JP6148316B2 - Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device - Google Patents

Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device Download PDF

Info

Publication number
JP6148316B2
JP6148316B2 JP2015234022A JP2015234022A JP6148316B2 JP 6148316 B2 JP6148316 B2 JP 6148316B2 JP 2015234022 A JP2015234022 A JP 2015234022A JP 2015234022 A JP2015234022 A JP 2015234022A JP 6148316 B2 JP6148316 B2 JP 6148316B2
Authority
JP
Japan
Prior art keywords
failure
machine learning
machine
learning
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015234022A
Other languages
Japanese (ja)
Other versions
JP2017033526A (en
Inventor
尚吾 稲垣
尚吾 稲垣
中川 浩
中川  浩
大輔 岡野原
大輔 岡野原
遼介 奥田
遼介 奥田
叡一 松元
叡一 松元
圭悟 河合
圭悟 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preferred Networks Inc
Original Assignee
Preferred Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57988307&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6148316(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Preferred Networks Inc filed Critical Preferred Networks Inc
Priority to DE102016008987.3A priority Critical patent/DE102016008987B4/en
Priority to US15/220,925 priority patent/US10317853B2/en
Priority to CN201610616706.XA priority patent/CN106409120B/en
Publication of JP2017033526A publication Critical patent/JP2017033526A/en
Application granted granted Critical
Publication of JP6148316B2 publication Critical patent/JP6148316B2/en
Priority to US16/407,451 priority patent/US11275345B2/en
Priority to US17/585,477 priority patent/US12066797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31359Object oriented model for fault, quality control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33321Observation learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34477Fault prediction, analyzing signal trends
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37214Detect failed machine component, machine performance degradation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50185Monitoring, detect failures, control of efficiency of machine, tool life
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • Y10S901/47Optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Description

本発明は、故障条件を学習する機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システムに関する。   The present invention relates to a machine learning method and a machine learning device for learning a failure condition, and a failure prediction device and a failure prediction system including the machine learning device.

産業機械では、歩留まりを向上させ又は深刻な事故の発生を防止するために、構成部品の異常を事前に検知することが求められる場合がある。例えば、センサの出力値を予め定められる閾値と比較し、その結果に基づいて異常を検知する方法が公知である。ここで、「産業機械」の文言は、産業用ロボットやコンピュータ数値制御(CNC:Computer Numerical Control)装置で制御される機械だけでなく、サービス用ロボットや様々な機械装置を含む機械を意味するものとする。   In an industrial machine, it may be required to detect abnormality of a component in advance in order to improve the yield or prevent the occurrence of a serious accident. For example, a method of comparing an output value of a sensor with a predetermined threshold value and detecting an abnormality based on the result is known. Here, the term “industrial machine” means not only an industrial robot and a machine controlled by a computer numerical control (CNC) device, but also a service robot and a machine including various mechanical devices. And

特許文献1には、正常状態のロボットの基準動作パターンと、稼働中のロボットの動作パターンを比較して、ロボットの故障を予知する故障予知診断方法が開示されている。   Patent Document 1 discloses a failure prediction diagnosis method for predicting a failure of a robot by comparing a reference operation pattern of a normal robot and an operation pattern of a robot in operation.

特許文献2には、駆動軸の実際の動作状態に基づく負荷側の仕事率と、駆動軸への動作指令に基づく駆動側の仕事率との間の差を判定値と比較することによって、ロボット機構部の劣化の有無及び劣化レベルを評価する故障予知方法が開示されている。   Japanese Patent Laid-Open No. 2004-26883 discloses a robot by comparing a difference between a load-side power based on an actual operation state of a drive shaft and a drive-side power based on an operation command to the drive shaft with a determination value. A failure prediction method for evaluating the presence / absence and deterioration level of a mechanism unit is disclosed.

特開昭63−123105号公報JP 63-123105 A 特開平10−039908号公報Japanese Patent Application Laid-Open No. 10-039908

しかしながら、産業機械の複雑化ないし高度化に伴って故障につながる要因も複雑化している。したがって、一定の基準に従って実行される従来の故障予知方法では、実際の状況に適用できなかったり、又は正確さを欠くことがあった。そこで、状況に応じて正確な故障予知を可能にする故障予知装置が求められている。   However, factors that lead to failures are becoming more complex as industrial machines become more complex or sophisticated. Therefore, the conventional failure prediction method executed according to a certain standard may not be applicable to the actual situation or may not be accurate. Therefore, there is a demand for a failure prediction device that enables accurate failure prediction according to the situation.

本願の1番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習装置であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測する状態観測部と、前記産業機械の故障の度合いを判定した判定データを取得する判定データ取得部と、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を学習する学習部と、を備え、前記学習部は、前記判定データ取得部が、前記産業機械の故障を表す判定データを取得したときに、前記訓練データセットに含まれる前記判定データを、故障発生時から前記判定データの取得時まで遡った時間の長さに応じて重み付けして前記条件を更新する機械学習装置が提供される。
本願の2番目の発明によれば、1番目の発明に係る機械学習装置において、前記学習部は、複数の産業機械に対して作成される前記訓練データセットに従って、前記条件を学習するように構成される。
本願の3番目の発明によれば、1番目又は2番目の発明に係る機械学習装置において、前記学習部は、ある一定期間のみで正常状態を学習し、その後は、前記判定データ取得部による故障発生を検知するように構成される。
本願の番目の発明によれば、1番目から番目のいずれかの発明に係る機械学習装置を備えた、前記産業機械の故障を予知する故障予知装置であって、前記学習部が前記訓練データセットに従って学習した結果に基づいて、現在の前記状態変数の入力に応答して、前記産業機械の故障の有無又は故障の度合いを表す故障情報を出力する故障情報出力部をさらに備える、故障予知装置が提供される。
本願の番目の発明によれば、番目の発明に係る故障予知装置において、前記学習部は、前記現在の状態変数及び前記判定データの組合せに基づいて作成される追加の訓練データセットに従って、前記条件を再学習するように構成される。
本願の番目の発明によれば、番目又は番目の発明に係る故障予知装置において、前記機械学習装置がネットワークを介して前記産業機械に接続され、前記状態観測部は、前記ネットワークを介して、前記現在の状態変数を取得するように構成される。
本願の番目の発明によれば、番目の発明に係る故障予知装置において、前記機械学習装置は、クラウドサーバ上に存在する。
本願の番目の発明によれば、番目から番目のいずれかの発明に係る故障予知装置において、前記機械学習装置は、前記産業機械を制御する制御装置に内蔵されている。
本願の番目の発明によれば、番目から番目のいずれかの発明に係る故障予知装置において、前記機械学習装置による学習結果は、複数の前記産業機械で共用される。
本願の10番目の発明によれば、番目から番目のいずれかの発明に係る故障予知装置と、前記出力データを出力するセンサと、前記故障情報をオペレータに通知する故障情報通知部と、を備える故障予知システムが提供される。
本願の11番目の発明によれば、10番目の発明に係る故障予知システムにおいて、前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前である。
本願の12番目の発明によれば、11番目の発明に係る故障予知システムにおいて、前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前であり、かつ、故障が発生する時期から遡って、前記第1の所定期間よりも長い第2の所定期間で定められる時期より後である。
本願の13番目の発明によれば、産業機械の故障に関連付けられる条件を学習する機械学習方法であって、前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測し、前記産業機械の故障の度合いを判定した判定データを取得し、前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を学習し、前記産業機械の故障に関連付けられる条件を学習するのは、前記産業機械の故障を表す判定データを取得したときに、前記訓練データセットに含まれる前記判定データを、故障発生時から前記判定データの取得時まで遡った時間の長さに応じて重み付けして前記条件を更新する機械学習方法が提供される。
According to the first invention of the present application, there is provided a machine learning device that learns a condition associated with a failure of an industrial machine, and controls output data of a sensor that detects a state of the industrial machine or an ambient environment, and the industrial machine. A state observation unit for observing an internal data of the control software and a state variable including at least one of the output data or calculation data obtained based on the internal data while the industrial machine is operating or stationary; and the industry Learning a condition associated with a failure of the industrial machine according to a determination data acquisition unit that acquires determination data for determining a degree of machine failure and a training data set created based on a combination of the state variable and the determination data Bei example a learning section, a for said learning section, the determination data acquisition unit has acquired the decision data indicating a failure of the industrial machinery To come, the determination data contained in the training data set, machine learning unit for updating the condition by weighting depending from when a failure occurs on the length of time going back until obtaining the judgment data is provided .
According to a second invention of the present application, in the machine learning device according to the first invention, the learning unit is configured to learn the condition according to the training data set created for a plurality of industrial machines. Is done.
According to the third invention of the present application, in the machine learning device according to the first or second invention, the learning unit learns a normal state only in a certain period, and thereafter, the failure by the determination data acquisition unit Ru is configured to detect an occurrence.
According to the fourth aspect of the invention, with a machine learning device according to any one of the first to third aspects, a failure prediction device for predicting the failure of the industrial machine, wherein the learning unit is the training Based on the learning result according to the data set, the failure prediction unit further includes a failure information output unit that outputs failure information indicating the presence or absence of the failure of the industrial machine in response to the current input of the state variable. An apparatus is provided.
According to the fifth aspect of the invention, the failure prediction apparatus according to the fourth invention, the learning section in accordance with additional training data set that is created based the on the combination of the current state variables and the decision data, It is configured to relearn the condition.
According to the sixth aspect of the invention, the failure prediction apparatus according to the fourth or fifth invention, the machine learning system is connected to the industrial machine via a network, said state observing unit, through the network Configured to obtain the current state variable.
According to the seventh invention of the present application, in the failure prediction device according to the sixth invention, the machine learning device exists on a cloud server.
According to the eighth aspect of the invention, the failure prediction apparatus according to any one of the invention from the 4 th 6 th, the machine learning system is built in the control apparatus for controlling the industrial machine.
According to the ninth aspect of the invention, the failure prediction apparatus according to any one of the invention from the 4 th 8 th, learning result by the machine learning device is shared by a plurality of said industrial machine.
According to the tenth aspect of the invention, a failure prediction apparatus according to any one of the invention from the 4 th ninth, a sensor for outputting the output data, and fault information notification unit that notifies the failure information to the operator, A failure prediction system is provided.
According to the eleventh invention of the present application, in the failure prediction system according to the tenth invention, the time when the failure information is notified to the operator by the failure information notification unit is the first from the time when the failure occurs. It is before the time determined in a predetermined period.
According to the 12th aspect of the invention, the failure prediction system according to the 11th invention, timing of the failure information in the failure information notifying unit is notified to the operator, failure first back from time to occur It is before the time determined in the predetermined period and after the time determined in the second predetermined period that is longer than the first predetermined period, going back from the time when the failure occurs.
According to a thirteenth aspect of the present invention, there is provided a machine learning method for learning a condition associated with a failure of an industrial machine, wherein the output data of a sensor for detecting the state of the industrial machine or the surrounding environment, and the industrial machine are controlled. A state variable including at least one of internal data of the control software and calculation data obtained based on the output data or the internal data is observed during operation or stationary of the industrial machine, and failure of the industrial machine is detected. Acquires determination data for which the degree has been determined, learns a condition associated with the failure of the industrial machine according to a training data set created based on the combination of the state variable and the determination data, and associates with the failure of the industrial machine Is included in the training data set when determination data representing failure of the industrial machine is acquired. It said decision data, machine learning method for updating the condition by weighting depending from when a failure occurs on the length of time going back until obtaining the judgment data is provided that.

これら及び他の本発明の目的、特徴及び利点は、添付図面に示される本発明の例示的な実施形態に係る詳細な説明を参照することによって、より明らかになるであろう。   These and other objects, features and advantages of the present invention will become more apparent by referring to the detailed description of the exemplary embodiments of the present invention shown in the accompanying drawings.

本発明に係る機械学習装置及び機械学習方法は、状態変数及び判定データの組合せに基づいて作成される訓練データセットに従って、産業機械の故障に関連付けられる条件を学習する。産業機械を実際に動作させながら故障条件を学習するので、実際の使用状況に応じた正確な故障条件が学習される。また、本発明に係る故障予知装置及び故障予知システムによれば、故障条件を機械学習できる機械学習装置を備えているので、実際の使用状況に応じた正確な故障予知が可能になる。   The machine learning device and the machine learning method according to the present invention learn a condition associated with a failure of an industrial machine according to a training data set created based on a combination of state variables and determination data. Since the failure condition is learned while the industrial machine is actually operated, an accurate failure condition according to the actual use situation is learned. In addition, according to the failure prediction apparatus and the failure prediction system according to the present invention, since the machine learning device capable of machine learning of the failure condition is provided, accurate failure prediction according to the actual use situation becomes possible.

図1は、一実施形態に係る故障予知システムの一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a failure prediction system according to an embodiment. 図2は、機械学習装置における学習過程の流れの一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a learning process flow in the machine learning apparatus. 図3は、ニューラルネットワークの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a neural network. 図4は、教師なしの学習の手法における学習期間の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of a learning period in an unsupervised learning technique. 図5は、リカレント型ニューラルネットワークの一例を説明するための図である。FIG. 5 is a diagram for explaining an example of a recurrent neural network. 図6は、他の実施形態に係る故障予知システムの一例を示すブロック図である。FIG. 6 is a block diagram illustrating an example of a failure prediction system according to another embodiment. 図7は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例を説明するための図(その1)である。FIG. 7 is a diagram (part 1) for explaining an example of an index value indicating the degree of failure in the failure prediction system according to the embodiment. 図8は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例を説明するための図(その2)である。FIG. 8 is a diagram (No. 2) for explaining an example of the index value indicating the degree of failure in the failure prediction system according to the embodiment. 図9は、学習結果を利用した故障予知の流れの一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a flow of failure prediction using the learning result.

以下、添付図面を参照して、本発明に係る機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システムの実施形態を説明する。図示される実施形態の構成要素は、本発明の理解を助けるために縮尺が適宜変更されている。また、同一又は対応する構成要素には、同一の参照符号が使用される。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a machine learning method and a machine learning device according to the present invention, and a failure prediction device and a failure prediction system including the machine learning device will be described with reference to the accompanying drawings. The components of the illustrated embodiment are appropriately scaled to assist in understanding the present invention. The same reference numerals are used for the same or corresponding components.

図1は、一実施形態に係る故障予知システムの一例を示すブロック図である。故障予知システム1は、機械学習機能を有する機械学習装置5を用いて産業機械の故障に関連付けられる条件(以下、「故障条件」と称することがある。)を学習することができる。また、故障予知システム1は、機械学習装置5が学習した結果に基づいて、産業機械及びその周囲環境の状態に応じた故障情報を作成することができる。   FIG. 1 is a block diagram illustrating an example of a failure prediction system according to an embodiment. The failure prediction system 1 can learn a condition (hereinafter, also referred to as “failure condition”) associated with an industrial machine failure using the machine learning device 5 having a machine learning function. Further, the failure prediction system 1 can create failure information according to the state of the industrial machine and its surrounding environment based on the result learned by the machine learning device 5.

本明細書において、「産業機械」は、産業用ロボット、サービス用ロボット及びコンピュータ数値制御(CNC)装置で制御される機械を含む様々な機械を意味するものとする。また、本明細書において、「産業機械の故障」は、産業機械の構成部品の故障を含んでいる。すなわち、「産業機械の故障」は、意図される産業機械の機能を実行できない状態に限定されず、例えば、正常時の動作を一時的又は恒久的に再現できないといった状態も含むものとする。   In this specification, “industrial machine” means various machines including an industrial robot, a service robot, and a machine controlled by a computer numerical control (CNC) device. Further, in the present specification, “failure of an industrial machine” includes a failure of a component of an industrial machine. That is, the “failure of the industrial machine” is not limited to a state where the intended function of the industrial machine cannot be executed, and includes, for example, a state where the normal operation cannot be temporarily or permanently reproduced.

故障予知システム1によって作成される「故障情報」は、産業機械の故障の有無を表す情報又は「故障の度合い」を表す情報を含んでいる。「故障情報」は、産業機械が正常な状態であることを表す情報を含んでいてもよい。「故障の度合い」は、故障の深刻さを意味する。「故障の度合い」は、最大値又は最小値のいずれか一方が制限されていてもよい。「故障の度合い」は、連続量であっても離散量であってもよい。オペレータは、「故障の度合い」に応じて、対象の構成部品の交換又は修理を直ちに行うべきか、或いは次回の保守作業時に行うべきかを判断することができる。   The “failure information” created by the failure prediction system 1 includes information indicating the presence or absence of a failure in the industrial machine or information indicating the “degree of failure”. The “failure information” may include information indicating that the industrial machine is in a normal state. The “degree of failure” means the seriousness of the failure. As the “degree of failure”, either the maximum value or the minimum value may be limited. The “degree of failure” may be a continuous amount or a discrete amount. The operator can determine whether to replace or repair the target component immediately or to perform the next maintenance work according to the “degree of failure”.

以下の説明では、ロボット2の故障を予知するために使用される故障予知システム1について説明する。しかしながら、他の任意の産業機械に対しても本発明を同様に適用できることを当業者は認識するであろう。   In the following description, the failure prediction system 1 used for predicting a failure of the robot 2 will be described. However, those skilled in the art will recognize that the present invention is equally applicable to any other industrial machine.

図1に例示されるロボット2は、モータによって各々の関節が駆動される6軸垂直多関節ロボットである。ロボット2は、公知の通信手段によってロボット制御装置3に接続されている。ロボット制御装置3は、制御プログラムに従ってロボット2に対する指令を作成する。   A robot 2 illustrated in FIG. 1 is a 6-axis vertical articulated robot in which each joint is driven by a motor. The robot 2 is connected to the robot control device 3 by a known communication means. The robot control device 3 creates a command for the robot 2 according to the control program.

ロボット制御装置3は、CPU、ROM、RAM、不揮発性メモリ及び外部装置に接続されるインタフェースを備えたデジタルコンピュータである。ロボット制御装置3は、図1に示されるように、故障判定部31を備えている。   The robot control device 3 is a digital computer having a CPU, a ROM, a RAM, a nonvolatile memory, and an interface connected to an external device. As shown in FIG. 1, the robot control device 3 includes a failure determination unit 31.

故障判定部31は、公知の故障診断方法を利用してロボット2の故障を判定する。故障判定部31は、故障予知システム1によって作成される故障情報とは独立して、ロボット2の故障の有無又は故障の度合いを判定する。例えば、トルクセンサによって検出される外乱トルク、或いはセンサの出力データの振動の振幅が予め定められる閾値を超えたときに、故障判定部31は、故障が発生したと判定する。或いは、故障判定部31は、ロボット制御装置3に格納された制御ソフトウェアの内部データに基づいて、ロボット2の故障が発生したと判定してもよい。このように、故障判定部31は、様々な要因に基づく故障を判定する。なお、故障判定部31による判定結果は、後述する機械学習装置5の判定データ取得部51に入力される。   The failure determination unit 31 determines a failure of the robot 2 using a known failure diagnosis method. The failure determination unit 31 determines the presence or absence of the failure of the robot 2 or the degree of failure independently of the failure information created by the failure prediction system 1. For example, when the disturbance torque detected by the torque sensor or the amplitude of the vibration of the output data of the sensor exceeds a predetermined threshold, the failure determination unit 31 determines that a failure has occurred. Alternatively, the failure determination unit 31 may determine that a failure of the robot 2 has occurred based on internal data of control software stored in the robot control device 3. As described above, the failure determination unit 31 determines a failure based on various factors. The determination result by the failure determination unit 31 is input to a determination data acquisition unit 51 of the machine learning device 5 described later.

別の実施形態において、機械学習装置5は、ロボット2の故障を発見し、或いは知得したオペレータの入力操作に応答して、故障情報が判定データ取得部51に入力されるように構成されていてもよい。   In another embodiment, the machine learning device 5 is configured such that failure information is input to the determination data acquisition unit 51 in response to an operator's input operation that discovers or learns the failure of the robot 2. May be.

故障予知システム1は、ロボット2又は周囲環境の状態を検出するセンサ11をさらに備えている。センサ11は、力センサ、トルクセンサ、振動センサ、集音センサ、撮像センサ、距離センサ、温度センサ、湿度センサ、流量センサ、光量センサ、pHセンサ、圧力センサ、粘度センサ及び臭気センサの少なくともいずれか1つを含んでいてもよい。センサ11から出力されるデータ(以下、単に「出力データ」と称することがある。)は、機械学習装置5の状態観測部52に入力される。   The failure prediction system 1 further includes a sensor 11 that detects the state of the robot 2 or the surrounding environment. The sensor 11 is at least one of a force sensor, a torque sensor, a vibration sensor, a sound collection sensor, an image sensor, a distance sensor, a temperature sensor, a humidity sensor, a flow rate sensor, a light quantity sensor, a pH sensor, a pressure sensor, a viscosity sensor, and an odor sensor. One may be included. Data output from the sensor 11 (hereinafter, simply referred to as “output data”) is input to the state observation unit 52 of the machine learning device 5.

機械学習装置5は、ロボット2の故障条件を学習する。一実施形態において、機械学習装置5は、ネットワークを介してロボット2に接続されていてロボット制御装置3とは別個のデジタルコンピュータであってもよい。   The machine learning device 5 learns the failure condition of the robot 2. In one embodiment, the machine learning device 5 may be a digital computer that is connected to the robot 2 via a network and is separate from the robot control device 3.

別の実施形態において、機械学習装置5は、ロボット制御装置3に内蔵されていてもよい。その場合、機械学習装置5は、ロボット制御装置3のプロセッサを利用して機械学習を実行する。また別の実施形態において、機械学習装置5は、クラウドサーバ上に存在していてもよい。   In another embodiment, the machine learning device 5 may be built in the robot control device 3. In this case, the machine learning device 5 performs machine learning using the processor of the robot control device 3. In another embodiment, the machine learning device 5 may exist on a cloud server.

図1に示されるように、機械学習装置5は、判定データ取得部51と、状態観測部52と、学習部53と、を備えている。   As shown in FIG. 1, the machine learning device 5 includes a determination data acquisition unit 51, a state observation unit 52, and a learning unit 53.

判定データ取得部51は、故障判定部31から判定データを取得する。判定データは、判定データ取得部51から学習部53に入力され、機械学習装置5が故障条件を学習する際に使用される。判定データは、故障の有無又は故障の度合いを判定したデータである。判定データは、故障有りの場合、すなわちロボット2が異常な状態にあることを表すデータを含んでいなくてもよい。   The determination data acquisition unit 51 acquires determination data from the failure determination unit 31. The determination data is input from the determination data acquisition unit 51 to the learning unit 53 and is used when the machine learning device 5 learns the failure condition. The determination data is data that determines the presence or absence of a failure or the degree of failure. The determination data may not include data indicating that there is a failure, that is, that the robot 2 is in an abnormal state.

状態観測部52は、機械学習の入力値としての状態変数をロボット2の動作中又は静止中に観測する。機械学習装置5がネットワークを介してロボット2及びセンサ11に接続されている実施形態において、状態観測部52は、ネットワークを介して状態変数を取得する。   The state observation unit 52 observes a state variable as an input value of machine learning while the robot 2 is operating or stationary. In an embodiment in which the machine learning device 5 is connected to the robot 2 and the sensor 11 via a network, the state observation unit 52 acquires a state variable via the network.

状態変数は、センサ11の出力データを含んでいてもよい。状態変数は、ロボット2を制御する制御ソフトウェアの内部データを含んでいてもよい。内部データは、トルク、位置、速度、加速度、加加速度、電流、電圧及び推定外乱値のうちの少なくともいずれか1つを含んでいてもよい。推定外乱値は、例えば、トルク指令及び速度フィードバックに基づいてオブザーバによって推定される外乱値である。   The state variable may include output data of the sensor 11. The state variable may include internal data of control software that controls the robot 2. The internal data may include at least one of torque, position, speed, acceleration, jerk, current, voltage, and estimated disturbance value. The estimated disturbance value is a disturbance value estimated by an observer based on, for example, a torque command and speed feedback.

状態変数は、出力データ又は内部データに基づいて得られる計算データを含んでいてもよい。計算データは、周波数解析、時間周波数解析及び自己相関解析のうちの少なくとも1つを利用して取得されてもよい。当然ながら、計算データは、より単純な計算、例えば係数乗算又は微分積分演算を利用して取得されてもよい。   The state variable may include calculation data obtained based on output data or internal data. The calculation data may be acquired using at least one of frequency analysis, time frequency analysis, and autocorrelation analysis. Of course, the calculation data may be obtained using simpler calculations, such as coefficient multiplication or differential integration.

学習部53は、状態観測部52から出力される状態変数、及び判定データ取得部51から出力される判定データの組合せに基づいて作成される訓練データセットに従って、故障条件を学習する。訓練データセットは、状態変数及び判定データを互いに関連付けたデータである。   The learning unit 53 learns the failure condition according to the training data set created based on the combination of the state variable output from the state observation unit 52 and the determination data output from the determination data acquisition unit 51. The training data set is data in which state variables and determination data are associated with each other.

図2を参照して、機械学習装置5における学習過程の一例について説明する。学習が開始されると、ステップS201において、状態観測部52が、出力データ、内部データ又は計算データなどを含む状態変数を取得する。ステップS202では、判定データ取得部51が、故障判定部31による判定結果に基づいて判定データを取得する。   An example of a learning process in the machine learning device 5 will be described with reference to FIG. When learning is started, in step S201, the state observation unit 52 acquires state variables including output data, internal data, calculation data, and the like. In step S <b> 202, the determination data acquisition unit 51 acquires determination data based on the determination result by the failure determination unit 31.

ステップS203では、学習部53が、ステップS201で取得された状態変数と、ステップS202で取得された判定データと、の組合せに基づいて作成される訓練データセットに従って、故障条件を学習する。ステップS201〜S203の処理は、機械学習装置5が故障条件を十分に学習するまで繰返し実行される。   In step S203, the learning unit 53 learns the failure condition according to the training data set created based on the combination of the state variable acquired in step S201 and the determination data acquired in step S202. The processes in steps S201 to S203 are repeatedly executed until the machine learning device 5 sufficiently learns the failure condition.

一実施形態において、機械学習装置5の学習部53は、ニューラルネットワークモデルに従って故障条件を学習してもよい。図3は、ニューラルネットワークモデルの例を示している。ニューラルネットワークは、l個のニューロンx1、x2、x3、・・・、xlを含む入力層と、m個のニューロンy1、y2、y3、・・・、ymを含む中間層(隠れ層)と、n個のニューロンz1、z2、z3、・・・、znを含む出力層と、から構成されている。なお、図3において、中間層は、1層のみ示されているものの、2層以上の中間層が設けられてもよい。なお、機械学習装置5(ニューラルネット)は、汎用の計算機若しくはプロセッサを用いてもよいが、GPGPU(General-Purpose computing on Graphics Processing Units)や大規模PCクラスターなどを適用すると、より高速に処理することが可能である。 In one embodiment, the learning unit 53 of the machine learning device 5 may learn a failure condition according to a neural network model. FIG. 3 shows an example of a neural network model. Neural network comprises l neurons x 1, x 2, x 3 , ···, an input layer comprising a x l, m neurons y 1, y 2, y 3 , ···, a y m An intermediate layer (hidden layer) and an output layer including n neurons z 1 , z 2 , z 3 ,. In FIG. 3, although only one intermediate layer is shown, two or more intermediate layers may be provided. The machine learning device 5 (neural network) may use a general-purpose computer or processor. However, when GPGPU (General-Purpose computing on Graphics Processing Units) or a large-scale PC cluster is applied, the machine learning device 5 (neural network) performs higher-speed processing. It is possible.

ニューラルネットワークは、ロボット2の故障に関連付けられる故障条件を学習する。ニューラルネットワークは、状態観測部52によって観測される状態変数と、判定データ取得部51によって取得される判定データとの組合せに基づいて作成される訓練データセットに従って、いわゆる教師あり学習によって、状態変数と故障発生との関係性、すなわち故障条件を学習する。教師あり学習とは、ある入力と結果(ラベル)のデータの組を大量に学習装置に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデル、すなわちその関係性を帰納的に獲得することができるというものである。   The neural network learns failure conditions associated with the failure of the robot 2. The neural network uses state variables observed by the state observation unit 52 and so-called supervised learning according to a training data set created based on a combination of the determination data acquired by the determination data acquisition unit 51. The relationship with failure occurrence, that is, failure conditions are learned. Supervised learning is a model that learns features in these datasets by giving a large number of sets of input and result (label) data to the learning device, and estimates the result from the input, that is, the relationship Can be obtained inductively.

或いは、ニューラルネットワークは、故障無しの状態、すなわちロボット2が正常に動作しているときの状態変数のみを蓄積し、いわゆる教師なし学習によって、故障条件を学習することもできる。例えば、ロボット2の故障の頻度が極めて低い場合、教師なし学習の手法が有効であろう。教師なし学習とは、入力データのみを大量に学習装置に与えることで、入力データがどのような分布をしているか学習し、対応する教師出力データを与えなくても、入力データに対して圧縮・分類・整形などを行う装置を学習する手法である。それらのデータセットにある特徴を似た者どうしにクラスタリングすることなどができる。この結果を使って、何らかの基準を設けてそれを最適にするような出力の割り当てを行うことで、出力の予測を実現することできる。また、教師なし学習と教師あり学習との中間的な問題設定として、半教師あり学習と呼ばれるものもあり、これは一部のみ入力と出力のデータの組が存在し、それ以外は入力のみのデータである場合がこれに当たる。   Alternatively, the neural network can accumulate only the state variables when there is no failure, that is, when the robot 2 is operating normally, and can learn the failure condition by so-called unsupervised learning. For example, when the failure frequency of the robot 2 is extremely low, an unsupervised learning method will be effective. Unsupervised learning is to provide only a large amount of input data to the learning device to learn how the input data is distributed, and compress the input data without providing corresponding teacher output data. -This is a method for learning a device that performs classification and shaping. It is possible to cluster the features in those datasets among similar people. Using this result, output can be predicted by assigning an output so as to optimize it by setting a certain standard. In addition, there is an intermediate problem setting between unsupervised learning and supervised learning called semi-supervised learning, in which only a part of the input and output data sets exist, and the others are input only. This is the case with data.

図4は、教師なしの学習の手法における学習期間の一例を説明するための図である。ここで、横軸は、時間(時間の経過)を示し、縦軸は、故障の度合いを示す。図4に示されるように、上記の教師なしの学習の手法は、ロボット2が、出荷された直後もしくはメンテナンスされた直後などを起点としてある一定期間、例えば、数週間などを学習期間として、このときのみ状態変数を更新し、正常状態として定義する。そして、その後は状態変数の更新を行わず、ニューラルネットワークから出力される出力結果から正常モデルからの距離をもとに「故障の度合い」を出力して異常判定のみを行うことによって、異常検知を行うことを実現できる。   FIG. 4 is a diagram for explaining an example of a learning period in an unsupervised learning technique. Here, the horizontal axis indicates time (elapsed time), and the vertical axis indicates the degree of failure. As shown in FIG. 4, the unsupervised learning method described above is based on a learning period of a certain period, for example, several weeks, starting from immediately after the robot 2 is shipped or immediately after maintenance. Only when the state variable is updated and defined as normal. After that, the state variable is not updated, and the abnormality detection is performed by outputting the “degree of failure” from the output result output from the neural network based on the distance from the normal model and performing only the abnormality determination. You can do it.

また、本実施形態においては、例えば、時間的相関がある時系列データをモデル化するため、リカレント型と呼ばれるニューラルネットワークを使用するのも有効である。リカレントニューラルネットワーク(RNN:Recurrent Neural Network)は、現時刻だけの状態のみを使って学習モデルを形成するのではなく、これまでの時刻の内部状態も利用する。リカレントニューラルネットワークは時間軸のネットワークを展開して考えることで、一般的なニューラルネットワークと同様に扱うことができる。ここで、リカレントニューラルネットワークも多種あるが、一例として、単純再帰型ネットワーク(エルマンネットワーク:Elman Network)を説明する。   In this embodiment, for example, it is also effective to use a neural network called a recurrent type in order to model time-series data with temporal correlation. A recurrent neural network (RNN) does not form a learning model using only the state at the current time, but also uses the internal state at the previous time. A recurrent neural network can be handled in the same way as a general neural network by developing a time axis network. Here, there are various types of recurrent neural networks. As an example, a simple recursive network (Elman Network) will be described.

図5は、リカレント型ニューラルネットワークの一例を説明するための図であり、図5(a)は、エルマンネットワークの時間軸展開を示し、図5(b)は、誤差逆伝播法(バックプロパゲーション:Backpropagation)のバックプロパゲーションタイムスルータイム(BPTT:Back Propagation Through Time)を示す。ここで、図5(a)に示されるようなエルマンネットワークの構造であれば、バックプロパゲーションを適用することができる。   FIG. 5 is a diagram for explaining an example of a recurrent type neural network. FIG. 5 (a) shows a time axis expansion of the Elman network, and FIG. 5 (b) shows an error back propagation method (back propagation). : Backpropagation (Backpropagation) indicates the back propagation time through time (BPTT: Back Propagation Through Time). Here, backpropagation can be applied to the structure of the Elman network as shown in FIG.

ただし、エルマンネットワークでは、通常のニューラルネットワークと異なり、図5(b)に示されるように、時間を遡るように誤差が伝搬し、このようなバックプロパゲーションをバックプロパゲーションスルータイム(BPTT)と呼ぶ。このようなニューラルネットワーク構造を適用することで、これまでの入力の遷移を踏まえた出力のモデルを推定することができ、例えば、その推定される出力値が、ある異常値であるかどうかを故障発生との関係性に使うことが可能になる。   However, in the Elman network, unlike a normal neural network, as shown in FIG. 5 (b), an error propagates back in time, and this backpropagation is referred to as backpropagation through time (BPTT). Call. By applying such a neural network structure, it is possible to estimate an output model based on the transition of the input so far, for example, whether the estimated output value is a certain abnormal value or not. It can be used for the relationship with the occurrence.

後述する故障予知を行う際、ニューラルネットワークの入力層に入力される状態変数に応答して、出力層が前述の故障情報に対応する故障の有無を表す情報又は「故障の度合い」を出力する。なお、「故障の度合い」の取り得る値は、最大値・最小値のいずれかが制限された値、或いは、連続量、もしくは離散量であってもよい。   When performing failure prediction, which will be described later, in response to a state variable input to the input layer of the neural network, the output layer outputs information indicating the presence or absence of a failure corresponding to the failure information described above or “degree of failure”. Note that the possible value of the “degree of failure” may be a value in which either the maximum value or the minimum value is limited, a continuous amount, or a discrete amount.

前述した実施形態に係る機械学習装置及び機械学習方法によれば、判定データ取得部51から出力される判定データによる故障条件よりも実際の使用状況に応じた正確な故障条件を学習できる。それにより、故障につながる要因が複雑であり、故障条件を予め設定するのが困難な場合であっても、高い精度の故障予知が可能になる。   According to the machine learning device and the machine learning method according to the above-described embodiment, it is possible to learn a more accurate failure condition according to the actual use situation than the failure condition based on the determination data output from the determination data acquisition unit 51. Thereby, even when the factors leading to the failure are complicated and it is difficult to preset the failure condition, it is possible to predict the failure with high accuracy.

一実施形態において、判定データ取得部51がロボット2の故障を表す判定データを取得したときに、学習部53が、判定データを、故障発生時から各々の判定データの取得時まで遡った時間の長さに応じて、それぞれ重み付けして故障条件を更新するようにしてもよい。ここで、判定データを取得してから故障が実際に発生するまでの時間が短ければ短いほど、故障発生に直結する状態に近いことが推定される。したがって、訓練データセット取得時からの経過時間に応じて判定データを重み付けすれば、故障条件を効果的に学習することができる。   In one embodiment, when the determination data acquisition unit 51 acquires determination data representing a failure of the robot 2, the learning unit 53 captures the determination data from the time when the failure occurred until the acquisition of each determination data. The failure condition may be updated by weighting according to the length. Here, it is estimated that the shorter the time from when the determination data is acquired until the failure actually occurs, the closer to the state where the failure occurs. Therefore, if the determination data is weighted according to the elapsed time since the training data set was acquired, the failure condition can be effectively learned.

一実施形態において、学習部53は、複数のロボット2に対して作成される訓練データセットに従って、故障条件を学習するようにしてもよい。なお、学習部53は、同一の現場で使用される複数のロボット2から訓練データセットを取得してもよいし、或いは、異なる現場で独立して稼働する複数のロボット2から収集される訓練データセットを利用して故障条件を学習してもよい。また、訓練データセットを収集するロボット2を途中で対象に追加し、或いは、逆に対象から除去することもできる。   In one embodiment, the learning unit 53 may learn a failure condition according to a training data set created for a plurality of robots 2. The learning unit 53 may acquire a training data set from a plurality of robots 2 used at the same site, or training data collected from a plurality of robots 2 that operate independently at different sites. You may learn a failure condition using a set. In addition, the robot 2 that collects the training data set can be added to the target on the way, or conversely, can be removed from the target.

次に、複数のロボット2の訓練データセットを共有(共用)する方法として、以下に3つの例を挙げるが、それ以外の方法を適用することができるのはいうまでもない。まず、第1の例としては、ニューラルネットワークのモデルを同じになるように共有する方法であり、例えば、ネットワークの各重み係数について、各ロボット2間の差分を、通信手段を用いて送信して反映させるものである。また、第2の例としては、ニューラルネットワークの入力と出力のデータセットを共有することにより、学習装置5の重みなどを共有することができる。さらに、第3の例としては、あるデータベースを用意し、それにアクセスしてより妥当なニューラルネットワークのモデルをロードすることで状態を共有する(同じようなモデルとする)ものである。   Next, as examples of methods for sharing (sharing) training data sets of a plurality of robots 2, three examples will be given below, but it goes without saying that other methods can be applied. First, a first example is a method of sharing a neural network model so as to be the same. For example, for each weight coefficient of the network, a difference between the robots 2 is transmitted using a communication unit. It is reflected. As a second example, by sharing the input and output data sets of the neural network, the weight of the learning device 5 can be shared. Furthermore, as a third example, a state is prepared by preparing a certain database, accessing it, and loading a model of a more appropriate neural network (with a similar model).

図6は、他の実施形態に係る故障予知システムの一例を示すブロック図である。故障予知システム1は、機械学習装置5によって学習された結果を利用して、ロボット2の故障情報を作成する故障予知装置4を備えている。   FIG. 6 is a block diagram illustrating an example of a failure prediction system according to another embodiment. The failure prediction system 1 includes a failure prediction device 4 that creates failure information of the robot 2 using a result learned by the machine learning device 5.

故障予知装置4は、状態観測部41と、故障情報出力部42と、を備えている。状態観測部41は、図1を参照して説明した状態観測部52と同様に機能し、ロボット2及び周囲の環境の状態を反映した状態変数を取得する。故障情報出力部42は、前述した機械学習装置5の学習部53が訓練データセットに従って学習した結果に基づいて、状態観測部41を介した状態変数の入力に応答して、ロボット2の故障情報を出力する。   The failure prediction device 4 includes a state observation unit 41 and a failure information output unit 42. The state observing unit 41 functions in the same manner as the state observing unit 52 described with reference to FIG. 1, and acquires a state variable reflecting the state of the robot 2 and the surrounding environment. The failure information output unit 42 responds to the input of the state variable via the state observation unit 41 based on the result learned by the learning unit 53 of the machine learning device 5 according to the training data set, and the failure information of the robot 2. Is output.

図6に示されるように、ロボット制御装置3は、通知部(故障情報通知部)32を備えることができる。通知部32は、故障情報出力部42によって出力される故障情報をオペレータに通知する。故障情報が通知される態様は、オペレータが知得可能であれば、特に限定されない。例えば、予知された故障の有無又は故障の度合いを図示されない表示装置に表示してもよいし、或いは、故障情報の内容に応じて警告音を発生させてもよい。   As shown in FIG. 6, the robot control device 3 can include a notification unit (failure information notification unit) 32. The notification unit 32 notifies the operator of the failure information output by the failure information output unit 42. The manner in which the failure information is notified is not particularly limited as long as the operator can know it. For example, the presence or absence of a predicted failure or the degree of failure may be displayed on a display device (not shown), or a warning sound may be generated according to the content of failure information.

図7および図8は、実施形態に係る故障予知システムにおける故障の度合いを示す指標値の例(第1例〜第4例)を説明するための図である。ここで、図7(a),図7(b),図7(c)及び図8において、横軸は、時間を示し、縦軸は、故障の度合いを示す。まず、図7(a)に示されるように、例えば、第1例において、「故障の度合い」を示す指標値を、故障が近づくにつれて大きくなるように定め、学習によって得られた指標値をそのまま故障情報として故障情報出力部42が出力するように構成することができる。また、図7(b)に示されるように、例えば、第2例において、前述の指標値に閾値を設け、閾値以上であれば異常、閾値未満であれば正常、というように故障の有無を表す情報を故障情報として故障情報出力部42が出力するように構成することもできる。さらに、図7(c)に示されるように、例えば、第3例において、前述の指標値に閾値を複数(閾値1〜閾値3)設け、各閾値別に区切られたレベル(故障レベル1〜故障レベル4)を故障情報として故障情報出力部42が出力するように構成することもできる。   7 and 8 are diagrams for explaining examples of index values (first to fourth examples) indicating the degree of failure in the failure prediction system according to the embodiment. Here, in FIG. 7A, FIG. 7B, FIG. 7C, and FIG. 8, the horizontal axis indicates time, and the vertical axis indicates the degree of failure. First, as shown in FIG. 7 (a), for example, in the first example, the index value indicating the “degree of failure” is set to increase as the failure approaches, and the index value obtained by learning is used as it is. The failure information output unit 42 can output the failure information. Further, as shown in FIG. 7B, for example, in the second example, a threshold value is provided for the above-described index value, and whether there is a failure such as abnormal if it is greater than or equal to the threshold value, normal if it is less than the threshold value. The failure information output unit 42 may output the information to be expressed as failure information. Further, as shown in FIG. 7 (c), for example, in the third example, a plurality of threshold values (threshold value 1 to threshold value 3) are provided for the above-described index value, and the levels (fault level 1 to fault value) are divided for each threshold value. The failure information output unit 42 may output level 4) as failure information.

図8に示されるように、例えば、第4例において、複数の故障に至ったデータ(教師データ)に基づいて、前述の指標値と故障に至るまでの時間の関係を求め、それを元に、故障が発生する時期から遡って第1の所定期間で定められる時期より前であることを満たすための第1の閾値を求める。また、故障が発生する時期から遡って第2の所定期間で定められる時期より後であることを満たすための第2の閾値を定める。そして、指標値が第1の閾値未満であることと、指標値が第2の閾値以上であることの少なくとも一方を満たす場合に、指標値そのもの、或いは、指標値を閾値で区切ったレベルを、故障情報として故障情報出力部42が出力することもできる。この場合の閾値の決め方は、例えば、過去の教師データが条件を全て満たすように閾値を設けることもでき、また、必要に応じてマージンを設けて閾値を設けることもでき、さらに、確率論的に、ある一定確率内での判定間違いを許すように閾値を定めることもできる。   As shown in FIG. 8, for example, in the fourth example, a relationship between the above-described index value and time until failure is obtained based on data (teacher data) that led to a plurality of failures, and based on that, A first threshold value for satisfying that the time before the time determined in the first predetermined period is obtained from the time when the failure occurs is obtained. Further, a second threshold value is set for satisfying that the time after the time determined in the second predetermined period is traced back from the time when the failure occurs. Then, when satisfying at least one of the index value being less than the first threshold and the index value being greater than or equal to the second threshold, the index value itself, or a level obtained by dividing the index value by the threshold, The failure information output unit 42 can also output the failure information. In this case, the threshold value can be determined, for example, by setting the threshold value so that past teacher data satisfies all the conditions, or by providing a margin with a margin if necessary. In addition, a threshold value can be set so as to allow a determination error within a certain probability.

次に、図9を参照して、機械学習装置が学習した結果を利用して実行される故障予知の一例について説明する。ステップS501では、状態観測部41が、例えばセンサ11からの出力データを含む現在の状態変数を取得する。ステップS502では、故障情報出力部42が、前述した機械学習装置5の学習結果に基づいて、ステップS501で取得された状態変数に応じた故障情報を出力する。故障予知システム1が通知部32を備えている場合は、故障情報をオペレータに通知する工程がステップS502の後に実行されてもよい。   Next, an example of failure prediction executed using the result learned by the machine learning device will be described with reference to FIG. In step S501, the state observation unit 41 acquires a current state variable including, for example, output data from the sensor 11. In step S502, the failure information output unit 42 outputs failure information corresponding to the state variable acquired in step S501 based on the learning result of the machine learning device 5 described above. When the failure prediction system 1 includes the notification unit 32, a step of notifying the operator of failure information may be executed after step S502.

図9を参照して説明した故障予知装置4による故障予知は、ロボット2が予め定められる特定の動作を実行するときに行われてもよい。或いは、ロボット2の動作中又は静止中に並行してステップS501〜S502の処理を継続して実行してもよい。或いは、予め定められた時刻に定期的に故障予知が行われてもよい。   The failure prediction by the failure prediction device 4 described with reference to FIG. 9 may be performed when the robot 2 executes a predetermined specific operation. Alternatively, the processes in steps S501 to S502 may be continuously executed while the robot 2 is operating or stationary. Alternatively, failure prediction may be performed periodically at a predetermined time.

一実施形態において、故障予知装置4による故障予知を実行するのと並行して、機械学習装置5による機械学習が実行されてもよい。その場合、故障予知装置4が故障情報を作成するのと同時に、故障判定部31又はオペレータの操作を介して取得される判定データとその時点での状態変数に基づいて、機械学習装置5の学習部53が故障条件を再学習する。   In one embodiment, the machine learning by the machine learning device 5 may be executed in parallel with the execution of the failure prediction by the failure prediction device 4. In that case, at the same time that the failure prediction device 4 creates the failure information, the machine learning device 5 learns based on the determination data acquired through the operation of the failure determination unit 31 or the operator and the state variable at that time. The unit 53 relearns the failure condition.

ニューラルネットワークを利用して機械学習する実施形態について説明したものの、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。また、繰り返しになるが、本明細書において、「産業機械」なる文言は、産業用ロボット、サービス用ロボット及びコンピュータ数値制御(CNC)装置で制御される機械を含む様々な機械を意味するのは、前述した通りである。   Although an embodiment of machine learning using a neural network has been described, machine learning may be performed according to other known methods such as genetic programming, functional logic programming, support vector machine, and the like. Again, in this specification, the term “industrial machine” means various machines including industrial robots, service robots, and machines controlled by computer numerical control (CNC) devices. As described above.

以上、本発明の種々の実施形態について説明したが、当業者であれば、他の実施形態によっても本発明の意図する作用効果を実現できることを認識するであろう。特に、本発明の範囲を逸脱することなく、前述した実施形態の構成要素を削除又は置換することができるし、或いは公知の手段をさらに付加することができる。また、本明細書において明示的又は暗示的に開示される複数の実施形態の特徴を任意に組合せることによっても本発明を実施できることは当業者に自明である。   Although various embodiments of the present invention have been described above, those skilled in the art will recognize that the functions and effects intended by the present invention can be realized by other embodiments. In particular, the components of the above-described embodiments can be deleted or replaced without departing from the scope of the present invention, or known means can be further added. It is obvious to those skilled in the art that the present invention can be implemented by arbitrarily combining features of a plurality of embodiments explicitly or implicitly disclosed in the present specification.

1 故障予知システム
2 ロボット
3 ロボット制御装置
4 故障予知装置
5 機械学習装置
11 センサ
31 故障判定部
32 通知部
41 状態観測部
42 故障情報出力部
51 判定データ取得部
52 状態観測部
53 学習部
DESCRIPTION OF SYMBOLS 1 Failure prediction system 2 Robot 3 Robot control apparatus 4 Failure prediction apparatus 5 Machine learning apparatus 11 Sensor 31 Failure determination part 32 Notification part 41 State observation part 42 Failure information output part 51 Determination data acquisition part 52 State observation part 53 Learning part

Claims (13)

産業機械の故障に関連付けられる条件を学習する機械学習装置であって、
前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測する状態観測部と、
前記産業機械の故障の度合いを判定した判定データを取得する判定データ取得部と、
前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を学習する学習部と、を備え、
前記学習部は、前記判定データ取得部が、前記産業機械の故障を表す判定データを取得したときに、前記訓練データセットに含まれる前記判定データを、故障発生時から前記判定データの取得時まで遡った時間の長さに応じて重み付けして前記条件を更新する、
ことを特徴とする機械学習装置。
A machine learning device for learning conditions associated with a failure of an industrial machine,
It includes at least one of output data of a sensor that detects the state of the industrial machine or the surrounding environment, internal data of control software that controls the industrial machine, and calculation data obtained based on the output data or the internal data A state observation unit for observing state variables during operation or stationary of the industrial machine;
A determination data acquisition unit for acquiring determination data for determining the degree of failure of the industrial machine;
According training data set that is created based on a combination of the state variables and the decision data, Bei example and a learning unit that learns a condition associated with a failure of the industrial machinery,
The learning unit obtains the determination data included in the training data set from the occurrence of the failure until the determination data is acquired when the determination data acquisition unit acquires the determination data representing the failure of the industrial machine. Update the above condition by weighting according to the length of time that goes back.
A machine learning device characterized by that.
前記学習部は、複数の産業機械に対して作成される前記訓練データセットに従って、前記条件を学習するように構成される、
ことを特徴とする請求項1に記載の機械学習装置。
The learning unit is configured to learn the condition according to the training data set created for a plurality of industrial machines.
The machine learning device according to claim 1.
前記学習部は、ある一定期間のみで正常状態を学習し、その後は、前記判定データ取得部による故障発生を検知する、
ことを特徴とする請求項1又は請求項2に記載の機械学習装置。
The learning unit learns a normal state only during a certain period, and then detects the occurrence of a failure by the determination data acquisition unit.
The machine learning apparatus according to claim 1, wherein the machine learning apparatus is a machine learning apparatus.
請求項1から請求項のいずれか1項に記載の機械学習装置を備えた、前記産業機械の故障を予知する故障予知装置であって、
前記学習部が前記訓練データセットに従って学習した結果に基づいて、現在の前記状態変数の入力に応答して、前記産業機械の故障の有無又は故障の度合いを表す故障情報を出力する故障情報出力部をさらに備える、
ことを特徴とする故障予知装置。
A failure prediction device for predicting a failure of the industrial machine, comprising the machine learning device according to any one of claims 1 to 3 ,
Based on the result learned by the learning unit according to the training data set, in response to the current input of the state variable, a failure information output unit that outputs failure information indicating the presence or absence of the industrial machine or the degree of failure Further comprising
A failure prediction apparatus characterized by that.
前記学習部は、前記現在の状態変数及び前記判定データの組合せに基づいて作成される追加の訓練データセットに従って、前記条件を再学習する、
ことを特徴とする請求項に記載の故障予知装置。
The learning unit re-learns the condition according to an additional training data set created based on the combination of the current state variable and the determination data.
The failure prediction apparatus according to claim 4 .
前記機械学習装置は、ネットワークを介して前記産業機械に接続され、
前記状態観測部は、前記ネットワークを介して前記現在の状態変数を取得する、
ことを特徴とする請求項又は請求項に記載の故障予知装置。
The machine learning device is connected to the industrial machine via a network,
The state observation unit acquires the current state variable via the network;
The failure prediction apparatus according to claim 4 or 5 , characterized in that:
前記機械学習装置は、クラウドサーバ上に存在する、
ことを特徴とする請求項に記載の故障予知装置。
The machine learning device exists on a cloud server,
The failure prediction apparatus according to claim 6 .
前記機械学習装置は、前記産業機械を制御する制御装置に内蔵されている、
ことを特徴とする請求項から請求項のいずれか1項に記載の故障予知装置。
The machine learning device is built in a control device that controls the industrial machine,
The failure prediction apparatus according to any one of claims 4 to 6 , wherein the failure prediction apparatus is characterized in that:
前記機械学習装置による学習結果は、複数の前記産業機械で共用される、
ことを特徴とする請求項から請求項のいずれか1項に記載の故障予知装置。
The learning result by the machine learning device is shared by a plurality of the industrial machines.
The failure prediction apparatus according to any one of claims 4 to 8 , wherein the failure prediction apparatus is characterized in that:
請求項から請求項のいずれか1項に記載の故障予知装置と、
前記出力データを出力するセンサと、
前記故障情報をオペレータに通知する故障情報通知部と、を備える、
ことを特徴とする故障予知システム。
The failure prediction apparatus according to any one of claims 4 to 9 ,
A sensor for outputting the output data;
A failure information notification unit for notifying an operator of the failure information,
Failure prediction system characterized by that.
前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前である、
ことを特徴とする請求項10に記載の故障予知システム。
The time when the failure information is notified to the operator by the failure information notification unit is earlier than the time determined in the first predetermined period retroactively from the time when the failure occurs,
The failure prediction system according to claim 10 .
前記故障情報通知部で前記故障情報がオペレータに通知される時期は、故障が発生する時期から遡って第1の所定期間で定められる時期より前であり、かつ、故障が発生する時期から遡って、前記第1の所定期間よりも長い第2の所定期間で定められる時期より後である、
ことを特徴とする請求項11に記載の故障予知システム。
The time when the failure information is notified to the operator by the failure information notifying unit is earlier than the time determined in the first predetermined period, going back from the time when the failure occurs, and going back from the time when the failure occurs. , After a time determined by a second predetermined period longer than the first predetermined period,
The failure prediction system according to claim 11 .
産業機械の故障に関連付けられる条件を学習する機械学習方法であって、
前記産業機械又は周囲環境の状態を検出するセンサの出力データ、前記産業機械を制御する制御ソフトウェアの内部データ、及び、前記出力データ又は前記内部データに基づいて得られる計算データの少なくとも1つを含む状態変数を前記産業機械の動作中又は静止中に観測し、
前記産業機械の故障の度合いを判定した判定データを取得し、
前記状態変数及び前記判定データの組合せに基づいて作成される訓練データセットに従って、前記産業機械の故障に関連付けられる条件を学習し、
前記産業機械の故障に関連付けられる条件を学習するのは、前記産業機械の故障を表す判定データを取得したときに、前記訓練データセットに含まれる前記判定データを、故障発生時から前記判定データの取得時まで遡った時間の長さに応じて重み付けして前記条件を更新する、
ことを特徴とする機械学習方法。
A machine learning method for learning conditions associated with an industrial machine failure,
It includes at least one of output data of a sensor that detects the state of the industrial machine or the surrounding environment, internal data of control software that controls the industrial machine, and calculation data obtained based on the output data or the internal data Observing state variables while the industrial machine is operating or stationary,
Obtaining determination data that determines the degree of failure of the industrial machine,
Learning a condition associated with a failure of the industrial machine according to a training data set created based on the combination of the state variable and the determination data ;
The condition associated with the failure of the industrial machine is learned because when the determination data representing the failure of the industrial machine is acquired, the determination data included in the training data set is changed from the occurrence of the failure to the determination data. Update the above condition by weighting according to the length of time going back to the time of acquisition,
A machine learning method characterized by that.
JP2015234022A 2015-07-31 2015-11-30 Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device Active JP6148316B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102016008987.3A DE102016008987B4 (en) 2015-07-31 2016-07-22 Machine learning method and machine learning apparatus for learning failure conditions, and failure prediction apparatus and failure prediction system including the machine learning apparatus
US15/220,925 US10317853B2 (en) 2015-07-31 2016-07-27 Machine learning method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
CN201610616706.XA CN106409120B (en) 2015-07-31 2016-07-29 Machine learning method, machine learning device, and failure prediction device and system
US16/407,451 US11275345B2 (en) 2015-07-31 2019-05-09 Machine learning Method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
US17/585,477 US12066797B2 (en) 2015-07-31 2022-01-26 Fault prediction method and fault prediction system for predecting a fault of a machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015152572 2015-07-31
JP2015152572 2015-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017020403A Division JP6773582B2 (en) 2015-07-31 2017-02-07 Machine learning device, failure prediction device and failure prediction system, and machine learning method and failure prediction method

Publications (2)

Publication Number Publication Date
JP2017033526A JP2017033526A (en) 2017-02-09
JP6148316B2 true JP6148316B2 (en) 2017-06-14

Family

ID=57988307

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015234022A Active JP6148316B2 (en) 2015-07-31 2015-11-30 Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device
JP2017020403A Active JP6773582B2 (en) 2015-07-31 2017-02-07 Machine learning device, failure prediction device and failure prediction system, and machine learning method and failure prediction method
JP2020167222A Active JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method
JP2022109778A Active JP7504163B2 (en) 2015-07-31 2022-07-07 Anomaly prediction device, anomaly prediction system, anomaly prediction method, and anomaly prediction program

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2017020403A Active JP6773582B2 (en) 2015-07-31 2017-02-07 Machine learning device, failure prediction device and failure prediction system, and machine learning method and failure prediction method
JP2020167222A Active JP7104121B2 (en) 2015-07-31 2020-10-01 Failure prediction device, failure prediction system and failure prediction method
JP2022109778A Active JP7504163B2 (en) 2015-07-31 2022-07-07 Anomaly prediction device, anomaly prediction system, anomaly prediction method, and anomaly prediction program

Country Status (2)

Country Link
JP (4) JP6148316B2 (en)
CN (1) CN106409120B (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346251B2 (en) * 2016-11-25 2018-06-20 ファナック株式会社 Oil leak detection device
CN110268350B (en) * 2017-03-03 2022-12-20 松下知识产权经营株式会社 Additional learning method for deterioration diagnosis system
JP6499689B2 (en) 2017-03-08 2019-04-10 ファナック株式会社 Finishing amount prediction device and machine learning device
JP6693451B2 (en) * 2017-03-14 2020-05-13 オムロン株式会社 Judgment device, judgment program, and learning method
JP2018156151A (en) * 2017-03-15 2018-10-04 ファナック株式会社 Abnormality detecting apparatus and machine learning device
JP6720402B2 (en) * 2017-03-21 2020-07-08 株式会社Preferred Networks Server device, learned model providing program, learned model providing method, and learned model providing system
JP6527187B2 (en) * 2017-03-22 2019-06-05 ファナック株式会社 Learning model construction device, anomaly detection device, anomaly detection system and server
JP6557272B2 (en) * 2017-03-29 2019-08-07 ファナック株式会社 State determination device
JP6313516B1 (en) * 2017-03-30 2018-04-18 三菱総研Dcs株式会社 Information processing apparatus, information processing method, and computer program
JP6514260B2 (en) 2017-04-13 2019-05-15 ファナック株式会社 Control device and machine learning device
JP6530779B2 (en) * 2017-04-20 2019-06-12 ファナック株式会社 Machining defect factor estimation device
JP6572265B2 (en) * 2017-06-30 2019-09-04 ファナック株式会社 Control device and machine learning device
JP6678824B2 (en) 2017-06-30 2020-04-08 三菱電機株式会社 Unsteady detection device, unsteady detection system, and unsteady detection method
KR102616698B1 (en) * 2017-07-07 2023-12-21 오티스 엘리베이터 컴파니 An elevator health monitoring system
JP7082461B2 (en) * 2017-07-26 2022-06-08 株式会社Ye Digital Failure prediction method, failure prediction device and failure prediction program
JP6380628B1 (en) * 2017-07-31 2018-08-29 株式会社安川電機 Power conversion apparatus, server, and data generation method
JP6680730B2 (en) 2017-08-08 2020-04-15 ファナック株式会社 Control device and learning device
JP6989841B2 (en) * 2017-08-25 2022-01-12 国立大学法人 鹿児島大学 Learning data generation method with teacher information, machine learning method, learning data generation system and program with teacher information
JP6577542B2 (en) 2017-09-05 2019-09-18 ファナック株式会社 Control device
JP6926904B2 (en) * 2017-09-28 2021-08-25 株式会社デンソーウェーブ Robot abnormality judgment device
EP3674822B1 (en) * 2017-09-30 2022-10-26 Siemens Aktiengesellschaft Method and apparatus for generating fault diagnosis information base of numerical control machine tool
JP6629815B2 (en) * 2017-10-23 2020-01-15 ファナック株式会社 Life estimation device and machine learning device
KR101989579B1 (en) * 2017-10-31 2019-06-14 한국전자통신연구원 Apparatus and method for monitoring the system
JP6622778B2 (en) * 2017-11-01 2019-12-18 ファナック株式会社 Rotary table device
JP6798968B2 (en) * 2017-11-22 2020-12-09 ファナック株式会社 Noise cause estimation device
JP6972971B2 (en) * 2017-11-28 2021-11-24 株式会社安川電機 Control system, machine learning device, maintenance support device, and maintenance support method
JP6721563B2 (en) 2017-11-28 2020-07-15 ファナック株式会社 Numerical control device
JPWO2019116418A1 (en) * 2017-12-11 2020-12-17 日本電気株式会社 Fault analyzer, fault analysis method and fault analysis program
JP7173273B2 (en) * 2017-12-11 2022-11-16 日本電気株式会社 Failure analysis device, failure analysis method and failure analysis program
JP7007715B2 (en) * 2017-12-28 2022-01-25 ローレル精機株式会社 Status determination device, money processor status determination system, status determination method and program
CN107919054B (en) * 2018-01-04 2019-06-25 南京旭上数控技术有限公司 A kind of industrial robot instructional device
CN110065091A (en) * 2018-01-24 2019-07-30 固德科技股份有限公司 A kind of mechanical arm dynamic monitoring system and its implementation method
JP6892400B2 (en) 2018-01-30 2021-06-23 ファナック株式会社 Machine learning device that learns the failure occurrence mechanism of laser devices
JP6662926B2 (en) * 2018-01-31 2020-03-11 ファナック株式会社 Notification method of robot and maintenance time for robot
US11826902B2 (en) * 2018-02-01 2023-11-28 Honda Motor Co., Ltd. Robot system and method for controlling robot
JP2019141869A (en) * 2018-02-19 2019-08-29 ファナック株式会社 Controller and machine learning device
JP6711854B2 (en) * 2018-02-22 2020-06-17 ファナック株式会社 Failure prediction device and machine learning device
CN111727108B (en) * 2018-03-05 2023-09-15 欧姆龙株式会社 Method, device and system for controlling robot and storage medium
DE102018203234A1 (en) * 2018-03-05 2019-09-05 Kuka Deutschland Gmbh Predictive assessment of robots
JP6882719B2 (en) * 2018-03-07 2021-06-02 オムロン株式会社 Robot control device, abnormality diagnosis method, and abnormality diagnosis program
JP6965798B2 (en) * 2018-03-12 2021-11-10 オムロン株式会社 Control system and control method
DE102019001760A1 (en) * 2018-03-19 2019-09-19 Fanuc Corporation INFORMATION PROCESSING DEVICE, MECHANICAL LEARNING DEVICE AND SYSTEM
CN108459933B (en) * 2018-03-21 2021-10-22 哈工大大数据(哈尔滨)智能科技有限公司 Big data computer system fault detection method based on deep recursion network
JP2019191799A (en) 2018-04-23 2019-10-31 株式会社日立製作所 Failure sign diagnosis system and failure sign diagnosis method
CN108621159B (en) * 2018-04-28 2020-05-19 首都师范大学 Robot dynamics modeling method based on deep learning
JP6909410B2 (en) 2018-05-08 2021-07-28 オムロン株式会社 Robot control device, maintenance management method, and maintenance management program
JP6810097B2 (en) * 2018-05-21 2021-01-06 ファナック株式会社 Anomaly detector
CN110539331A (en) * 2018-05-28 2019-12-06 睿胜自动化工程有限公司 Method and device for detecting abnormality of mechanical arm and pump in advance
WO2019239562A1 (en) * 2018-06-14 2019-12-19 ヤマハ発動機株式会社 Machine learning device and robot system provided with same
KR102239040B1 (en) * 2018-06-29 2021-04-13 성균관대학교산학협력단 Prognostics and health management systems for component of vehicle and methods thereof
EP3816803B1 (en) * 2018-06-29 2023-08-09 Robert Bosch GmbH Method for monitoring and identifying sensor failure in electric drive system
JP7060546B2 (en) * 2018-07-10 2022-04-26 ファナック株式会社 Tooth contact position adjustment amount estimation device, machine learning device, robot system and tooth contact position adjustment amount estimation system
MX2021001101A (en) * 2018-07-31 2021-03-31 Nissan Motor Abnormality determination device and abnormality determination method.
US12103169B2 (en) * 2018-08-06 2024-10-01 Nissan Motor Co., Ltd. Abnormality diagnosis device and abnormality diagnosis method
WO2020049615A1 (en) 2018-09-03 2020-03-12 三菱電機株式会社 Signal display control device and signal display control program
JP6856591B2 (en) * 2018-09-11 2021-04-07 ファナック株式会社 Control device, CNC device and control method of control device
CN109270921A (en) * 2018-09-25 2019-01-25 深圳市元征科技股份有限公司 A kind of method for diagnosing faults and device
JP2020052821A (en) * 2018-09-27 2020-04-02 株式会社ジェイテクト Deterioration determination device and deterioration determination system
JP7110884B2 (en) 2018-10-01 2022-08-02 オムロン株式会社 LEARNING DEVICE, CONTROL DEVICE, LEARNING METHOD, AND LEARNING PROGRAM
JP6885911B2 (en) * 2018-10-16 2021-06-16 アイダエンジニアリング株式会社 Press machine and abnormality monitoring method for press machine
JP6787971B2 (en) * 2018-10-25 2020-11-18 ファナック株式会社 State judgment device and state judgment method
US11119716B2 (en) * 2018-10-31 2021-09-14 Fanuc Corporation Display system, machine learning device, and display device
JP6867358B2 (en) * 2018-11-13 2021-04-28 ファナック株式会社 State judgment device and state judgment method
JP7107830B2 (en) * 2018-12-21 2022-07-27 ファナック株式会社 Learning data confirmation support device, machine learning device, failure prediction device
CN109514560A (en) * 2018-12-25 2019-03-26 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Industrial robot failure monitoring system, method and device
JP7162550B2 (en) 2019-02-15 2022-10-28 オムロン株式会社 Model generation device, prediction device, model generation method, and model generation program
JP7357450B2 (en) * 2019-02-28 2023-10-06 コマツ産機株式会社 System and method for collecting learning data
JP7219117B2 (en) * 2019-02-28 2023-02-07 コマツ産機株式会社 Industrial machine predictive maintenance device, method, and system
JP6915638B2 (en) * 2019-03-08 2021-08-04 セイコーエプソン株式会社 Failure time estimation device, machine learning device, failure time estimation method
JP6647461B1 (en) * 2019-03-08 2020-02-14 三菱電機株式会社 Failure diagnosis system, failure prediction method, and failure prediction program
JP6993374B2 (en) 2019-03-25 2022-01-13 ファナック株式会社 Robot control system
EP3764184B1 (en) * 2019-03-26 2024-09-18 TMEIC Corporation Abnormality determination assistance device
JP6811878B1 (en) * 2019-03-28 2021-01-13 三菱電機株式会社 Numerical control device and numerical control method
US10996664B2 (en) * 2019-03-29 2021-05-04 Mitsubishi Electric Research Laboratories, Inc. Predictive classification of future operations
JP7000376B2 (en) * 2019-04-23 2022-01-19 ファナック株式会社 Machine learning equipment, prediction equipment, and control equipment
TR201906067A2 (en) * 2019-04-24 2020-11-23 Borusan Makina Ve Guec Sistemleri Sanayi Ve Ticaret Anonim Sirketi A SYSTEM AND METHOD FOR FAULT PREDICTION IN BUSINESS MACHINES
CN111942973B (en) * 2019-05-16 2023-04-11 株式会社日立制作所 Elevator control device, robot fault precursor diagnosis system and method thereof
JP7260402B2 (en) * 2019-05-31 2023-04-18 ファナック株式会社 MACHINE LEARNING DEVICE, ROBOT SYSTEM, AND MACHINE LEARNING METHOD FOR LEARNING CABLE STATE
JP7347969B2 (en) 2019-06-18 2023-09-20 ファナック株式会社 Diagnostic equipment and method
JP7401207B2 (en) 2019-06-21 2023-12-19 ファナック株式会社 Machine learning device, robot system, and machine learning method for learning tool status
US20210331655A1 (en) * 2019-07-08 2021-10-28 Lg Electronics Inc. Method and device for monitoring vehicle's brake system in autonomous driving system
JP7436169B2 (en) * 2019-09-18 2024-02-21 ファナック株式会社 Diagnostic equipment and method
JP7396850B2 (en) 2019-10-18 2023-12-12 ファナック株式会社 robot
CN111086025A (en) * 2019-12-25 2020-05-01 南京熊猫电子股份有限公司 Multi-fault-cause diagnosis system and method applied to industrial robot
JP7282700B2 (en) * 2020-01-22 2023-05-29 双葉電子工業株式会社 ROBOT, MOTOR DRIVE UNIT, ROBOT CONTROL METHOD
JP7298494B2 (en) * 2020-01-31 2023-06-27 横河電機株式会社 Learning device, learning method, learning program, determination device, determination method, and determination program
US20210247753A1 (en) 2020-02-07 2021-08-12 Kabushiki Kaisha Yaskawa Denki State estimation device, system, and manufacturing method
US11531339B2 (en) * 2020-02-14 2022-12-20 Micron Technology, Inc. Monitoring of drive by wire sensors in vehicles
JP2021160031A (en) * 2020-03-31 2021-10-11 セイコーエプソン株式会社 Failure prediction method and device
KR102181432B1 (en) * 2020-04-22 2020-11-24 김한수 Intelligent robot control system
KR102129480B1 (en) * 2020-04-23 2020-07-02 호서대학교 산학협력단 The predictive maintenance apparatus of automatic guided vehicle and predictive maintenance method of thereof
AT524001B1 (en) * 2020-07-10 2023-10-15 Engel Austria Gmbh Method for optimizing and/or operating at least one production process
KR102316773B1 (en) * 2020-07-31 2021-10-26 삼성중공업(주) System and method for predicting health of vessel
KR102538542B1 (en) * 2021-04-12 2023-05-30 서울대학교산학협력단 Method and apparatus for diagnosis of motor using current signals
US20220342391A1 (en) 2021-04-27 2022-10-27 Aida Engineering, Ltd. Press machine and method of displaying operating state of press machine
CN114142605B (en) 2021-11-09 2022-07-15 广东工业大学 Pilot protection method, device and storage medium
CN114055516B (en) * 2021-11-10 2023-08-11 合肥欣奕华智能机器股份有限公司 Fault diagnosis and maintenance method, system, equipment and storage medium
CN114565058A (en) * 2022-03-16 2022-05-31 广东电网有限责任公司 Training method, device, equipment and medium for island detection model
CN114770509A (en) * 2022-05-05 2022-07-22 新代科技(苏州)有限公司 Fault diagnosis method applied to welding robot system
WO2024053101A1 (en) * 2022-09-09 2024-03-14 富士通株式会社 Learning program, generation program, learning method, and information processing device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202444A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Method and device for diagnosing abnormality of machine facility
JPH08263131A (en) * 1995-03-27 1996-10-11 Hitachi Ltd Device and method for diagnosing plant deterioration
JPH1049223A (en) * 1996-07-31 1998-02-20 Nissan Motor Co Ltd Method and device for fault diagnosis using neural network
JPH10154900A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Method and system for analyzing failure of printed board for mounting electronic device
JP3604860B2 (en) * 1997-03-24 2004-12-22 三洋電機株式会社 Equipment operation status management device
JPH11212637A (en) * 1998-01-22 1999-08-06 Hitachi Ltd Method and device for preventive maintenance
JP2000064964A (en) * 1998-08-21 2000-03-03 Ebara Corp Failure prediction system of vacuum pump
JP4592235B2 (en) * 2001-08-31 2010-12-01 株式会社東芝 Fault diagnosis method for production equipment and fault diagnosis system for production equipment
JP2003208220A (en) * 2002-01-11 2003-07-25 Hitachi Industries Co Ltd Method and device for diagnosing deterioration of facility
TWI240216B (en) * 2002-06-27 2005-09-21 Ind Tech Res Inst Pattern recognition method by reducing classification error
JP4396286B2 (en) 2004-01-21 2010-01-13 三菱電機株式会社 Device diagnostic device and device monitoring system
JP4100414B2 (en) 2005-04-25 2008-06-11 松下電工株式会社 Equipment monitoring method and equipment monitoring apparatus
US7333917B2 (en) 2005-08-11 2008-02-19 The University Of North Carolina At Chapel Hill Novelty detection systems, methods and computer program products for real-time diagnostics/prognostics in complex physical systems
EP1793296A1 (en) * 2005-12-05 2007-06-06 Insyst Ltd. An apparatus and method for the analysis of a process having parameter-based faults
CN101127100A (en) * 2006-08-18 2008-02-20 张湛 Construction method for intelligent system for processing uncertain cause and effect relationship information
CN101008992A (en) * 2006-12-30 2007-08-01 北京市劳动保护科学研究所 Method for detecting leakage of pipeline based on artificial neural network
US8036999B2 (en) * 2007-02-14 2011-10-11 Isagacity Method for analyzing and classifying process data that operates a knowledge base in an open-book mode before defining any clusters
JP5278310B2 (en) * 2007-03-29 2013-09-04 日本電気株式会社 Diagnostic system
CN100468263C (en) * 2007-09-05 2009-03-11 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
CN101697079B (en) * 2009-09-27 2011-07-20 华中科技大学 Blind system fault detection and isolation method for real-time signal processing of spacecraft
US9122273B2 (en) * 2010-02-26 2015-09-01 Hitachi, Ltd. Failure cause diagnosis system and method
CN102063109B (en) * 2010-11-29 2012-09-05 株洲南车时代电气股份有限公司 Neural network-based subway train fault diagnosis device and method
JP2012168799A (en) * 2011-02-15 2012-09-06 Hitachi Ltd Plant monitoring device and plant monitoring method
CN103064340B (en) * 2011-10-21 2014-12-03 沈阳高精数控技术有限公司 Failure prediction method facing to numerically-controlled machine tool
CN102609764A (en) * 2012-02-01 2012-07-25 上海电力学院 CPN neural network-based fault diagnosis method for stream-turbine generator set
CN102629243B (en) * 2012-03-02 2015-01-07 燕山大学 End effect suppression method based on neural network ensemble and B-spline empirical mode decomposition (BS-EMD)
JP5996384B2 (en) * 2012-11-09 2016-09-21 株式会社東芝 Process monitoring diagnostic device, process monitoring diagnostic program
CN103018660B (en) * 2012-12-25 2015-04-22 重庆邮电大学 Multi-fault intelligent diagnosing method for artificial circuit utilizing quantum Hopfield neural network
JP2017503222A (en) * 2013-01-25 2017-01-26 レムテクス, インコーポレイテッド Network security system, method and apparatus
JP5530019B1 (en) * 2013-11-01 2014-06-25 株式会社日立パワーソリューションズ Abnormal sign detection system and abnormality sign detection method
JP5684941B1 (en) * 2014-07-31 2015-03-18 株式会社日立パワーソリューションズ Abnormal sign diagnostic apparatus and abnormal sign diagnostic method
CN104571079A (en) * 2014-11-25 2015-04-29 东华大学 Wireless long-distance fault diagnosis system based on multiple-sensor information fusion
CN104699994A (en) * 2015-04-02 2015-06-10 刘岩 FBF (fuzzy basis function) neural network based motor air gap eccentricity fault diagnosis method

Also Published As

Publication number Publication date
CN106409120A (en) 2017-02-15
JP7504163B2 (en) 2024-06-21
CN106409120B (en) 2021-03-23
JP2021002398A (en) 2021-01-07
JP7104121B2 (en) 2022-07-20
JP2022125288A (en) 2022-08-26
JP6773582B2 (en) 2020-10-21
JP2017033526A (en) 2017-02-09
JP2017120649A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6148316B2 (en) Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device
US12066797B2 (en) Fault prediction method and fault prediction system for predecting a fault of a machine
JP6140331B1 (en) Machine learning device and machine learning method for learning failure prediction of main shaft or motor driving main shaft, and failure prediction device and failure prediction system provided with machine learning device
JP6810097B2 (en) Anomaly detector
CN109693354B (en) State determination device
JP6956028B2 (en) Failure diagnosis device and machine learning device
JP2017120649A5 (en)
JP2020173551A (en) Failure prediction device, failure prediction method, computer program, computation model learning method and computation model generation method
JP6647473B1 (en) Abnormality detection device and abnormality detection method
JP6333868B2 (en) Cell control device and production system for managing the operating status of a plurality of manufacturing machines in a manufacturing cell
JP6711323B2 (en) Abnormal state diagnosis method and abnormal state diagnosis device
JP2018190068A (en) Control device and machine learning device
JP2021015573A (en) Abnormality determination device and abnormality determination system
US20200394092A1 (en) Diagnostic apparatus
JP2018086715A (en) Apparatus and method for estimating occurrence of abnormality of telescopic cover
JP2022168706A (en) Abnormality detecting device, program, abnormality detecting method and manufacturing method
US12103169B2 (en) Abnormality diagnosis device and abnormality diagnosis method
JP6725652B2 (en) Diagnostic system and electronic control unit
JP2020025461A (en) Motor control system
US20240272592A1 (en) Substrate processing apparatus, data processing method, and data processing program
JP2023009637A (en) Determination ground explanation device and program
CN114055516A (en) Method, system, equipment and storage medium for fault diagnosis and maintenance
JP2020038594A (en) Abnormality detecting apparatus, abnormality detecting method, and program

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350