JP6149407B2 - Thermoelectric power generation system - Google Patents

Thermoelectric power generation system Download PDF

Info

Publication number
JP6149407B2
JP6149407B2 JP2013013962A JP2013013962A JP6149407B2 JP 6149407 B2 JP6149407 B2 JP 6149407B2 JP 2013013962 A JP2013013962 A JP 2013013962A JP 2013013962 A JP2013013962 A JP 2013013962A JP 6149407 B2 JP6149407 B2 JP 6149407B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
heat exchange
heat
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013013962A
Other languages
Japanese (ja)
Other versions
JP2014146675A (en
Inventor
尾上 勝彦
勝彦 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2013013962A priority Critical patent/JP6149407B2/en
Publication of JP2014146675A publication Critical patent/JP2014146675A/en
Application granted granted Critical
Publication of JP6149407B2 publication Critical patent/JP6149407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

この発明は、ゼーベック効果を利用して発電する熱電発電モジュールを利用した熱電発電システムに関する。   The present invention relates to a thermoelectric power generation system using a thermoelectric power generation module that generates power using the Seebeck effect.

近年、この種の熱電発電モジュールを用いて廃熱を有効利用する技術が注目を集めている。例えば、工場やプラントなどにおける高温の流体が流れるパイプの壁面にこの種の熱電発電モジュールを取り付け、熱電発電モジュールの他方の面にヒートシンクなどの熱交換部材を取り付けて放熱させることで、当該パイプからの熱を電力に変換して利用するといった具合である。例えば、特許文献1には、パイプの周方向に沿って複数の熱電発電モジュールを配置し、さらに熱電発電モジュール毎にヒートシンクなどの熱交換部材を装着することで熱電発電システムを構築する技術が開示されている。   In recent years, a technique for effectively utilizing waste heat by using this type of thermoelectric power generation module has attracted attention. For example, this type of thermoelectric power module is attached to the wall of a pipe through which a high-temperature fluid flows in a factory or plant, and a heat exchange member such as a heat sink is attached to the other surface of the thermoelectric power module to dissipate heat. The heat is converted into electric power and used. For example, Patent Document 1 discloses a technique for constructing a thermoelectric power generation system by arranging a plurality of thermoelectric power generation modules along the circumferential direction of a pipe and further mounting a heat exchange member such as a heat sink for each thermoelectric power generation module. Has been.

特表2010−532577号公報Special table 2010-532577 gazette

しかし、特許文献1に開示された熱電発電システムには、人や物の接触により熱交換部材が熱電発電モジュールから脱落しやすいといった問題がある。また、人や物の接触により熱交換部材に大きな衝撃が加わるとその衝撃が熱電発電モジュールに直に伝わり、熱電発電モジュールが破損してしまう場合もある。つまり、特許文献1に開示の熱電発電システムには、熱交換部材に衝撃が加わった際の耐久性が低いといった問題がある。   However, the thermoelectric power generation system disclosed in Patent Document 1 has a problem that the heat exchange member is easily dropped from the thermoelectric power generation module due to contact of a person or an object. Further, when a large impact is applied to the heat exchange member due to contact of a person or an object, the impact is directly transmitted to the thermoelectric power generation module, and the thermoelectric power generation module may be damaged. That is, the thermoelectric power generation system disclosed in Patent Document 1 has a problem that durability when an impact is applied to the heat exchange member is low.

本発明は上記課題に鑑みて為されたものであり、熱交換部材に加わる衝撃に対する耐久性の高い熱電発電システムを提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the thermoelectric power generation system with high durability with respect to the impact added to a heat exchange member.

上記課題を解決するために本発明は、複数の熱電発電ユニットであって、各々第1の熱源との間で熱交換を行う底板と、前記第1の熱源とは異なる第2の熱源との間で熱交換を行う熱交換部材と、前記底板と前記熱交換部材との間に挟まれた熱電発電モジュールと、を有する複数の熱電発電ユニットと、互いに隣り合う熱電発電ユニットの熱交換部材を連結する連結部材と、を有することを特徴とする熱電発電システム、を提供する。本発明の熱電発電システムにおいては、各熱交換部材は互いに隣り合うもの同士が連結部材により連結されているため、人や物の接触により容易に脱落することはない。また、何れかの熱交換部材に衝撃が加わったとしても、衝撃の加わった熱交換部材に連結されている他の熱交換部材にその衝撃の一部が逃げ、熱交換部材に加わった衝撃が当該熱交換部材と底板との間に挟まれている熱電発電モジュールにそのまま伝わることが回避される。つまり、本発明の熱電発電システムによれば、熱交換部材に加わる衝撃に対する耐久性が従来よりも高くなる。   In order to solve the above problems, the present invention provides a plurality of thermoelectric power generation units, each of which includes a bottom plate that exchanges heat with a first heat source, and a second heat source that is different from the first heat source. A plurality of thermoelectric power generation units having a heat exchange member that exchanges heat between them, and a thermoelectric power generation module sandwiched between the bottom plate and the heat exchange member, and heat exchange members of thermoelectric power generation units adjacent to each other There is provided a thermoelectric power generation system including a connecting member to be connected. In the thermoelectric power generation system of the present invention, the heat exchange members that are adjacent to each other are connected by the connecting member, and therefore do not easily fall off due to the contact of a person or an object. Moreover, even if an impact is applied to any of the heat exchange members, a part of the impact escapes to other heat exchange members connected to the impacted heat exchange member, and the impact applied to the heat exchange member Transmission to the thermoelectric power generation module sandwiched between the heat exchange member and the bottom plate is avoided. That is, according to the thermoelectric power generation system of the present invention, durability against an impact applied to the heat exchange member is higher than before.

連結部材をどのような素材で形成するのかについては種々の態様が考えられる。連結部材を熱を伝えやすい性質を有する素材(例えば、銅やアルミニウムなどの金属、以下、熱伝導体)により構成すれば、互いに連結された熱交換部材を1つの熱交換部材として機能させることができる。また、ゴムなどの弾性を有する素材により連結部材を構成すれば、衝撃の加わった熱交換部材からその熱交換部材に連結された熱交換部材へ連結部材を介して衝撃が伝わる際に、その衝撃の一部を連結部材の弾性によって吸収することができ、熱交換部材に加わる衝撃に対する耐久性をさらに高くすることができると考えられる。   Various materials can be considered as to what kind of material the connecting member is formed of. If the connecting member is made of a material that easily conducts heat (for example, a metal such as copper or aluminum, hereinafter referred to as a heat conductor), the heat exchange members connected to each other can function as a single heat exchange member. it can. In addition, if the connecting member is made of an elastic material such as rubber, when the impact is transmitted from the heat exchange member to which the impact is applied to the heat exchange member connected to the heat exchange member via the connection member, the impact is transmitted. It is considered that a part of can be absorbed by the elasticity of the connecting member, and durability against an impact applied to the heat exchange member can be further increased.

より好ましい態様としては、上記熱電発電システムに、複数の熱電発電ユニットにより得られた電力により駆動される回路を含ませる態様が考えられる。ここで、どのような回路を熱電発電システムに含ませておくのかについては種々の態様が考えられる。例えば、第1の熱源(或いは第2の熱源、または第1および第2の熱源の両方)の温度を計測するための温度センサと、当該温度センサの出力信号を無線送信する無線通信部と、無線通信回路の作動制御を行うCPU(Central Processing Unit)などの制御部と、各熱電発電モジュールにより得られた電力を昇圧してこれら各部に供給する昇圧回路とを熱電発電システムに含ませておく、といった具合である。このような態様によれば、無線通信部から送信されてくるデータに基づいて熱電発電システムの動作環境を把握することができる。   As a more preferable aspect, an aspect in which a circuit driven by electric power obtained by a plurality of thermoelectric power generation units is included in the thermoelectric power generation system can be considered. Here, various modes can be considered as to what kind of circuit is included in the thermoelectric power generation system. For example, a temperature sensor for measuring the temperature of the first heat source (or the second heat source, or both the first and second heat sources), a wireless communication unit that wirelessly transmits an output signal of the temperature sensor, A thermoelectric power generation system includes a control unit such as a CPU (Central Processing Unit) that controls the operation of the wireless communication circuit and a booster circuit that boosts the electric power obtained by each thermoelectric power generation module and supplies the boosted power to these units. And so on. According to such an aspect, it is possible to grasp the operating environment of the thermoelectric power generation system based on the data transmitted from the wireless communication unit.

さらに別の好ましい態様としては、複数の熱電発電ユニットの各々の底板の第1の熱源に接する面を全体に亙って第1の熱源の表面に当接させる態様が考えられる。例えば、複数の熱電発電ユニットの各々の底板の第1の熱源に接する面を第1の熱源の表面と同じ曲率を有する曲面状に形成しておくといった具合である。このような態様によれば、例えば工場内に敷設され室温よりも高温(或いは低温)の流体が流れるパイプなど曲面状の表面を有する物体を第1の熱源とする場合であっても、各熱電発電ユニットの底板を第1の熱源の表面に密着させることができ、第1の熱源と底板との離間に起因する発電効率の低下を回避することができる。   As another preferred mode, a mode in which the surface of the bottom plate of each of the plurality of thermoelectric power generation units in contact with the first heat source is brought into contact with the surface of the first heat source as a whole is conceivable. For example, the surface in contact with the first heat source of the bottom plate of each of the plurality of thermoelectric power generation units is formed in a curved shape having the same curvature as the surface of the first heat source. According to such an aspect, each thermoelectric element can be used even when the first heat source is an object having a curved surface such as a pipe that is laid in a factory and flows a fluid having a temperature higher (or lower) than room temperature. The bottom plate of the power generation unit can be brought into close contact with the surface of the first heat source, and a decrease in power generation efficiency due to the separation between the first heat source and the bottom plate can be avoided.

この発明の一実施形態の熱電発電システムの構成例を示す図である。It is a figure which shows the structural example of the thermoelectric power generation system of one Embodiment of this invention. 同熱電発電システムにおける各熱電発電ユニット1−nの連結方法を説明するための図である。It is a figure for demonstrating the connection method of each thermoelectric power generation unit 1-n in the thermoelectric power generation system. 同熱電発電システムとの比較対象となる従来の熱電発電システムの構成例を示す図である。It is a figure which shows the structural example of the conventional thermoelectric power generation system used as the comparison object with the same thermoelectric power generation system. 変形例(1)の熱電発電システムの構成例を示す図である。It is a figure which shows the structural example of the thermoelectric power generation system of a modification (1). 変形例(1)の熱電発電システムの構成例を示す図である。It is a figure which shows the structural example of the thermoelectric power generation system of a modification (1). 同変形例(2)の熱電発電ユニットの構成例を示す図である。It is a figure which shows the structural example of the thermoelectric power generation unit of the modification (2). 同変形例(3)の熱電発電システムの構成例を示す図である。It is a figure which shows the structural example of the thermoelectric power generation system of the modification (3).

以下、図面を参照しつつ、本発明の実施形態について説明する。
図1(A)は、本発明の一実施形態の熱電発電システムの構成例を示す図である。図1(A)に示すように、本実施形態の熱電発電システムは、熱電発電ユニット1−n(n=1〜6)を円環状に連結して構成されており、気温よりも高温(或いは低温)の流体の流れるパイプ2に装着される。この熱電発電システムは、上記パイプ2を第1の熱源とする一方、パイプ2周囲の空気を第2の熱源とし、第1および第2の熱源の温度差を電気エネルギーとして取り出すためのものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a diagram illustrating a configuration example of a thermoelectric power generation system according to an embodiment of the present invention. As shown in FIG. 1 (A), the thermoelectric power generation system of the present embodiment is configured by connecting thermoelectric power generation units 1-n (n = 1 to 6) in an annular shape, and has a temperature higher than the temperature (or It is attached to the pipe 2 through which the fluid (low temperature) flows. In this thermoelectric power generation system, the pipe 2 is used as a first heat source, the air around the pipe 2 is used as a second heat source, and a temperature difference between the first and second heat sources is taken out as electric energy. .

図1(B)は熱電発電ユニット1−nの構成例を示す図である。図1(B)に示すように、熱電発電ユニット1−nは、従来の一般的な熱電発電ユニットと同様に、各々熱伝導体により各々形成された底板10および熱交換部材20と、底板10および熱交換部材20によって挟まれた熱電発電モジュール30を含んでいる。底板10は第1の熱源(本実施形態では、パイプ2)との間で熱交換を行うためのものであり、底板10の底面は、面全体に亙って第1の熱源の表面(本実施形態では、パイプ2の壁面)に当接するように、第1の熱源の表面の形状に応じた曲面状に形成されている。なお、底板10の底面と第1の熱源の表面との間の熱交換が円滑に行われるようにするために、底板10の底面にシリコングリースなどの熱伝導率の高いゲル状剤を塗布して底板10を第1の熱源に装着しても勿論良い。   FIG. 1B is a diagram illustrating a configuration example of the thermoelectric power generation unit 1-n. As shown in FIG. 1B, the thermoelectric power generation unit 1-n includes a bottom plate 10 and a heat exchange member 20 each formed of a thermal conductor, and a bottom plate 10 in the same manner as a conventional general thermoelectric generation unit. And a thermoelectric power generation module 30 sandwiched between the heat exchange members 20. The bottom plate 10 is for exchanging heat with the first heat source (in this embodiment, the pipe 2), and the bottom surface of the bottom plate 10 extends over the entire surface of the first heat source (the main plate). In the embodiment, it is formed in a curved surface shape corresponding to the shape of the surface of the first heat source so as to contact the wall surface of the pipe 2. In addition, a gel-like agent having a high thermal conductivity such as silicon grease is applied to the bottom surface of the bottom plate 10 so that heat exchange between the bottom surface of the bottom plate 10 and the surface of the first heat source can be performed smoothly. Of course, the bottom plate 10 may be attached to the first heat source.

熱交換部材20は例えば多数のピン状のフィンを有するヒートシンクであり、第2の熱源との間で熱交換を行うためのものである。本実施形態ではピン状のフィンを多数有するヒートシンクを熱交換部材20として用いたが、羽状のフィンを多数有するヒートシンクを用いても良い。本実施形態の熱電発電システムでは、図1(A)に示すように、連結部材3−1によって熱電発電ユニット1−1の熱交換部材20と熱電発電ユニット1−2の熱交換部材20とが連結され、連結部材3−2によって熱電発電ユニット1−2の熱交換部材20と熱電発電ユニット1−3の熱交換部材20とが連結され、連結部材3−3によって熱電発電ユニット1−3の熱交換部材20と熱電発電ユニット1−4の熱交換部材20とが連結され、連結部材3−4によって熱電発電ユニット1−4の熱交換部材20と熱電発電ユニット1−5の熱交換部材20とが連結され、連結部材3−5によって熱電発電ユニット1−5の熱交換部材20と熱電発電ユニット1−6の熱交換部材20とが連結され、連結部材3−6によって熱電発電ユニット1−6の熱交換部材20と熱電発電ユニット1−1の熱交換部材20とが連結されている。つまり、本実施形態の熱電発電システムでは、互いに隣り合う熱電発電ユニットの熱交換部材が連結部材により連結されている。連結部材3−n(n=1〜6)は、熱交換部材20と同様に熱伝導体により形成されている。   The heat exchange member 20 is, for example, a heat sink having a large number of pin-shaped fins, and is for exchanging heat with the second heat source. In this embodiment, a heat sink having a large number of pin-shaped fins is used as the heat exchange member 20, but a heat sink having a large number of wing-shaped fins may be used. In the thermoelectric power generation system of the present embodiment, as shown in FIG. 1A, the heat exchange member 20 of the thermoelectric power generation unit 1-1 and the heat exchange member 20 of the thermoelectric power generation unit 1-2 are connected by the connecting member 3-1. The heat exchange member 20 of the thermoelectric generation unit 1-2 and the heat exchange member 20 of the thermoelectric generation unit 1-3 are connected by the connection member 3-2, and the thermoelectric generation unit 1-3 is connected by the connection member 3-3. The heat exchange member 20 and the heat exchange member 20 of the thermoelectric power generation unit 1-4 are connected, and the heat exchange member 20 of the thermoelectric power generation unit 1-4 and the heat exchange member 20 of the thermoelectric power generation unit 1-5 are connected by the connection member 3-4. Are connected, the heat exchange member 20 of the thermoelectric power generation unit 1-5 and the heat exchange member 20 of the thermoelectric power generation unit 1-6 are connected by the connection member 3-5, and the thermoelectric power generation unit is connected by the connection member 3-6. -6 and the heat exchange member 20 of the heat exchange member 20 and the thermoelectric power generation unit 1-1 is connected to. That is, in the thermoelectric power generation system of this embodiment, the heat exchange members of the thermoelectric power generation units adjacent to each other are connected by the connection member. The connection member 3-n (n = 1 to 6) is formed of a heat conductor in the same manner as the heat exchange member 20.

連結部材3−nによる熱交換部材20の連結方法については種々の態様が考えられる。例えば、図2(A)および図2(B)に示すように、熱交換部材20の端部に貫通孔を有するフィン側連結部200を設ける一方、両端にボルト300Bを有する連結部材3−nを用い、連結部材3−nのボルト300Bを上記貫通孔を通してナット300Nで固定することで互いに隣り合う熱電発電モジュールの熱交換部材20を連結する態様が考えられる。また、図2(C)および図2(D)に示すように、熱交換部材20の端部にボルト212を有するフィン側連結部210を設け、両端に貫通孔を有する連結部材3−nの当該貫通孔にボルト212を通してナット214で留める態様であっても良い。   Various modes are conceivable for the method of connecting the heat exchange member 20 by the connecting member 3-n. For example, as shown in FIGS. 2 (A) and 2 (B), a fin-side connecting part 200 having a through hole is provided at the end of the heat exchange member 20, while a connecting member 3-n having bolts 300B at both ends. And fixing the bolt 300B of the connecting member 3-n with the nut 300N through the through hole, and connecting the heat exchanging members 20 of the thermoelectric generator modules adjacent to each other can be considered. Further, as shown in FIGS. 2 (C) and 2 (D), a fin-side connecting portion 210 having a bolt 212 is provided at the end of the heat exchange member 20, and a connecting member 3-n having through holes at both ends is provided. A mode in which the nut 212 is passed through the bolt 212 to the through hole may be used.

本実施形態の特徴は、連結部材3−nを用いて互いに隣り合う熱電発電ユニット1−nの熱交換部材20を連結した点にある。これは、熱電発電システムを構成する熱電発電ユニット1−n(n=1〜6)の何れかの熱交換部材20に人や物が接触して衝撃が加わったとしても、当該衝撃の加わった熱交換部材20が脱落したり、その熱交換部材20と底板10との間に挟まれている熱電発電モジュール30が破損することを回避するためである。ここで、衝撃の加わった熱交換部材20と底板10との間に挟まれている熱電発電モジュール30の破損が回避されるのは、衝撃の加わった熱交換部材20に連結されている他の熱交換部材20にその衝撃の一部が逃げ、当該衝撃の加わった熱交換部材20と底板10との間に挟まれている熱電発電モジュール30に当該衝撃がそのまま伝わることが回避されるからである。以下、図3に示すように、互いに隣り合う熱電発電ユニットの底板を熱伝導体により形成された連結部材により連結した場合と比較しつつ本実施形態の効果を説明する。   The feature of this embodiment is that the heat exchange members 20 of the thermoelectric power generation units 1-n adjacent to each other are connected using the connection members 3-n. Even if a person or an object contacts the heat exchange member 20 of any one of the thermoelectric power generation units 1-n (n = 1 to 6) constituting the thermoelectric power generation system, the shock is applied. This is to prevent the heat exchange member 20 from falling off or the thermoelectric power generation module 30 sandwiched between the heat exchange member 20 and the bottom plate 10 from being damaged. Here, the damage of the thermoelectric power generation module 30 sandwiched between the heat exchange member 20 subjected to the impact and the bottom plate 10 is avoided because of the other connected to the heat exchange member 20 subjected to the impact. This is because a part of the impact escapes to the heat exchange member 20 and it is avoided that the impact is directly transmitted to the thermoelectric power generation module 30 sandwiched between the heat exchange member 20 and the bottom plate 10 to which the impact is applied. is there. Hereinafter, as shown in FIG. 3, the effect of the present embodiment will be described in comparison with the case where the bottom plates of adjacent thermoelectric power generation units are connected by a connecting member formed of a heat conductor.

本実施形態の熱電発電システムの衝撃に対する耐久性と図3に示す構成の耐久性とを比較するために、本願発明者は以下の実験を行った。なお、以下の実験では、熱電発電ユニット1−nの熱交換部材20として、板状部分の平面サイズが30mm×30mm、熱交換部材20全体の高さが30mm、ピン状のフィンの高さが20mmのものを用い、熱電発電モジュールとして平面サイズが15mm×15mm、厚さが2mmのものを用いた。また、実験の条件を同一にするため、図3に示す構成の熱電発電システムにおいても同様の熱交換部材および熱電発電モジュールを用いた。   In order to compare the durability against the impact of the thermoelectric power generation system of the present embodiment with the durability of the configuration shown in FIG. 3, the inventor of the present application conducted the following experiment. In the following experiment, as the heat exchange member 20 of the thermoelectric power generation unit 1-n, the planar size of the plate-like portion is 30 mm × 30 mm, the overall height of the heat exchange member 20 is 30 mm, and the height of the pin-shaped fins is A 20 mm module was used, and a thermoelectric power generation module having a planar size of 15 mm × 15 mm and a thickness of 2 mm was used. Further, in order to make the experimental conditions the same, the same heat exchange member and thermoelectric power generation module were used in the thermoelectric power generation system having the configuration shown in FIG.

まず、本願発明者は、直径100mmかつ長さ100mmのパイプに本実施形態の熱電発電システムを巻きつけたものを5個用意し、その各々について30cmの高さから落下させる操作を10回繰り返した後に発電量を計測し、落下前に比較して発電量が5%以上低下したものの比率を求めた。本実施形態の熱電発電システムについての当該比率は7%であった。同様に、直径100mmかつ長さ100mmのパイプに図3に示す構成の熱電発電システムを巻きつけたものを5個用意し、その各々について30cmの高さから落下させる操作を10回繰り返した後に発電量を計測し、落下前に比較して発電量が5%以上低下したものの比率を求めた。図3に示す構成の熱電発電システムについての当該比率は27%だった。このように、図3に示す構成の熱電発電システムに比較して本実施形態の熱電発電システムの方が衝撃に対する耐久性が高いことが実験によって確認された。   First, the inventor of the present application prepared five pipes each having a diameter of 100 mm and a length of 100 mm around which the thermoelectric power generation system of the present embodiment was wound, and repeated the operation of dropping each from a height of 30 cm 10 times. Later, the amount of power generation was measured, and the ratio of the amount of power generation decreased by 5% or more compared to before the fall was determined. The ratio for the thermoelectric power generation system of this embodiment was 7%. Similarly, five pipes each having a diameter of 100 mm and a length of 100 mm wrapped with a thermoelectric power generation system having the configuration shown in FIG. 3 are prepared, and after each operation of dropping from a height of 30 cm is repeated 10 times, power generation is performed. The amount was measured, and the ratio of the amount of power generation decreased by 5% or more compared to before dropping was determined. The ratio for the thermoelectric power generation system having the configuration shown in FIG. 3 was 27%. As described above, it was confirmed by experiments that the thermoelectric power generation system of this embodiment has higher durability against impacts than the thermoelectric power generation system having the configuration shown in FIG.

また、本実施形態の熱電発電システムは、第1の熱源の温度が均一ではない場合(例えば、パイプ2内の内径に比較して当該パイプに流れる流体の流量が少ない場合など)におけるシステム全体での発電量の確保という観点から見ても、図3に示す構成の熱電発電システムに比較して優れている。図3に示すように、互いに隣り合う熱電発電ユニットの底板を連結する態様では、第1の熱源の温度が均一ではない場合にその平均温度まで各熱電発電ユニットの底板の温度が低下し、この平均温度と第2の熱源の温度との温度差が十分でないと全ての熱電発電ユニットが発電に寄与せず、システム全体の発電量がゼロになってしまう場合がある。これに対して本実施形態の熱電発電システムにおいては各熱電発電ユニット1−nの底板10は互いに熱的に切り離されている。このため、温度の低い部分に装着される熱電発電ユニット1−nは発電に寄与しないものの、温度の高い部分に装着される熱電発電ユニット1−nは発電に寄与し、システム全体の発電量がゼロになることはない。加えて、本実施形態では連結部材3−nが熱交換部材20と同様に熱伝導体で形成されているため、これら連結部材3−nにより連結された熱交換部材20全体を1つのヒートシンクと見なすことができる。このため、温度の低い部分に装着されているために発電には寄与しない熱電発電ユニット1−nであっても、その熱電発電ユニット1−nに含まれている熱交換部材20を熱電発電システム全体における第2の熱源との熱交換に寄与させることができるといった効果もある。なお、連結部材3−nによってその両側にある熱交換部材同士を効率よく熱交換させるために、連結部材3−nを板状又はブロック状のものにしても良い。連結部材3−nと熱交換部材の連結部分の接触面積は変わらないが、連結部材3−nにおける熱の伝導経路が広くなり、連結部材3−nを介した熱移動量が大きくなるからである。   In addition, the thermoelectric power generation system of the present embodiment is an entire system when the temperature of the first heat source is not uniform (for example, when the flow rate of fluid flowing through the pipe is small compared to the inner diameter of the pipe 2). From the viewpoint of securing the amount of power generation, it is superior to the thermoelectric power generation system having the configuration shown in FIG. As shown in FIG. 3, in the aspect of connecting the bottom plates of the thermoelectric power generation units adjacent to each other, when the temperature of the first heat source is not uniform, the temperature of the bottom plate of each thermoelectric power generation unit decreases to the average temperature. If the temperature difference between the average temperature and the temperature of the second heat source is not sufficient, all thermoelectric power generation units may not contribute to power generation, and the power generation amount of the entire system may become zero. On the other hand, in the thermoelectric power generation system of the present embodiment, the bottom plates 10 of the thermoelectric power generation units 1-n are thermally separated from each other. For this reason, although the thermoelectric power generation unit 1-n attached to the low temperature portion does not contribute to power generation, the thermoelectric power generation unit 1-n attached to the high temperature portion contributes to power generation, and the power generation amount of the entire system is reduced. It will never be zero. In addition, in this embodiment, since the connection member 3-n is formed of a heat conductor like the heat exchange member 20, the entire heat exchange member 20 connected by the connection member 3-n is combined with one heat sink. Can be considered. For this reason, even if it is the thermoelectric power generation unit 1-n that does not contribute to power generation because it is attached to a portion having a low temperature, the heat exchange member 20 included in the thermoelectric power generation unit 1-n is replaced with the thermoelectric power generation system. There is also an effect that it is possible to contribute to heat exchange with the second heat source as a whole. In order to efficiently exchange heat between the heat exchanging members on both sides of the connecting member 3-n, the connecting member 3-n may have a plate shape or a block shape. Although the contact area of the connection part of the connection member 3-n and the heat exchange member does not change, the heat conduction path in the connection member 3-n becomes wider, and the amount of heat transfer through the connection member 3-n increases. is there.

このように、本実施形態によれば、熱電発電システムの衝撃に対する耐久性を従来よりも高めることができる。加えて、本実施形態によれば、熱電発電ユニット1−nの底板10との間で熱交換を行う第1の熱源の温度が均一ではない場合であっても、熱電発電システム全体の発電量がゼロまで低下するといった事態の発生を回避することもできる。   Thus, according to the present embodiment, durability against impact of the thermoelectric power generation system can be enhanced as compared with the conventional case. In addition, according to the present embodiment, even if the temperature of the first heat source that exchanges heat with the bottom plate 10 of the thermoelectric power generation unit 1-n is not uniform, the power generation amount of the entire thermoelectric power generation system It is also possible to avoid the occurrence of a situation where the value drops to zero.

以上本発明の一実施形態について説明したが、この実施形態を以下のように変形しても勿論良い。
(1)上記実施形態では、6個の熱電発電ユニットを用いて熱電発電システムを構成したが、熱電発電ユニットの数は6個に限定される訳ではなく、要は複数の熱電発電ユニットが含まれていれば良い。例えば、3個の熱電発電ユニットにより熱電発電システムを構成する場合には図4に示すようにそれら3個の熱電発電ユニットを配置すれば良い。また、各熱電発電ユニットの配置態様は図1(A)や図4に示す対称な配置態様には限定されず、図5に示すような態様であっても良い。特に、図5に示すようにパイプ2内を流れる流体の流量が少ない場合には、当該流体の流れる側に熱電発電ユニットを配置しておくことが好ましい。なお、連結部材3−nがパイプ2に接触してしまうと、熱電発電モジュールを移動する熱が減少してしまう。このため、熱電発電ユニットの配置間隔が広く、連結部材3−nをパイプ2に接触させることなく各熱電発電ユニットの熱交換部材を連結することが難しい場合(例えば、図5に示す例では連結部材3−3がパイプ2に接触する虞がある)には、複数の熱電発電ユニットの間にダミーユニット(熱電発電ユニット1−nの熱電発電モジュール30を断熱材または熱伝導体よりも熱伝導率の低い素材に置き換えたユニット)を配置し、互いに隣り合う熱電発電ユニットの熱交換部材20とダミーユニットの熱交換部材20とを連結部材3−nにより連結すれば良い。ダミーユニットにおいては、熱交換部材20は底板10から断熱されており、さらに隣り合う熱電発電ユニットの熱交換部材20と連結部材3−nにより連結されているため、全体を一つのヒートシンクとして作用させつつ、連結部材3−nがパイプ2と接触することを防ぐことができる。
Although one embodiment of the present invention has been described above, this embodiment may of course be modified as follows.
(1) In the above embodiment, the thermoelectric power generation system is configured using six thermoelectric power generation units. However, the number of thermoelectric power generation units is not limited to six, and in short, includes a plurality of thermoelectric power generation units. It only has to be. For example, when a thermoelectric power generation system is constituted by three thermoelectric power generation units, these three thermoelectric power generation units may be arranged as shown in FIG. Moreover, the arrangement | positioning aspect of each thermoelectric power generation unit is not limited to the symmetrical arrangement | positioning aspect shown to FIG. 1 (A) or FIG. 4, The aspect as shown in FIG. 5 may be sufficient. In particular, as shown in FIG. 5, when the flow rate of the fluid flowing through the pipe 2 is small, it is preferable to arrange the thermoelectric power generation unit on the fluid flowing side. In addition, if the connection member 3-n contacts the pipe 2, the heat | fever which moves a thermoelectric power generation module will reduce. For this reason, when the arrangement interval of the thermoelectric power generation units is wide and it is difficult to connect the heat exchange members of the respective thermoelectric power generation units without bringing the connection member 3-n into contact with the pipe 2 (for example, in the example shown in FIG. The member 3-3 may come into contact with the pipe 2), and the dummy unit (the thermoelectric power generation module 30 of the thermoelectric power generation unit 1-n is more conductive than the heat insulating material or the heat conductor between the plurality of thermoelectric power generation units. A unit replaced with a low-rate material) is arranged, and the heat exchange member 20 of the thermoelectric power generation unit and the heat exchange member 20 of the dummy unit adjacent to each other may be connected by the connection member 3-n. In the dummy unit, the heat exchanging member 20 is insulated from the bottom plate 10 and further connected to the heat exchanging member 20 of the adjacent thermoelectric power generation unit by the connecting member 3-n, so that the whole acts as one heat sink. Meanwhile, the connecting member 3-n can be prevented from coming into contact with the pipe 2.

(2)上記実施形態では、熱電発電ユニット1−nの底板10の底面が面全体に亙って第1の熱源の表面と当接するように、当該底面を第1の熱源の表面と同じ曲率を有する曲面状に形成したが、図6に示す熱電発電ユニット1´−nのように、底板10の底面を平面状に形成しても勿論良い。例えば、第1の熱源となるパイプ2の外形が底板10の平面サイズに比較して充分に大きい場合には、各熱電発電ユニット1´−nの装着箇所において第1の熱源の表面を平面と見なすことができ、底板10の底面が平面状に形成されていたとしても底板10の底面を面全体に亙って第1の熱源の表面に当接させることができるからである。 (2) In the above embodiment, the bottom surface of the bottom plate 10 of the thermoelectric generator unit 1-n has the same curvature as the surface of the first heat source so that the bottom surface of the thermoelectric generator unit 1-n contacts the surface of the first heat source over the entire surface. However, it is a matter of course that the bottom surface of the bottom plate 10 may be formed in a planar shape as in the thermoelectric power generation unit 1′-n shown in FIG. For example, when the outer shape of the pipe 2 serving as the first heat source is sufficiently larger than the planar size of the bottom plate 10, the surface of the first heat source is a flat surface at the mounting location of each thermoelectric power generation unit 1 ′ -n. This is because even if the bottom surface of the bottom plate 10 is formed in a flat shape, the bottom surface of the bottom plate 10 can be brought into contact with the surface of the first heat source over the entire surface.

(3)各熱電発電ユニットにより得られた電力により駆動される回路を熱電発電システムに含めても良い。例えば、図7に示すように、第1の熱源(或いは第2の熱源)の温度を検出するための温度センサや湿度センサ、二酸化炭素センサ、ガスセンサなどのセンサ60Aを板状の断熱材50を介してパイプ2に装着し、さらにセンサ60Aの出力信号を無線で所定の宛先へ送信する無線通信部60Bと各熱電発電ユニット1−nの出力電圧を昇圧して無線通信部60Bに供給する昇圧回路60Cとを板状の断熱材50を介してパイプ2に装着すれば、外部電源なしで第1の熱源の温度等を監視するセンサシステムを構築することが可能になる。 (3) A circuit driven by electric power obtained by each thermoelectric power generation unit may be included in the thermoelectric power generation system. For example, as shown in FIG. 7, a plate-like heat insulating material 50 is used as a sensor 60A such as a temperature sensor, a humidity sensor, a carbon dioxide sensor, or a gas sensor for detecting the temperature of the first heat source (or the second heat source). Via the pipe 2 and further boosting the output voltage of the wireless communication unit 60B that wirelessly transmits the output signal of the sensor 60A to a predetermined destination and the output voltage of each thermoelectric power generation unit 1-n and supplying the boosted voltage to the wireless communication unit 60B If the circuit 60C is attached to the pipe 2 via the plate-like heat insulating material 50, it is possible to construct a sensor system that monitors the temperature of the first heat source without an external power source.

(4)上記実施形態では、複数の熱電発電ユニットを第1の熱源となるパイプ2の周方向に一列に並べて配置し、互いに隣り合う熱電発電ユニットの熱交換部材を熱伝導体により形成された連結部材を用いて連結して熱電発電システムを構成した。しかし、複数の熱電発電ユニットを第1の熱源となるパイプ2の周方向に複数列に並べて配置し、各列において互いに隣り合う熱電発電ユニットの熱交換部材を連結部材を用いて連結するとともに、列に直交する方向において互いに隣り合う熱電発電ユニットの熱交換部材を連結部材を用いて連結して熱電発電システムを構成しても良い。また、複数の熱電発電ユニットを平面状に並べ、互いに隣り合う熱電発電ユニットの熱交換部材を熱伝導体により形成された連結部材を用いて連結して熱電発電システムを構成しても勿論良い。要は、第1の熱源の大きさや形状に応じた態様で複数の熱電発電ユニットを配列すれば良い。 (4) In the above embodiment, a plurality of thermoelectric power generation units are arranged in a line in the circumferential direction of the pipe 2 serving as the first heat source, and the heat exchange members of the thermoelectric power generation units adjacent to each other are formed of a heat conductor. The thermoelectric power generation system was configured by connecting using connecting members. However, a plurality of thermoelectric power generation units are arranged in a plurality of rows in the circumferential direction of the pipe 2 serving as the first heat source, and the heat exchange members of the thermoelectric power generation units adjacent to each other in each row are connected using a connecting member, The thermoelectric power generation system may be configured by connecting the heat exchange members of the thermoelectric power generation units adjacent to each other in the direction orthogonal to the columns using a connection member. Of course, a thermoelectric power generation system may be configured by arranging a plurality of thermoelectric power generation units in a plane and connecting the heat exchange members of adjacent thermoelectric power generation units using a connection member formed of a heat conductor. In short, a plurality of thermoelectric power generation units may be arranged in a manner corresponding to the size and shape of the first heat source.

(5)上記実施形態では、底板10および熱交換部材20の間に1つの熱電発電モジュール30を挟んで熱電発電ユニット1−nを構成したが、底板10および熱交換部材20の間に複数の熱電発電モジュール30を挟んで熱電発電ユニットを構成しても良い。また、上記実施形態では、連結部材3−nを熱伝導体で構成したが、樹脂やゴム等の断熱材(絶縁体)で連結部材3−nを構成しても良い。連結部材3−nを絶縁体で構成する態様では、連結部材3−nにより互いに連結された熱交換部材20を1つの熱交換部材として機能させることはできないが、熱交換部材20に加わる衝撃に対する熱電発電システムの耐久度が従来よりも向上することには変わりはないからである。また、ゴム等の弾性を有する素材により連結部材3−nを構成すれば、熱交換部材20に加わった衝撃を連結部材3−nにより吸収することができ、熱交換部材20に加わる衝撃に対する熱電発電システムの耐久性をさらに高くすることができると考えられる。 (5) In the above embodiment, one thermoelectric power generation module 30 is sandwiched between the bottom plate 10 and the heat exchange member 20, but a plurality of thermoelectric generation units 1-n are configured. A thermoelectric power generation unit may be configured with the thermoelectric power generation module 30 interposed therebetween. Moreover, in the said embodiment, although the connection member 3-n was comprised with the heat conductor, you may comprise the connection member 3-n with heat insulating materials (insulator), such as resin and rubber | gum. In the aspect which comprises the connection member 3-n with an insulator, although the heat exchange member 20 mutually connected by the connection member 3-n cannot be functioned as one heat exchange member, with respect to the impact applied to the heat exchange member 20 This is because there is no change in the durability of the thermoelectric power generation system. Further, if the connecting member 3-n is made of an elastic material such as rubber, the impact applied to the heat exchange member 20 can be absorbed by the connection member 3-n, and the thermoelectric power against the impact applied to the heat exchange member 20 can be absorbed. It is considered that the durability of the power generation system can be further increased.

(6)上記実施形態では、連結部材3−nは互いに隣り合う熱電発電ユニットの熱交換部材20を連結する役割を担っていたが、この連結部材3−nは熱交換部材の役割も担っていると考えられる。そこで、連結部材3−nの表面に凹凸を形成したり、孔を形成したり、ピン状のフィンを設けるなどして連結部材3−nの表面積を大きくし、熱交換部材としての機能を高めても勿論良い。また、上記実施形態では、パイプ2の外周に熱電発電ユニットを環状に固定することを想定しているが、平面状に熱電発電ユニットを並べ、熱交換部材20を連結して熱交換効率を向上させることにも利用できる。 (6) In the above embodiment, the connecting member 3-n has a role of connecting the heat exchange members 20 of the thermoelectric power generation units adjacent to each other, but the connecting member 3-n also has a role of the heat exchange member. It is thought that there is. Therefore, the surface area of the connection member 3-n is increased, the surface area of the connection member 3-n is increased by forming irregularities, forming holes, or providing pin-shaped fins, and the function as a heat exchange member is enhanced. But of course. In the above embodiment, it is assumed that the thermoelectric power generation unit is fixed in an annular shape on the outer periphery of the pipe 2, but the thermoelectric power generation units are arranged in a plane and the heat exchange member 20 is connected to improve the heat exchange efficiency. It can also be used to

1−n,1´−n(n=1〜6)…熱電発電ユニット、2…パイプ、3−n(n=1〜6)…連結部材、10…底板、20…熱交換部材、30…熱電発電モジュール。
1-n, 1'-n (n = 1-6) ... thermoelectric power generation unit, 2 ... pipe, 3-n (n = 1-6) ... connecting member, 10 ... bottom plate, 20 ... heat exchange member, 30 ... Thermoelectric power generation module.

Claims (4)

複数の熱電発電ユニットであって、各々第1の熱源との間で熱交換を行う底板と、前記第1の熱源とは異なる第2の熱源との間で熱交換を行う熱交換部材と、前記底板と前記熱交換部材との間に挟まれた熱電発電モジュールと、を有する複数の熱電発電ユニットと、
互いに隣り合う熱電発電ユニットの熱交換部材を連結する連結部材と、を有し、
前記第1の熱源が高温側の熱源であり、
前記複数の熱電発電ユニットの各々の前記底板は隣接する熱電発電ユニットの前記底板から熱的に切り離されている
ことを特徴とする熱電発電システム。
A plurality of thermoelectric generation units, each of which exchanges heat with a first heat source, and a heat exchange member that exchanges heat with a second heat source different from the first heat source; A plurality of thermoelectric power generation units having a thermoelectric power generation module sandwiched between the bottom plate and the heat exchange member;
A connecting member that connects heat exchange members of adjacent thermoelectric power generation units,
The first heat source is a high-temperature heat source;
The bottom plate of each of the plurality of thermoelectric power generation units is thermally separated from the bottom plate of an adjacent thermoelectric power generation unit.
前記連結部材を熱伝導体により形成したことを特徴とする請求項1に記載の熱電発電システム。   The thermoelectric power generation system according to claim 1, wherein the connecting member is formed of a heat conductor. 前記熱交換部材の隣接する熱電発電ユニット側には、結部が設けられており、前記連結部材は前記連結部に連結される
ことを特徴とする請求項1または請求項2に記載の熱電発電システム。
The thermoelectric power generation unit side adjacent the heat exchange member is consolidated portion is provided, the connecting member thermoelectric according to claim 1 or claim 2, characterized in that it is connected to the connecting portion Power generation system.
複数の熱電発電ユニットであって、各々第1の熱源との間で熱交換を行う底板と、前記第1の熱源とは異なる第2の熱源との間で熱交換を行う熱交換部材と、前記底板と前記熱交換部材との間に挟まれた熱電発電モジュールと、を有する複数の熱電発電ユニットと、
互いに隣り合う熱電発電ユニットの熱交換部材を連結する連結部材と、を有し、
前記複数の熱電発電ユニットの各々の前記底板は隣接する熱電発電ユニットの前記底板から熱的に切り離されており、
前記熱交換部材の隣接する熱電発電ユニット側には、結部が設けられており、前記連結部材は前記連結部に連結され、かつ互いに隣り合う熱電発電ユニット間の相対角度が可変である
ことを特徴とする熱電発電システム。
A plurality of thermoelectric generation units, each of which exchanges heat with a first heat source, and a heat exchange member that exchanges heat with a second heat source different from the first heat source; A plurality of thermoelectric power generation units having a thermoelectric power generation module sandwiched between the bottom plate and the heat exchange member;
A connecting member that connects heat exchange members of adjacent thermoelectric power generation units,
The bottom plate of each of the plurality of thermoelectric power generation units is thermally separated from the bottom plate of an adjacent thermoelectric power generation unit;
It the thermoelectric generator unit side adjacent the heat exchange member is consolidated unit is provided, the connecting member is connected to the connecting portion, and a relative angle between the thermoelectric power generation unit adjacent variable to each other Thermoelectric power generation system characterized by
JP2013013962A 2013-01-29 2013-01-29 Thermoelectric power generation system Expired - Fee Related JP6149407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013962A JP6149407B2 (en) 2013-01-29 2013-01-29 Thermoelectric power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013962A JP6149407B2 (en) 2013-01-29 2013-01-29 Thermoelectric power generation system

Publications (2)

Publication Number Publication Date
JP2014146675A JP2014146675A (en) 2014-08-14
JP6149407B2 true JP6149407B2 (en) 2017-06-21

Family

ID=51426694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013962A Expired - Fee Related JP6149407B2 (en) 2013-01-29 2013-01-29 Thermoelectric power generation system

Country Status (1)

Country Link
JP (1) JP6149407B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162862A (en) * 2016-03-07 2017-09-14 古河機械金属株式会社 Thermoelectric conversion device
JP7054160B2 (en) * 2017-08-30 2022-04-13 株式会社Eサーモジェンテック Thermoelectric power generation system
KR102245102B1 (en) * 2020-04-27 2021-04-28 주식회사 블루시스 Thermoelectric generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321921A (en) * 1997-05-22 1998-12-04 Ngk Insulators Ltd Thermoelectric conversion module and its manufacture
US9184364B2 (en) * 2005-03-02 2015-11-10 Rosemount Inc. Pipeline thermoelectric generator assembly
JP4285438B2 (en) * 2005-05-09 2009-06-24 トヨタ自動車株式会社 Thermoelectric generator
US8188359B2 (en) * 2006-09-28 2012-05-29 Rosemount Inc. Thermoelectric generator assembly for field process devices
JP4923997B2 (en) * 2006-12-08 2012-04-25 トヨタ自動車株式会社 Thermoelectric generator
US7765811B2 (en) * 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits

Also Published As

Publication number Publication date
JP2014146675A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP2009545164A5 (en)
KR20150106328A (en) Thermoelectric power generation system using gradient heat exchanger
US20120023970A1 (en) Cooling and heating water system using thermoelectric module and method for manufacturing the same
KR101116892B1 (en) Battery pack
JP6149407B2 (en) Thermoelectric power generation system
JP6601317B2 (en) Thermoelectric generator
JP5444787B2 (en) Thermoelectric generator
KR20160008858A (en) Thermoelectric generation apparatus with multi stage for waste heat
JP2008066459A (en) Thermoelectric element module and thermoelectric conversion device employing it
JP2008091453A (en) Thermoelectric power generator
JP2011192759A (en) Thermoelectric generation system
JP6350297B2 (en) Thermoelectric generator
KR20170036885A (en) Thermoelectric generation apparatus
JP2011129552A (en) Thermal power generation module
JP3171039U (en) Rail power generator, rail power generation system
JP2010275976A (en) Thermoelectric unit
JP2016058503A (en) Thermoelectric module
JP2006303037A (en) Thermoelectric power generator
JP2006002704A (en) Thermoelectric power generation device
US9099942B2 (en) Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid
RU2008135035A (en) THERMOELECTRIC CONDITIONER
JP2006271163A (en) Temperature-difference power generation system
JP2009278830A (en) Thermoelectric generator
US11316091B2 (en) Thermoelectric module, frame for the same, and vehicle including the thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6149407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees