure 0006157947

前記4種の有害物質のうち、ふっ素については、廃棄物のpHが高いと溶出量が増加する傾向があり、ほう素、砒素、セレンとは異なる溶出挙動を示すことが知られている。一方、石炭火力発電所等から発生する廃棄物である石炭灰は、近年の石炭需給の悪化による低品位炭の使用量増加により、石灰成分(酸化カルシウム)の含有量が多くなっている。このように石灰成分を多く含む廃棄物はpHが高い傾向にあるため、ふっ素の溶出量を土壌環境基準以下に抑制することが困難であり、特に、ふっ素と共にほう素、砒素、セレンという溶出挙動が異なる有害物質が廃棄物に含まれる場合は、それら複数の有害物質の溶出を同時に抑制することは極めて困難であった。   Of the four types of harmful substances, fluorine has a tendency to increase in the amount of elution when the pH of the waste is high, and is known to exhibit an elution behavior different from boron, arsenic and selenium. On the other hand, coal ash, which is a waste generated from a coal-fired power plant, has an increased content of lime component (calcium oxide) due to an increase in the use of low-grade coal due to the recent deterioration in coal supply and demand. Since wastes containing a lot of lime components tend to have a high pH, it is difficult to control the amount of fluorine eluted below the soil environmental standards, and in particular, the dissolution behavior of boron, arsenic, and selenium together with fluorine. In the case where wastes containing different harmful substances are included in the waste, it is extremely difficult to simultaneously suppress the elution of the plurality of harmful substances.

従来、ふっ素の不溶化技術としては、消石灰などのカルシウム塩を使用して難溶性のふっ化カルシウムを生成させる方法、硫酸アルミニウムなどのアルミニウム塩を使用して水酸化アルミニウムが生成される過程でふっ素を吸着・不溶化する方法、硫酸マグネシウムなどのマグネシウム塩を使用して水酸化マグネシウムが生成される過程でふっ素を吸着・不溶化する方法などが知られている。また、ほう素の不溶化技術としては、硫酸アルミニウムなどのアルミニウム塩の使用、あるいは、硫酸アルミニウムと消石灰を併用することで、ほう素を吸着・不溶化する方法が知られている。また、砒素の不溶化技術としては、硫酸アルミニウムなどのアルミニウム塩を使用して水酸化アルミニウムが生成される過程で砒素を吸着・不溶化する方法、塩化第二鉄などの鉄塩を使用して水酸化鉄が生成される過程で砒素を吸着・不溶化する方法などが知られている。また、セレンの不溶化技術としては、鉄塩などを使用した吸着・不溶化方法が知られている。   Conventionally, fluorine insolubilization techniques include the use of calcium salts such as slaked lime to produce sparingly soluble calcium fluoride, and the process in which aluminum hydroxide is produced using aluminum salts such as aluminum sulfate. There are known methods for adsorption and insolubilization, methods for adsorption and insolubilization of fluorine in the process of producing magnesium hydroxide using a magnesium salt such as magnesium sulfate. Further, as a boron insolubilization technique, a method is known in which boron is adsorbed and insolubilized by using an aluminum salt such as aluminum sulfate or using aluminum sulfate and slaked lime in combination. As arsenic insolubilization technology, arsenic is adsorbed and insolubilized in the process of producing aluminum hydroxide using aluminum salt such as aluminum sulfate, and iron salt such as ferric chloride is used for hydroxylation. A method of adsorbing and insolubilizing arsenic in the process of iron generation is known. As a selenium insolubilization technique, an adsorption / insolubilization method using an iron salt or the like is known.

しかし、これらの不溶化技術は不溶化の効果が低いため、廃棄物からの前記有害物質の溶出量を土壌環境基準以下に抑制することは困難であった。このような状況において、廃棄物における有害物質の溶出抑制方法が提案されている。すなわち、砒素や6価クロムをキレート剤であるジチオカルバミン酸塩あるいはジチオカルバミン酸誘導体で捕捉・不溶化する技術(特許文献1、2)、汚染土壌や焼却灰にチオ硫酸化合物を添加するとともに焼却灰を加熱することで、焼却灰などに含まれる砒素やセレンなどの重金属類を不溶化する装置に関する技術(特許文献3)、土壌または焼却灰に水硬性結合材であるセメントまたは石灰を添加することで、土壌や焼却灰に含まれるふっ素やほう素の溶出を抑制する技術(特許文献4)、製鋼スラグなどの産業廃棄物にカルシウムアルミネートなどの粉末を添加することで、産業廃棄物からのふっ素の溶出を抑制する技術(特許文献5)、石炭や製紙スラッジなどを燃焼して発生するほう素含有燃焼灰に酸化カルシウム類及び/または水酸化カルシウム類、硫酸カルシウム類、アルミナセメント、水を加えて混合処理することにより、その燃焼灰からのほう素の溶出を抑制する技術(特許文献6)、カルシウムアルミネートとケイ酸カルシウムとを含有する不溶化剤を用いたふっ素及び/又はほう素の不溶化方法であり、ふっ素及び/又はほう素を含む固形物と該不溶化剤と水を混合してから所要期間養生することでふっ素及び/ 又はほう素を不溶化する技術(特許文献7)、汚染土壌や焼却灰に対し、硫酸アルミニウムとチオ硫酸ナトリウムおよび鉄粉を必須成分として含む汚染物質の溶出防止剤を添加・混合することで、砒素やセレンなどの重金属類およびほう素やふっ素の溶出を抑制する技術(特許文献8)、下水汚泥焼却灰にポルトランドセメントのような固化材および水を添加混合し、転動造粒法又は圧縮造粒法により造粒した後、該造粒物の表面にアスファルト・水エマルジョンを用いてアスファルト皮膜を形成させることで、砒素などの重金属類の溶出を物理的に抑制する技術(特許文献9)、鉄粉、酸化カルシウム、酸化アルミニウムを必須成分として含む有害元素の溶出抑制剤を用いることで、フライアッシュからのふっ素、ほう素および砒素やセレンなどの重金属類の溶出を抑制する技術(特許文献10)が報告されている。   However, since these insolubilization techniques have a low insolubilizing effect, it has been difficult to suppress the amount of the harmful substances eluted from the waste below the soil environment standard. Under such circumstances, methods for suppressing the elution of harmful substances in waste have been proposed. That is, arsenic and hexavalent chromium are captured and insolubilized with a chelating agent such as dithiocarbamate or dithiocarbamic acid derivative (Patent Documents 1 and 2), thiosulfate compound is added to contaminated soil and incinerated ash, and incinerated ash is heated By adding a cement or lime that is a hydraulic binder to the soil or incinerated ash, the technology related to a device that insolubilizes heavy metals such as arsenic and selenium contained in incinerated ash, etc. Leaching of fluorine from industrial waste by adding calcium aluminate powder to industrial waste such as steelmaking slag, a technology that suppresses the elution of fluorine and boron contained in ash and incinerated ash Technology (Patent Document 5), boron-containing combustion ash generated by burning coal, paper sludge, etc., and calcium oxides and / or Calcium hydroxides, calcium sulfates, alumina cement, a technology that suppresses the dissolution of boron from the combustion ash by adding water (Patent Document 6), calcium aluminate and calcium silicate This is a method for insolubilizing fluorine and / or boron using the contained insolubilizing agent, and by mixing the solid material containing fluorine and / or boron, the insolubilizing agent and water, and curing for a required period of time, fluorine and / or Boron insolubilization technology (Patent Document 7), contaminated soil and incinerated ash, by adding and mixing contaminant elution inhibitors containing aluminum sulfate, sodium thiosulfate and iron powder as essential components, Technology to suppress elution of heavy metals such as selenium and boron and fluorine (Patent Document 8), solidified material such as Portland cement to sewage sludge incineration ash After adding and mixing water and granulating by rolling granulation method or compression granulation method, heavy metal such as arsenic is formed by forming an asphalt film using asphalt / water emulsion on the surface of the granulated product. By using a harmful element elution inhibitor that contains iron powder, calcium oxide, and aluminum oxide as essential components (Patent Document 9) that physically suppresses the elution of ash, fluorine, boron and arsenic from fly ash A technique for suppressing elution of heavy metals such as selenium (Patent Document 10) has been reported.

また、廃棄物からの有害物質の溶出防止とは異なるが、ふっ素の溶出抑制技術として、リン酸水素カルシウム二水和物を用いてふっ素汚染土壌中のふっ素を不溶化する技術(特許文献11)、ふっ素汚染土壌に酸性物質を添加して汚染土壌のpHを5.5以上6.5以下とした後にリン酸カルシウム化合物をさらに添加し、汚染土壌中のふっ素を不溶化する技術(特許文献12)が報告されている。   In addition, although it is different from prevention of toxic substance elution from waste, as a technique for suppressing the elution of fluorine, a technique for insolubilizing fluorine in fluorine-contaminated soil using calcium hydrogen phosphate dihydrate (Patent Document 11), A technology (Patent Document 12) has been reported in which an acidic substance is added to fluorine-contaminated soil to adjust the pH of the contaminated soil to 5.5 or more and 6.5 or less, and then a calcium phosphate compound is further added to insolubilize fluorine in the contaminated soil. ing.

特開1998−192870号公報JP 1998-192870 A 特開2001−121133号公報JP 2001-121133 A 特開2006−000746号公報JP 2006-000746 A 特開2004−089816号公報JP 2004-089816 A 特開2001−259570号公報JP 2001-259570 A 特開2005−329343号公報JP 2005-329343 A 特開2006−224025号公報JP 2006-224025 A 特開2002−239522号公報JP 2002-239522 A 特開1995−060222号公報JP-A-1995-060222 特開2005−279413号公報JP 2005-279413 A 特開2007−216156号公報JP 2007-216156 A 特開2012−081380号公報JP 2012-081380 A

しかしながら、これら従来の有害物質の溶出防止技術は、高価な成分を使用する、大がかりな装置を使用する、さらに一部の有害物質だけの溶出抑制ができる手段にすぎず前記4種の有害物質の溶出を同時に抑制できるものではない等の課題があった。   However, these conventional toxic substance elution prevention techniques are merely means that use expensive components, use large-scale devices, and can suppress elution of only some toxic substances. There was a problem that elution could not be suppressed simultaneously.

また、これらの有害物質の溶出防止技術を用いて石灰成分を含みpHが高い廃棄物からのふっ素の溶出を抑制するには、廃棄物のpHを狭い範囲に調整する必要があり不溶化処理が煩雑となる、酸性物質の添加量が多く不経済であるなどの課題があり、さらに、ふっ素以外の有害物質には効果がなく、前記4種の有害物質の溶出を同時に抑制することができないという課題があった。
従って本発明の課題は、石灰成分を含む廃棄物に含まれる有害物質であるふっ素、ほう素、砒素及びセレンの濃度を土壌環境基準未満に低減できる経済的かつ効率的な処理技術を提供することである。
Moreover, in order to suppress the elution of fluorine from waste containing lime components and having a high pH by using these toxic substance elution prevention technologies, it is necessary to adjust the pH of the waste to a narrow range, and the insolubilization treatment is complicated. There is a problem that the amount of acidic substances added is uneconomical, and it is not effective for harmful substances other than fluorine, and the elution of the four kinds of harmful substances cannot be suppressed simultaneously. was there.
Accordingly, an object of the present invention is to provide an economical and efficient treatment technique capable of reducing the concentration of fluorine, boron, arsenic and selenium, which are harmful substances contained in waste containing lime components, to less than the soil environment standard. It is.

そこで本発明者は、検討を重ねた結果、有害物質としてふっ素、ほう素、砒素及びセレンから選ばれる1種以上を含む廃棄物を処理するに際し、カルシウムアルミネート、硫酸アルミニウム及びアルカリ金属リン酸塩を組み合わせた組成物を使用することで、汚染廃棄物が石灰成分を含む場合でも前記4種の有害物質の溶出量を同時に土壌環境基準以下に低減できることを見出した。また、カルシウムアルミネート、硫酸アルミニウム及びアルカリ金属リン酸塩に加えて、還元成分及び/又は消石灰を組み合わせた組成物を使用することで、前記4種の有害物質の溶出量が高い廃棄物であっても、これらの有害物質の溶出量を低減でき、さらに六価クロムの溶出量も同時に土壌環境基準以下に低減できることを見出し、本発明を完成させるに至った。   Therefore, as a result of repeated studies, the present inventor has made calcium aluminate, aluminum sulfate, and alkali metal phosphate when treating waste containing at least one selected from fluorine, boron, arsenic and selenium as harmful substances. It has been found that by using a composition in combination, the amount of elution of the four kinds of harmful substances can be simultaneously reduced below the soil environment standard even when the contaminated waste contains a lime component. In addition to calcium aluminate, aluminum sulfate, and alkali metal phosphate, the use of a composition that combines a reducing component and / or slaked lime makes it possible to produce waste with a high elution amount of the four types of harmful substances. However, the present inventors have found that the amount of these harmful substances eluted can be reduced, and that the amount of hexavalent chromium eluted can also be reduced below the soil environmental standard, and the present invention has been completed.

すなわち、本発明は、次の[1]〜[12]に係るものである。
[1]カルシウムアルミネート、硫酸アルミニウム及びリン酸カリウムを含有し、
カルシウムアルミネートが、CaOとAl 2 3 の含有モル比がCaO/Al 2 3 =0.5〜2.9であり、
添加量が、廃棄物100質量部に対して0.5〜10質量部であることを特徴とする、
石灰成分を含む廃棄物からのふっ素、ほう素、砒素及びセレンの溶出防止剤。
[2]カルシウムアルミネートが、CaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものである[1]に記載の溶出防止剤。
[3]カルシウムアルミネートが、前記結晶質カルシウムアルミネートと、前記非晶質カルシウムアルミネートとを100:10〜100:300の質量比で含むものである[2]に記載の溶出防止剤。
[4]カルシウムアルミネートが、非晶質の12CaO・7Al23を主成分とするものである[1]に記載の溶出防止剤。
[]さらにリン酸カルシウムを含有することを特徴とする、[1]〜[]のいずれかに記載の溶出防止剤。
[]リン酸カルシウムが、リン酸二水素カルシウムであることを特徴とする、[]に記載の溶出防止剤。
[]さらに還元成分を含有することを特徴とする、[1]〜[]のいずれかに記載の溶出防止剤。
[]還元成分が、硫酸第一鉄一水和物であることを特徴とする、[]に記載の溶出防止剤。
[]さらに消石灰を含有することを特徴とする、[1]〜[]のいずれかに記載の溶出防止剤。
[10]カルシウムアルミネート、硫酸アルミニウム、リン酸カリウム、並びに還元成分及び/又は消石灰を含有し、
カルシウムアルミネートが、CaOとAl 2 3 の含有モル比がCaO/Al 2 3 =0.5〜2.9であることを特徴とする、
石灰成分を含む廃棄物からのふっ素、ほう素、砒素、セレン及び六価クロムの溶出防止剤。
[11]石灰成分を含み、ふっ素、ほう素、砒素及びセレンから選ばれる1種以上の溶出量が土壌環境基準を超える廃棄物に、[1]〜[]のいずれかに記載の溶出防止剤を添加、混合することを特徴とする、該廃棄物からのふっ素、ほう素、砒素及びセレンの溶出防止方法。
[12]石灰成分を含み、ふっ素、ほう素、砒素、セレン及び六価クロムから選ばれる1種以上の溶出量が土壌環境基準を超える廃棄物に、[]〜[]のいずれかに記載の溶出防止剤を添加、混合することを特徴とする、該廃棄物からのふっ素、ほう素、砒素、セレン及び六価クロムの溶出防止方法。
That is, the present invention relates to the following [1] to [ 12 ].
[1] Contains calcium aluminate, aluminum sulfate and potassium phosphate,
Calcium aluminate, molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.5~2.9 ,
The addition amount is 0.5 to 10 parts by mass with respect to 100 parts by mass of waste ,
Anti-elution agent for fluorine, boron, arsenic and selenium from waste containing lime components.
[2] Calcium aluminate is a crystalline calcium aluminate in which the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.9 to 1.4, and the molar ratio of CaO and Al 2 O 3 The elution inhibitor according to [1], which contains amorphous calcium aluminate having a ratio of CaO / Al 2 O 3 = 1.6 to 2.6.
[3] The elution inhibitor according to [2], wherein the calcium aluminate contains the crystalline calcium aluminate and the amorphous calcium aluminate in a mass ratio of 100: 10 to 100: 300.
[4] The elution inhibitor according to [1], wherein the calcium aluminate is mainly composed of amorphous 12CaO · 7Al 2 O 3 .
[ 5 ] The elution inhibitor according to any one of [1] to [ 4 ], further comprising calcium phosphate.
[ 6 ] The elution inhibitor according to [ 5 ], wherein the calcium phosphate is calcium dihydrogen phosphate.
[ 7 ] The elution inhibitor according to any one of [1] to [ 6 ], further comprising a reducing component.
[ 8 ] The elution inhibitor according to [ 7 ], wherein the reducing component is ferrous sulfate monohydrate.
[ 9 ] The elution inhibitor according to any one of [1] to [ 8 ], further comprising slaked lime.
[ 10 ] Contains calcium aluminate, aluminum sulfate, potassium phosphate , and a reducing component and / or slaked lime ,
The calcium aluminate is characterized in that the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.5 to 2.9 ,
Anti-elution agent for fluorine, boron, arsenic, selenium and hexavalent chromium from waste containing lime.
[ 11 ] The elution prevention according to any one of [1] to [ 9 ], for waste containing a lime component and having at least one elution amount selected from fluorine, boron, arsenic and selenium exceeding the soil environment standard A method for preventing elution of fluorine, boron, arsenic and selenium from the waste, which comprises adding and mixing an agent.
[ 12 ] To waste containing one or more elution amounts selected from fluorine, boron, arsenic, selenium and hexavalent chromium, including lime components, in any of [ 7 ] to [ 9 ] A method for preventing elution of fluorine, boron, arsenic, selenium and hexavalent chromium from the waste, characterized by adding and mixing the elution inhibitor as described.

本発明の溶出防止剤で処理した石灰成分を含む廃棄物は、経済的かつ効率的な処方で廃棄物中に含まれる有害物質であるふっ素、ほう素及び重金属類(砒素、セレン、六価クロム)の溶出量を土壌環境基準以下に低減できるため、溶出防止処理後の廃棄物を埋め戻し材等の土工材料として使用した際に環境安全性を確保することができる。よって、本発明は有害物質で汚染された廃棄物の有効利用の促進に極めて有用な技術である。   Waste containing a lime component treated with the dissolution inhibitor of the present invention is composed of fluorine, boron and heavy metals (arsenic, selenium, hexavalent chromium) which are harmful substances contained in the waste in an economical and efficient formulation. ) Can be reduced below the soil environmental standard, so that the environmental safety can be ensured when the waste after the elution prevention treatment is used as an earthwork material such as a backfill material. Therefore, the present invention is an extremely useful technique for promoting the effective use of waste contaminated with harmful substances.

本発明の溶出防止剤に用いるカルシウムアルミネートは、基本的にはCaO原料とAl23原料を熱処理することにより得られる物質である。カルシウムアルミネートは、化学成分としてCaOとAl23からなる結晶質やガラス化が進んだ構造の水和活性物質であれば良く、CaOとAl23に加えて他の化学成分が加わった化合物、固溶体、ガラス質物質又はこれらの混合物等でもよい。前者(結晶質)としては、例えば12CaO・7Al23、CaO・Al23 、CaO・2Al23、CaO・6Al23等が挙げられ、後者(ガラス質)としては、例えば、4CaO・3Al23・SO3、11CaO・7Al23・CaF2、Na2O・8CaO・3Al23等が挙げられる。 The calcium aluminate used in the elution inhibitor of the present invention is basically a substance obtained by heat treating a CaO raw material and an Al 2 O 3 raw material. Calcium aluminate may be a hydrated active crystalline material and vitrification advanced structure consisting of CaO and for Al 2 O 3 chemical components, other chemical components applied in addition to CaO and Al 2 O 3 Further, it may be a compound, a solid solution, a glassy substance, or a mixture thereof. The former (crystalline), for example, 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, C aO · 2Al 2 O 3, CaO · 6Al 2 O 3 and the like, and as the latter (glassy), For example, such 4CaO · 3Al 2 O 3 · SO 3, 11CaO · 7Al 2 O 3 · CaF 2, Na 2 O · 8CaO · 3Al 2 O 3 and the like.

さらに、本発明で用いるカルシウムアルミネートとしては、結晶質カルシウムアルミネートと非晶質カルシウムアルミネートとを含むものが好ましく、十分な溶出防止効果を得る点から、CaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものがより好ましい。また、非晶質カルシウムアルミネートのみを用いる場合は、CaOとAl23の含有モル比がCaO/Al23=1.7である12CaO・7Al23を主成分とするものが好ましい。 Furthermore, as the calcium aluminate used in the present invention, those containing crystalline calcium aluminate and amorphous calcium aluminate are preferable, and from the point of obtaining a sufficient elution preventing effect, the content of CaO and Al 2 O 3 ratio with the crystalline calcium aluminate CaO / Al 2 O 3 = 0.9~1.4 , the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 1.6~2.6 Those containing amorphous calcium aluminate are more preferred. When only amorphous calcium aluminate is used, the main component is 12CaO · 7Al 2 O 3 in which the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 1.7. preferable.

CaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートは、前記のようなCaO源とAl23源をそれぞれCaO換算及びAl23換算して当該モル比の範囲になるように混合したものを、例えば1600℃で加熱し、これを徐冷すれば得られる。また、徐冷は、加熱装置内での自然放冷が一般的に採用できるが、加熱装置の構造上急激な温度低下が起こる場合は、概ね10℃/分以下の降温速度になるよう加熱調整するのが好ましい。CaO源は特に限定されないが、例えば石灰石粉、消石灰や生石灰粉を好適に挙げることができ、Al23源は、例えばボーキサイト粉、水酸化アルミニウム、炭酸アルミニウム、アルミ残灰、アルミナ粉末等を好適に挙げることができる。該結晶質カルシウムアルミネートのブレーン比表面積は、3000〜10000cm2/gが好ましく、これと共に使用する非結晶質カルシウムアルミネートのブレーン比表面積と概ね同じものとするのが好ましい。 Crystalline calcium aluminate molar ratio CaO / Al 2 O 3 = 0.9~1.4 of CaO and Al 2 O 3 is the like CaO source and Al 2 O 3 source as CaO and respectively al 2 O 3 in terms of a mixture to be in the range of the molar ratio, for example, by heating at 1600 ° C., are obtained if annealing it. In addition, natural cooling in the heating device can be generally used for the slow cooling, but when the temperature drops suddenly due to the structure of the heating device, the heating is adjusted so that the temperature lowering rate is approximately 10 ° C./min or less. It is preferable to do this. Although the CaO source is not particularly limited, for example, limestone powder, slaked lime and quick lime powder can be preferably mentioned, and the Al 2 O 3 source includes bauxite powder, aluminum hydroxide, aluminum carbonate, aluminum residual ash, alumina powder, etc. Preferably, it can be mentioned. The crystalline calcium aluminate preferably has a Blaine specific surface area of 3000 to 10000 cm 2 / g, and is preferably substantially the same as the Blaine specific surface area of the amorphous calcium aluminate used therewith.

CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートは、CaO源とAl23源をそれぞれCaO換算及びAl23換算して当該モル比の範囲に混合したものを、例えば1400〜1900℃で加熱溶融し、これを急冷することによって得られる。急冷は、例えば溶融物の該加熱温度からの炉外取り出し、水中急冷、冷却ガスの吹き付け等の公知の急冷手法で行うことができる。また前記非晶質カルシウムアルミネートは、粉砕・分級・篩い分け等を適宜行うことによって粒度を調整し、ブレーン比表面積で3000〜10000cm2/gにしたものを用いるのが好ましい。なお、CaO源及びAl23源は、前記結晶質カルシウムアルミネートの場合と同じものが使用できる。 Amorphous calcium aluminate molar ratio CaO / Al 2 O 3 = from 1.6 to 2.6 of CaO and Al 2 O 3 is, CaO source and Al 2 O 3 source, respectively as CaO and Al 2 O What is converted into 3 and mixed in the range of the molar ratio is obtained by, for example, heating and melting at 1400 to 1900 ° C. and rapidly cooling it. The rapid cooling can be performed by a known rapid cooling method such as taking out the melt from the heating temperature from the furnace, quenching in water, or blowing a cooling gas. The amorphous calcium aluminate is preferably adjusted to a particle size by appropriately performing pulverization, classification, sieving, etc., and a Blaine specific surface area of 3000 to 10000 cm 2 / g. Incidentally, CaO source and Al 2 O 3 source, the same thing can be used in the case of the crystalline calcium aluminate.

本発明で用いるカルシウムアルミネートは、前記のCaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートと、前記のCaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートを、100:10〜100:300の質量比で含むものが好ましく、100:50〜100:200の質量比で含むものがより好ましい。この質量比のカルシウムアルミネート混合物を用いることで、有害物質を含む廃棄物に対する溶出防止効果を特に良好に発揮することができる。また、本発明で用いるカルシウムアルミネートとしては、12CaO・7Al23を主成分とする非晶質カルシウムアルミネートを単独で使用することも好ましく、特に還元成分および/または消石灰と併用することで優れた溶出防止効果を得ることができる。 Calcium aluminate to be used in the present invention comprises a crystalline calcium aluminate molar ratio CaO / Al 2 O 3 = 0.9 to 1.4 of said CaO and Al 2 O 3, wherein the CaO and Al 2 molar ratio of O 3 is amorphous calcium aluminate CaO / Al 2 O 3 = 1.6~2.6 , 100: 10~100: preferably contains 300 mass ratio of 100: 50 What is contained at a mass ratio of 100: 200 is more preferable. By using the calcium aluminate mixture of this mass ratio, the elution prevention effect with respect to the waste containing a hazardous | toxic substance can be exhibited especially favorable. In addition, as the calcium aluminate used in the present invention, it is also preferable to use an amorphous calcium aluminate mainly composed of 12CaO · 7Al 2 O 3 , especially by using in combination with a reducing component and / or slaked lime. An excellent elution preventing effect can be obtained.

本発明に用いる硫酸アルミニウムは、化学成分としてAl2(SO43・nH2Oで表される水和物、あるいはAl2(SO43で表される無水塩の何れでも良い。好ましくは、有害物質の溶出抑制効果に優れていることからnが14〜18の水和物が良い。 The aluminum sulfate used in the present invention may be either a hydrate represented by Al 2 (SO 4 ) 3 .nH 2 O as a chemical component or an anhydrous salt represented by Al 2 (SO 4 ) 3 . Preferably, a hydrate having n of 14 to 18 is preferable because it is excellent in the elution suppression effect of harmful substances.

本発明に用いるアルカリ金属リン酸塩としては、リン酸ナトリウムやリン酸カリウムなどの易溶性の塩が挙げられる。本発明では、アルカリ金属リン酸塩を配合することにより、良好な溶出抑制効果が得られる。アルカリ金属リン酸塩としては、下記式(1)〜(3)で表されるリン酸カリウムが好ましく、溶出抑制効果に優れていることから下記式(2)で表されるリン酸二水素カリウムがより好ましい。   Examples of the alkali metal phosphate used in the present invention include readily soluble salts such as sodium phosphate and potassium phosphate. In this invention, a favorable elution inhibitory effect is acquired by mix | blending an alkali metal phosphate. As the alkali metal phosphate, potassium phosphate represented by the following formulas (1) to (3) is preferable, and potassium dihydrogen phosphate represented by the following formula (2) because of its excellent elution suppressing effect. Is more preferable.

2HPO4 (1)
KH2PO4 (2)
3PO4 (3)
K 2 HPO 4 (1)
KH 2 PO 4 (2)
K 3 PO 4 (3)

本発明に用いるリン酸カルシウムとしては、下記式(4)〜(6)で表されるリン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウムが好ましく、良好な溶出抑制効果が得られることから下記式(6)で表されるリン酸二水素カルシウムがより好ましい。
Ca3(PO4)2 (4)
CaHPO4 (5)
Ca(H2PO4)2 (6)
As the calcium phosphate used in the present invention, calcium phosphate, calcium hydrogen phosphate, and calcium dihydrogen phosphate represented by the following formulas (4) to (6) are preferable, and the following elution suppression effect can be obtained. ) Is more preferable.
Ca 3 (PO4) 2 (4)
CaHPO 4 (5)
Ca (H 2 PO 4 ) 2 (6)

本発明においては、カルシウムアルミネート、硫酸アルミニウム及びアルカリ金属リン酸塩に加えて、還元成分及び/又は消石灰を使用すると、ふっ素、ほう素、砒素及びセレンの溶出量の多い石灰成分を含む廃棄物を対象とした場合でも、これらの有害物質の溶出量が十分に低減できる。また、これらの成分を併用すると、廃棄物からの六価クロムの溶出量も低減できる。   In the present invention, in addition to calcium aluminate, aluminum sulfate and alkali metal phosphate, when a reducing component and / or slaked lime is used, waste containing a lime component with a large amount of fluorine, boron, arsenic and selenium eluted The amount of these toxic substances that can be eluted can be sufficiently reduced. Moreover, when these components are used in combination, the amount of hexavalent chromium eluted from the waste can be reduced.

本発明に用いる還元成分としては、硫酸第一鉄、チオ硫酸ナトリウム、ギ酸、シュウ酸などが挙げられるが、取扱いが容易で、比較的安価であることから硫酸第一鉄が好適に使用できる。硫酸第一鉄としては、結晶水を7つ有する硫酸第一鉄七水和物と結晶水を1つ有する硫酸第一鉄一水和物があるが、保存安定性が高い硫酸第一鉄一水和物を用いるのが好ましい。   Examples of the reducing component used in the present invention include ferrous sulfate, sodium thiosulfate, formic acid, and oxalic acid. Ferrous sulfate can be preferably used because it is easy to handle and relatively inexpensive. Ferrous sulfate includes ferrous sulfate heptahydrate having seven crystal waters and ferrous sulfate monohydrate having one crystal water. Ferrous sulfate monohydrate has high storage stability. It is preferable to use a hydrate.

本発明に用いる消石灰は、化学式 Ca(OH)2で表されるカルシウムの水酸化物を主成分とするものであれば好適に使用できる。溶出防止効果を良好に発揮させるためには、ふるい径600μmを全通する消石灰が特に好ましい。 The slaked lime used in the present invention can be suitably used as long as it contains a calcium hydroxide represented by the chemical formula Ca (OH) 2 as a main component. In order to satisfactorily exhibit the elution preventing effect, slaked lime that passes through a sieve diameter of 600 μm is particularly preferable.

本発明の溶出防止剤において、硫酸アルミニウム、アルカリ金属リン酸塩及びリン酸カルシウムの配合割合は、カルシウムアルミネート100質量部に対して硫酸アルミニウム5〜50質量部、アルカリ金属リン酸塩0.5〜10質量部及びリン酸カルシウム20〜500質量部となるように配合すると、良好な溶出防止効果が得られるため好ましい。また、還元成分及び消石灰の配合割合は、カルシウムアルミネート100質量部に対して、還元成分20〜200質量部、消石灰100〜1000質量部とするのが、溶出防止効果の点で好ましい。   In the dissolution inhibitor of the present invention, the mixing ratio of aluminum sulfate, alkali metal phosphate and calcium phosphate is 5 to 50 parts by weight of aluminum sulfate and 0.5 to 10 parts of alkali metal phosphate with respect to 100 parts by weight of calcium aluminate. When it mix | blends so that it may become 20 mass parts and calcium phosphate 20-500 mass parts, since a favorable elution prevention effect is acquired, it is preferable. Moreover, it is preferable from the point of the elution prevention effect that the compounding ratio of a reducing component and slaked lime shall be 20-200 mass parts of reducing components and 100-1000 mass parts of slaked lime with respect to 100 mass parts of calcium aluminates.

また、本発明の溶出防止剤には、溶出防止効果を損なわない限り、セメント等の固化材、タンカル粉末等の増量材などを配合しても良い。   In addition, the dissolution inhibitor of the present invention may be blended with a solidifying material such as cement, a bulking material such as tancal powder, etc., as long as the dissolution preventing effect is not impaired.

本発明の溶出防止剤が対象とする廃棄物には、石炭灰、下水汚泥焼却灰、ペーパースラッジ灰、製鋼スラグ、ゴミ焼却灰等の焼却灰類などが挙げられる。さらに、廃棄物としては、ふっ素、ほう素、砒素、セレン及び六価クロムから選ばれる1種以上の溶出量が土壌環境基準を超え、石灰成分として酸化カルシウムまたは水酸化カルシウムのいずれかを含むものを対象とするのが好ましく、石灰成分を2質量%以上含むものがより好ましい。石炭灰は、石炭火力発電所または石炭ボイラーなどで石炭の燃焼にともない発生する焼却灰である。下水汚泥焼却灰は、下水汚泥を脱水し、さらに減量化・安定化させるために焼却処理がなされたものである。ペーパースラッジ灰は、製紙工場から排出されるペーパースラッジを焼却・減容化する際に発生する焼却灰である。製鋼スラグは、高炉で製造された銑鉄を転炉等で脱炭素して鋼に精錬する工程で発生するスラグである。ゴミ焼却灰は、都市ゴミなどを減量化・安定化させるために焼却処理がなされたものである。また、これらの廃棄物と本発明の溶出防止剤との混合を容易に行うためには、廃棄物の最大粒径は1.2mm以下が好ましい。   Examples of the waste targeted by the elution inhibitor of the present invention include coal ash, sewage sludge incineration ash, paper sludge ash, steel slag, incineration ash such as garbage incineration ash, and the like. Furthermore, as waste, the amount of elution of one or more selected from fluorine, boron, arsenic, selenium and hexavalent chromium exceeds the soil environment standard and contains either calcium oxide or calcium hydroxide as a lime component It is preferable to use a lime component that contains 2% by mass or more. Coal ash is incineration ash generated by the combustion of coal in a coal-fired power plant or a coal boiler. Sewage sludge incineration ash is one that has been incinerated in order to dehydrate sewage sludge and further reduce and stabilize it. Paper sludge ash is incinerated ash generated when incinerating and reducing the volume of paper sludge discharged from a paper mill. Steelmaking slag is slag generated in a process of decarbonizing pig iron produced in a blast furnace and refining it into steel. Garbage incineration ash has been incinerated to reduce and stabilize municipal waste. In order to easily mix these wastes with the dissolution inhibitor of the present invention, the maximum particle size of the waste is preferably 1.2 mm or less.

前記有害物質が土壌環境基準を超える廃棄物を本発明の溶出防止剤で処理するには、廃棄物に溶出防止剤を添加し、水を加えて混合すればよい。廃棄物に対する溶出防止剤の添加量は、有害物質の含有量によるが廃棄物100質量部に対して0.5〜15質量部とするのが好ましく、経済性の面から0.5〜5質量部とするのがより好ましい。   In order to treat the waste in which the harmful substances exceed the soil environment standard with the elution inhibitor of the present invention, the elution inhibitor may be added to the waste, and water may be added and mixed. The amount of the dissolution inhibitor added to the waste is preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the waste, although it depends on the content of harmful substances. It is more preferable to use parts.

本発明の溶出防止剤と廃棄物と水との混合方法は、特に制限されず、パン型ミキサーや強制二軸ミキサーなどの一般的なミキサーを用いて本発明の溶出防止剤と廃棄物と水を混合して、有害物質の溶出防止処理を行うことができる。また、溶出防止処理を施した汚染物は土工材料として有効利用することができ、具体的には、埋め戻し材、路盤材、盛土材、裏込材、土壌改良材、道路資材、コンクリート製品用混和材等に使用することができる。   The mixing method of the elution inhibitor of the present invention, waste and water is not particularly limited, and the elution inhibitor of the present invention, waste and water are used by using a general mixer such as a bread mixer or a forced biaxial mixer. Can be mixed to prevent elution of harmful substances. In addition, contaminants that have been treated to prevent elution can be effectively used as earthwork materials, specifically for backfill materials, roadbed materials, embankment materials, backing materials, soil improvement materials, road materials, and concrete products. It can be used as an admixture.

次に実施例を挙げて本発明をさらに詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

(溶出防止剤)
CaO源に石灰石(CaO含有量;56質量%)、Al23源にバン土頁岩(Al23含有量;88質量%)のそれぞれ粗砕粒(粒径約1mm以下)を用い、以下のA1〜A6で表すカルシウムアルミネートの粉末を作製した。その作製方法は、CaO源とAl23源を所定のモル比に配合したものを、電気炉で1800℃(±50℃)に加熱し、60分間保持した後、加熱を停止して炉内で自然放冷して得た(A1〜A4)。同様に1800℃(±50℃)に加熱し、60分間保持した後、温度1800℃の電気炉から加熱物を常温下に取り出し、取り出し後は直ちに加熱物表面に流量約100cc/秒で窒素ガスを吹き付けて急冷して得た(A5〜A7)。得られた冷却物はボールミルで粉砕し、ブレーン比表面積が5000±500cm2/gとなるよう粉砕時間を変えて粉末度を調整した。
A1;CaO/Al23=モル比1.0の結晶質カルシウムアルミネート
A2;CaO/Al23=モル比1.3の結晶質カルシウムアルミネート
A3;CaO/Al23=モル比1.7の結晶質カルシウムアルミネート
A4;CaO/Al23=モル比0.5の結晶質カルシウムアルミネート
A5;CaO/Al23=モル比1.7の非晶質カルシウムアルミネート(非晶質12CaO・7Al23
A6;CaO/Al23=モル比2.3の非晶質カルシウムアルミネート
A7;CaO/Al23=モル比2.9のガラス化率10%のカルシウムアルミネート
(Elution inhibitor)
Using coarse crushed particles (particle size of about 1 mm or less) of limestone (CaO content; 56% by mass) as the CaO source and van earth shale (Al 2 O 3 content; 88% by mass) as the Al 2 O 3 source, Calcium aluminate powders represented by A1 to A6 were prepared. The production method is as follows: a mixture of a CaO source and an Al 2 O 3 source in a predetermined molar ratio is heated to 1800 ° C. (± 50 ° C.) in an electric furnace, held for 60 minutes, and then the heating is stopped and the furnace It was obtained by allowing to cool naturally (A1 to A4). Similarly, after heating to 1800 ° C. (± 50 ° C.) and holding for 60 minutes, the heated product is taken out from the electric furnace at a temperature of 1800 ° C. at room temperature, and immediately after removal, nitrogen gas is applied to the heated product surface at a flow rate of about 100 cc / sec. Were obtained by spraying and quenching (A5 to A7). The obtained cooled product was pulverized by a ball mill, and the fineness was adjusted by changing the pulverization time so that the specific surface area of the brane was 5000 ± 500 cm 2 / g.
A1; CaO / Al 2 O 3 = crystalline calcium aluminate A2 in molar ratio A2; CaO / Al 2 O 3 = crystalline calcium aluminate A3 in molar ratio 1.3; CaO / Al 2 O 3 = mol Crystalline calcium aluminate A4 with a ratio of 1.7; CaO / Al 2 O 3 = crystalline calcium aluminate A5 with a molar ratio of 0.5; CaO / Al 2 O 3 = amorphous calcium aluminum with a molar ratio of 1.7 Nate (Amorphous 12CaO · 7Al 2 O 3 )
A6; CaO / Al 2 O 3 = amorphous calcium aluminate with a molar ratio of 2.3 A7; CaO / Al 2 O 3 = calcium aluminate with a molar ratio of 2.9 and a vitrification rate of 10%

A1〜A7のカルシウムアルミネートと次に示すB〜から選定される材料を用い、表2及び表3に示す配合割合でヘンシェル型ミキサーを用いて3分間乾式混合し、溶出防止剤を作製した。
B;硫酸アルミニウム14−18水和物:関東化学社製 粉末試薬
C;リン酸二水素カリウム:関東化学社製 粉末試薬
D;リン酸二水素カルシウム:太平化学産業社製 食品添加物用粉末
E;硫酸第一鉄一水和物:富士チタン工業社製
F;消石灰:関東化学社製 粉末試薬
Using materials selected from A1 to A7 calcium aluminate and B to F shown below, dry mixing was performed for 3 minutes using a Henschel mixer at the blending ratios shown in Tables 2 and 3 to prepare an elution inhibitor. .
B; Aluminum sulfate 14-18 hydrate: Powder reagent C manufactured by Kanto Chemical Co .; Potassium dihydrogen phosphate: Powder reagent D manufactured by Kanto Chemical Co., Ltd .; Powder dihydrogen calcium phosphate manufactured by Taihei Chemical Industrial Co., Ltd. Powder E for food additives ; Ferrous sulfate monohydrate: F manufactured by Fuji Titanium Industry Co .; Slaked lime: Powder reagent manufactured by Kanto Chemical Co., Inc.

Figure 0006157947
Figure 0006157947

Figure 0006157947
Figure 0006157947

(廃棄物)
・石炭灰
有害物質を含む廃棄物として最大粒径が1.2mm以下の石炭灰5種類を使用した。これら石炭灰について、石灰成分(酸化カルシウム)の含有量、環境庁告示第46号に準じた方法により、ふっ素、ほう素、砒素、セレン及び六価クロム(Cr6+)の溶出量を測定し、同法による溶出試験の検液のpHを測定した。測定結果を表4及び表5に示す。
(waste)
-Coal ash Five types of coal ash having a maximum particle size of 1.2 mm or less were used as waste containing harmful substances. For these coal ash, the content of lime component (calcium oxide) and the amount of elution of fluorine, boron, arsenic, selenium and hexavalent chromium (Cr6 + ) were measured by the method according to Environment Agency Notification No. 46. The pH of the test solution of the dissolution test by the same method was measured. The measurement results are shown in Tables 4 and 5.

Figure 0006157947
Figure 0006157947

Figure 0006157947
Figure 0006157947

(溶出量の測定1)
表4に示す石炭灰(FA−1、FA−2、FA−3)に表2の溶出防止剤と水を表7に示す配合割合で加え、モルタルミキサーで3分間混合して混合物を調整した。該混合物を20℃の温度で7日間風乾養生した後に、環境庁告示第46号に準じた方法でふっ素、ほう素、砒素及びセレンの溶出量を測定した。溶出量の測定結果を表7に示す。
(Measurement of elution amount 1)
To the coal ash (FA-1, FA-2, FA-3) shown in Table 4, the elution inhibitor and water shown in Table 2 were added at the blending ratio shown in Table 7, and the mixture was adjusted by mixing for 3 minutes with a mortar mixer. . After the mixture was air-dried at a temperature of 20 ° C. for 7 days, the elution amounts of fluorine, boron, arsenic and selenium were measured by a method according to Environmental Agency Notification No. 46. Table 7 shows the measurement results of the elution amount.

(溶出量の測定2)
表5に示すセレンあるいは砒素の溶出量が非常に高い石炭灰(FA−4、FA−5)に表3の溶出防止剤と水を表8に示す配合割合で加え、モルタルミキサーで3分間混合して混合物を調整した。該混合物を20℃の温度で7日間風乾養生した後に、環境庁告示第46号に準じた方法でふっ素、ほう素、砒素、セレン及び六価クロムの溶出量を測定した。溶出量の測定結果を表8に示す。
(Measurement of elution amount 2)
Add elution inhibitor and water of Table 3 to coal ash (FA-4, FA-5) with very high elution amount of selenium or arsenic shown in Table 5 in the mixing ratio shown in Table 8 and mix for 3 minutes with a mortar mixer. To prepare a mixture. After the mixture was air-dried at a temperature of 20 ° C. for 7 days, the elution amounts of fluorine, boron, arsenic, selenium and hexavalent chromium were measured by a method according to Notification No. 46 of the Environment Agency. Table 8 shows the measurement results of the elution amount.

〔環境庁告示第46号に準じた溶出量測定方法〕
(1)7日間風乾養生した試料を解砕し、ふるい2mm通過分を採取混合する。
(2)容積1000mLのポリ容器に試料50gを計りとり、溶媒(純水1Lに0.5mol塩酸を加えてpH6.1に調整したもの)500gを加え、振とう機(振とう回数200回/分)で6時間振とうする。
(3)ポリ容器を30分静置した後、試料液の上澄みを孔径0.45μmのメンブレンフィルターでろ過して検液とする。
(4)採取した検液の成分を表6に示す方法で測定する。
[Measurement method of elution volume according to Environmental Agency Notification No. 46]
(1) Disintegrate the sample that has been air-dried for 7 days, and collect the 2 mm sieve through and mix.
(2) Weigh 50 g of sample in a 1000 mL capacity plastic container, add 500 g of solvent (adjusted to pH 6.1 by adding 0.5 mol hydrochloric acid to 1 L of pure water), and shaker (number of shakes 200 times / Shake for 6 hours.
(3) After allowing the polycontainer to stand for 30 minutes, the supernatant of the sample solution is filtered through a membrane filter having a pore diameter of 0.45 μm to obtain a test solution.
(4) The components of the collected test solution are measured by the method shown in Table 6.

Figure 0006157947
Figure 0006157947

Figure 0006157947
Figure 0006157947

表7の結果より、本発明の溶出防止剤を混合した石炭灰は、いずれもふっ素、ほう素、砒素及びセレンの溶出量が土壌環境基準(環境庁告示第46号)の規定値以下に抑制されており、溶出防止効果が良好に発揮されていることが分かる。また、カルシウムアルミネートとして、CaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを100:50〜100:200の質量比で含むものを配合したNo.2〜4、6、9〜11、13の溶出防止剤を使用した実施例2〜7、9、12〜14、16では、前記4種の有害物質に対する溶出抑制効果が特に高かった。また、リン酸カルシウムを配合したNo.19〜21の溶出防止剤を使用した実施例22〜25では、特にふっ素の溶出量の抑制効果が大きかった。また、酸化カルシウム含有量が多い石炭灰(FA-3)を用いた実施例28および29では、溶出抑制効果がより良好に発揮されており、本発明の溶出防止剤が石灰成分を含む石炭灰からの有害物質の溶出防止に有効であることが分かる。これに対し、本発明以外の溶出防止剤を用いた場合は、前記4種の有害物質のいずれかの溶出量も土壌環境基準を超過しており、溶出防止効果は不十分であった。 From the results in Table 7, the coal ash mixed with the elution inhibitor of the present invention has the elution amount of fluorine, boron, arsenic and selenium all suppressed to the specified value of the soil environment standard (Environment Agency Notification No. 46). It can be seen that the elution prevention effect is well exhibited. Moreover, as calcium aluminate, the content molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.9 to 1.4, and the content molar ratio of CaO and Al 2 O 3 There the amorphous calcium aluminate CaO / Al 2 O 3 = 1.6~2.6 100: 50~100: No.2~4,6,9~ formulated those containing 200 mass ratio of In Examples 2 to 7, 9, 12 to 14, and 16 using the elution inhibitors of Nos. 11 and 13, the elution suppressing effect on the four kinds of harmful substances was particularly high. Moreover, in Examples 22-25 using the dissolution inhibitor of No. 19-21 which mix | blended calcium phosphate, the inhibitory effect of the elution amount of fluorine was especially large. Further, in Examples 28 and 29 using coal ash (FA-3) having a high calcium oxide content, the elution suppression effect is more satisfactorily exhibited, and the elution inhibitor of the present invention includes coal ash containing a lime component. It can be seen that it is effective in preventing the release of harmful substances from On the other hand, when an elution inhibitor other than the present invention was used, the elution amount of any one of the four types of harmful substances exceeded the soil environmental standard, and the elution prevention effect was insufficient.

Figure 0006157947
Figure 0006157947

表8の結果より、砒素あるいはセレンの溶出量が非常に高い石炭灰であっても、カルシウムアルミネート、硫酸アルミニウム及びアルカリ金属リン酸塩に、還元成分及び/又は消石灰を組み合わせた本発明の溶出防止剤(No.28〜32、No.35)を混合することによって、いずれもふっ素、ほう素、砒素、セレンに加え、六価クロムの全ての溶出量が土壌環境基準(環境庁告示第46号)の規定値以下に抑制されており、溶出防止効果が良好に発揮されていることが分かる。   From the results shown in Table 8, even when coal ash with a very high arsenic or selenium elution amount is used, elution of the present invention in which reducing components and / or slaked lime are combined with calcium aluminate, aluminum sulfate and alkali metal phosphate. In addition to fluorine, boron, arsenic, and selenium, all elutions of hexavalent chromium are mixed with soil environmental standards (Environment Agency Notification No. 46). It can be seen that the elution prevention effect is satisfactorily exhibited.

Claims (12)

カルシウムアルミネート、硫酸アルミニウム及びリン酸カリウムを含有し、
カルシウムアルミネートが、CaOとAl 2 3 の含有モル比がCaO/Al 2 3 =0.5〜2.9であり、
添加量が、廃棄物100質量部に対して0.5〜10質量部であることを特徴とする、
石灰成分を含む廃棄物からのふっ素、ほう素、砒素及びセレンの溶出防止剤。
Contains calcium aluminate, aluminum sulfate and potassium phosphate,
Calcium aluminate, molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.5~2.9 ,
The addition amount is 0.5 to 10 parts by mass with respect to 100 parts by mass of waste ,
Anti-elution agent for fluorine, boron, arsenic and selenium from waste containing lime components.
カルシウムアルミネートが、CaOとAl23の含有モル比がCaO/Al23=0.9〜1.4の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6〜2.6の非晶質カルシウムアルミネートとを含むものである請求項1に記載の溶出防止剤。 Calcium aluminate, molar ratio of CaO and Al molar ratio of 2 O 3 and the crystalline calcium aluminate CaO / Al 2 O 3 = 0.9 to 1.4, CaO and Al 2 O 3 is CaO The elution inhibitor according to claim 1, which contains amorphous calcium aluminate of / Al 2 O 3 = 1.6 to 2.6. カルシウムアルミネートが、前記結晶質カルシウムアルミネートと、前記非晶質カルシウムアルミネートとを100:10〜100:300の質量比で含むものである請求項2に記載の溶出防止剤。   The elution inhibitor according to claim 2, wherein the calcium aluminate contains the crystalline calcium aluminate and the amorphous calcium aluminate in a mass ratio of 100: 10 to 100: 300. カルシウムアルミネートが、非晶質の12CaO・7Al23を主成分とするものである請求項1に記載の溶出防止剤。 The dissolution inhibitor according to claim 1, wherein the calcium aluminate is mainly composed of amorphous 12CaO · 7Al 2 O 3 . さらにリン酸カルシウムを含有することを特徴とする、請求項1〜のいずれかに記載の溶出防止剤。 Furthermore, calcium phosphate is contained, The elution prevention agent in any one of Claims 1-4 characterized by the above-mentioned. リン酸カルシウムが、リン酸二水素カルシウムであることを特徴とする、請求項に記載の溶出防止剤。 The elution inhibitor according to claim 5 , wherein the calcium phosphate is calcium dihydrogen phosphate. さらに還元成分を含有することを特徴とする、請求項1〜のいずれかに記載の溶出防止剤。 The elution inhibitor according to any one of claims 1 to 6 , further comprising a reducing component. 還元成分が、硫酸第一鉄一水和物であることを特徴とする、請求項に記載の溶出防止剤。 The elution inhibitor according to claim 7 , wherein the reducing component is ferrous sulfate monohydrate. さらに消石灰を含有することを特徴とする、請求項1〜のいずれかに記載の溶出防止剤。 Furthermore, the elution prevention agent in any one of Claims 1-8 characterized by containing slaked lime. カルシウムアルミネート、硫酸アルミニウム、リン酸カリウム、並びに還元成分及び/又は消石灰を含有し、
カルシウムアルミネートが、CaOとAl 2 3 の含有モル比がCaO/Al 2 3 =0.5〜2.9であることを特徴とする、
石灰成分を含む廃棄物からのふっ素、ほう素、砒素、セレン及び六価クロムの溶出防止剤。
Containing calcium aluminate, aluminum sulfate, potassium phosphate , and reducing components and / or slaked lime ,
The calcium aluminate is characterized in that the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 0.5 to 2.9 ,
Anti-elution agent for fluorine, boron, arsenic, selenium and hexavalent chromium from waste containing lime.
石灰成分を含み、ふっ素、ほう素、砒素及びセレンから選ばれる1種以上の溶出量が土壌環境基準を超える廃棄物に、請求項1〜のいずれかに記載の溶出防止剤を添加、混合することを特徴とする、該廃棄物からのふっ素、ほう素、砒素及びセレンの溶出防止方法。 Addition and mixing of an elution inhibitor according to any one of claims 1 to 9 to a waste containing a lime component and having at least one elution amount selected from fluorine, boron, arsenic and selenium exceeding a soil environmental standard And a method for preventing elution of fluorine, boron, arsenic and selenium from the waste. 石灰成分を含み、ふっ素、ほう素、砒素、セレン及び六価クロムから選ばれる1種以上の溶出量が土壌環境基準を超える廃棄物に、請求項7〜9のいずれかに記載の溶出防止剤を添加、混合することを特徴とする、該廃棄物からのふっ素、ほう素、砒素、セレン及び六価クロムの溶出防止方法。 The leaching preventive agent according to any one of claims 7 to 9 , which contains a lime component and has a leaching amount of one or more selected from fluorine, boron, arsenic, selenium and hexavalent chromium exceeding a soil environment standard. A method for preventing elution of fluorine, boron, arsenic, selenium and hexavalent chromium from the waste, characterized by comprising adding and mixing.
JP2013129183A 2012-12-13 2013-06-20 Anti-elution agent for harmful substances and elution prevention method using the same Active JP6157947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129183A JP6157947B2 (en) 2012-12-13 2013-06-20 Anti-elution agent for harmful substances and elution prevention method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012272326 2012-12-13
JP2012272326 2012-12-13
JP2013129183A JP6157947B2 (en) 2012-12-13 2013-06-20 Anti-elution agent for harmful substances and elution prevention method using the same

Publications (2)

Publication Number Publication Date
JP2014133865A JP2014133865A (en) 2014-07-24
JP6157947B2 true JP6157947B2 (en) 2017-07-05

Family

ID=51412380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129183A Active JP6157947B2 (en) 2012-12-13 2013-06-20 Anti-elution agent for harmful substances and elution prevention method using the same

Country Status (1)

Country Link
JP (1) JP6157947B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182572A (en) * 2015-03-26 2016-10-20 株式会社神戸製鋼所 Elution inhibition method for fluorine and hexavalent chromium, manufacturing method of civil engineering and harbor material, manufacturing method of underground burying material, civil engineering and harbor material, and underground burying material
JP2017145294A (en) * 2016-02-16 2017-08-24 太平洋マテリアル株式会社 Agent and method for inhibiting the elution of harmful material
JP6835117B2 (en) * 2018-02-28 2021-02-24 Jfeスチール株式会社 Steel slag processing method and steel slag recycled product manufacturing method
JP2019157053A (en) * 2018-03-16 2019-09-19 太平洋マテリアル株式会社 Elution preventive agent for heavy metals from incineration ash and elution preventive method using same
JP7304029B2 (en) * 2019-03-01 2023-07-06 太平洋マテリアル株式会社 Method for preventing elution of heavy metals from incinerated ash

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005447B2 (en) * 2002-07-17 2007-11-07 株式会社ナトー研究所 Heavy metal immobilization material and treatment method for contaminated soil
JP3877712B2 (en) * 2003-06-30 2007-02-07 電気化学工業株式会社 Arsenic and / or selenium collector
JP5807349B2 (en) * 2011-03-10 2015-11-10 栗田工業株式会社 Detoxification method for solid waste containing heavy metals

Also Published As

Publication number Publication date
JP2014133865A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
Bertos et al. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO 2
JP5807349B2 (en) Detoxification method for solid waste containing heavy metals
JP6157947B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2017145294A (en) Agent and method for inhibiting the elution of harmful material
US7678192B2 (en) Method of solidifying and detoxifying soil, incinerated ash and coal ash and method of detoxifying polluted water containing dioxins and PCB
JP6077778B2 (en) Earthwork materials
TW512077B (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP6077765B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JPH10137716A (en) Waste treating material and treatment of waste
JP5877049B2 (en) Anti-elution agent for harmful substances
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP5836096B2 (en) Earthwork materials
JP4712290B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
JP6002496B2 (en) Earthwork materials
JP2019157053A (en) Elution preventive agent for heavy metals from incineration ash and elution preventive method using same
JP5923362B2 (en) Treatment method for radioactive contaminants
JP5976415B2 (en) Earthwork materials
JP7304029B2 (en) Method for preventing elution of heavy metals from incinerated ash
JP5833425B2 (en) Earthwork materials
JP5887122B2 (en) Wastewater treatment agent
JP2007176793A (en) Method for manufacturing fired product of incineration ash
JP3980109B2 (en) Incineration ash firing method / fired product and method of using the fired product
JP2013127030A (en) Civil engineering material
JP5976416B2 (en) Earthwork materials
JP2024083949A (en) Harmful substance treatment material and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6157947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250