JP6138364B2 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP6138364B2
JP6138364B2 JP2016523082A JP2016523082A JP6138364B2 JP 6138364 B2 JP6138364 B2 JP 6138364B2 JP 2016523082 A JP2016523082 A JP 2016523082A JP 2016523082 A JP2016523082 A JP 2016523082A JP 6138364 B2 JP6138364 B2 JP 6138364B2
Authority
JP
Japan
Prior art keywords
heat source
unit
refrigerant
source unit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523082A
Other languages
English (en)
Other versions
JPWO2015181980A1 (ja
Inventor
智一 川越
智一 川越
幸志 東
幸志 東
航祐 田中
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015181980A1 publication Critical patent/JPWO2015181980A1/ja
Application granted granted Critical
Publication of JP6138364B2 publication Critical patent/JP6138364B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、ヒートポンプサイクルを搭載し、空調空間を空気調和する(空調負荷を担う)空調調和機に関するものである。
従来から、ヒートポンプサイクルを搭載し、空調空間を空気調和する(空調負荷を担う)空気調和機が提案されている。このような従来の空気調和機においては、大容量を実現するシステムを構成するため、複数の熱源ユニットを並列接続した空気調和機も提案されている(例えば、特許文献1参照)。
国際公開2009/040889号(図1等)
特許文献1に記載されている空調調和機は、複数の室内ユニットを備え、各室内機において冷房運転及び暖房運転を独立して選択できる冷暖同時式の空気調和機である。この特許文献1に記載の空気調和機は、上述のように、複数の熱源ユニットを冷媒配管で並列接続することで、大容量を実現するシステムを構成している。
このような熱源ユニットを複数備えた従来の空気調和機は、各々の熱源ユニットがほぼ横一列になるように据付されることが多い。しかしながら、据付の設置スペースが少ない環境において、上下に熱源ユニットを設置せざるを得ない状況がある。(特に水冷式の熱源ユニットに多い傾向がある。)
一方、熱源ユニットとしては、製品設置制約として、熱源ユニット間にて許容できる設置高低差が存在する。熱源ユニット間の高低差で生じる液ヘッドにより、お互いの熱源ユニットに戻ってくる冷媒量に偏りが生じるため、運転に支障がきたさない高低差としてこの許容高低差を設定している。
ここで、『熱源ユニット間の許容高低差>熱源ユニット間の上下設置に必要な高低差』であれば、問題なく空気調和機を使用することができる。しかしながら、『熱源ユニット間の許容高低差<熱源ユニット間の上下設置に必要な高低差』となった場合、お互いの熱源ユニットに戻ってくる冷媒量に偏りが生じ、空気調和機の運転に支障をきたしてしまうという課題があった。
なお、2管式の冷暖同時式の空気調和機の場合、熱源ユニットに冷媒を戻す戻り配管(低圧管)の直径が、熱源ユニットから冷媒を流出させる行き配管(高圧管)の直径よりも大きいシステムとなる(冷暖切替式の空気調和機では径は細い)。このため、低圧管に存在する冷媒量も多いため、上述した液ヘッドの影響を大きく受けることが懸念される。また冷暖切替式の空気調和機においても、製品仕様として液主管の径を圧損緩和の理由で大きくしている場合にはおいては同じことが言える。
本発明は、上記のような課題を解決するためになされたもので、熱源ユニットを上下方向に高さが異なるように設置しても、冷媒量の偏りを抑制することができる空気調和機を得ることを目的とする。
本発明に係る空気調和機は、室内熱交換器と、室内側絞り装置とを有する少なくとも1台の室内ユニット、圧縮機と、少なくとも蒸発器として機能する室外熱交換器と、前記圧縮機の吸入側に接続されたアキュムレーターと、前記室外熱交換器に冷媒の熱交換対象を供給する熱交換対象供給手段及び前記室外熱交換器を流れる冷媒の流量を調節する流量調節手段のうちの少なくとも一方とを有し、前記室内ユニットに並列接続された複数の熱源ユニット、並びに、前記熱交換対象供給手段及び前記流量調節手段のうちの少なくとも一方を制御する制御手段、を備え、前記熱源ユニットのうちの2台は、一方が上側に設置された上部熱源ユニットで、他方が該上部熱源ユニットよりも下側に設置された下部熱源ユニットであり、前記室外熱交換器が蒸発器として機能している状態において、前記制御手段は、前記上部熱源ユニットの前記圧縮機の吸入乾き度と、前記下部熱源ユニットの前記圧縮機の吸入乾き度とが同じになるように、前記熱交換対象供給手段及び前記流量調節手段のうちの少なくとも一方を制御するものである。
本発明に係る空調調和機によれば、2台の熱源ユニットが上下方向に高さが異なるように配置された場合でも、両熱源ユニットにおいて冷媒量の偏りが発生することを抑制することができる。
本発明の実施の形態に係る空気調和機の冷媒回路構成を概略的に示す回路図である。 本発明の実施の形態に係る空気調和機の電気的な構成を示す制御ブロック図である。 本発明の実施の形態に係る空気調和機の均液制御の原理を説明するためのP―H線図(冷媒圧力と比エンタルピとの関係図)である。 本発明の実施の形態に係る空気調和機の制御手段が行う均液制御を示すフローチャートである。 本発明の実施の形態に係る空気調和機の別の一例の冷媒回路構成を概略的に示す回路図である。
以下、図面に基づいて本発明の実施の形態について説明する。
図1は、本発明の実施の形態に係る空気調和機の冷媒回路構成を概略的に示す回路図である。図1に基づいて、空気調和機100の構成について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
空気調和機100は、ビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプ)を利用することで冷房負荷、暖房負荷を同時に担うことができるものである。空気調和機100は、熱源ユニット110と、分岐ユニット210と、室内ユニット310と、が接続されて構成されている。このうち室内ユニット310は、分岐ユニット210を介して、熱源ユニット110に対して並列に接続されている。ここで、2台の熱源ユニット110において、上側に設置される熱源ユニット110と下側に設置される熱源ユニット110ユニットを区別するために、それぞれ添え字「a」、「b」を用いている。特に「a」及び「b」の添え字が無きものについては、熱源ユニット110a及び熱源ユニット110bの両方に対し、説明できるもの(共通項目)とする。
熱源ユニット110は、2本の冷媒配管(高圧主管1、低圧主管4)が接続されている。さらに、高圧主管1aと高圧主管1bとは、高圧分配器2を経由し、高圧主管3へ接続されている。また、低圧主管4aと低圧主管4bとは、低圧分配器5を経由し、低圧主管6へ接続されている。分岐ユニット210は、気液分離器に接続された2本の冷媒配管(高圧主管3、低圧主管6)が接続されている。分岐ユニット210と室内ユニット310とは、2本の冷媒配管(液冷媒配管7、ガス冷媒配管8)で接続されている。熱源ユニット110は、分岐ユニット210を経由して室内ユニット310へ連絡するようになっている。
なお、図1には、2台の室内ユニット310が接続されている場合を例に示しており、それらを区別するために添え字「a」、「b」を符号に付している。また、室内ユニット310aに対応する部品にも添え字「a」をそれぞれの符号に付し、室内ユニット310bに対応する部品にも添え字「b」をそれぞれの符号に付している。
また、液冷媒配管7は、分岐ユニット210に接続されている室内ユニット310の台数に対応して分岐(ここでは2分岐)されている。この分岐された液冷媒配管7を、液枝管7a、液枝管7bと称している。同様に、ガス冷媒配管8も、分岐ユニット210に接続されている室内ユニット310の台数に対応して分岐(ここでは2分岐)されている。この分岐されたガス冷媒配管8を、ガス枝管8a、ガス枝管8bと称している。液枝管7a及びガス枝管8aは室内ユニット310aに、液枝管7b及びガス枝管8bは室内ユニット310bに、それぞれ接続されている。
[熱源ユニット110]
熱源ユニット110は、分岐ユニット210を介して、室内ユニット310に温熱又は冷熱を供給する機能を有している。この熱源ユニット110は、主に圧縮機111、流路切替弁112、室外熱交換器113、逆止弁121〜124、アキュムレーター(液溜め容器)115で構成される。図1に示す回路はこれらを順次直列に接続して構成している。熱源ユニット110の用途により、ユニット内部で使用される冷媒回路部品の選定及び冷媒回路を構成すればよい。
また、熱源ユニット110には、室外熱交換器113が蒸発器として機能しているときに、室外熱交換器113に流れる冷媒の流量を調節するバイパス回路126及びバイパス回路用絞り装置125を備えている。バイパス回路126は、室外熱交換器113の冷媒流入側及び冷媒流出側に接続された冷媒配管である。バイパス回路用絞り装置125は、バイパス回路126に設けられ、バイパス回路126を流れる冷媒の流量を調節するものである。このバイパス回路用絞り装置125は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段で構成するとよい。ここで、バイパス回路126及びバイパス回路用絞り装置125が、本発明の流量調節手段に相当する。
圧縮機111は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであればよく、特にタイプを限定するものではない。例えば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機111を構成することができる。この圧縮機111は、インバーターにより回転数が可変に制御可能なタイプのもので構成するとよい。
流路切替弁112は、例えば四方弁等で構成され、要求される運転モードに応じて冷媒の流れを切り替えるものである。室外熱交換器113は、主に冷媒の熱交換対象(例えば、空気や水、ブライン等)から熱を放熱又は吸熱する役割を持つ。室外熱交換器113の種類は、使用される熱交換対象に応じて選定すればよく、空気が熱交換対象の場合であれば空気式熱交換器、水又はブラインが熱交換対象の場合であれば水熱交換器で構成すればよい。図1に例示するように、室外熱交換器113が空気式熱交換器である場合には、室外熱交換器113の周辺に、熱交換対象である空気を室外熱交換器に供給する室外送風機127(熱交換対象供給手段)を設けるとよい。アキュムレーター115は、過剰な冷媒を貯留できるものであればよい。
また、熱源ユニット110には、4つの逆止弁121〜124が設けられている。逆止弁121は、流路切替弁112と分岐ユニット210との間における低圧主管4に設けられ、分岐ユニット210から熱源ユニット110a及び熱源ユニット110bへの方向のみに冷媒の流れを許容するようになっている。逆止弁124は、室外熱交換器113と分岐ユニット210との間における高圧主管1に設けられ、熱源ユニット110a及び熱源ユニット110bから分岐ユニット210への方向のみに冷媒の流れを許容するようになっている。
高圧主管1と低圧主管4とは、逆止弁124の上流側と逆止弁121の上流側とを接続する第1接続配管10と、逆止弁124の下流側と逆止弁121の下流側とを接続する第2接続配管11と、で接続されている。そして、第1接続配管10には、低圧主管4から高圧主管1の方向のみに冷媒の流通を許容する逆止弁122が設けられている。第2接続配管11には、低圧主管4から高圧主管1の方向のみに冷媒の流通を許容する逆止弁123が設けられている。
第1接続配管10、第2接続配管11、逆止弁121、逆止弁122、逆止弁123、及び、逆止弁124を設けることで、室内ユニット310の要求する運転に関わらず、分岐ユニット210に流入させる冷媒の流れを一定方向にすることができる。なお、これらは、必須のものではない。
さらに、熱源ユニット110には、高圧圧力センサ117、低圧圧力センサ118及び吐出温度センサ119等が設けられている。高圧圧力センサ117は、圧縮機111から突出された冷媒の圧力を検出するものであり、本発明の第1圧力検出手段に相当する。低圧圧力センサ118は、室外熱交換器113が蒸発器として機能する際に、該室外熱交換器113を流れる冷媒の圧力を検出するものであり、本発明の第2圧力検出手段に相当する。吐出温度センサ119は、圧縮機111から吐出された冷媒の温度を検出するものであり、本発明の吐出冷媒温度検出手段に相当する。
[分岐ユニット210]
分岐ユニット210は、熱源ユニット110から供給された冷媒(温熱又は冷熱)を、室内ユニット310に供給する機能を有している。分岐ユニット210は、主に気液分離器211、流路切替弁214、絞り装置212、絞り装置213で構成されている。なお、流路切替弁214は、分岐ユニット210に接続されている室内ユニット310の台数に対応した個数(ここでは2個)が設けられている。
流路切替弁214は、室内ユニット310に供給する冷媒の流れを切り替えるものである。この流路切替弁214によって、冷媒流路を切り替えることで、分岐ユニット210に接続されている室内ユニット310が冷房、暖房を同時に実行することが可能である。流路切替弁214は、三方弁等で構成され、一方が低圧主管6に接続し、他方が気液分離器211に接続し、更にもう他方が室内ユニット310の室内熱交換器312に接続するようになっている。
気液分離器211は、高圧主管3に接続されるとともに、室内ユニット310の流出入側のそれぞれに接続される。気液分離器211は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有している。気液分離器211は、熱源ユニット110と分岐ユニット210との間の冷媒配管が2管式である場合に搭載される。なお、図1では、1台の分岐ユニット210に対して複数の室内ユニット310を接続した空気調和機を例に示しているが、例えば熱源ユニット110と分岐ユニット210との間の冷媒配管が3管式である場合には、1台の室内ユニット310に対して1台の分岐ユニット210を接続するような構成にしてもよい。
絞り装置212は、気液分離器211と室内側絞り装置311との間に設けられ、冷媒を減圧して膨張させるものである。絞り装置213は、低圧主管6と、絞り装置212と室内側絞り装置311との間における配管と、を接続した接続配管に設けられ、冷媒を減圧して膨張させるものである。絞り装置212及び絞り装置213は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
[室内ユニット310]
室内ユニット310は、熱源ユニット110からの冷媒(温熱又は冷熱)の供給を受けて暖房負荷又は冷媒負荷を担当する機能を有している。室内ユニット310は、主に室内側絞り装置311、室内熱交換器312(負荷側熱交換器)で構成されており、これらが直列に接続されて搭載されている。なお、図1では、室内ユニット310aと室内ユニット310bの2台が並列に接続されている状態を例に示しているが、台数を特に限定するものではなく、3台以上の室内ユニット310を同様に接続するようにしてもよい。また、室内ユニット310には、室内熱交換器312に空気を供給するための図未記載のファン等の室内側送風機を室内熱交換器312の近傍に設けるとよい。
室内側絞り装置311は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この室内側絞り装置311は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調整手段等で構成するとよい。室内熱交換器312は、暖房運転時には放熱器(凝縮器)、冷房運転時には蒸発器として機能し、図未記載の室内側送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。
なお、図1では、空気式の室内ユニット310について説明しているが、上述に限った話ではなく、室内ユニット310がチラーや給湯のような、水を冷却及び/又は加熱させるユニットである場合には、水熱交換器に変更してもよい。
また、室内ユニット310には、図未記載の温度検知素子が設けられている。この温度検知素子は、設置場所の負荷検知を行うものであり、例えばサーミスタ等で構成されている。なお、温度検知素子の設置場所や種類を、特に限定するものではないため、室内ユニット310の特性や、検知させたい負荷に応じて設置場所や種類を選定すればよい。
以上のように、空気調和機100は、熱源ユニット110を分岐ユニット210を介して室内ユニット310に接続したシステム構成となっている。
なお、空気調和機100には、空気調和機100のシステム全体を統括制御する制御手段400が設けられている。この制御手段400は、圧縮機111の駆動周波数、室外送風機127の回転数(風量)、流路切替弁112の切り替え、各絞り装置の開度、流路切替弁214の切り替え等を制御する。つまり、制御手段400は、図示省略の各種検知素子での検出情報及びリモコンからの指示に基づいて、各アクチュエータ(圧縮機111、流路切替弁112、室外送風機127、各絞り装置等の駆動部品)を制御するようになっている。なお、図1及び後述の図5に示す空気調和機100おいては、制御手段400は熱源ユニット110と切り分けており、システムコントローラとして描かれているが、例えば熱源ユニット110aが制御手段400を備え、各制御手段410a,410b,420,430a,430bと通信し、統括制御する構成でもよい。また、制御手段400については図2で詳細に説明する。
[その他対象システム構成]
図1では、空気調和機100が、熱源ユニット110と室内ユニット310とを分岐ユニット210を介して2本の冷媒配管で接続した2管式の冷暖同時タイプである場合を例に挙げたが、これに限定するものではなく、3本の冷媒配管で接続した3管式の冷暖同時タイプ又は冷暖切替タイプで空気調和機を構成してもよい。
図2は、本発明の実施の形態に係る空気調和機の電気的な構成を示す制御ブロック図である。図2に基づいて、空気調和機100に搭載されている制御手段400について詳細に説明する。
上述したように、空気調和機100は、制御手段400を備えている。制御手段400は、マイクロコンピューターやDSPなどで構成されており、空気調和機100のシステム全体を制御する機能を有している。この制御手段400は、熱源ユニット制御手段410、分岐ユニット制御手段420、及び、室内ユニット制御手段430を備えている。
各制御手段の割り振りについては、各々のユニットに対応する制御手段を与え、各々のユニットが独立して制御を行なう自立分散協調制御でもよく、どれか一つのユニットが全制御手段を有し、その制御手段を有したユニットが通信等を用いて他ユニットに制御指令を与えるようにしてもよい。例えば、熱源ユニット110に熱源ユニット制御手段410を、分岐ユニット210に分岐ユニット制御手段420を、室内ユニット310に室内ユニット制御手段430を、それぞれ備えるようにすれば、各々のユニットが独立して制御を行なうことができる。なお、各制御手段は、無線又は有線の通信手段で情報伝達が可能となっている。
熱源ユニット制御手段410は、熱源ユニット110における冷媒の圧力状態及び冷媒の温度状態を制御する機能を有している。熱源ユニット制御手段410は、熱源ユニット容量情報出力手段411、圧力センサ・温度センサ情報格納手段412、演算処理回路413、及び、アクチュエータ制御信号出力手段414等を有している。具体的には、熱源ユニット制御手段410は、高圧圧力センサ117、低圧圧力センサ118及び吐出温度センサ119等で得た情報をデータとして圧力センサ・温度センサ情報格納手段412で格納し、格納された情報を基にして熱源ユニット110内部で演算処理を演算処理回路413で実施した後、アクチュエータ制御信号出力手段414から、圧縮機111の運転周波数を出力したり、室外送風機127の回転数を出力したり、流路切替弁112の切替を出力したり、バイパス回路用絞り装置125の開度を制御したりする機能を有している。
熱源ユニット容量情報出力手段411は、熱源ユニット110の容量に応じて分岐ユニット210に接続できる室内ユニット310の台数及び容量の最大値を規定しており、本情報を分岐ユニット210へ送信する機能を有している。
分岐ユニット制御手段420は、分岐ユニット210の流路切替弁214を動作させたり、分岐ユニット210自身の圧力センサ・温度センサの情報から、演算処理回路421において、絞り装置212、絞り装置213の開度を制御する等の機能を有している。また、分岐ユニット制御手段420は、熱源ユニット110から受けた接続容量及び運転容量の情報を基に、運転許可ユニット判断手段422にて、室内ユニット310の接続容量及び運転容量の制約を行う機能も有している。
室内ユニット制御手段430は、室内ユニット310の冷房運転時における過熱度、室内ユニット310の暖房運転時における過冷却度を制御する機能を有している。室内ユニット制御手段430は、具体的には、室内ユニット310自身の圧力センサ・温度センサの情報から、演算処理回路431において冷房運転時における過熱度及び暖房運転時における過冷却度を求め、これら過熱度及び過冷却度が目標過熱度及び目標過冷却度となるように、室内熱交換器312の熱交換面積を変化させたり、室内側送風機のファン回転数を制御したり、室内側絞り装置311の開度を制御したりする機能を有している。
次に、空気調和機100の動作について説明する。
空気調和機100が実行する運転モードには、運転している室内ユニット310の全部が冷房運転を実行する冷房運転モード、運転している室内ユニット310の全部が暖房運転を実行する暖房運転モード、暖房運転している室内ユニット310と冷房運転している室内ユニット310が混在し、冷房負荷の方が大きい冷房主体運転モード、暖房運転している室内ユニット310と冷房運転している室内ユニット310が混在し、暖房負荷の方が大きい暖房主体運転モードがある。
[冷房運転モード]
まず、運転している全部の室内ユニット310が冷房運転をしているときの冷房運転モード時における冷媒回路、及び、その運転内容を説明する。
熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替弁112を経て、放熱器(凝縮器)として機能する室外熱交換器113へ流入する。室外熱交換器113に流入した高圧のガス冷媒は、室外熱交換器113に供給される空気(又は水)と熱交換することにより凝縮して高圧の液冷媒となり、室外熱交換器113から流出する。室外熱交換器113から流出した高圧の液冷媒は、逆止弁124を経て、高圧主管1へ流れる。
熱源ユニット110aから高圧主管1aへ流出した高圧の液冷媒及び熱源ユニット110bから高圧主管1bへ流出した高圧の液冷媒は、高圧分配器2にて合流し、高圧主管3へ流れた後、分岐ユニット210に流入する。
分岐ユニット210において、高圧主管3から流れてきた高圧の液冷媒は、気液分離器211及び絞り装置212を経て、液冷媒配管7へ流れ、分岐ユニット210から流出する。分岐ユニット210から流出した冷媒は、室内ユニット310に流入する。室内ユニット310では、室内側絞り装置311にて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内熱交換器312へ流れる。室内熱交換器312に流入した低圧二相冷媒又は低圧液冷媒は、室内熱交換器312にて蒸発し、低圧のガス冷媒となり、室内熱交換器312から流出する。
室内熱交換器312から流出した低圧ガス冷媒は、ガス冷媒配管8を流れて室内ユニット310から流出した後、分岐ユニット210に流入する。分岐ユニット210に流入した低圧のガス冷媒は、流路切替弁214(流路切替弁214a、流路切替弁214b)を経て、合流されて低圧主管6に流れる。
低圧主管6に流れた低圧のガス冷媒は、分岐ユニット210から流出した後、低圧分配器5を経て、低圧主管4a(熱源ユニット110a側)及び低圧主管4b(熱源ユニット110b)へ流入する。
熱源ユニット110に流入した低圧のガス冷媒は、逆止弁121、流路切替弁112、アキュムレーター115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房運転時の主回路とする。
[暖房運転モード]
次に、運転している全部の室内ユニット310が暖房運転をしているときの暖房運転モード時における冷媒回路、及び、その運転内容を説明する。
熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替弁112、逆止弁123を経て、高圧主管1へ流れる。
熱源ユニット110aから高圧主管1aへ流出した高温・高圧のガス冷媒及び熱源ユニット110bから高圧主管1bへ流出した高温・高圧のガス冷媒は、高圧分配器2にて合流し、高圧主管3へ流れた後、分岐ユニット210に流入する。
分岐ユニット210において、高圧主管3から流れてきた高圧のガス冷媒は、気液分離器211、流路切替弁214(流路切替弁214a、流路切替弁214b)を経て、ガス冷媒配管8へ流れる。ガス冷媒配管8を流れる冷媒は、分岐ユニット210から流出した後、室内ユニット310に流入する。
室内ユニット310に流入した高圧のガス冷媒は、室内熱交換器312に流入し、室内熱交換器312にて凝縮され、高圧の液冷媒となって室内熱交換器312から流出する。室内熱交換器312から流出した高圧の液冷媒は、室内側絞り装置311にて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、液冷媒配管7へ流れ、室内ユニット310から流出した後、分岐ユニット210に流入する。液冷媒配管7を流れる低圧の冷媒は、分岐ユニット210にて合流された後、絞り装置213を経て、低圧主管6へ流れる。
低圧主管6に流れた低圧の二相冷媒は、分岐ユニット210から流出した後、低圧分配器5を経て、低圧主管4a(熱源ユニット110a側)及び低圧主管4b(熱源ユニット110b)へ流入する。
熱源ユニット110に流入した低圧の冷媒は、逆止弁122を流れ、蒸発器として機能する室外熱交換器113において低圧のガス冷媒又は二相冷媒となった後、流路切替弁112、アキュムレーター115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を暖房運転時の主回路とする。
次に室内ユニット310に冷房運転室内機と暖房運転室内機が混在した運転について説明する。混在した運転としては冷房主体運転モードと暖房主体運転モードの2種類の運転モードが存在し、空気調和機100の冷媒の凝縮温度と蒸発温度を熱源ユニット110内で設定された目標値と比較することで、能力又は効率が最も高くになるように運転モードを切換えるようになっている。以下にそれぞれの運転モードについて説明する。
[冷房主体運転モード]
次に、室内ユニット310が冷房暖房混在運転をしており、暖房負荷よりも冷房負荷の方が大きい冷房主体運転モード時における冷媒回路、及び、その運転内容を説明する。なお、ここでは、室内ユニット310aが冷房運転、室内ユニット310bが暖房運転をしているときを例に冷房主体運転モードを説明する。
熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替弁112を経て、放熱器(凝縮器)として機能する室外熱交換器113へ流入する。室外熱交換器113に流入した高圧のガス冷媒は、室外熱交換器113に供給される空気と熱交換することにより凝縮して高圧の液とガスの二相冷媒となり、室外熱交換器113から流出する。室外熱交換器113から流出した高圧の二相冷媒は、逆止弁124を経て、高圧主管1へ流れる。
熱源ユニット110aから高圧主管1aへ流出した高圧の二相冷媒及び熱源ユニット110bから高圧主管1bへ流出した高圧の二相冷媒は、高圧分配器2にて合流し、高圧主管3へ流れた後、分岐ユニット210に流入する。
分岐ユニット210において、高圧主管3から流れてきた高圧の二相冷媒は、気液分離器211にて高圧の飽和ガスと高圧の飽和液に分離される。気液分離器211で分離された高圧の飽和ガス(ガス冷媒)は、流路切替弁214bを経て、ガス枝管8bへ流れる。ガス枝管8bへ流れた高圧のガス冷媒は、分岐ユニット210から流出した後、室内ユニット310bに流入する。室内ユニット310bに流入した冷媒は、室内熱交換器312bにて凝縮され、高圧の液冷媒となり、室内熱交換器312bから流出する。室内熱交換器312bから流出した高圧の液冷媒は、室内側絞り装置311bにて、中間圧の液とガスの二相冷媒、又は、中間圧の液冷媒となり、液枝管7bへ流れ、室内ユニット310bから流出した後、冷房時に用いる冷媒として再利用される。
一方、気液分離器211で分離された高圧の飽和液(液冷媒)は、絞り装置212を経て、室内ユニット310bから流れてきた冷媒と合流し、液枝管7aへ流れ、分岐ユニット210から流出する。分岐ユニット210から流出した冷媒は、室内ユニット310aに流入する。室内ユニット310aでは、室内側絞り装置311aにて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内熱交換器312aへ流れる。室内熱交換器312aに流入した低圧二相冷媒又は低圧液冷媒は、室内熱交換器312aにて蒸発し、低圧のガス冷媒となり、室内熱交換器312aから流出する。
室内熱交換器312aから流出した低圧ガス冷媒は、ガス枝管8aを流れて室内ユニット310aから流出した後、分岐ユニット210に流入する。
また、液冷媒配管7の区間に溜まる液冷媒量が多くなると、液冷媒配管7の圧力が上昇し、暖房運転中の室内ユニット310bとの差圧が小さくなることから、室内ユニット310bに流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液冷媒配管7に溜まった液冷媒を逃がすため、絞り装置213を適度に開くことで液冷媒配管7溜まる液冷媒を低圧主管6へ流すことで液冷媒配管7の圧力の調整をする。よって、分岐ユニット210に流入した冷媒は、低圧主管6において、室内ユニット310aから流入して流路切替弁214(流路切替弁214a)を経た低圧のガス冷媒と、絞り装置213から流入した液冷媒とが混合することで、低圧の二相冷媒となる。
低圧主管6に流れた低圧の二相冷媒は、分岐ユニット210から流出した後、低圧分配器5を経て、低圧主管4a(熱源ユニット110a側)及び低圧主管4b(熱源ユニット110b)へ流入する。
低圧主管4に流れた低圧の二相冷媒は、熱源ユニット110に流入する。熱源ユニット110に流入した低圧の二相冷媒は、逆止弁121、流路切替弁112、アキュムレーター115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房主体運転時の主回路とする。
[暖房主体運転モード]
次に、室内ユニット310が冷房暖房混在運転をしており、室内ユニット310bが暖房運転をしており、冷房負荷よりも暖房負荷の方が大きい暖房主体運転モード時における冷媒回路、及び、その運転内容を説明する。なお、ここでは、室内ユニット310aが冷房運転、室内ユニット310bが暖房運転をしているときを例に暖房主体運転モードを説明する。
熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替弁112、逆止弁123を経て、高圧主管1へ流れる。
熱源ユニット110aから高圧主管1aへ流出した高温・高圧のガス冷媒及び熱源ユニット110bから高圧主管1bへ流出した高温・高圧のガス冷媒は、高圧分配器2にて合流し、高圧主管3へ流れた後、分岐ユニット210に流入する。
分岐ユニット210において、高圧主管3から流れてきた高圧のガス冷媒は、気液分離器211、流路切替弁214bを経て、ガス枝管8bへ流れる。ガス枝管8bを流れる冷媒は、分岐ユニット210から流出した後、室内ユニット310bに流入する。
室内ユニット310bに流入した高圧のガス冷媒は、室内熱交換器312bに流入し、室内熱交換器312bにて凝縮され、高圧の液冷媒となって室内熱交換器312bから流出する。室内熱交換器312bから流出した高圧の液冷媒は、室内側絞り装置311bにて、中間圧の液とガスの二相冷媒、又は、中間圧の液冷媒となり、液枝管7bへ流れ、室内ユニット310bから流出した後、分岐ユニット210に流入する。
分岐ユニット210に流入した中間圧の冷媒は、液枝管7aへ流れる。この冷媒は、分岐ユニット210から流出した後、室内ユニット310aに流入する。室内ユニット310aに流入した冷媒は、室内側絞り装置311aにて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内熱交換器312aへ流入する。室内熱交換器312bに流入した低圧の液冷媒は、室内熱交換器312aにて蒸発し、低圧のガス冷媒となり、室内熱交換器312aから流出する。
また、液冷媒配管7の区間に溜まる液冷媒量が多くなると、液冷媒配管7の圧力が上昇し、暖房運転中の室内ユニット310bとの差圧が小さくなることから、室内ユニット310bに流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液冷媒配管7に溜まった液冷媒を逃がすため、絞り装置213を適度に開くことで液冷媒配管7に溜まる液冷媒を低圧主管6へ流すことで液冷媒配管7の圧力の調整をする。よって、分岐ユニット210に流入した冷媒は、低圧主管6において、室内ユニット310bから流入して流路切替弁214(流路切替弁214a)を経た低圧のガス冷媒と、絞り装置213から流入した液冷媒とが混合することで、低圧の二相冷媒となる。
低圧主管6に流れた低圧の二相冷媒は、分岐ユニット210から流出した後、低圧分配器5を経て、低圧主管4a(熱源ユニット110a側)及び低圧主管4b(熱源ユニット110b)へ流入する。
熱源ユニット110に流入した低圧のガス冷媒は、を流れ、蒸発器として機能する室外熱交換器113において低圧のガス冷媒又は二相冷媒となった後、流路切替弁112、アキュムレーター115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を運転主体運転時における主回路とする。
[冷媒制御の目標]
図3は、本発明の実施の形態に係る空気調和機の均液制御の原理を説明するためのP―H線図(冷媒圧力Pと比エンタルピHとの関係図)である。
ここで、説明の便宜上、熱源ユニット110aを親機(本発明の下部熱源ユニットに相当)、熱源ユニット110bを子機(本発明の上部熱源ユニットに相当)と呼ぶことにする。そして、親機を子機に対して下側に設置し、子機を親機に対して上側に設置した場合を例にして、本実施の形態に係る均液制御の考え方及び目標について説明する。なお、図3において、「M」で示す実線が親機(熱源ユニット110a)の冷凍サイクルを表し、「S」で示す破線が子機(熱源ユニット110b)の冷凍サイクルを表している。また、本実施の形態では、親機、子機互いの返液量を制御する手法を便宜上、均液制御と呼ぶこととする。
親機、子機双方のP−H線図において、「親機を下側に、子機を上側に設置」にて生じる低圧配管(低圧主管4等)の液ヘッド(圧力損失)により、吸入の低圧(蒸発温度Te)に差異が生じる。そして、吸入側の状態が異なれば、吐出側の状態(特にエンタルピ)も差異を生じる。これらの差異は、親機と子機との間の高低差の他にも、親機と子機との間における配管長差、及び、低圧分配器5の設置位置によっても変化する。なお、本実施の形態では「親機の低圧主管4aの長さ<子機の低圧主管4b」となっているため、上述の差異は、「親機の低圧主管4aの長さ=子機の低圧主管4b」の場合と比べて大きくなる。
ここで、図3のように、親機及び子機の圧縮機の吸入状態(親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsの値)が同一であれば、親機及び子機のアキュムレーター115への液バック量が同じである。図3では、親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsが乾き度Xtになっており、図3の状態を維持できれば、親機及び子機に返液する冷媒量が等しくなり、親機−子機間の偏液(液冷媒の偏在)は生じない。
上述のように、親機と子機との間には、設置高さの違い等によって蒸発温度差dTeが発生する。また、図3で示すとおり、親機と子機の返液量が等しい状態であれば、親機の吐出過熱度SHmと子機の吐出過熱度SHsとの間に差異SHdが生じる。つまり、吐出過熱度の差異SHdと蒸発温度差dTeとの間には、比例関係が成立する。このため、子機の吐出過熱度SHs=親機の吐出過熱度SHm+dTe×α−dとなるように、親機のバイパス回路用絞り装置125a及び子機のバイパス回路用絞り装置125bのうちの少なくとも一方を制御することにより、親機及び子機の偏液量を制御してやればよい。換言すると、子機の目標吐出過熱度TdSHs=親機の目標吐出過熱度TdSHm+dTe×α−dとなるように、親機のバイパス回路用絞り装置125a及び子機のバイパス回路用絞り装置125bのうちの少なくとも一方を制御することにより、親機及び子機の偏液量を制御してやればよい。
ここで、αは補正値、dは制御の不感帯を示している。これらの補正値が不要であれば、α=1、d=0とし、補正値が必要であれば、空気調和機100の特性に応じ値を変更すればよい。
[制御手段400における均液制御処理]
前述した内容を具体的に制御動作させるフローチャートについて説明する。
図4は、本発明の実施の形態に係る空気調和機の制御手段が行う均液制御を示すフローチャートである。
制御手段400は、S01にて制御開始した後、S02にて、熱源ユニット110aにおける高圧圧力センサ117aの情報、低圧圧力センサ118aの情報、及び吐出温度センサ119aの情報を取得する。その後、制御手段400は、S03にて、熱源ユニット110bにおける高圧圧力センサ117bの情報、低圧圧力センサ118bの情報、及び吐出温度センサ119bの情報を取得する。ここでは、S02の後、S03の処理を実施している例を示しているが、この処理は順番が逆でも並列に処理してもよい。
次に、制御手段400は、S02及びS03にて取得された圧力センサ情報から、凝縮温度情報及び蒸発温度情報へ変換処理する。具体的には、制御手段400の演算処理回路413は、高圧圧力センサ117の検出値から凝縮温度を算出し、低圧圧力センサ118の検出値から蒸発温度を算出する。つまり、本実施の形態においては、制御手段400及び高圧圧力センサ117が本発明における凝縮温度検出手段となっており、制御手段400及び低圧圧力センサ118が本発明における蒸発温度検出手段となっている。
S04の後、S04にて算出された凝縮温度の情報、及びS02、S03にて取得された吐出温度情報は、S05の処理で吐出過熱度の情報へ変換される。具体的には、制御手段400の演算処理回路413は、「吐出過熱度=吐出温度−凝縮温度」の数式にて算出される。この処理を親機、子機それぞれで算出処理を実施すればよい。つまり、本実施の形態においては、吐出温度センサ119が本発明における吐出冷媒温度検出手段(圧縮機111から吐出された冷媒の温度を検出するもの)となっている。
また、S04にて算出された親機及び子機の蒸発温度情報に基づいて、S06では、蒸発温度差dTeが算出される。算出式としては、dTe=|親機の蒸発温度Tem―子機の蒸発温度Tes|で算出される。この処理は、例えば、親機の演算処理回路413a及び子機の演算処理回路413bのうちの少なくとも一方によって行われる。
なお、ここではdTeを算出し、配管長や高低差に柔軟に対応できるようにしているが、冷媒制御の安定性を考慮し、固定値であってもよい(その場合は、配管長や高低差の制約を課すほうが好ましい)。また、ここでは、S05の後、S06の処理を実施している例を示しているが、この処理は順番が逆でも並列に処理してもよい。
S07〜S11は、「子機の吐出過熱度SHs=親機の吐出過熱度SHm+dTe×α−d」となるように制御手段400が行う、親機のバイパス回路用絞り装置125a及び子機のバイパス回路用絞り装置125bの制御構成を示している。
具体的には、制御手段400(例えば、親機の演算処理回路413a及び子機の演算処理回路413bのうちの少なくとも一方)は、S07において、「子機の吐出過熱度SHs」と「親機の吐出過熱度SHm+dTe×α−d」とを比較する。そして、制御手段400は、「子機の吐出過熱度SHs≧親機の吐出過熱度SHm+dTe×α−d」がNoの場合、つまり「子機の吐出過熱度SHs<親機の吐出過熱度SHm+dTe×α−d」の場合、子機側に多く返液していると冷凍サイクルの視点から判断し、S09にて親機のバイパス回路用絞り装置125aの開度を増加させ、子機のバイパス回路用絞り装置125bの開度を減少させる。これにより、親機のアキュムレーター115aに流入する液冷媒の量を、子機のアキュムレーター115bに流入する液冷媒の量に対して相対的に増加させ、親機−子機間の偏液を是正することができる。
なお、親機のバイパス回路用絞り装置125aの開度は、子機のバイパス回路用絞り装置125bの開度に対して相対的に増加されればよい。このため、親機のバイパス回路用絞り装置125aの開度を増加させるだけでもよいし、子機のバイパス回路用絞り装置125bの開度を減少させるだけでもよい。
一方、制御手段400は、S07において「子機の吐出過熱度SHs≧親機の吐出過熱度SHm+dTe×α−d」がYesで、S08において「子機の吐出過熱度SHs≦親機の吐出過熱度SHm+dTe×α−d」がNoの場合、S10へ進む。つまり、制御手段400は、「子機の吐出過熱度SHs>親機の吐出過熱度SHm+dTe×α−d」の場合、親機側に多く返液していると冷凍サイクルの視点から判断し、S10にて親機のバイパス回路用絞り装置125aの開度を減少させ、子機のバイパス回路用絞り装置125bの開度を増加させる。これにより、子機のアキュムレーター115aに流入する液冷媒の量を、親機機のアキュムレーター115aに流入する液冷媒の量に対して相対的に増加させ、親機−子機間の偏液を是正することができる。
なお、子機のバイパス回路用絞り装置125bの開度は、親機のバイパス回路用絞り装置125aの開度に対して相対的に増加されればよい。このため、子機のバイパス回路用絞り装置125bの開度を増加させるだけでもよいし、親機のバイパス回路用絞り装置125aの開度を減少させるだけでもよい。
また、制御手段400は、S07において「子機の吐出過熱度SHs≧親機の吐出過熱度SHm+dTe×α−d」がYesで、S08において「子機の吐出過熱度SHs≦親機の吐出過熱度SHm+dTe×α−d」がYesの場合、S11へ進む。つまり、制御手段400は、「子機の吐出過熱度SHs=親機の吐出過熱度SHm+dTe×α−d」の場合、親機−子機間の偏液(液冷媒の偏在)は生じていないと判断し、S11にて親機のバイパス回路用絞り装置125a及び子機のバイパス回路用絞り装置125bの開度を維持する。
上述した動作が一連の制御動作の流れである。S12にてユニットが動作停止及びサーモOFFしない限りS02からS11の動作は繰り返される。上述の制御により、親機及び子機の圧縮機111の吸入状態は常に維持されることになり、たとえ熱源ユニット110が上下設置された場合においても、冷媒の偏在を回避することができる。
ここで、空気調和機100に使用可能な冷媒について説明する。空気調和機100の冷凍サイクルに使用できる冷媒には、非共沸混合冷媒や擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)やR404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。
また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22やHFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。そのほか、自然冷媒である二酸化炭素やプロパン、イソブタン、アンモニア等を使用することもできる。なお、R22はクロロジフルオロメタン、R32はジフルオロメタン、R125はペンタフルオロメタンを、R134aは1,1,1,2−テトラフルオロメタンを、R143aは1,1,1−トリフルオロエタンをそれぞれ示している。したがって、空気調和機100の用途や目的に応じた冷媒を使用するとよい。
以上のように、本実施の形態に係る空気調和機100においては、親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsの値が同一となるように、上下設置された熱源ユニット110a及び熱源ユニット110bのバイパス回路用絞り装置125a及び熱源ユニット110bを制御している。このため、本実施の形態に係る空気調和機100は、熱源ユニット110a及び熱源ユニット110b間での冷媒量の偏りを抑制することができ、熱源ユニット110a及び熱源ユニット110bを上下据付できる。このため、本実施の形態に係る空気調和機100は、設置スペースの節約に寄与することにもなる。
なお、本実施の形態では均液制御に用いられる流量調節手段(室外熱交換器113を流れる冷媒の流量を調節するもの)を、バイパス回路126及びバイパス回路用絞り装置125で構成した。これに限らず、図5に示すように、室外熱交換器113が蒸発器として機能する際に該室外熱交換器113の冷媒流入側となる配管に流量調整用絞り装置128を設け、該流量調整用絞り装置128を流量調節手段として用いてもよい。具体的には、制御手段400は、SHs<SHm+dTe×α−dの場合(図4のS09において)、親機の流量調節用絞り装置128aの開度を、子機の流量調節用絞り装置128bの開度よりも相対的に増加させればよい。これにより、親機の室外熱交換器113aを流れる冷媒量を増加させることができ、つまり、親機のアキュムレーター115aに流入する液冷媒の量を子機のアキュムレーター115bに流入する液冷媒の量に対して相対的に増加させることができ、親機−子機間の偏液を是正することができる。また、制御手段400は、SHs>SHm+dTe×α−dの場合(図4のS10において)、子機の流量調節用絞り装置128bの開度を、親機の流量調節用絞り装置128aの開度よりも相対的に増加させればよい。これにより、子機の室外熱交換器113bを流れる冷媒量を増加させることができ、つまり、子機のアキュムレーター115bに流入する液冷媒の量を親機のアキュムレーター115aに流入する液冷媒の量に対して相対的に増加させることができ、親機−子機間の偏液を是正することができる。
また、本実施の形態では流量調節手段を用いて均液制御を行ったが、流量調節手段と共に、あるいは流量調節手段に換えて室外送風機127(熱交換対象供給手段)を用いて均液制御を行ってもよい。つまり、制御手段400は、親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsの値が同一となるように、親機の室外送風機127aの風量(回転数)及び子機の室外送風機127bの風量(回転数)のうちの少なくとも一方を制御してもよい。例えば、制御手段400は、SHs<SHm+dTe×α−dの場合(図4のS09において)、親機の室外送風機127aの風量を、子機の室外送風機127bの風量よりも相対的に低下させればよい。これにより、親機の室外熱交換器113aにおいて蒸発する冷媒の量を低減でき、親機のアキュムレーター115aに流入する液冷媒の量を子機のアキュムレーター115bに流入する液冷媒の量に対して相対的に増加させることができるので、親機−子機間の偏液を是正することができる。また、制御手段400は、SHs>SHm+dTe×α−dの場合(図4のS10において)、子機の室外送風機127bの風量を、親機の室外送風機127aの風量よりも相対的に低下させればよい。これにより、子機の室外熱交換器113bにおいて蒸発する冷媒の量を低減でき、子機のアキュムレーター115bに流入する液冷媒の量を親機のアキュムレーター115aに流入する液冷媒の量に対して相対的に増加させることができるので、親機−子機間の偏液を是正することができる。なお、室外熱交換器113を流れる冷媒の熱交換対象が水やブライン等の液体の場合、水やブライン等を室外熱交換器113に供給するポンプ(熱交換対象供給手段)の流量(水やブライン等の室外熱交換器113への供給量)を、室外熱交換器113の風量と同様に制御すればよい。
また、本実施の形態では蒸発温度検出手段を制御手段400及び低圧圧力センサ1187で構成したが、蒸発器として機能する室外熱交換器113を流れる冷媒の温度を検出する温度センサを蒸発温度検出手段として設け、該温度センサで蒸発温度を直接検出してもよい。また、本実施の形態では凝縮温度検出手段を制御手段400及び高圧圧力センサ117で構成したが、凝縮器として機能する室内熱交換器312を流れる冷媒の温度を検出する温度センサを凝縮温度検出手段として設け、該温度センサで凝縮温度を直接検出してもよい。
また、本実施の形態では、親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsの値が同一となるように制御する際、蒸発温度差dTeを用いた。これに限らず、圧縮機111に吸入される冷媒の温度を検出する温度センサを備え、該温度センサの検出値と蒸発温度とから圧縮機111の吸入乾き度を算出し、親機の圧縮機111aの吸入乾き度Xm、及び、子機の圧縮機111bの吸入乾き度Xsの値が同一となるように制御してもよい。
また、本発明に係る均液制御は、複数の室内ユニット310を備えた空気調和機100に限らず、1つの室内ユニット310を備えた空気調和機に採用することも勿論可能である。この際、分岐ユニット210を設ける必要はない。また、本実施の形態に係る空気調和機100は2台の熱源ユニット110を備えていたが、3台以上の熱源ユニット110を備えていても勿論よい。上下設置された2台の熱源ユニット110に対して本発明の均液制御を行うことにより、上記の効果を得ることができる。また、本実施の形態では、室内ユニット310において冷房及び暖房の双方を実施できる空気調和機100を例に説明したが、室内ユニット310において少なくとも暖房運転できる空気調和機であれば、つまり、室外熱交換器が蒸発器として機能する空気調和機であれば、本発明を実施することができる。
1 高圧主管、2 高圧分配器、3 高圧主管、4 低圧主管、5 低圧分配器、6 低圧主管、7 液冷媒配管、7a,7b 液枝管、8 ガス冷媒配管、8a,8b ガス枝管、10 第1接続管、11 第2接続管、100 空気調和機、110 熱源ユニット、111 圧縮機、112 流路切替弁、113 室外熱交換器、115 アキュムレーター、117 高圧圧力センサ、118 低圧圧力センサ、119 吐出温度センサ、121〜124 逆止弁、125 バイパス回路用絞り装置、126 バイパス回路、127 室外送風機、128 流量調整用絞り装置、210 分岐ユニット、211 気液分離器、212 絞り装置、213 絞り装置、214 流路切替弁、310 室内ユニット、311 室内側絞り装置、312 室内熱交換器、400 制御手段、410 熱源ユニット制御手段、411 熱源ユニット容量情報出力手段、412 圧力センサ・温度センサ情報格納手段、413 演算処理回路、414 アクチュエータ制御信号出力手段、420 分岐ユニット制御手段、421 演算処理回路、422 運転許可ユニット判断手段、430 室内ユニット制御手段、431 演算処理回路。

Claims (8)

  1. 室内熱交換器と、室内側絞り装置とを有する少なくとも1台の室内ユニット、
    圧縮機と、少なくとも蒸発器として機能する室外熱交換器と、前記圧縮機の吸入側に接続されたアキュムレーターと、前記室外熱交換器に冷媒の熱交換対象を供給する熱交換対象供給手段及び前記室外熱交換器を流れる冷媒の流量を調節する流量調節手段のうちの少なくとも一方とを有し、前記室内ユニットに並列接続された複数の熱源ユニット、
    並びに、前記熱交換対象供給手段及び前記流量調節手段のうちの少なくとも一方を制御する制御手段、
    を備え、
    前記熱源ユニットのうちの2台は、一方が上側に設置された上部熱源ユニットで、他方が該上部熱源ユニットよりも下側に設置された下部熱源ユニットであり、
    前記室外熱交換器が蒸発器として機能している状態において、
    前記制御手段は、
    前記上部熱源ユニットの前記圧縮機の吸入乾き度と、前記下部熱源ユニットの前記圧縮機の吸入乾き度とが同じになるように、前記熱交換対象供給手段及び前記流量調節手段のうちの少なくとも一方を制御する空気調和機。
  2. 前記上部熱源ユニット及び前記下部熱源ユニットは、
    前記圧縮機から吐出された冷媒の温度を検出する吐出冷媒温度検出手段と、
    前記圧縮機から吐出された冷媒の凝縮温度を直接的又は間接的に検出する凝縮温度検出手段と、
    蒸発器として機能している前記室外熱交換器を流れる冷媒の蒸発温度を直接的又は間接的に検出する蒸発温度検出手段と、
    を備え、
    前記制御手段は、
    前記上部熱源ユニット及び前記下部熱源ユニットのそれぞれに対して、前記吐出冷媒温度検出手段の検出値から前記凝縮温度検出手段の検出値を減算した前記圧縮機の吐出過熱度を算出し、
    前記下部熱源ユニットの前記室外熱交換器を流れる冷媒の蒸発温度から前記上部熱源ユニットの前記室外熱交換器を流れる冷媒の蒸発温度を減算した蒸発温度差dTeを算出し、
    前記上部熱源ユニットの前記圧縮機の吐出過熱度をSHs、前記下部熱源ユニットの前記圧縮機の吐出過熱度をSHm、補正値をα、制御の不感帯をdと定義した場合、
    SHs=SHm+dTe×α−dとなるように、前記熱交換対象供給手段及び前記流量調節手段のうちの少なくとも一方を制御する請求項1に記載の空気調和機。
  3. 前記上部熱源ユニット及び前記下部熱源ユニットのそれぞれの前記流量調節手段は、
    前記室外熱交換器の冷媒流入側及び冷媒流出側に接続され、該室外熱交換器をバイパスするバイパス回路と、
    該バイパス回路に設けられ、該バイパス回路を流れる冷媒の流量を調節するバイパス回路用絞り装置と、
    を備え、
    前記制御手段は、
    SHs<SHm+dTe×α−dの場合、前記下部熱源ユニットの前記バイパス回路用絞り装置の開度を、前記上部熱源ユニットの前記バイパス回路用絞り装置の開度よりも相対的に増加させ、
    SHs>SHm+dTe×α−dの場合、前記上部熱源ユニットの前記バイパス回路用絞り装置の開度を、前記下部熱源ユニットの前記バイパス回路用絞り装置の開度よりも相対的に増加させる請求項2に記載の空気調和機。
  4. 前記上部熱源ユニット及び前記下部熱源ユニットのそれぞれの前記流量調節手段は、前記室外熱交換器が蒸発器として機能する際に該室外熱交換器の冷媒流入側となる配管に設けられた流量調節用絞り装置を備え、
    前記制御手段は、
    SHs<SHm+dTe×α−dの場合、前記下部熱源ユニットの前記流量調節用絞り装置の開度を、前記上部熱源ユニットの前記流量調節用絞り装置の開度よりも相対的に増加させ、
    SHs>SHm+dTe×α−dの場合、前記上部熱源ユニットの前記流量調節用絞り装置の開度を、前記下部熱源ユニットの前記流量調節用絞り装置の開度よりも相対的に増加させる請求項2に記載の空気調和機。
  5. 前記制御手段は、
    SHs<SHm+dTe×α−dの場合、前記下部熱源ユニットの前記熱交換対象供給手段における熱交換対象の供給量を、前記上部熱源ユニットの前記熱交換対象供給手段における熱交換対象の供給量よりも相対的に低下させ、
    SHs>SHm+dTe×α−dの場合、前記上部熱源ユニットの前記熱交換対象供給手段における熱交換対象の供給量を、前記下部熱源ユニットの前記熱交換対象供給手段における熱交換対象の供給量よりも相対的に低下させる請求項2〜請求項4のいずれか一項に記載の空気調和機。
  6. 前記凝縮温度検出手段は、
    前記圧縮機から吐出された冷媒の圧力を検出する第1圧力検出手段と、
    該第1圧力検出手段の検出値から、前記圧縮機から吐出された冷媒の凝縮温度を算出する前記制御手段と、
    である請求項2〜請求項5のいずれか一項に記載の空気調和機。
  7. 前記蒸発温度検出手段は、
    蒸発器として機能する前記室外熱交換器を流れる冷媒の圧力を検出する第2圧力検出手段と、
    該第2圧力検出手段の検出値から、前記室外熱交換器を流れる冷媒の蒸発温度を算出する前記制御手段と、
    である請求項2〜請求項6のいずれか一項に記載の空気調和機。
  8. 前記室内ユニットを複数備え、
    複数の前記室内ユニットを複数の前記熱源ユニットに並列接続する分岐ユニットを備えた請求項1〜請求項7のいずれか一項に記載の空気調和機。
JP2016523082A 2014-05-30 2014-05-30 空気調和機 Active JP6138364B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064527 WO2015181980A1 (ja) 2014-05-30 2014-05-30 空気調和機

Publications (2)

Publication Number Publication Date
JPWO2015181980A1 JPWO2015181980A1 (ja) 2017-04-20
JP6138364B2 true JP6138364B2 (ja) 2017-05-31

Family

ID=54698353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523082A Active JP6138364B2 (ja) 2014-05-30 2014-05-30 空気調和機

Country Status (4)

Country Link
US (1) US10451324B2 (ja)
EP (1) EP3150935B1 (ja)
JP (1) JP6138364B2 (ja)
WO (1) WO2015181980A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645845B1 (ko) 2015-01-12 2016-08-04 엘지전자 주식회사 공기 조화기
KR101694603B1 (ko) 2015-01-12 2017-01-09 엘지전자 주식회사 공기 조화기
KR101639516B1 (ko) * 2015-01-12 2016-07-13 엘지전자 주식회사 공기 조화기
US10415846B2 (en) * 2015-01-23 2019-09-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US11486619B2 (en) * 2017-09-05 2022-11-01 Daikin Industries, Ltd. Air-conditioning system or refrigerant branch unit
WO2019053872A1 (ja) * 2017-09-15 2019-03-21 三菱電機株式会社 空気調和装置
CN109595845B (zh) * 2017-09-29 2021-08-03 上海海立电器有限公司 新风空调系统及控制方法
WO2019102404A1 (en) * 2017-11-23 2019-05-31 L&T Technology Services Limited Multi-zone flexi-positioning air-conditioning system
WO2019163042A1 (ja) * 2018-02-22 2019-08-29 三菱電機株式会社 空気調和装置およびエアハンドリングユニット
JPWO2020245871A1 (ja) * 2019-06-03 2021-10-28 三菱電機株式会社 空気調和装置及びその制御方法
JP6624623B1 (ja) * 2019-06-26 2019-12-25 伸和コントロールズ株式会社 温度制御装置及び温調装置

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268048A (en) * 1940-03-06 1941-12-30 John J Nesbitt Inc Air conditioning unit
US3195622A (en) * 1961-01-23 1965-07-20 Itt Lateral valve control for air conditioning equipment
US3188829A (en) * 1964-03-12 1965-06-15 Carrier Corp Conditioning apparatus
US3308877A (en) * 1965-07-01 1967-03-14 Carrier Corp Combination conditioning and water heating apparatus
US3378062A (en) * 1966-10-27 1968-04-16 Trane Co Four pipe heat pump apparatus
US4018581A (en) * 1974-12-17 1977-04-19 John Denis Ruff Solar heating system
US4012920A (en) * 1976-02-18 1977-03-22 Westinghouse Electric Corporation Heating and cooling system with heat pump and storage
US4111259A (en) * 1976-03-12 1978-09-05 Ecosol, Ltd. Energy conservation system
US4165037A (en) * 1976-06-21 1979-08-21 Mccarson Donald M Apparatus and method for combined solar and heat pump heating and cooling system
US4067383A (en) * 1976-08-04 1978-01-10 Padden William R Heating and cooling system for a multiple coil installation
US4098092A (en) * 1976-12-09 1978-07-04 Singh Kanwal N Heating system with water heater recovery
US4100755A (en) * 1976-12-20 1978-07-18 Carrier Corporation Absorption refrigeration system utilizing solar energy
US4256475A (en) * 1977-07-22 1981-03-17 Carrier Corporation Heat transfer and storage system
US4313307A (en) * 1977-09-12 1982-02-02 Electric Power Research Institute, Inc. Heating and cooling system and method
US4179894A (en) * 1977-12-28 1979-12-25 Wylain, Inc. Dual source heat pump
US4187687A (en) * 1978-01-16 1980-02-12 Savage Harry A System for utilizing solar energy and ambient air in air conditioners during the heating mode
US4228846A (en) * 1978-08-02 1980-10-21 Carrier Corporation Control apparatus for a two-speed heat pump
US4257238A (en) * 1979-09-28 1981-03-24 Borg-Warner Corporation Microcomputer control for an inverter-driven heat pump
US4353409A (en) * 1979-12-26 1982-10-12 The Trane Company Apparatus and method for controlling a variable air volume temperature conditioning system
US4336692A (en) * 1980-04-16 1982-06-29 Atlantic Richfield Company Dual source heat pump
JPS57175858A (en) * 1981-04-23 1982-10-28 Mitsubishi Electric Corp Air conditionor
JPS57202462A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Air conditioner
JPS59217462A (ja) * 1983-05-25 1984-12-07 株式会社東芝 冷媒加熱冷暖房機
US4787444A (en) * 1983-12-19 1988-11-29 Countryman James H Heating and cooling system
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
US4645908A (en) * 1984-07-27 1987-02-24 Uhr Corporation Residential heating, cooling and energy management system
US4614090A (en) * 1985-01-31 1986-09-30 Yanmar Diesel Engine Co. Ltd. Outdoor unit of an air conditioner of an engine heat pump type
US4693089A (en) * 1986-03-27 1987-09-15 Phenix Heat Pump Systems, Inc. Three function heat pump system
WO1987007360A1 (en) * 1986-05-19 1987-12-03 Yamato Kosan Co., Ltd. Heat exchanging system
JP2557415B2 (ja) * 1987-10-15 1996-11-27 株式会社東芝 蓄熱冷凍サイクル装置
GB2213248B (en) * 1987-12-21 1991-11-27 Sanyo Electric Co Air-conditioning apparatus
KR920008504B1 (ko) * 1988-10-17 1992-09-30 미쓰비시전기주식회사 공기조화장치
JP2723953B2 (ja) * 1989-02-27 1998-03-09 株式会社日立製作所 空気調和装置
JPH0754217B2 (ja) * 1989-10-06 1995-06-07 三菱電機株式会社 空気調和装置
US5029449A (en) * 1990-02-23 1991-07-09 Gas Research Institute Heat pump booster compressor arrangement
JP3051420B2 (ja) * 1990-03-02 2000-06-12 株式会社日立製作所 空気調和装置,その装置に用いられる室内熱交換器の製造方法
US4993231A (en) * 1990-03-02 1991-02-19 Eaton Corporation Thermostatic expansion valve with electronic controller
AU636726B2 (en) * 1990-03-19 1993-05-06 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
AU636215B2 (en) * 1990-04-23 1993-04-22 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JP2839343B2 (ja) * 1990-08-10 1998-12-16 株式会社日立製作所 マルチエアコン
JP3055163B2 (ja) * 1990-10-16 2000-06-26 東芝キヤリア株式会社 空気調和機
JP2909187B2 (ja) * 1990-10-26 1999-06-23 株式会社東芝 空気調和機
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
JP3062824B2 (ja) * 1990-11-21 2000-07-12 株式会社日立製作所 空気調和システム
US5878810A (en) * 1990-11-28 1999-03-09 Kabushiki Kaisha Toshiba Air-conditioning apparatus
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
KR950002921Y1 (ko) * 1991-01-30 1995-04-17 삼성전자 주식회사 멀티에어콘의 제어회로
JP3042797B2 (ja) * 1991-03-22 2000-05-22 株式会社日立製作所 空気調和機
JPH04295566A (ja) * 1991-03-25 1992-10-20 Aisin Seiki Co Ltd エンジン駆動式空気調和機
AU649810B2 (en) * 1991-05-09 1994-06-02 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
US5239838A (en) * 1991-09-19 1993-08-31 Tressler Steven N Heating and cooling system having auxiliary heating loop
JP3322684B2 (ja) * 1992-03-16 2002-09-09 東芝キヤリア株式会社 空気調和機
JP3352469B2 (ja) * 1992-07-14 2002-12-03 東芝キヤリア株式会社 空気調和装置
US5320166A (en) * 1993-01-06 1994-06-14 Consolidated Natural Gas Service Company, Inc. Heat pump system with refrigerant isolation and heat storage
US5289692A (en) * 1993-01-19 1994-03-01 Parker-Hannifin Corporation Apparatus and method for mass flow control of a working fluid
JP3060770B2 (ja) * 1993-02-26 2000-07-10 ダイキン工業株式会社 冷凍装置
US5461876A (en) * 1994-06-29 1995-10-31 Dressler; William E. Combined ambient-air and earth exchange heat pump system
KR100225622B1 (ko) * 1994-09-27 1999-10-15 윤종용 멀티형 공기조화기
US5628200A (en) * 1995-01-12 1997-05-13 Wallace Heating & Air Conditioning, Inc. Heat pump system with selective space cooling
US5664421A (en) * 1995-04-12 1997-09-09 Sanyo Electric Co., Ltd. Heat pump type air conditioner using circulating fluid branching passage
KR100196528B1 (ko) * 1996-03-14 1999-06-15 니시무로 타이죠 공기조화장치
US5689962A (en) * 1996-05-24 1997-11-25 Store Heat And Produce Energy, Inc. Heat pump systems and methods incorporating subcoolers for conditioning air
US6126080A (en) * 1996-10-18 2000-10-03 Sanyo Electric Co., Ltd. Air conditioner
US6006528A (en) * 1996-10-31 1999-12-28 Sanyo Electric Co., Ltd. Air conditioning system
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
US6244057B1 (en) * 1998-09-08 2001-06-12 Hitachi, Ltd. Air conditioner
US6170270B1 (en) * 1999-01-29 2001-01-09 Delaware Capital Formation, Inc. Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP3737381B2 (ja) * 2000-06-05 2006-01-18 株式会社デンソー 給湯装置
JP4582473B2 (ja) * 2001-07-16 2010-11-17 Smc株式会社 恒温液循環装置
JP5030344B2 (ja) * 2001-08-31 2012-09-19 三菱重工業株式会社 ガスヒートポンプ式空気調和装置、エンジン冷却水加熱装置及びガスヒートポンプ式空気調和装置の運転方法
JP2003075018A (ja) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和装置
KR100437804B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 2배관식 냉난방 동시형 멀티공기조화기 및 그 운전방법
KR100437802B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
JP4242131B2 (ja) * 2002-10-18 2009-03-18 パナソニック株式会社 冷凍サイクル装置
US7493775B2 (en) * 2002-10-30 2009-02-24 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100463548B1 (ko) * 2003-01-13 2004-12-29 엘지전자 주식회사 공기조화기용 제상장치
US6637216B1 (en) * 2003-01-22 2003-10-28 Bristol Compressors, Inc. Compressor with internal accumulator for use in split compressor
US6807821B2 (en) * 2003-01-22 2004-10-26 Bristol Compressors, Inc. Compressor with internal accumulator for use in split compressor
US6904762B2 (en) * 2003-10-14 2005-06-14 Ford Global Technologies, Llc Pump pressure limiting method
KR100550566B1 (ko) * 2004-02-25 2006-02-10 엘지전자 주식회사 멀티형 히트 펌프의 제어 방법
JP4517684B2 (ja) * 2004-03-10 2010-08-04 ダイキン工業株式会社 ロータリ式膨張機
JP3709482B2 (ja) * 2004-03-31 2005-10-26 ダイキン工業株式会社 空気調和システム
JP3781046B2 (ja) * 2004-07-01 2006-05-31 ダイキン工業株式会社 空気調和装置
KR100657471B1 (ko) * 2004-08-17 2006-12-13 엘지전자 주식회사 코제너레이션 시스템
KR100579574B1 (ko) * 2004-08-17 2006-05-15 엘지전자 주식회사 코제너레이션 시스템
JP2006071174A (ja) * 2004-09-01 2006-03-16 Daikin Ind Ltd 冷凍装置
KR100619746B1 (ko) * 2004-10-05 2006-09-12 엘지전자 주식회사 하이브리드 공기조화기
JP2006132818A (ja) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
KR100688171B1 (ko) * 2004-12-29 2007-03-02 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기 및 냉매 회수방법
KR100677266B1 (ko) * 2005-02-17 2007-02-02 엘지전자 주식회사 냉난방 동시형 멀티 에어컨
US7632076B2 (en) * 2005-03-02 2009-12-15 Bendix Commercial Vehicle Systems Llc Air supply system control
US20070012058A1 (en) * 2005-07-12 2007-01-18 Lg Electronics Inc. Cogeneration system
US20070095087A1 (en) * 2005-11-01 2007-05-03 Wilson Michael J Vapor compression cooling system for cooling electronics
JP4698417B2 (ja) * 2005-12-28 2011-06-08 株式会社デンソー 二重管の製造方法
JP4899489B2 (ja) * 2006-01-19 2012-03-21 ダイキン工業株式会社 冷凍装置
JP4967435B2 (ja) * 2006-04-20 2012-07-04 ダイキン工業株式会社 冷凍装置
JP4904908B2 (ja) * 2006-04-28 2012-03-28 ダイキン工業株式会社 空気調和装置
JP2007333269A (ja) 2006-06-14 2007-12-27 Hitachi Appliances Inc 空気調和機
KR101340725B1 (ko) * 2006-10-17 2013-12-12 엘지전자 주식회사 수냉식 공기조화기
US7451611B2 (en) * 2006-10-23 2008-11-18 Ralph Muscatell Solar air conditioning system
JP4974658B2 (ja) 2006-11-30 2012-07-11 三菱電機株式会社 空気調和装置
JP4389927B2 (ja) * 2006-12-04 2009-12-24 ダイキン工業株式会社 空気調和装置
KR100803144B1 (ko) * 2007-03-28 2008-02-14 엘지전자 주식회사 공기조화기
US8141623B2 (en) * 2007-05-01 2012-03-27 Blecker Joseph G Automatic switching two pipe hydronic system
CN101720413B (zh) * 2007-05-25 2012-01-04 三菱电机株式会社 冷冻循环装置
US8418494B2 (en) * 2007-09-26 2013-04-16 Mitsubishi Electric Corporation Air conditioning apparatus
JP2009138973A (ja) 2007-12-04 2009-06-25 Kobe Steel Ltd ヒートポンプ及びその運転方法
KR101488390B1 (ko) * 2008-02-05 2015-01-30 엘지전자 주식회사 공기조화장치의 냉매량 판단 방법
JP4906962B2 (ja) * 2008-05-22 2012-03-28 三菱電機株式会社 冷凍サイクル装置
KR101581466B1 (ko) * 2008-08-27 2015-12-31 엘지전자 주식회사 공기조화시스템
KR101532781B1 (ko) * 2008-08-27 2015-07-01 엘지전자 주식회사 공기조화시스템
EP2309199B1 (en) * 2008-10-29 2021-08-18 Mitsubishi Electric Corporation Air conditioner
JP5263522B2 (ja) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル 冷凍装置
JP5173857B2 (ja) * 2009-01-14 2013-04-03 三菱電機株式会社 空気調和装置
WO2010131378A1 (ja) * 2009-05-12 2010-11-18 三菱電機株式会社 空気調和装置
EP3273184A1 (en) * 2009-08-28 2018-01-24 Sanyo Electric Co., Ltd. Air conditioner
US8931298B2 (en) * 2009-08-28 2015-01-13 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
EP3239623B1 (en) * 2009-09-10 2022-01-12 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5599403B2 (ja) * 2009-09-24 2014-10-01 三菱電機株式会社 冷凍サイクル装置
JP2011202884A (ja) 2010-03-25 2011-10-13 Toshiba Carrier Corp 冷凍サイクル装置
JP5121908B2 (ja) * 2010-09-21 2013-01-16 三菱電機株式会社 冷房給湯装置
JP5228023B2 (ja) * 2010-10-29 2013-07-03 三菱電機株式会社 冷凍サイクル装置
JP5747709B2 (ja) * 2011-07-22 2015-07-15 株式会社富士通ゼネラル 空気調和装置
WO2013030896A1 (ja) * 2011-09-01 2013-03-07 三菱電機株式会社 冷凍サイクル装置
US9046284B2 (en) * 2011-09-30 2015-06-02 Fujitsu General Limited Air conditioning apparatus
EP2629030A1 (en) * 2011-12-12 2013-08-21 Samsung Electronics Co., Ltd Air Conditioner
JPWO2013099047A1 (ja) * 2011-12-27 2015-04-30 三菱電機株式会社 空気調和装置
US20130167559A1 (en) * 2012-01-02 2013-07-04 Samsung Electronics Co., Ltd. Heat pump and control method thereof
US9816736B2 (en) * 2012-01-24 2017-11-14 Mistubishi Electric Company Air-conditioning apparatus
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP2013181695A (ja) * 2012-03-01 2013-09-12 Fujitsu General Ltd 空気調和装置
US9032753B2 (en) * 2012-03-22 2015-05-19 Trane International Inc. Electronics cooling using lubricant return for a shell-and-tube style evaporator
WO2013160929A1 (ja) * 2012-04-23 2013-10-31 三菱電機株式会社 冷凍サイクルシステム
CN104520656B (zh) * 2012-08-03 2016-08-17 三菱电机株式会社 空气调节装置
US9683751B2 (en) * 2012-09-21 2017-06-20 Toshiba Carrier Corporation Outdoor unit for multi-type air conditioner
WO2014054154A1 (ja) 2012-10-04 2014-04-10 三菱電機株式会社 空気調和装置
JP6000053B2 (ja) * 2012-10-15 2016-09-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
US10393419B2 (en) * 2012-11-21 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6012756B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
US9638430B2 (en) * 2012-11-30 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
KR20140115838A (ko) * 2013-03-22 2014-10-01 엘지전자 주식회사 냉장고의 제어 방법
CN203687235U (zh) * 2013-09-10 2014-07-02 广东美的暖通设备有限公司 空调室外机、两管制冷暖系统和三管制热回收系统
FR3016005B1 (fr) * 2013-12-26 2016-02-19 Commissariat Energie Atomique Dispositif de production d'energie a gazogene
EP3098531B1 (en) * 2014-01-21 2018-06-20 Mitsubishi Electric Corporation Air conditioner
US20170167767A1 (en) * 2014-02-06 2017-06-15 Carrier Corporation Ejector Cycle Heat Recovery Refrigerant Separator
JP6248878B2 (ja) * 2014-09-18 2017-12-20 株式会社富士通ゼネラル 空気調和装置
JP6328270B2 (ja) * 2014-12-05 2018-05-23 三菱電機株式会社 空気調和装置
US9696073B2 (en) * 2014-12-16 2017-07-04 Johnson Controls Technology Company Fault detection and diagnostic system for a refrigeration circuit
KR101694603B1 (ko) * 2015-01-12 2017-01-09 엘지전자 주식회사 공기 조화기
KR101645845B1 (ko) * 2015-01-12 2016-08-04 엘지전자 주식회사 공기 조화기
KR101698261B1 (ko) * 2015-01-12 2017-01-19 엘지전자 주식회사 공기 조화기 및 공기 조화기의 제어 방법
KR101639513B1 (ko) * 2015-01-12 2016-07-13 엘지전자 주식회사 공기 조화기 및 이를 제어하는 방법
WO2016117128A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 空気調和装置
ES2834548T3 (es) * 2015-06-24 2021-06-17 Emerson Climate Tech Gmbh Mapeo cruzado de componentes en un sistema de refrigeración
US9671144B1 (en) * 2016-04-12 2017-06-06 King Fahd University Of Petroleum And Minerals Thermal-compression refrigeration system

Also Published As

Publication number Publication date
WO2015181980A1 (ja) 2015-12-03
US20170082334A1 (en) 2017-03-23
US10451324B2 (en) 2019-10-22
EP3150935B1 (en) 2019-03-06
EP3150935A1 (en) 2017-04-05
JPWO2015181980A1 (ja) 2017-04-20
EP3150935A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6138364B2 (ja) 空気調和機
JP5774225B2 (ja) 空気調和装置
JP5511983B2 (ja) 空調給湯複合システム
JP6058032B2 (ja) ヒートポンプシステム
JP5759017B2 (ja) 空気調和装置
EP2808622B1 (en) Air-conditioning device
WO2012172605A1 (ja) 空気調和装置
WO2013046269A1 (ja) 空調給湯複合システム
JPWO2015125743A1 (ja) 空気調和装置
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
JP6120943B2 (ja) 空気調和装置
JP5972397B2 (ja) 空気調和装置、その設計方法
EP2808625B1 (en) A refrigerant charging method for an air-conditioning apparatus
JP6758506B2 (ja) 空気調和装置
WO2017109905A1 (ja) 空調給湯複合システム
WO2017179166A1 (ja) 空気調和装置
JPWO2013046269A1 (ja) 空調給湯複合システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170425

R150 Certificate of patent or registration of utility model

Ref document number: 6138364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250