JP5822000B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5822000B2
JP5822000B2 JP2014132143A JP2014132143A JP5822000B2 JP 5822000 B2 JP5822000 B2 JP 5822000B2 JP 2014132143 A JP2014132143 A JP 2014132143A JP 2014132143 A JP2014132143 A JP 2014132143A JP 5822000 B2 JP5822000 B2 JP 5822000B2
Authority
JP
Japan
Prior art keywords
wiring
film
thickness
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014132143A
Other languages
Japanese (ja)
Other versions
JP2014170976A (en
Inventor
鈴木 貴志
貴志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014132143A priority Critical patent/JP5822000B2/en
Publication of JP2014170976A publication Critical patent/JP2014170976A/en
Application granted granted Critical
Publication of JP5822000B2 publication Critical patent/JP5822000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体装置およびその製造方法に関し、特に厚い配線を有する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a thick wiring and a manufacturing method thereof.

半導体集積回路装置は、世代ごとに構成素子であるMOSトランジスタの縮小化、高集積化が進められている。トランジスタの微細化と共に、トランジスタに接続される配線の幅は縮小する傾向にある。集積回路の動作速度は、配線の抵抗と寄生容量により制限される。狭い配線の抵抗を低く抑えるため、アルミニウムに代わって、銅ないし銅合金が用いられるようになった。   In semiconductor integrated circuit devices, MOS transistors, which are constituent elements, are being reduced in size and highly integrated for each generation. With the miniaturization of transistors, the width of wiring connected to the transistors tends to be reduced. The operation speed of the integrated circuit is limited by the resistance and parasitic capacitance of the wiring. In order to keep the resistance of narrow wires low, copper or copper alloys have been used instead of aluminum.

銅配線は、パターニングの精度を上げることが難しい。そのため、層間絶縁膜に配線用トレンチを形成し、トレンチ内に銅配線を埋め込むダマシン法が用いられる。また、銅が絶縁膜中に拡散すると絶縁特性を低下させる性質を有する。銅の拡散を防止するために、トレンチ表面にバリアメタル層を形成し、その凹部に銅配線を埋め込み、層間絶縁膜上の不要金属層を化学機械研磨(CMP)などで除去し、銅配線表面を覆って層間絶縁膜上に、銅拡散防止機能を有するSiN,SiCN,SiC等の絶縁キャップ層を形成する。   It is difficult to increase the patterning accuracy of copper wiring. Therefore, a damascene method is used in which a wiring trench is formed in the interlayer insulating film and a copper wiring is embedded in the trench. Further, when copper diffuses into the insulating film, it has the property of reducing the insulating properties. In order to prevent copper diffusion, a barrier metal layer is formed on the trench surface, copper wiring is buried in the recess, and unnecessary metal layers on the interlayer insulating film are removed by chemical mechanical polishing (CMP), etc. An insulating cap layer made of SiN, SiCN, SiC or the like having a copper diffusion preventing function is formed on the interlayer insulating film.

高集積化と共に、ダマシン銅配線にもボイドなどの問題が生じ、その対策が研究されている。   Along with the high integration, problems such as voids also occur in damascene copper wiring, and countermeasures are being studied.

特開2001−15508号は、トレンチを導電材料で埋込む際に、トレンチのアスペクト比が大きくなると、トレンチを完全に導電材料で埋込むことができず、導電層内に導電材料が充填されない、いわゆるボイドと呼ばれる空洞部分が生じることを指摘し、トレンチを規定する側壁間の距離を、半導体基板から遠ざかるにつれて徐々に大きくすることを提案する。   Japanese Patent Laid-Open No. 2001-15508 discloses that when the trench is filled with a conductive material, if the aspect ratio of the trench increases, the trench cannot be completely filled with the conductive material, and the conductive layer is not filled with the conductive material. It is pointed out that a so-called void is formed, and it is proposed to gradually increase the distance between the side walls defining the trench as the distance from the semiconductor substrate increases.

特開2006−203019号は、配線パターンの微細化に伴い、ビア側面上部及びトレンチ側面上部では、バリアメタル膜が厚くなり、ビア側面下部及びトレンチ側面下部では、バリアメタル膜が薄くなり、シード層が十分堆積できず、電解めっきによるCu膜の埋め込みが困難となり、ビアの内部にボイド等の埋め込み不良が発生することを指摘し、トレンチの底部の角に丸みをつけることを提案する。   In JP 2006-203019 A, as the wiring pattern becomes finer, the barrier metal film becomes thicker at the upper portion of the via side surface and the upper portion of the trench side surface, and the barrier metal film becomes thinner at the lower portion of the via side surface and the lower portion of the trench side surface. Therefore, it is difficult to bury Cu film by electrolytic plating, and it is pointed out that defective filling such as voids occurs inside the via, and it is proposed to round the corner at the bottom of the trench.

特開2006−287086号は、電界集中及び物理的なストレスにより配線及びビアプラグが損傷することを指摘し、ビアホールの底面及び側面を覆うバリアメタル膜を、ビアホールの下端部においてビアホールの側面を覆う部分の膜厚を、ビアホールの底面を覆う部分の膜厚よりも厚くすることを提案する。   Japanese Patent Laid-Open No. 2006-287086 points out that wiring and via plugs are damaged by electric field concentration and physical stress, and a barrier metal film that covers the bottom and side surfaces of the via hole is a portion that covers the side surface of the via hole at the lower end portion of the via hole. It is proposed that the film thickness of the film be thicker than the film thickness of the portion covering the bottom surface of the via hole.

高集積化と共に配線層の多層化も進み、10層を超える多層配線も用いられている。配線構造は、トランジスタに近い下層配線ほど幅が狭く、また厚さも薄い配線が用いられ、上層になるほど幅が広く、厚さも厚い配線が配置される傾向を持つ。集積度の向上に伴い、より多くの電力をチップに投入する必要も生じる。より低抵抗の電源配線が要求され、上層配線の厚さは増大する傾向もある。   Along with higher integration, the number of wiring layers has been increased, and multilayer wiring exceeding 10 layers is also used. In the wiring structure, a lower layer wiring closer to the transistor has a narrower width and a thinner thickness, and an upper layer tends to have a wider and thicker wiring. As the degree of integration increases, it becomes necessary to supply more power to the chip. Lower resistance power supply wiring is required, and the thickness of the upper layer wiring tends to increase.

また、小型化携帯装置等において、DC−DCコンバータを設け、パワーアンプの出力が低いときは電圧を低くして消費電力を低減する構成もある。このような用途では、例えば100mAオーダの電流を流せるインダクタが求められる。他の用途で、大電流を流せるインダクタが求められることもある。
特開2001−15508号公報 特開2006−2−3019号公報 特開2006−287086号公報
Further, in a miniaturized portable device or the like, there is a configuration in which a DC-DC converter is provided, and when the output of the power amplifier is low, the voltage is lowered to reduce power consumption. In such applications, for example, an inductor capable of flowing a current of the order of 100 mA is required. In other applications, an inductor capable of passing a large current may be required.
JP 2001-15508 A JP 2006-2-3019 A JP 2006-287086 A

大電流を流せる配線を得るため、厚さ数ミクロンといった厚い配線を形成することが望まれることもある。従来用いられなかったこのような厚い配線を形成すると、新たな問題が生じた。   In order to obtain a wiring capable of flowing a large current, it may be desired to form a wiring having a thickness of several microns. When such a thick wiring that has not been used conventionally is formed, a new problem arises.

本発明の1観点によれば、半導体基板と、前記半導体基板上方に形成された第1絶縁キャップ層と、前記第1絶縁キャップ層上方に形成され、ビア孔と前記ビア孔上のトレンチとを含み、前記トレンチは前記ビア孔上方で段差形状の側壁を有する層間絶縁膜と、前記ビア孔内に形成されたビア導電体と、前記トレンチ内に形成された配線であって、前記ビア導電体とは断面形状が異なる配線と、前記層間絶縁膜上方に形成された第2絶縁キャップ層と、を含み、ここで、前記ビア上方の前記配線は、前記ビア上方に設けられ、660nmを越える第1の厚さを有する主部分と、前記主部分に亘って設けられ、前記第1の厚さより薄い第2の厚さを持ち、前記主部分の側部から外側に150nm以上張り出す、張り出し部分と、を含み、前記層間絶縁膜の材料は、前記第1絶縁キャップ層の材料及び前記第2絶縁キャップ層の材料とは異なる、半導体装置が提供される。 According to one aspect of the present invention, a semiconductor substrate, a first insulating cap layer formed over the semiconductor substrate, a via hole and a trench over the via hole formed over the first insulating cap layer are provided. The trench includes an interlayer insulating film having a step-shaped side wall above the via hole, a via conductor formed in the via hole, and a wiring formed in the trench, the via conductor Includes a wiring having a different cross-sectional shape, and a second insulating cap layer formed above the interlayer insulating film, wherein the wiring above the via is provided above the via and has a first thickness exceeding 660 nm . A main portion having a thickness of 1 and a projecting portion provided over the main portion, having a second thickness smaller than the first thickness, and projecting 150 nm or more outward from a side portion of the main portion And including the layer A semiconductor device is provided in which the material of the inter-layer insulating film is different from the material of the first insulating cap layer and the material of the second insulating cap layer.

図1A,1Bは、予備実験で作成した配線構造の断面図、及びその部分拡大図、図1Cは算出した応力拡大係数を銅配線の厚さに対して示すグラフである。1A and 1B are cross-sectional views of a wiring structure created in a preliminary experiment and a partially enlarged view thereof, and FIG. 1C is a graph showing the calculated stress intensity factor with respect to the thickness of the copper wiring. 図2A,2Bは、ダマシン銅配線を形成した後、上部絶縁層を形成する工程を解析する概略断面図である。2A and 2B are schematic cross-sectional views for analyzing a process of forming an upper insulating layer after forming a damascene copper wiring. 図3Aは、考察した配線構造を概略的に示す断面図、図3Bはこの考えに基づき作成する配線構造の断面図である。FIG. 3A is a cross-sectional view schematically showing the considered wiring structure, and FIG. 3B is a cross-sectional view of the wiring structure created based on this idea. 図4A,4B,4Cは算出した応力拡大係数を、配線厚さt、張り出し幅L,張り出し高さhに対して示すグラフである。4A, 4B, and 4C are graphs showing the calculated stress intensity factors with respect to the wiring thickness t, the overhang width L, and the overhang height h. と、When, と、When, 図5Aは実施例1による半導体装置の概略断面図、図5B−5Hは、図5Aの配線構造の製造工程を示す概略断面図である。5A is a schematic cross-sectional view of the semiconductor device according to the first embodiment, and FIGS. 5B-5H are schematic cross-sectional views showing a manufacturing process of the wiring structure of FIG. 5A. と、When, 図6Aは実施例2による半導体装置の概略断面図、図6B−6Fは、図6Aの配線構造の製造工程を示す概略断面図である。6A is a schematic cross-sectional view of the semiconductor device according to the second embodiment, and FIGS. 6B-6F are schematic cross-sectional views showing a manufacturing process of the wiring structure of FIG. 6A. When 図7Aは実施例3による半導体装置の概略断面図、図7B−7Fは、図7Aの配線構造の製造工程を示す概略断面図である。7A is a schematic cross-sectional view of a semiconductor device according to Example 3, and FIGS. 7B-7F are schematic cross-sectional views showing a manufacturing process of the wiring structure of FIG. 7A. 図8Aは実施例4による配線構造の概略平面図,図8B,8Cは2箇所における断面構造を示す概略断面図である。FIG. 8A is a schematic plan view of a wiring structure according to Example 4, and FIGS. 8B and 8C are schematic cross-sectional views showing cross-sectional structures at two locations. 図9A−9Eは、実施例4の変形例による配線構造を示す概略平面図である。9A to 9E are schematic plan views illustrating a wiring structure according to a modification of the fourth embodiment. 図10A,10Bは、実施例4の更なる変形例による配線構造を示す概略平面図である。10A and 10B are schematic plan views showing a wiring structure according to a further modification of the fourth embodiment. 図11A,11Bは、インダクタの変形例を示す概略断面図である。11A and 11B are schematic cross-sectional views showing modifications of the inductor. と、When, 図12Aは実施例5による半導体装置の概略断面図、図12B−12Gは、図12Aの配線構造の製造工程を示す概略断面図、図12Hは比較例の配線構造を示す概略断面図である。12A is a schematic cross-sectional view of the semiconductor device according to Example 5, FIGS. 12B-12G are schematic cross-sectional views showing the manufacturing process of the wiring structure of FIG. 12A, and FIG. 12H is a schematic cross-sectional view showing the wiring structure of the comparative example. 実施例5の変形例の構造を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing a structure of a modified example of Example 5. 多層配線を有する半導体装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the semiconductor device which has a multilayer wiring.

LS 下部構造、
ID 層間絶縁膜、
W 配線、
BM バリアメタル、
TR トレンチ、
CAP キャップ層、
MW 主配線領域、
t 主配線領域の厚さ、
EXW 張り出し配線領域、
L 張り出し配線領域の幅、
h 張り出し配線領域の高さ、
LD 下地絶縁膜、
11 酸化シリコン膜、
12 ハードマスク膜、
14 バリアメタル膜、
15 銅層、
16 キャップ膜、
17 絶縁膜、
18 パッシベーション膜、
RM レジストマスク、
21,22 (エッチング特性の異なる)絶縁膜、
58 Al配線、
57,59 TiN膜。
LS substructure,
ID interlayer insulation film,
W wiring,
BM barrier metal,
TR trench,
CAP cap layer,
MW main wiring area,
t The thickness of the main wiring area,
EXW overhang wiring area,
L width of overhang wiring area,
h Height of overhang wiring area,
LD base insulating film,
11 Silicon oxide film,
12 Hard mask film,
14 barrier metal film,
15 copper layer,
16 Cap membrane,
17 Insulating film,
18 Passivation film,
RM resist mask,
21 and 22 (different etching characteristics) insulating films,
58 Al wiring,
57, 59 TiN film.

本発明者は、予備実験として、従来用いられなかった厚さ3.3μmの厚い配線を、従来の厚い配線である厚さ0.6μmの配線と共に試作した。   As a preliminary experiment, the inventor made a prototype of a 3.3 μm thick wiring that was not conventionally used together with a 0.6 μm thick wiring that is a conventional thick wiring.

図1Aに示すように、シリコン基板を含む下部構造LS上に、厚さ約0.8μmの酸化シリコンの第1の層間絶縁膜ID1を形成し、深さ約0.6μmの第1のトレンチTR1をエッチングした。バリアメタル膜BM1として、平坦部上の厚さ約20nm程度のTa膜をスパッタリングで堆積し、メッキシード層として、平坦部上の厚さ50nm程度のCu膜をスパッタリングで堆積し、トレンチTR1を埋め込むように第1のCu配線層W1をメッキで形成し、第1の層間絶縁膜ID1上の不要金属層を化学機械研磨(CMP)で除去した。表面を平坦化した第1のCu配線層W1の厚さは0.6μmである。第1のCu配線層W1を覆って、層間絶縁膜ID1上に銅拡散防止機能を有する第1の絶縁性キャップ膜CAP1として、厚さ140nm程度のSiC膜を堆積した。   As shown in FIG. 1A, a first interlayer insulating film ID1 made of silicon oxide having a thickness of about 0.8 μm is formed on a lower structure LS including a silicon substrate, and a first trench TR1 having a depth of about 0.6 μm is formed. Was etched. As the barrier metal film BM1, a Ta film having a thickness of about 20 nm on the flat portion is deposited by sputtering, and as a plating seed layer, a Cu film having a thickness of about 50 nm on the flat portion is deposited by sputtering, and the trench TR1 is embedded. Thus, the first Cu wiring layer W1 was formed by plating, and the unnecessary metal layer on the first interlayer insulating film ID1 was removed by chemical mechanical polishing (CMP). The thickness of the first Cu wiring layer W1 whose surface is flattened is 0.6 μm. A SiC film having a thickness of about 140 nm was deposited as a first insulating cap film CAP1 having a copper diffusion preventing function on the interlayer insulating film ID1 so as to cover the first Cu wiring layer W1.

第1の絶縁性キャップ膜CAP1の上に、第2の層間絶縁膜ID2として、厚さ約3.8μmの酸化シリコン膜を堆積し、デュアルダマシン形状(ビア孔付き)の第2のトレンチTR2をエッチングした。ビア孔の深さは約0.6μm、配線トレンチの深さは約3.3μmである。バリアメタル膜BM2として、平坦部上の厚さ約20nm程度のTa膜、メッキシード層として、平坦部上の厚さ50nm程度のCu膜、をスパッタリングで堆積し、トレンチTR2を埋め込むように第2のCu配線層W2をメッキで形成し、第2の層間絶縁膜ID2上の不要金属層をCMPで除去した。表面を平坦化した第2のCu配線層W2の配線部分の厚さは、3.3μmである。第2のCu配線層W2を覆って、第2の層間絶縁膜ID2上に銅拡散防止機能を有する第2の絶縁性キャップ膜CAP2として、厚さ70nm程度のSiC膜を堆積し、その上に酸化シリコン膜ID3を堆積した。   A silicon oxide film having a thickness of about 3.8 μm is deposited as a second interlayer insulating film ID2 on the first insulating cap film CAP1, and a second trench TR2 having a dual damascene shape (with a via hole) is formed. Etched. The depth of the via hole is about 0.6 μm, and the depth of the wiring trench is about 3.3 μm. A Ta film having a thickness of about 20 nm on the flat portion as the barrier metal film BM2 and a Cu film having a thickness of about 50 nm on the flat portion as the plating seed layer are deposited by sputtering to fill the trench TR2. The Cu wiring layer W2 was formed by plating, and the unnecessary metal layer on the second interlayer insulating film ID2 was removed by CMP. The thickness of the wiring portion of the second Cu wiring layer W2 whose surface is flattened is 3.3 μm. An SiC film having a thickness of about 70 nm is deposited as a second insulating cap film CAP2 having a copper diffusion preventing function on the second interlayer insulating film ID2 so as to cover the second Cu wiring layer W2. A silicon oxide film ID3 was deposited.

図1Bは、第2のCu配線層W2の周辺部の拡大図である。厚い第2のCu配線層W2のエッジ部近傍で第2のCu配線層W2とその上の第2のキャップ層CAP2との界面に剥離PFが生じた。下方の第1のCu配線層W1とその上の第1のキャップ層CAP1との界面には剥離は生じなかった。厚さ0.6μmの銅配線とキャップ層との界面には剥離は生じず、厚さ3.3μmの銅配線とキャップ層との界面には剥離が生じたことから、配線の厚さが厚くなると、剥離が生じやすくなると推測される。剥離は半導体装置の信頼性を低下させ、寿命を短くする原因となるので、剥離を生じさせることなく、厚い配線を形成する技術が望まれる。   FIG. 1B is an enlarged view of the peripheral portion of the second Cu wiring layer W2. Peeling PF occurred at the interface between the second Cu wiring layer W2 and the second cap layer CAP2 thereon in the vicinity of the edge portion of the thick second Cu wiring layer W2. No peeling occurred at the interface between the lower first Cu wiring layer W1 and the first cap layer CAP1 thereabove. No peeling occurred at the interface between the 0.6 μm thick copper wiring and the cap layer, and peeling occurred at the interface between the 3.3 μm thick copper wiring and the cap layer. Then, it is presumed that peeling easily occurs. Peeling reduces the reliability of the semiconductor device and shortens the lifetime, and therefore a technique for forming a thick wiring without causing peeling is desired.

本発明者は、剥離の原因を究明するため、応力解析を行なった。応力解析においては、図1Bに示すように、Cu配線のエッジ部近傍で、銅配線とキャップ層との界面に微小な剥離(亀裂)が発生した状況を仮定し、その亀裂の進展しやすさを応力拡大係数という指標を用いて評価する。指標が大きいことは剥離が大きくなりやすいことを示す。このやり方は破壊力学でよく用いられる手法である。銅配線の厚さtを、従来用いていた厚い配線の厚さ0.6μm(600nm)(モデルM1)から、900nm間隔で、1500nm(モデルM2)、2400nm(モデルM3)、3300nm(モデルM4)と変化させ、応力拡大係数を算出した。   The present inventor conducted stress analysis in order to investigate the cause of peeling. In the stress analysis, as shown in FIG. 1B, assuming that a minute peeling (crack) occurs at the interface between the copper wiring and the cap layer in the vicinity of the edge of the Cu wiring, it is easy for the crack to progress. Is evaluated using an index called a stress intensity factor. A large index indicates that peeling tends to be large. This is a technique often used in fracture mechanics. The thickness t of the copper wiring is changed from a conventionally used thick wiring thickness of 0.6 μm (600 nm) (model M1) to 1500 nm (model M2), 2400 nm (model M3), 3300 nm (model M4) at 900 nm intervals. The stress intensity factor was calculated.

図1Cは、銅配線層の厚さに対して、応力拡大係数がどのように変化するかを示したグラフである。横軸が銅配線層の厚さtを単位(nm)で示し、縦軸が応力拡大係数κiを単位(Pa・μm−2)で示す。銅配線の厚さtの増大と共に応力拡大係数κiが増大することが判る。全体として、上に凸の形状を描いている。厚さtが600nmから1500nmに増加する時の応力拡大係数κiの増加が最も大きい。厚さ600nmより厚い銅配線を形成すると、印加される応力が急激に大きくなることが予測される。900nm毎の配線膜厚増加に対する応力拡大係数κiの増加は、厚さの増大と共に、徐々に小さくなっている。厚さ600nmの銅配線では剥離が生ぜず、厚さ3300nmの銅配線では剥離が生じた実験結果と符合させると、厚さ600nmの銅配線に対応する応力拡大係数κi=1.16E8Pa・μm−2では剥離が生じないが、厚さ3300nmの銅配線に対応する応力拡大計数κi=2.12E8Pa・μm−2では剥離が生じることになる。 FIG. 1C is a graph showing how the stress intensity factor changes with respect to the thickness of the copper wiring layer. The horizontal axis indicates the thickness t of the copper wiring layer in units (nm), and the vertical axis indicates the stress intensity factor κi in units (Pa · μm −2 ). It can be seen that the stress intensity factor κi increases as the thickness t of the copper wiring increases. As a whole, a convex shape is drawn upward. The increase in the stress intensity factor κi is the largest when the thickness t increases from 600 nm to 1500 nm. When a copper wiring having a thickness of more than 600 nm is formed, the applied stress is expected to increase rapidly. The increase in the stress intensity factor κi with respect to the increase in the wiring film thickness every 900 nm gradually decreases with increasing thickness. When the copper wiring with a thickness of 600 nm does not peel off and the result of the peeling with the copper wiring with a thickness of 3300 nm coincides with the experimental result, the stress intensity factor κi = 1.16E8 Pa · μm corresponding to the copper wiring with a thickness of 600 nm No peeling occurs at 2 , but peeling occurs at a stress intensity factor κi = 2.12E8 Pa · μm −2 corresponding to a copper wiring having a thickness of 3300 nm.

剥離の原因について考察してみる。このモデルにおいて、Cuは周囲の絶縁物SiO,SiCより熱膨張係数が大きい。銅配線層を形成した後、例えば400℃程度の温度でキャップ層、層間絶縁膜を堆積し、その後常温に降温する。降温工程で銅配線はキャップ層、層間絶縁膜より大きく収縮する。 Consider the cause of peeling. In this model, Cu has a larger thermal expansion coefficient than the surrounding insulators SiO 2 and SiC. After forming the copper wiring layer, a cap layer and an interlayer insulating film are deposited at a temperature of about 400 ° C., for example, and then the temperature is lowered to room temperature. In the temperature lowering process, the copper wiring contracts more than the cap layer and the interlayer insulating film.

図2Aは、厚さ3300nmの銅配線W2を埋め込んだ第2の層間絶縁膜ID2上に第2のキャップ層CAP2,第3の層間絶縁膜ID3を成膜した状態を簡略化して示す。温度は約400℃である。昇温中の熱膨張は取り敢えず無視する。   FIG. 2A schematically shows a state in which the second cap layer CAP2 and the third interlayer insulating film ID3 are formed on the second interlayer insulating film ID2 in which the copper wiring W2 having a thickness of 3300 nm is embedded. The temperature is about 400 ° C. Thermal expansion during temperature rise is ignored for the time being.

図2Bに示すように、その後常温に降温する。降温に伴って、銅配線も絶縁膜も熱収縮する。銅配線の収縮量は絶縁膜の収縮量よりも、約1桁大きい。厚さ3300nmの銅配線の場合、熱収縮量の差は高さ方向で10nmオーダにもなる。第2の層間絶縁膜で囲まれた第2の銅配線が相対的に高さ10nmオーダ低くなると、第2のキャップ層CAP2は10nmオーダの相対的高さ変化に曝されることになると考えられる。従って、銅配線のエッジ近傍のキャップ層CAP2に大きな応力が印加されることになり、キャップ層CAP2が銅配線W2表面から剥離する原因となろう。金属配線と絶縁膜とが横方向に並び、それらの表面を他の絶縁膜が覆うところで応力が大きくなることが推測される。   As shown in FIG. 2B, the temperature is then lowered to room temperature. As the temperature falls, both the copper wiring and the insulating film shrink. The amount of shrinkage of the copper wiring is about an order of magnitude larger than the amount of shrinkage of the insulating film. In the case of a copper wiring having a thickness of 3300 nm, the difference in heat shrinkage is on the order of 10 nm in the height direction. If the second copper wiring surrounded by the second interlayer insulating film becomes relatively low on the order of 10 nm, it is considered that the second cap layer CAP2 is exposed to a relative height change of the order of 10 nm. . Therefore, a large stress is applied to the cap layer CAP2 in the vicinity of the edge of the copper wiring, which may cause the cap layer CAP2 to peel from the surface of the copper wiring W2. It is presumed that the stress increases when the metal wiring and the insulating film are arranged in the horizontal direction and the surface is covered with another insulating film.

そこで、本発明者は、層間絶縁膜と接する配線パターン側壁部において、実質的に歪発生の原因となる配線高さを低減することを考えた。より具体的には、配線パターン側壁部において、外側に歪緩和領域を設ける。歪緩和領域においては、下部は周辺の絶縁膜とし、上部を配線パターンから連続して階段状に配線が張り出す張り出し配線領域とする。張り出し配線領域は、縮小された厚さを有するので、温度変化により生じる高さ変化(熱膨張量、熱収縮量)も小さくなる。   Accordingly, the present inventor has considered reducing the wiring height that substantially causes the occurrence of distortion in the wiring pattern side wall portion in contact with the interlayer insulating film. More specifically, a strain relaxation region is provided outside the wiring pattern side wall. In the strain relaxation region, the lower part is a peripheral insulating film, and the upper part is an overhanging wiring region in which the wiring continuously protrudes from the wiring pattern. Since the overhang wiring region has a reduced thickness, a change in height (thermal expansion amount, thermal contraction amount) caused by a temperature change is also reduced.

図3Aに示すように、層間絶縁膜IDにステップ形状を有するトレンチTRをエッチングする。トレンチの全深さをtとした時、側壁は、下面から一旦(t−h)の高さまで立ち上がり、外側に幅L張り出してから、残りの高さh立ち上がる。トレンチTRに銅配線Wを埋め込み、CMPで不要部を除去した後、銅拡散防止機能を有する絶縁性キャップ層CAPを堆積し、さらにその上に層間絶縁膜IDを堆積する。全厚さtの主配線領域MWの外側に、幅L,高さhの張り出し配線領域EXWが形成され、歪緩和領域RLを構成する。   As shown in FIG. 3A, the trench TR having a step shape is etched in the interlayer insulating film ID. When the total depth of the trench is t, the sidewall rises from the lower surface to a height of (t−h), protrudes to the outside by a width L, and then rises for the remaining height h. After the copper wiring W is buried in the trench TR and unnecessary portions are removed by CMP, an insulating cap layer CAP having a copper diffusion preventing function is deposited, and an interlayer insulating film ID is further deposited thereon. An extended wiring region EXW having a width L and a height h is formed outside the main wiring region MW having the total thickness t, and constitutes a strain relaxation region RL.

歪緩和領域RLにおいては、厚さ(t−h)の層間絶縁膜の上に厚さhの張り出し配線領域EXWが配置される。厚さ(t−h)の層間絶縁膜は、その外側の層間絶縁膜と同じ材料なので、温度変化による熱収縮量(熱膨張量)は外側の層間絶縁膜と同じである。厚さhの張り出し配線領域EXWは、その外側の層間絶縁膜より温度変化による高さ変化、例えば降温による熱収縮率、は大きいが、厚さhは配線の全厚さtより小さいので、高さ変化の絶対値は小さくなる。厚さhの選択により、熱膨張量、熱収縮量は所望の値まで小さくできる。従って、例えば幅Lの張り出し配線領域EXWにおける降温による表面の落ち込み量は、低減する。全厚さtの主配線領域MWは、幅Lの張り出し配線領域EXWに連続し、連続した表面を形成している。従って、急激な表面高さの変化は生じにくいであろう。配線Wと層間絶縁膜IDを覆って、絶縁性キャップ層CAPを形成した時、絶縁性キャップ層CAPの受ける歪は小さくなると予測される。   In the strain relaxation region RL, the overhang wiring region EXW having a thickness h is disposed on the interlayer insulating film having a thickness (t−h). Since the interlayer insulating film having a thickness (t−h) is the same material as the outer interlayer insulating film, the amount of thermal contraction (thermal expansion amount) due to temperature change is the same as that of the outer interlayer insulating film. The overhanging wiring region EXW having a thickness h is larger in height change due to temperature change than the outer interlayer insulating film, for example, the thermal contraction rate due to temperature drop, but the thickness h is smaller than the total thickness t of the wiring. The absolute value of the change is small. By selecting the thickness h, the amount of thermal expansion and heat shrinkage can be reduced to a desired value. Therefore, for example, the amount of surface drop due to the temperature drop in the overhang wiring region EXW having the width L is reduced. The main wiring region MW having the total thickness t is continuous with the overhanging wiring region EXW having the width L and forms a continuous surface. Thus, a sudden change in surface height will not occur. When the insulating cap layer CAP is formed so as to cover the wiring W and the interlayer insulating film ID, the strain received by the insulating cap layer CAP is expected to be small.

図3Bは、この考えに基づく配線の構造を示す断面図である。層間絶縁膜IDに上部で階段状に外側に拡がる張り出し部を有するトレンチTRを2回のエッチングで形成する。トレンチの全深さをtとする。張り出し部の幅をL,高さをhとする。トレンチ表面を覆うようにバリアメタル膜BMを例えば厚さ20nm、銅シード層を例えば厚さ50nm、スパッタリングで堆積し、銅をトレンチの深さ以上メッキで成膜する。層間絶縁膜ID上の不要金属層をCMPで除去する。以下、バリアメタル膜BMの厚さは微小なので無視する。全深さtのトレンチ主部分に主配線領域MWが形成され、その外側に連続するトレンチの張り出し部に張り出し配線領域EXWが形成される。   FIG. 3B is a cross-sectional view showing a wiring structure based on this idea. A trench TR having an overhanging portion that extends outward in a stepped manner at the top is formed in the interlayer insulating film ID by two etchings. Let t be the total depth of the trench. Let L be the width of the overhang and h be the height. A barrier metal film BM is deposited by sputtering, for example, with a thickness of 20 nm and a copper seed layer is deposited with a thickness of, for example, 50 nm so as to cover the trench surface, and copper is deposited by plating to the depth of the trench. The unnecessary metal layer on the interlayer insulating film ID is removed by CMP. Hereinafter, since the thickness of the barrier metal film BM is very small, it is ignored. A main wiring region MW is formed in the trench main portion having the total depth t, and an overhanging wiring region EXW is formed in the overhanging portion of the trench continuous outside.

例として、主配線領域MWの配線厚さtを3300nmとする。張り出し配線領域EXWの配線高さhを主配線領域MWの厚さtの10%として、330nmとする。張り出し配線領域EXWの幅LをモデルM5では100nm、モデルM6では300nmとする。これらのモデルに対して、上述の応力拡大係数を算出した。   As an example, the wiring thickness t of the main wiring region MW is 3300 nm. The wiring height h of the overhang wiring area EXW is set to 330 nm with 10% of the thickness t of the main wiring area MW. The width L of the overhang wiring region EXW is 100 nm for the model M5 and 300 nm for the model M6. The stress intensity factors described above were calculated for these models.

図4Aは、張り出し配線領域EXWの幅Lを100nm、300nmとしたモデルM5,M6の応力拡大係数κiを幅Lに対して示すグラフである。図1Cに示した、幅L=0のモデルM1〜M4の応力拡大係数κiを併せて示す。モデルM4〜M6は、t=3300nmで、高さh=300nmの張り出し配線領域EXWの幅Lが、0,100,300(nm)の時の応力拡大係数κiを示す。幅Lの増加と共に応力拡大係数κiが減少している。t=3300nm、L=100nmのM5の応力拡大係数κiは、t=2400nm、L=0nmのM3の応力拡大係数κiより小さくなる。t=3300nm、L=300nmのM6の応力拡大係数κiは、t=1500nm、L=0nmのM2の応力拡大係数κiより小さくなる。同じ配線厚さt=3300nmでL=0(nm)のM4と比べた時、M6:L=300nmのκi減少量は、M5:L=100nmのκi減少量の3倍より大きく、張り出し配線領域EXWの幅Lは100nmより大きくすること、例えば150nm以上にすること、が好ましいであろうことを示している。   FIG. 4A is a graph showing the stress intensity factors κi of the models M5 and M6 with respect to the width L where the width L of the overhang wiring region EXW is 100 nm and 300 nm. The stress intensity factors κi of the models M1 to M4 with the width L = 0 shown in FIG. 1C are also shown. Models M4 to M6 show the stress intensity factor κi when t = 3300 nm and the width L of the overhang wiring region EXW having the height h = 300 nm is 0, 100, 300 (nm). As the width L increases, the stress intensity factor κi decreases. The stress intensity factor κi of M5 at t = 3300 nm and L = 100 nm is smaller than the stress intensity factor κi of M3 at t = 2400 nm and L = 0 nm. The stress intensity factor κi of M6 at t = 3300 nm and L = 300 nm is smaller than the stress intensity factor κi of M2 at t = 1500 nm and L = 0 nm. When compared with M4 with the same wiring thickness t = 3300 nm and L = 0 (nm), the amount of decrease in κi at M6: L = 300 nm is larger than three times the amount of decrease in κi at M5: L = 100 nm, It shows that it is preferable that the width L of EXW is larger than 100 nm, for example, 150 nm or more.

張り出し配線領域EXWの高さhを主配線領域の厚さtの20%、660nmとした時の応力拡大係数も算出した。   The stress intensity factor was also calculated when the height h of the overhang wiring area EXW was 20% of the thickness t of the main wiring area, ie 660 nm.

図4Bは、張り出し配線領域EXWの高さhを660nm、張り出し配線領域EXWの幅Lを100nm、300nmとしたモデルM7,M8の応力拡大係数κiを張り出し配線領域EXWの高さhが330nmのモデルM5,M6の応力拡大係数κiと併せて示すグラフである。張り出し配線領域EXWの高さhを増加すると、応力拡大係数κiは増大し、応力緩和効果が減少することを示している。張り出し配線領域EXWの高さhが330nmの場合は、幅Lを100nmから300nmに増大すると、応力拡大係数の減少が大きいが、高さhが660nmに増大した場合は、幅Lを100nmから300nmに増大しても得られる応力拡大係数の減少は小さくなっている。張り出し配線領域の高さをさらに高くすると、得られる効果はさらに小さくなることも予想される。張り出し配線領域EXWの高さhをさらに変化させた時の応力拡大係数の変化を調べた。   FIG. 4B is a model in which the stress intensity factor κi of the models M7 and M8 is set to 330 nm, where the height h of the extended wiring region EXW is 660 nm, and the width L of the extended wiring region EXW is 100 nm and 300 nm. It is a graph shown together with the stress intensity factor κi of M5 and M6. It is shown that when the height h of the overhang wiring region EXW is increased, the stress intensity factor κi increases and the stress relaxation effect decreases. When the height h of the overhang wiring region EXW is 330 nm, the stress intensity factor decreases greatly when the width L is increased from 100 nm to 300 nm. However, when the height h is increased to 660 nm, the width L is increased from 100 nm to 300 nm. However, the decrease in the stress intensity factor obtained by increasing the value is small. If the height of the overhang wiring region is further increased, the obtained effect is expected to be further reduced. The change in the stress intensity factor when the height h of the overhang wiring region EXW was further changed was examined.

図4Cは、張り出し配線領域EXWの幅Lを100nmとし、高さhを150nm(M9),330nm(M5),660nm(M7),900nm(M10)とした時の応力拡大係数の変化を示すグラフである。横軸は張り出し配線領域EXWの高さh(nm)を示し、縦軸は応力拡大係数を示す。モデルM5,M7の応力拡大係数を結ぶ直線を想定すると、高さhを増加したモデルM10の応力拡大係数は該直線(リニア近似)より高くなり、高さhを減少したモデルM9の応力拡大係数は該直線(リニア近似)より低くなる。高さhを大きくすると、歪緩和効果は小さくなる傾向を強め、高さhを小さくすると歪緩和効果は大きくなる傾向を強めるようである。   FIG. 4C is a graph showing changes in the stress intensity factor when the width L of the overhang wiring region EXW is 100 nm and the height h is 150 nm (M9), 330 nm (M5), 660 nm (M7), and 900 nm (M10). It is. The horizontal axis indicates the height h (nm) of the overhang wiring region EXW, and the vertical axis indicates the stress intensity factor. Assuming a straight line connecting the stress intensity factors of the models M5 and M7, the stress intensity factor of the model M10 having the increased height h is higher than the straight line (linear approximation), and the stress intensity factor of the model M9 having the decreased height h is reduced. Becomes lower than the straight line (linear approximation). When the height h is increased, the tendency of the strain relaxation effect to increase is strengthened, and when the height h is decreased, the tendency of the strain relaxation effect to increase is increased.

張り出し配線領域の高さhはある程度以下に抑えることが歪緩和のためには好ましいであろう。但し、張り出し配線領域の高さを小さくすると、配線としての機能は減少し、基板面積の利用効率の点からは好ましくない場合もあろう。   It may be preferable for strain relief to suppress the height h of the overhang wiring region to a certain level. However, if the height of the overhanging wiring region is reduced, the function as wiring is reduced, which may not be preferable from the viewpoint of utilization efficiency of the substrate area.

現実に銅配線上に剥離が生じるか否かは、算出した応力拡大係数に対向できる密着性が界面に備わっているかどうかに依存する。すなわち、現実的な限界値は、用いるプロセスや材料に依存する。非常に密着性の高いプロセスを用いた場合、銅配線の高さ2400nmでは、張り出し配線領域を設けなくても剥離現象を回避することができた。段差のない銅配線の高さ2400nmは、図1C,4Aに示すように、応力拡大係数κi=1.537E8Pa/μmに対応する。 Whether or not peeling actually occurs on the copper wiring depends on whether or not the interface has an adhesive property that can face the calculated stress intensity factor. That is, realistic limit values depend on the process and material used. When a process with very high adhesion was used, the peeling phenomenon could be avoided without providing an overhanging wiring region at a copper wiring height of 2400 nm. The height 2400 nm of the copper wiring without a step corresponds to the stress intensity factor κi = 1.537E8 Pa / μm 2 as shown in FIGS. 1C and 4A.

この値を、剥離現象の起こる臨界値の目安とすると、図4Aは、張り出し配線領域の幅Lを100nm以上とすることにより剥離現象を回避することが可能となることを示すと考えられる。幅Lを150nm以上とすれば、製造工程の偏差に対しても安定な歩留まりを期待できよう。厚さ600nmの配線は剥離を生じないこと、図4B,4Cは、張り出し配線領域の高さhを660nm以下とすれば、剥離現象を回避することが可能であることを示すと考えられる。   If this value is used as a guideline for the critical value at which the peeling phenomenon occurs, it is considered that FIG. 4A shows that the peeling phenomenon can be avoided by setting the width L of the overhang wiring region to 100 nm or more. If the width L is 150 nm or more, a stable yield can be expected even with respect to manufacturing process deviations. It is considered that the wiring having a thickness of 600 nm does not peel off, and FIGS. 4B and 4C show that the peeling phenomenon can be avoided if the height h of the overhanging wiring region is set to 660 nm or less.

以上の検討結果に基づく実施例を、以下説明する。
(実施例1)
図5Aは、実施例1による半導体装置の上層配線の構造を示す。ダマシン配線の側壁に1段構造の張り出し配線領域を設けている。複数のトランジスタを形成したシリコン基板、下層配線を含む下部構造LSの上に、下地絶縁膜LDとしてSiC膜が形成されている。下地絶縁膜LDの上に、SiO膜11、SiC膜12が積層され、層間絶縁膜を構成している。SiC膜12、SiO膜11をエッチングして配線パターンを収容するトレンチが形成されている。トレンチは、主トレンチの外側に張り出し部を有する。トレンチ内に、バリアメタル膜14、銅配線層15が埋め込まれて銅配線を構成している。銅配線は、厚さtが3300nmの主配線領域MW、その外側に連続して形成され、高さhが330nm、幅Lが300nmの張り出し配線領域EXWを有する。銅配線、層間絶縁膜を覆って、SiC膜16、SiO膜17、SiN膜18が積層されている。なお、作成サンプルにおいては、主配線領域の幅は10μm、配線長は100μmとした。
An embodiment based on the above examination results will be described below.
Example 1
FIG. 5A shows the structure of the upper layer wiring of the semiconductor device according to the first embodiment. A one-stage overhang wiring region is provided on the side wall of the damascene wiring. A SiC film is formed as a base insulating film LD on a silicon substrate on which a plurality of transistors are formed and a lower structure LS including lower layer wiring. An SiO 2 film 11 and an SiC film 12 are laminated on the base insulating film LD to constitute an interlayer insulating film. A trench for accommodating a wiring pattern is formed by etching the SiC film 12 and the SiO 2 film 11. The trench has an overhanging portion outside the main trench. A barrier metal film 14 and a copper wiring layer 15 are buried in the trench to constitute a copper wiring. The copper wiring has a main wiring region MW having a thickness t of 3300 nm and an extended wiring region EXW formed continuously outside the main wiring region MW and having a height h of 330 nm and a width L of 300 nm. A SiC film 16, SiO 2 film 17, and SiN film 18 are laminated so as to cover the copper wiring and the interlayer insulating film. In the prepared sample, the width of the main wiring region was 10 μm and the wiring length was 100 μm.

図5B−5Hは、図5Aに示す半導体装置の製造工程の例を示す。   5B-5H illustrate an example of a manufacturing process of the semiconductor device illustrated in FIG. 5A.

図5Bに示すように、下部構造LSの上に、下地絶縁膜LDとして厚さ50nmのSiC膜が形成されている。化学気相堆積(CVD)により、下地絶縁膜LDの上に、厚さ3200nmのSiO膜11、厚さ100nmのSiC膜12を成膜する。 As shown in FIG. 5B, a SiC film having a thickness of 50 nm is formed as a base insulating film LD on the lower structure LS. An SiO 2 film 11 having a thickness of 3200 nm and an SiC film 12 having a thickness of 100 nm are formed on the base insulating film LD by chemical vapor deposition (CVD).

図5Cに示すように、基板上に幅10.6μmの開口を有するレジストマスクRM1を形成し、SiC膜12の全厚さ100nmをドライエッチし、さらにSiO膜11を深さ230nmエッチング時間を制御したドライエッチングによりコントロールエッチする。形成されるトレンチの深さは330nmとなる。その後レジストマスクRM1は除去する。 As shown in FIG. 5C, a resist mask RM1 having an opening with a width of 10.6 μm is formed on the substrate, the SiC film 12 has a total thickness of 100 nm, dry-etched, and the SiO 2 film 11 has a depth of 230 nm. Control etch by controlled dry etching. The depth of the formed trench is 330 nm. Thereafter, the resist mask RM1 is removed.

図5Dに示すように、基板上に、レジストマスクRM1の開口より両側でそれぞれ300nm幅を狭くした、幅10μmの開口を有するレジストマスクRM2を形成する。レジストマスクRM2をエッチングマスクとし、SiO膜11の残り厚さをドライエッチする。その後レジストマスクRM2は除去する。深さ3300nm、幅10μmの中央部の両側にそれぞれ幅300nm、高さ330nmの張り出し部を有するトレンチが形成される。 As shown in FIG. 5D, a resist mask RM2 having an opening with a width of 10 μm and a width of 300 nm on both sides of the opening of the resist mask RM1 is formed on the substrate. Using the resist mask RM2 as an etching mask, the remaining thickness of the SiO 2 film 11 is dry-etched. Thereafter, the resist mask RM2 is removed. A trench having a protruding portion having a width of 300 nm and a height of 330 nm is formed on both sides of a central portion having a depth of 3300 nm and a width of 10 μm.

図5Eに示すように、スパッタリングでバリアメタル膜として平坦部上の厚さ約20nmのTa膜14を成膜し、その上にメッキシード層として平坦部上の厚さ約20nmのCu膜15Sを成膜する。スパッタリングは基板温度が室温で行なう。   As shown in FIG. 5E, a Ta film 14 having a thickness of about 20 nm on the flat portion is formed as a barrier metal film by sputtering, and a Cu film 15S having a thickness of about 20 nm on the flat portion is formed thereon as a plating seed layer. Form a film. Sputtering is performed at a substrate temperature of room temperature.

図5Fに示すように、Cu膜15Sの上にCu膜を電解メッキし、銅層15を得る。銅層15は、トレンチを完全に埋め込む厚さを有するように電解メッキする。100℃〜350℃の熱処理を行ない、Cu膜中のグレイン成長を実施する。   As shown in FIG. 5F, a Cu film is electrolytically plated on the Cu film 15S to obtain a copper layer 15. The copper layer 15 is electroplated to have a thickness that completely fills the trench. A heat treatment at 100 ° C. to 350 ° C. is performed to perform grain growth in the Cu film.

図5Gに示すように、化学機械研磨(CMP)により、SiC膜12表面より上の銅層15を除去する。主配線領域MWの外側に張り出し配線領域EXWを備えた銅配線が形成される。主配線領域MWと、その外側の張り出し配線領域EXWとはSiC膜12表面と面一の表面を有する。   As shown in FIG. 5G, the copper layer 15 above the surface of the SiC film 12 is removed by chemical mechanical polishing (CMP). A copper wiring having an overhanging wiring area EXW is formed outside the main wiring area MW. The main wiring region MW and the overhanging wiring region EXW outside thereof have a surface flush with the surface of the SiC film 12.

図5Hに示すように、Cu膜15、SiC膜12を覆って基板上に、絶縁性銅拡散防止膜として厚さ50nmのSiC膜16、上部絶縁膜として厚さ500nmのSiO膜17、パッシベーション膜として厚さ50nmのSiN膜18をCVDで成膜する。その後、必要に応じて、レジストマスクを用いたエッチングにより、銅配線の上の絶縁膜に開口を形成し、Al膜を成膜し、端子となるパッドを形成する。この際、400℃、30分の熱処理を加える。このようにして上部配線が形成される。 As shown in FIG. 5H, on the substrate covering the Cu film 15 and the SiC film 12, an SiC film 16 having a thickness of 50 nm as an insulating copper diffusion preventing film, an SiO 2 film 17 having a thickness of 500 nm as an upper insulating film, and passivation. A 50 nm thick SiN film 18 is formed as a film by CVD. Thereafter, if necessary, an opening is formed in the insulating film on the copper wiring, an Al film is formed by etching using a resist mask, and a pad serving as a terminal is formed. At this time, heat treatment is performed at 400 ° C. for 30 minutes. In this way, the upper wiring is formed.

本実施例にしたがって、本例サンプルを作成した。張り出し配線領域EXWのない比較例サンプルも作成した。比較例においては、張り出し配線領域を持たない点以外は本例サンプルと同等である。   According to this example, this example sample was prepared. A comparative example sample without an overhang wiring area EXW was also created. The comparative example is the same as the sample of this example except that it does not have an overhanging wiring region.

作成した配線の信頼性試験を行った。温度250℃、電流密度1MA/cm2で、エレクトロマイグレーション試験を行った。200時間の試験後、本例サンプル、比較例サンプルいずれにも故障は発生しなかった。しかし、比較例では抵抗が僅かに変化したものがあった。抵抗が変化したサンプルを故障解析したところ、Cu膜とその上のSiC膜の界面で剥がれが発生していることが判った。本例サンプルには、抵抗変化は全くなく、調べた限り、界面における剥がれもなかった。   The reliability test of the created wiring was performed. An electromigration test was performed at a temperature of 250 ° C. and a current density of 1 MA / cm 2. After the test for 200 hours, no failure occurred in either the sample of the present example or the sample of the comparative example. However, in the comparative example, there was one in which the resistance slightly changed. When the failure analysis was performed on the sample with the resistance changed, it was found that peeling occurred at the interface between the Cu film and the SiC film thereon. The sample of this example had no change in resistance, and as far as examined, there was no peeling at the interface.

なお、上記実施例では主絶縁膜のSiO膜をCVDで形成しているが、その他の気相方法、SOD(spin-on deposition)等の液相塗布法、等を用いてもよい。主絶縁膜としてSiO膜を用いたが、他の絶縁材料を用いることもできる。例えば、インダクタンスとしての性能を向上するため、SiOより誘電率の高いSiNやSiCNを用いてもよい。下層配線の絶縁膜と同じ材料、例えばSiOより誘電率の低いSiOC等を用いてもよい。バリアメタル膜としてTaを用いたが、TaN膜、Ta膜とTaN膜の積層などを用いてもよい。その他、種々の変更、置換が可能である。
(実施例2)
実施例1ではトレンチの段差部分をコントロールエッチによって作成した。エッチストッパ構造を用いれば、段差構造をより容易に、かつ安定性よく作成することができる。
In the above embodiment, the SiO 2 film as the main insulating film is formed by CVD, but other vapor phase methods, liquid phase coating methods such as SOD (spin-on deposition), etc. may be used. Although the SiO 2 film is used as the main insulating film, other insulating materials can be used. For example, SiN or SiCN having a higher dielectric constant than SiO 2 may be used in order to improve the performance as inductance. The same material as the insulating film of the lower wiring, for example, SiOC having a dielectric constant lower than that of SiO 2 may be used. Although Ta is used as the barrier metal film, a TaN film, a stacked layer of Ta film and TaN film, or the like may be used. In addition, various changes and substitutions are possible.
(Example 2)
In Example 1, the step portion of the trench was formed by control etching. If the etch stopper structure is used, the step structure can be formed more easily and stably.

図6Aは、実施例2による半導体装置の上層配線の構造を示す。実施例1同様、複数のトランジスタを形成したシリコン基板、下層配線を含む下部構造LSの上に、下地絶縁膜LDとしてSiC膜が形成されている。下地絶縁膜LDの上に、厚さ3000nmのSiO膜21、ハードマスクとして機能する厚さ330nmのSiN膜22が積層され、層間絶縁膜を構成している。SiN膜22、SiO膜21の界面で段差を形成したトレンチが形成されている。トレンチの張り出し部はSiN膜22をエッチングすることで形成され、SiN膜22の厚さと同じ高さh=330nmを有する。トレンチ内に、バリアメタル膜14、銅配線層15が埋め込まれて銅配線を構成している点は実施例1と同様である。銅配線は、厚さtが3.3μmの主配線領域MW、その外側に連続して形成され、高さhが330nm、幅Lが300nmの張り出し配線領域EXWを有する。張出し配線領域EXWの側面は、SiN膜22のみに接する。銅配線、SiN膜22を覆って、銅拡散防止機能を有する厚さ70nmのSiC膜で形成されたキャップ膜26、厚さ500nmのSiO膜27、厚さ50nmのSiN膜28が積層されている。実施例1同様、絶縁膜に開口を形成し、Al端子を形成する。 FIG. 6A shows the structure of the upper layer wiring of the semiconductor device according to the second embodiment. Similar to the first embodiment, a SiC film is formed as a base insulating film LD on a silicon substrate on which a plurality of transistors are formed and a lower structure LS including lower layer wiring. An SiO 2 film 21 having a thickness of 3000 nm and a SiN film 22 having a thickness of 330 nm functioning as a hard mask are laminated on the base insulating film LD to constitute an interlayer insulating film. A trench in which a step is formed at the interface between the SiN film 22 and the SiO 2 film 21 is formed. The protruding portion of the trench is formed by etching the SiN film 22 and has the same height h = 330 nm as the thickness of the SiN film 22. Similar to the first embodiment, the barrier metal film 14 and the copper wiring layer 15 are buried in the trench to form a copper wiring. The copper wiring has a main wiring region MW having a thickness t of 3.3 μm and an overhanging wiring region EXW which is continuously formed on the outside thereof and has a height h of 330 nm and a width L of 300 nm. The side surface of the extended wiring region EXW is in contact with only the SiN film 22. A cap film 26 formed of a SiC film having a thickness of 70 nm having a copper diffusion preventing function, a SiO 2 film 27 having a thickness of 500 nm, and a SiN film 28 having a thickness of 50 nm are laminated so as to cover the copper wiring and the SiN film 22. Yes. As in Example 1, an opening is formed in the insulating film, and an Al terminal is formed.

図6B−6Fは、図6Aに示す半導体装置の製造工程の例を示す。   6B-6F show an example of a manufacturing process of the semiconductor device shown in FIG. 6A.

図6Bに示すように、下部構造LSの上に、下地絶縁膜LDとして厚さ50nmのSiC膜が形成されている。下地絶縁膜LDの上に、化学気相堆積(CVD)により、厚さ3000nmのSiO膜21、厚さ330nmのSiN膜22を成膜する。SiO膜21、SiN膜22はエッチング特性が異なり、SiN膜のエッチングにおいて、SiO膜をエッチストッパとすることができる。 As shown in FIG. 6B, an SiC film having a thickness of 50 nm is formed as a base insulating film LD on the lower structure LS. On the base insulating film LD, a 3000 nm thick SiO 2 film 21 and a 330 nm thick SiN film 22 are formed by chemical vapor deposition (CVD). The SiO 2 film 21 and the SiN film 22 have different etching characteristics, and the SiO 2 film can be used as an etch stopper in etching the SiN film.

図6Cに示すように、基板上に幅10μmの開口を有するレジストマスクRM3を形成し、熱燐酸をエッチング液としたウェットエッチングで、SiN膜22の全厚さ330nmをエッチする。SiO膜21は、熱燐酸でエッチされず、エッチングを自動的に停止させる。SiN膜22は、ウェットエッチングで連続的にエッチされるので、滑らかな側面が得られる。その後レジストマスクRM3は除去する。 As shown in FIG. 6C, a resist mask RM3 having an opening with a width of 10 μm is formed on the substrate, and the entire thickness of 330 nm of the SiN film 22 is etched by wet etching using hot phosphoric acid as an etchant. The SiO 2 film 21 is not etched with hot phosphoric acid, and the etching is automatically stopped. Since the SiN film 22 is continuously etched by wet etching, a smooth side surface can be obtained. Thereafter, the resist mask RM3 is removed.

図6Dに示すように、エッチされたSiN膜22をハードマスクとして、SiO膜21をドライエッチする。レジストマスクは用いないが、エッチング自身は、図5Dのドライエッチングと同様である。 As shown in FIG. 6D, the SiO 2 film 21 is dry-etched using the etched SiN film 22 as a hard mask. Although a resist mask is not used, the etching itself is the same as the dry etching of FIG. 5D.

図6Eに示すように、基板上に、レジストマスクRM3の開口より両側でそれぞれ300nm幅を広くした、幅10.6μmの開口を有するレジストマスクRM4を形成する。開口内に、両側でそれぞれ幅300nmずつのSiN膜22が露出する。熱燐酸をエッチング液としたウェットエッチングで、SiN膜22をエッチする。SiC膜LD,SiO膜21は、熱燐酸でエッチされない。SiN膜22のみがエッチされ、トレンチの張出し部を形成する。実施例1のように張り出し部の中間深さに異なる層の界面が存在すると、界面に基づく凹凸が形成されやすい。本実施例では、単一層をウェットエッチングするので、側面に凹凸が形成されることなく、シャープな側面を形成することができる。その後レジストマスクRM4は除去する。深さ3.3μm、幅10μmのトレンチ中央部の両側にそれぞれ幅300nm、高さ330nmのトレンチ張り出し部を有する段差構造のトレンチが形成される。 As shown in FIG. 6E, a resist mask RM4 having an opening with a width of 10.6 μm, which is 300 nm wider on both sides than the opening of the resist mask RM3, is formed on the substrate. In the opening, the SiN film 22 having a width of 300 nm is exposed on both sides. The SiN film 22 is etched by wet etching using hot phosphoric acid as an etchant. The SiC film LD and the SiO 2 film 21 are not etched with hot phosphoric acid. Only the SiN film 22 is etched to form a trench overhang. If there is an interface between different layers at the intermediate depth of the overhanging portion as in Example 1, irregularities based on the interface are likely to be formed. In this embodiment, since the single layer is wet-etched, a sharp side surface can be formed without forming irregularities on the side surface. Thereafter, the resist mask RM4 is removed. A step-structured trench having a trench overhanging portion having a width of 300 nm and a height of 330 nm is formed on both sides of a trench central portion having a depth of 3.3 μm and a width of 10 μm.

図6Fに示すように、実施例1同様、スパッタリングでバリアメタル膜として平坦部上の厚さ約20nmのTa膜14を成膜する。この後、実施例1と同様の工程により、トレンチ内にCu層15を埋め込む。Cu層15を覆って、SiN層22上に、CVDにより、絶縁性銅拡散防止膜として機能する厚さ50nmのSiN膜26を堆積し、その上にCVDにより、厚さ500nmのSiO膜27、厚さ50nmのSiN膜28を堆積する。 As shown in FIG. 6F, as in Example 1, a Ta film 14 having a thickness of about 20 nm on the flat portion is formed as a barrier metal film by sputtering. Thereafter, the Cu layer 15 is embedded in the trench by the same process as in the first embodiment. A 50 nm thick SiN film 26 that functions as an insulating copper diffusion prevention film is deposited by CVD on the SiN layer 22 so as to cover the Cu layer 15, and a 500 nm thick SiO 2 film 27 is deposited thereon by CVD. Then, a 50 nm thick SiN film 28 is deposited.

本実施例にしたがって、本例サンプルを作成した。張り出し配線領域EXWのない比較例サンプルも作成した。作成サンプルにおいては主配線領域の幅は10μm、配線長は100μmとした。比較例においては、張り出し配線領域を持たない点以外は本例サンプルと同等である。   According to this example, this example sample was prepared. A comparative example sample without an overhang wiring area EXW was also created. In the prepared sample, the width of the main wiring region was 10 μm and the wiring length was 100 μm. The comparative example is the same as the sample of this example except that it does not have an overhanging wiring region.

作成したサンプルに温度サイクル試験を行なった。温度サイクルは、−80℃から125℃までの温度サイクルを繰り返した。比較例サンプルにおいては、およそ1%のサンプルでCu/SiN界面で剥がれが発生していることが判った。本例サンプルでは、Cu/SiN界面での剥がれが全く発生していなかった。   The prepared sample was subjected to a temperature cycle test. The temperature cycle was repeated from −80 ° C. to 125 ° C. In the comparative sample, it was found that peeling occurred at the Cu / SiN interface in approximately 1% of the samples. In this example sample, no peeling at the Cu / SiN interface occurred.

厚い配線側壁の段差構造は、1段に限らない。任意の段数の段差構造を用いることができる。以下、2段の段差構造の場合を例に取って説明する。
(実施例3)
図7Aは、実施例3による半導体装置の上層配線の構造を示す。ダマシン配線の側壁に2段構造の張り出し配線領域を設けている。実施例1同様、下部構造LSの上に、下地絶縁膜LDとしてSiC膜が形成され、下地絶縁膜LDの上に、厚さ3200nmのSiO膜11、厚さ100nmのSiC膜12が積層され、層間絶縁膜を構成している。SiC膜12、SiO膜11をエッチングして、側壁に2段の段差構造を有するトレンチが形成されている。トレンチは、主トレンチの外側に2段構造の張り出し部を有する。主トレンチに続く、張り出し部第1段は、幅L1=150nm、高さh1=330nmである。第1段に続く第2段も、幅L2=150nm、高さh2=330nmである。表面からの第1段の深さは660nmとなる。
The step structure of the thick wiring side wall is not limited to one step. A step structure having an arbitrary number of steps can be used. Hereinafter, the case of a two-step structure will be described as an example.
(Example 3)
FIG. 7A shows the structure of the upper layer wiring of the semiconductor device according to the third embodiment. A two-stage overhang wiring region is provided on the side wall of the damascene wiring. As in the first embodiment, a SiC film is formed as a base insulating film LD on the lower structure LS, and a SiO 2 film 11 having a thickness of 3200 nm and a SiC film 12 having a thickness of 100 nm are stacked on the base insulating film LD. Constitutes an interlayer insulating film. The SiC film 12 and the SiO 2 film 11 are etched to form a trench having a two-step structure on the side wall. The trench has a two-stage projecting portion outside the main trench. The first stage of the overhang portion following the main trench has a width L1 = 150 nm and a height h1 = 330 nm. The second stage following the first stage also has a width L2 = 150 nm and a height h2 = 330 nm. The depth of the first step from the surface is 660 nm.

トレンチ内に、バリアメタル膜14、銅配線層15が埋め込まれて銅配線を構成している。銅配線は、厚さtが3300nmの主配線領域MW、その外側に連続して形成され、各段の高さhが330nm、幅Lが150nmの2段構造の張り出し配線領域EXWを有する。銅配線、層間絶縁膜を覆って、銅拡散防止膜として機能する厚さ50nmのSiC膜16、厚さ500nmのSiO膜17、厚さ50nmのSiN膜18が積層されている。本実施例の構造は、実施例1の1段の段差構造を2段の段差構造で置き換えたものに相当する。 A barrier metal film 14 and a copper wiring layer 15 are buried in the trench to constitute a copper wiring. The copper wiring has a main wiring region MW having a thickness t of 3300 nm and an extended wiring region EXW having a two-stage structure which is continuously formed on the outer side and has a height h of 330 nm and a width L of 150 nm. A SiC film 16 having a thickness of 50 nm, a SiO 2 film 17 having a thickness of 500 nm, and a SiN film 18 having a thickness of 50 nm are stacked so as to cover the copper wiring and the interlayer insulating film. The structure of the present embodiment corresponds to a structure in which the one-step structure of the first embodiment is replaced with a two-step structure.

図7B−7Fは、図7Aに示す半導体装置の製造工程の例を示す。   7B-7F show an example of a manufacturing process of the semiconductor device shown in FIG. 7A.

図7Bに示すように、下部構造LSの上に、下地絶縁膜LDとして厚さ50nmのSiC膜が形成されている。化学気相堆積(CVD)により、下地絶縁膜LDの上に、厚さ3200nmのSiO膜21、厚さ100nmのSiC膜22を成膜する。 As shown in FIG. 7B, an SiC film having a thickness of 50 nm is formed as a base insulating film LD on the lower structure LS. An SiO 2 film 21 having a thickness of 3200 nm and an SiC film 22 having a thickness of 100 nm are formed on the base insulating film LD by chemical vapor deposition (CVD).

図7Cに示すように、基板上に幅10.6μmの開口を有するレジストマスクRM1を形成し、SiC膜12の全厚さ100nmをドライエッチし、さらにSiO膜11を深さ230nmエッチング時間を制御したドライエッチングによりコントロールエッチする。形成されるトレンチの深さは330nmとなる。その後レジストマスクRM1は除去する。ここまでの工程は、実施例1と同様である。 As shown in FIG. 7C, a resist mask RM1 having an opening with a width of 10.6 μm is formed on the substrate, the SiC film 12 is dry-etched to a total thickness of 100 nm, and the SiO 2 film 11 is etched to a depth of 230 nm. Control etch by controlled dry etching. The depth of the formed trench is 330 nm. Thereafter, the resist mask RM1 is removed. The steps up to here are the same as in the first embodiment.

図7Dに示すように、基板上に、レジストマスクRM1の開口より両側でそれぞれ150nm幅を狭くした、幅10.3μmの開口を有するレジストマスクRM5を形成する。レジストマスクRM5をエッチングマスクとし、SiO膜11を厚さ330nmコントロールエッチする。その後レジストマスクRM5は除去する。 As shown in FIG. 7D, a resist mask RM5 having an opening with a width of 10.3 μm, which is 150 nm narrower on both sides than the opening of the resist mask RM1, is formed on the substrate. Using the resist mask RM5 as an etching mask, the SiO 2 film 11 is control-etched with a thickness of 330 nm. Thereafter, the resist mask RM5 is removed.

図7Eに示すように、基板上に、レジストマスクRM1の開口より両側でそれぞれ300nm幅を狭くした、幅10μmの開口を有するレジストマスクRM2を形成する。レジストマスクRM2をエッチングマスクとし、SiO膜11の残り厚さをドライエッチする。その後レジストマスクRM2は除去する。 As shown in FIG. 7E, a resist mask RM2 having an opening with a width of 10 μm and a width of 300 nm on both sides of the opening of the resist mask RM1 is formed on the substrate. Using the resist mask RM2 as an etching mask, the remaining thickness of the SiO 2 film 11 is dry-etched. Thereafter, the resist mask RM2 is removed.

深さ3300nm、幅10μmのトレンチ中央部の両側にそれぞれ各段が幅150nm、高さ330nmの2段構造のトレンチ張り出し部を有する張り出し部付きトレンチが形成される。   A trench with a projecting portion having a two-stage trench projecting portion having a width of 150 nm and a height of 330 nm is formed on both sides of the trench central portion having a depth of 3300 nm and a width of 10 μm.

図7Fに示すように、スパッタリングでバリアメタル膜として平坦部上の厚さ約20nmのTa膜14を成膜し、その上にメッキシード層として平坦部上の厚さ約50nmのCu膜を成膜する。スパッタリングは基板温度が室温で行なう。Cuシード膜の上にCu膜を電解メッキし、銅層15を得る。銅層15は、トレンチを完全に埋め込む厚さを有するように電解メッキする。100℃〜350℃の熱処理を行ない、Cu膜中のグレイン成長を実施する。その後、実施例1同様の工程により、図7Aの構造を得る。   As shown in FIG. 7F, a Ta film 14 having a thickness of about 20 nm on the flat portion is formed as a barrier metal film by sputtering, and a Cu film having a thickness of about 50 nm on the flat portion is formed thereon as a plating seed layer. Film. Sputtering is performed at a substrate temperature of room temperature. A Cu film is electrolytically plated on the Cu seed film to obtain a copper layer 15. The copper layer 15 is electroplated to have a thickness that completely fills the trench. A heat treatment at 100 ° C. to 350 ° C. is performed to perform grain growth in the Cu film. Thereafter, the structure shown in FIG.

本実施例による本例サンプルと、張出し配線領域のない比較例サンプルとを作成した。作成サンプルにおいて、主配線領域の幅は10μm、配線長は100μmとした。本例サンプルと比較例サンプルにエレクトロマイグレーション試験を行なった。温度300℃で1.5MA/cmの電流を流した。実施例1のサンプルのエレクトロマイグレーション試験と比べると、温度、電流密度共に、より厳しい条件である。168時間の試験後に、どちらのサンプルにも故障は生じなかった。但し、比較例のサンプルでは10%のサンプルで抵抗が変化し、その配線を故障解析したところ、Cu/SiC界面で剥がれが発生していることが判った。本例サンプルでは、抵抗変化は全くなく、調べた限りCu/SiC界面での剥がれはなかった。 This example sample according to this example and a comparative example sample without an overhang wiring region were prepared. In the prepared sample, the width of the main wiring region was 10 μm and the wiring length was 100 μm. An electromigration test was performed on this sample and the comparative sample. A current of 1.5 MA / cm 2 was passed at a temperature of 300 ° C. Compared with the electromigration test of the sample of Example 1, both temperature and current density are more severe conditions. Neither sample failed after 168 hours of testing. However, in the sample of the comparative example, the resistance changed in 10% of the samples, and when the wiring was analyzed for failure, it was found that peeling occurred at the Cu / SiC interface. In the sample of this example, there was no change in resistance, and as far as investigated, there was no peeling at the Cu / SiC interface.

張出し配線領域のない、従来型の配線を形成した場合、配線が直角に曲がるコーナ部で、銅配線とその上の銅拡散防止膜との間に剥がれが見つかる確率が高かった。コーナ部では、配線が直角に曲がり、配線領域の側壁とその外側の層間絶縁膜との界面が直角に曲がっている。そのため、直線部より複雑な応力分布が発生する。これらの要因により、コーナ部で剥がれが生じ易いと考えられる。そこで、配線コーナ部に工夫を施した構造を検討した。
(実施例4)
図8Aは、実施例4による配線の平面パターンを示す平面図である。配線15は、X方向に沿う直進部とY方向に沿う直進部とが接続され、屈曲位置で方向が90度変わっている。配線15は、全厚さを有する主配線領域MWと、主配線領域MWに連続して、その外側に形成され、上面から中間深さまでの低減した厚さを有する張り出し配線領域EXWを有し、張り出し配線領域EXWの幅は、配線の屈曲部で配線の直進部より広くなっている。
When a conventional wiring without an overhang wiring region was formed, there was a high probability that peeling was found between the copper wiring and the copper diffusion prevention film on the corner where the wiring bent at a right angle. In the corner portion, the wiring is bent at a right angle, and the interface between the side wall of the wiring region and the outer interlayer insulating film is bent at a right angle. Therefore, a complicated stress distribution is generated from the straight portion. Due to these factors, peeling is likely to occur at the corner. Therefore, we examined a structure that devised the wiring corner.
Example 4
FIG. 8A is a plan view illustrating a planar pattern of wiring according to the fourth embodiment. The wiring 15 is connected to the straight portion along the X direction and the straight portion along the Y direction, and the direction is changed by 90 degrees at the bent position. The wiring 15 has a main wiring region MW having a total thickness and an extended wiring region EXW formed continuously outside the main wiring region MW and having a reduced thickness from the top surface to the intermediate depth. The width of the extended wiring area EXW is wider at the bent part of the wiring than at the straight line part of the wiring.

図8Bは、図8Aの切断線ABに沿う、配線直進部の断面構造を示す。図5Aに示した断面構造同様、主配線領域MWは厚さ3300nm、幅10μmを有し、張り出し配線領域EXWは厚さ330nm、幅LS300nmを有する。   FIG. 8B shows a cross-sectional structure of the straight wiring portion along the cutting line AB of FIG. 8A. Similar to the cross-sectional structure shown in FIG. 5A, the main wiring region MW has a thickness of 3300 nm and a width of 10 μm, and the overhanging wiring region EXW has a thickness of 330 nm and a width LS of 300 nm.

図8Cは、図8Aの切断線CDに沿う、配線屈曲部(90度)の断面構造を示す。主配線領域MWの特性は直進部と変わらない。張り出し配線領域EXWは、厚さは直進部と同じ330nmであり、幅LCが、X方向、Y方向共に600nmに広げられている。屈曲部での張り出し配線領域の幅LCは、直進部での張り出し配線領域の幅LSの2倍に増大している。屈曲部の張り出し配線領域の幅を増大することにより、屈曲部で剥がれやすい現象を抑制することができるであろう。   FIG. 8C shows a cross-sectional structure of a wiring bent portion (90 degrees) along the cutting line CD in FIG. 8A. The characteristic of the main wiring area MW is the same as that of the straight part. The overlaid wiring region EXW has the same thickness as the rectilinear portion of 330 nm, and the width LC is expanded to 600 nm in both the X and Y directions. The width LC of the overhang wiring region at the bent portion is increased to twice the width LS of the overhang wiring region at the straight portion. By increasing the width of the overhanging wiring region of the bent portion, it is possible to suppress the phenomenon that the bent portion easily peels off.

本実施例による例のサンプルと張り出し配線領域を有さない比較例サンプルとを作成し、温度サイクル試験を行った。配線形状は、共に、2つの直線部が角度90度で接続されるパターンである。温度サイクルは、−80℃から125℃までの温度サイクルを繰り返した。比較例サンプルにおいては、およそ1%のサンプルでCu/SiC界面で剥がれが発生していることが判った。   A sample of an example according to this example and a comparative sample without an overhang wiring region were prepared, and a temperature cycle test was performed. The wiring shape is a pattern in which two straight portions are connected at an angle of 90 degrees. The temperature cycle was repeated from −80 ° C. to 125 ° C. In the comparative sample, it was found that peeling occurred at the Cu / SiC interface in approximately 1% of the sample.

なお、本実施例では、マスク作成の便宜から、配線屈曲部での拡大した張り出し配線領域は矩形を基本形状としている。屈曲部の形状、拡大した張り出し配線領域の形状はこれらに制限されるものではない。   In the present embodiment, for the convenience of mask preparation, the extended overhanging wiring region at the wiring bending portion has a rectangular basic shape. The shape of the bent portion and the shape of the enlarged overhang wiring region are not limited to these.

図9Aは、屈曲部で拡大した張り出し配線領域EXWの形状を円状とした場合を示す。図9B,9Cは、配線がT形に接続され、異なる方向に沿う張り出し配線領域EXWの接続部の幅を円状、矩形状に拡大した構成を示す。図9D,9Eは、配線が交差し、異なる方向に沿う張り出し配線領域EXWの接続(交差)部の幅を円状、及び矩形状に拡大した構成を示す。   FIG. 9A shows a case where the shape of the extended wiring region EXW enlarged at the bent portion is circular. 9B and 9C show a configuration in which the wiring is connected in a T shape and the width of the connection portion of the overhang wiring region EXW along different directions is expanded into a circular shape and a rectangular shape. FIGS. 9D and 9E show a configuration in which the wiring intersects and the width of the connection (crossing) portion of the overhang wiring region EXW along different directions is expanded into a circular shape and a rectangular shape.

インダクタを形成する場合は、長い配線長を必要とする場合があり、所定面積にインダクタを収めるためにはループ状(ないしスパイラル)形状等も用いられる。   When an inductor is formed, a long wiring length may be required, and a loop shape (or a spiral shape) or the like is also used to fit the inductor in a predetermined area.

図10A,10Bはインダクタ配線の形状例を示す。   10A and 10B show examples of the shape of the inductor wiring.

図10Aにおいては、直線状の配線を90度で接続し、矩形状(四角形状)のループ状配線を形成した構成を示す。接続部における張り出し配線領域の幅が実施例4同様に矩形状に拡大されている。なお、配線を三角形状に配置する場合も、接続部に張り出し配線領域を設けることにより、剥がれ抑制効果が得られよう。多角形形状の配線を形成する場合に、接続部の張り出し配線領域の幅を拡大することは剥がれを抑制するのに有効であろう。   FIG. 10A shows a configuration in which linear wirings are connected at 90 degrees to form a rectangular (rectangular) loop wiring. Similar to the fourth embodiment, the width of the overhanging wiring region in the connection portion is enlarged in a rectangular shape. Even in the case where the wirings are arranged in a triangular shape, an effect of suppressing peeling may be obtained by providing an overhanging wiring region in the connection portion. When forming a polygonal wiring, increasing the width of the overhanging wiring region of the connecting portion will be effective in suppressing peeling.

図10Bは、直線状の配線を鈍角で接続し、八角形状のループ状配線を形成した構成を示す。接続部における張り出し配線領域の幅が円状に拡大されている。接続部の角度が鈍角になればなるほど直線に近くなり、剥がれが生じにくくなると期待される。   FIG. 10B shows a configuration in which straight wirings are connected at an obtuse angle to form an octagonal loop wiring. The width of the overhanging wiring region in the connection portion is enlarged in a circular shape. It is expected that as the angle of the connecting portion becomes obtuse, it becomes closer to a straight line and is less likely to peel off.

インダクタの高容量化は、配線の厚さを厚くするのみでなく、周辺の絶縁膜の誘電率を高くすることでも実施できる。例えば、酸化シリコンに代えより誘電率の高い窒化シリコン等を用いることが考えられる。   Increasing the capacity of the inductor can be achieved not only by increasing the thickness of the wiring, but also by increasing the dielectric constant of the surrounding insulating film. For example, it is conceivable to use silicon nitride having a higher dielectric constant instead of silicon oxide.

図11Aは、下部構造LSを覆う下地絶縁膜IDの上に、SiN膜31、SiO膜32、SiN等のハードマスク膜33を積層した層間絶縁膜構造を示す。実施例2同様、エッチング特性の異なる材料をエッチストッパとして用いることにより、異なる材料の界面で段差を構成し、実施例3同様、2段構成の張り出し配線構造を形成している。 FIG. 11A shows an interlayer insulating film structure in which a hard mask film 33 such as a SiN film 31, a SiO 2 film 32, or SiN is stacked on a base insulating film ID that covers the lower structure LS. Similar to the second embodiment, a material having different etching characteristics is used as an etch stopper, so that a step is formed at the interface between the different materials, and a two-stage overhang wiring structure is formed as in the third embodiment.

図11Bは、下部構造LSを覆う下地絶縁膜IDの上に、SiOとFePtとを同時スパッタすることにより、金属ナノドットを含む、比誘電率ε=10〜12という高誘電率絶縁膜41を形成している。高誘電率絶縁膜41の上にSiN,SiC等のハードマスク膜42を形成し、高誘電率絶縁膜41と共に層間絶縁膜を構成する。実施例2同様のエッチストッパ機能を得ることも可能である。 FIG. 11B shows that a high dielectric constant insulating film 41 having a relative dielectric constant ε = 10 to 12 including metal nanodots is formed by simultaneously sputtering SiO 2 and FePt on the base insulating film ID covering the lower structure LS. Forming. A hard mask film 42 such as SiN or SiC is formed on the high dielectric constant insulating film 41, and an interlayer insulating film is formed together with the high dielectric constant insulating film 41. It is also possible to obtain an etch stopper function similar to that of the second embodiment.

配線材料は、銅に限らず、Al,Al合金も用いられる。絶縁材料と比較した場合、Al等の金属も大きな熱膨張係数の差を有する。厚い配線を絶縁膜で囲む場合、熱膨張係数の差に基づく応力が印加され、剥がれの原因となりうる。主配線領域の外側に張り出し配線領域を設けることにより、熱膨張係数の差に基づく歪を緩和する効果が期待できる。
(実施例5)
図12Aは、Al配線の構造を示す。複数のトランジスタを形成したシリコン基板、下層配線を含む下部構造LSの上に、厚さ50nmのTiNバリアメタル膜57、厚さ3300nmのAl膜58、厚さ50nmのTiNバリアメタル膜の積層でAl配線が形成されている。Al配線の断面形状は、前述の実施例同様、矩形断面の主配線領域MWとその上部に連続して外側に張り出す張り出し配線領域EXWを有する。張り出し配線領域EXWは、例えば幅300nm。高さ330nmを有する。Al配線を囲むようにSiO等の絶縁膜51が形成されている。
The wiring material is not limited to copper, and Al and Al alloys are also used. When compared with insulating materials, metals such as Al also have a large difference in thermal expansion coefficient. When a thick wiring is surrounded by an insulating film, stress based on a difference in thermal expansion coefficient is applied, which may cause peeling. By providing an overhanging wiring area outside the main wiring area, an effect of alleviating strain based on the difference in thermal expansion coefficient can be expected.
(Example 5)
FIG. 12A shows the structure of the Al wiring. On the silicon substrate on which a plurality of transistors are formed and the lower structure LS including the lower layer wiring, a TiN barrier metal film 57 having a thickness of 50 nm, an Al film 58 having a thickness of 3300 nm, and a TiN barrier metal film having a thickness of 50 nm are stacked. Wiring is formed. The cross-sectional shape of the Al wiring has a main wiring region MW having a rectangular cross section and an overhanging wiring region EXW that continuously extends outward from the main wiring region MW in the same manner as the above-described embodiment. The overhang wiring region EXW has a width of 300 nm, for example. It has a height of 330 nm. An insulating film 51 such as SiO 2 is formed so as to surround the Al wiring.

図12B−12Gは、図12Aに示す半導体装置の製造工程の例を示す。   12B-12G illustrate an example of a manufacturing process of the semiconductor device illustrated in FIG. 12A.

図12Bに示すように、下部構造LSの上に、スパッタリングで厚さ50nmのTiN膜57、厚さ3μmのAl膜58−1を形成する。Al膜58−1の上に幅10μmの主配線領域の平面形状を有するレジストマスクRM6を形成する。レジストマスクRM6をエッチングマスクとして、Al膜58−1、TiN膜57を、ドライエッチング等によりパターニングする。その後、レジストマスクRM6は除去する。   As shown in FIG. 12B, a 50 nm thick TiN film 57 and a 3 μm thick Al film 58-1 are formed on the lower structure LS by sputtering. A resist mask RM6 having a planar shape of the main wiring region having a width of 10 μm is formed on the Al film 58-1. Using the resist mask RM6 as an etching mask, the Al film 58-1 and the TiN film 57 are patterned by dry etching or the like. Thereafter, the resist mask RM6 is removed.

図12Cに示すように、基板全面上に、プラズマCVD等によりSiO膜51−1を堆積し、パターニングされたAl膜58−1、TiN膜57を覆う。 As shown in FIG. 12C, an SiO 2 film 51-1 is deposited on the entire surface of the substrate by plasma CVD or the like, and the patterned Al film 58-1 and TiN film 57 are covered.

図12Dに示すように、化学機械研磨(CMP)によりSiO膜51−1を研磨して、Al膜58−1表面を露出すると共に、表面を平坦化する。 As shown in FIG. 12D, the SiO 2 film 51-1 is polished by chemical mechanical polishing (CMP) to expose the surface of the Al film 58-1 and planarize the surface.

図12Eに示すように、スパッタリングにより、基板上に、厚さ330nmのAl膜58−2、厚さ50nmのTiN膜59を堆積する。TiN膜59の上に幅10.6μmの張り出し配線領域の輪郭を有するレジストマスクRM7を形成する。レジストマスクRM7をエッチングマスクとして、TiN膜59、Al膜58−2をドライエッチング等によりパターニングする。その後、レジストマスクRM7は除去する。   As shown in FIG. 12E, an Al film 58-2 having a thickness of 330 nm and a TiN film 59 having a thickness of 50 nm are deposited on the substrate by sputtering. On the TiN film 59, a resist mask RM7 having a contour of an extended wiring region having a width of 10.6 μm is formed. Using the resist mask RM7 as an etching mask, the TiN film 59 and the Al film 58-2 are patterned by dry etching or the like. Thereafter, the resist mask RM7 is removed.

図12Fに示すように、上部で張り出し領域を有するAl配線が形成される。張り出し配線領域は、TiN膜59、Al膜58−2で形成される。主配線領域では、下部Al膜58−1、上部Al膜58−2により、Al膜58が形成され、その上下にTiN膜57,59が積層される。   As shown in FIG. 12F, an Al wiring having an overhang region at the top is formed. The overhang wiring region is formed of a TiN film 59 and an Al film 58-2. In the main wiring region, an Al film 58 is formed by the lower Al film 58-1 and the upper Al film 58-2, and TiN films 57 and 59 are laminated on the upper and lower sides thereof.

図12Gに示すように、パターニングしたTiN膜57、Al膜58−1を包み込むように、プラズマCVD等によりSiO膜51−2を堆積する。下部SiO膜51−1、上部SiO膜51−2により、配線を包み込むSiO膜51が形成される。 As shown in FIG. 12G, a SiO 2 film 51-2 is deposited by plasma CVD or the like so as to enclose the patterned TiN film 57 and Al film 58-1. The lower SiO 2 film 51-1 and the upper SiO 2 film 51-2 form the SiO 2 film 51 that wraps the wiring.

本実施例による例のサンプルを、張り出し配線領域を有さない比較例サンプルと共に作成し、温度サイクル試験を行った。   An example sample according to this example was prepared together with a comparative example sample having no overhang wiring region, and a temperature cycle test was performed.

図12Hは比較例のサンプルの構成を示す断面図である。   FIG. 12H is a cross-sectional view illustrating a configuration of a sample of a comparative example.

温度サイクルは、−80℃から125℃までの温度サイクルを繰り返した。比較例サンプルにおいては、およそ0.1%のサンプルにおいてAl側面で剥がれが発生していた。本例サンプルでは、上面やバリアメタルのない側面でも剥がれが全く発生していなかった。   The temperature cycle was repeated from −80 ° C. to 125 ° C. In the comparative sample, peeling occurred on the Al side surface in approximately 0.1% of the sample. In the sample of this example, no peeling occurred on the upper surface or the side surface without the barrier metal.

Al配線は、下地絶縁層の上面で絶縁層と並ぶ。これらの関係から、銅配線の上面がAl配線の底面に相当するとも考えられる。張り出し配線領域を主配線領域の上面外側に設ける代わりに、底面外側に設けることにより同様の効果が得られるとも考えられる。   The Al wiring is aligned with the insulating layer on the upper surface of the base insulating layer. From these relationships, it is considered that the upper surface of the copper wiring corresponds to the bottom surface of the Al wiring. Instead of providing the overhanging wiring area outside the upper surface of the main wiring area, it is considered that the same effect can be obtained by providing the overhanging wiring area outside the bottom surface.

図13は、Al配線の他の構造を示す。下地構造LSの上に、厚さ50nmのTiNバリアメタル層57、厚さ3.3μmのAl膜58、厚さ50nmのTiNバリアメタル膜の積層でAl配線が形成されている。Al配線の断面形状は矩形断面の主配線領域MWとその底部に連続して外側に張り出す張り出し配線領域EXWを有する。張り出し配線領域EXWは、例えば幅300nm。高さ330nmを有する。Al配線を囲むようにSiO等の絶縁膜52が形成されている。本構造の場合、TiN膜57、Al膜58、TiN膜59を連続的に成膜し、上部からコントロールエッチすることで主配線領域の形状を画定し、幅を拡げたレジストマスクを形成して張り出し配線領域の形状を画定することができる。成膜工程を分割する必要がなくなる。 FIG. 13 shows another structure of the Al wiring. On the base structure LS, an Al wiring is formed by stacking a TiN barrier metal layer 57 having a thickness of 50 nm, an Al film 58 having a thickness of 3.3 μm, and a TiN barrier metal film having a thickness of 50 nm. The cross-sectional shape of the Al wiring has a main wiring region MW having a rectangular cross section and an overhanging wiring region EXW that continuously extends to the bottom thereof. The overhang wiring region EXW has a width of 300 nm, for example. It has a height of 330 nm. An insulating film 52 such as SiO 2 is formed so as to surround the Al wiring. In the case of this structure, a TiN film 57, an Al film 58, and a TiN film 59 are continuously formed, and the shape of the main wiring region is defined by performing control etching from above, and a resist mask having an increased width is formed. The shape of the overhang wiring region can be defined. There is no need to divide the film forming process.

図14は、半導体集積回路装置の構成例を示す。Si基板101に素子分離領域102が形成され、多数の活性領域が画定される。活性領域内にはnチャネルMOSトランジスタ、pチャネルMOSトランジスタが形成されている。トランジスタを含む層をトランジスタ層TRと呼ぶ。トランジスタ層TRの上に多層層間絶縁膜が形成され、その中に多層配線が配置される。多層配線を下層配線WR1,中層配線WR2,上層配線WR3に分けると、上層配線ほど配線幅が広く、配線厚が厚くなり、配線ピッチが緩やかになる。下層配線、中層配線は銅配線で形成され、上層配線は銅配線とAl配線で形成される。上述の実施例による配線は主に上層配線に採用される。   FIG. 14 shows a configuration example of a semiconductor integrated circuit device. An element isolation region 102 is formed on the Si substrate 101, and a large number of active regions are defined. An n channel MOS transistor and a p channel MOS transistor are formed in the active region. A layer including the transistor is referred to as a transistor layer TR. A multilayer interlayer insulating film is formed on the transistor layer TR, and the multilayer wiring is disposed therein. When the multilayer wiring is divided into the lower layer wiring WR1, the middle layer wiring WR2, and the upper layer wiring WR3, the upper layer wiring has a wider wiring width, a thicker wiring thickness, and a lower wiring pitch. Lower layer wiring and middle layer wiring are formed by copper wiring, and upper layer wiring is formed by copper wiring and Al wiring. The wiring according to the above-described embodiment is mainly used for the upper layer wiring.

以上、実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、置換、改良、組み合わせ等が可能なことは当業者に自明であろう。  As mentioned above, although this invention was demonstrated along the Example, this invention is not restrict | limited to these. It will be apparent to those skilled in the art that various modifications, substitutions, improvements, combinations, and the like can be made.

以下、本発明の特徴を付記する。   The features of the present invention will be described below.

(付記1)
半導体基板と、
前記半導体基板上方に形成された絶縁膜と、
前記絶縁膜中に形成された第1の厚さを有する主配線領域と、
前記主配線領域の側壁から1つ以上の段差を形成して外側に張り出し、前記第1の厚さより薄い第2の厚さを有する張り出し配線領域と、
を有する半導体装置。
(Appendix 1)
A semiconductor substrate;
An insulating film formed above the semiconductor substrate;
A main wiring region having a first thickness formed in the insulating film;
Forming one or more steps from the side wall of the main wiring region and projecting outward, the projecting wiring region having a second thickness smaller than the first thickness;
A semiconductor device.

(付記2)
前記張り出し配線領域は、前記主配線領域と面一の上面を有する付記1記載の半導体装置。
(Appendix 2)
The semiconductor device according to claim 1, wherein the overhang wiring region has an upper surface flush with the main wiring region.

(付記3)
前記絶縁膜と前記主配線領域の間にバリアメタル膜を有する付記1または2記載の半導体装置。
(Appendix 3)
The semiconductor device according to appendix 1 or 2, wherein a barrier metal film is provided between the insulating film and the main wiring region.

(付記4)
前記絶縁膜と前記張り出し配線領域の間にバリアメタル膜を有する付記1〜3の何れか1項記載の半導体装置。
(Appendix 4)
4. The semiconductor device according to any one of appendices 1 to 3, further comprising a barrier metal film between the insulating film and the extended wiring region.

(付記5)
前記主配線領域と前記張り出し配線領域上に形成された絶縁キャップ層をさらに有する付記1〜4のいずれか1項記載の半導体装置。
(Appendix 5)
The semiconductor device according to any one of appendices 1 to 4, further comprising an insulating cap layer formed on the main wiring region and the overhanging wiring region.

(付記6)
前記主配線領域と前記張り出し配線領域は、銅を含む材料からなる付記1〜5のいずれか1項記載の半導体装置。
(Appendix 6)
The semiconductor device according to any one of appendices 1 to 5, wherein the main wiring region and the overhanging wiring region are made of a material containing copper.

(付記7)
前記第1の厚さは、600nm以上である付記1〜6のいずれか1項記載の半導体装置。
(Appendix 7)
The semiconductor device according to claim 1, wherein the first thickness is 600 nm or more.

(付記8)
前記張り出し配線領域の第2の厚さが、660nm以下である付記1〜7のいずれか1項記載の半導体装置。
(Appendix 8)
The semiconductor device according to any one of appendices 1 to 7, wherein the second wiring region has a second thickness of 660 nm or less.

(付記9)
前記張り出し配線領域の張り出し量が、150nm以上である付記1〜8のいずれか1項記載の半導体装置。
(Appendix 9)
9. The semiconductor device according to any one of appendices 1 to 8, wherein a protruding amount of the protruding wiring region is 150 nm or more.

(付記10)
前記主配線領域が複数の直線部分を接続位置で接続した平面形状を有し、前記張り出し配線領域の張り出し量が前記接続位置周辺でその他の位置より大きい付記1〜9の何れか1項記載の半導体装置。
(Appendix 10)
The main wiring region has a planar shape in which a plurality of linear portions are connected at a connection position, and the amount of the extension of the extension wiring region is larger than the other positions around the connection position. Semiconductor device.

(付記11)
前記接続位置周辺の前記張り出し配線領域が、角型または円弧型の平面形状を有する付記10記載の半導体装置。
(Appendix 11)
11. The semiconductor device according to appendix 10, wherein the overhanging wiring region around the connection position has a square or arc-shaped planar shape.

(付記12)
前記主配線領域と前記張り出し配線領域が、全体としておおむね四角形状ないし八角形状のインダクタを構成する付記1〜11のいずれか1項記載の半導体装置。
(Appendix 12)
12. The semiconductor device according to any one of appendices 1 to 11, wherein the main wiring region and the overhanging wiring region constitute a generally rectangular or octagonal inductor as a whole.

(付記13)
前記絶縁膜が、金属微粒子を含む付記12記載の半導体装置。
(Appendix 13)
The semiconductor device according to appendix 12, wherein the insulating film includes metal fine particles.

(付記14)
前記半導体基板上方の絶縁膜中に半導体基板表面とほぼ平行に延在し、異なるレベルの配線またはパッドとの接続領域を含む平面形状を有し、第1の厚さを有する主配線領域と、前記主配線領域の側壁から1つ以上の段差を形成して外側に張り出し、前記第1の厚さより薄い第2の厚さを有する張り出し配線領域とを形成する、
半導体装置の製造方法。
(Appendix 14)
A main wiring region having a first thickness and extending in the insulating film above the semiconductor substrate substantially parallel to the surface of the semiconductor substrate, having a planar shape including connection regions with wirings or pads of different levels; Forming one or more steps from the side wall of the main wiring region and projecting outward to form a projecting wiring region having a second thickness smaller than the first thickness;
A method for manufacturing a semiconductor device.

(付記15)
前記主配線領域と前記張り出し配線領域とを形成する工程が、層間絶縁膜を形成し、層間絶縁膜に上部で階段的に配線幅が拡がる配線用トレンチを形成し、配線用トレンチ表面にバリアメタル層を形成し、バリアメタル層の上に銅を含む材料からなる配線層を形成し、前記層間絶縁膜上の不要金属層を除去して前記トレンチ内に前記主配線領域と前記張り出し配線領域とを残す工程を含み、
前記主配線領域、前記張り出し配線領域、前記層間絶縁膜の上に銅拡散防止機能を有する絶縁性キャップ層を形成する工程をさらに含む付記14記載の半導体装置の製造方法。
(Appendix 15)
The step of forming the main wiring region and the overhanging wiring region forms an interlayer insulating film, forms a wiring trench whose wiring width is increased stepwise on the interlayer insulating film, and forms a barrier metal on the surface of the wiring trench. Forming a layer, forming a wiring layer made of a material containing copper on the barrier metal layer, removing an unnecessary metal layer on the interlayer insulating film, and forming the main wiring region and the overhanging wiring region in the trench Including the process of leaving
15. The method of manufacturing a semiconductor device according to appendix 14, further comprising a step of forming an insulating cap layer having a copper diffusion preventing function on the main wiring region, the overhanging wiring region, and the interlayer insulating film.

(付記16)
前記主配線領域と前記張り出し配線領域とを形成する工程が、下層層間絶縁膜上に下部配線パターンを形成し、前記下部配線パターンを覆って下部絶縁膜を形成し、前記下部絶縁膜を上方から除去して前記下部配線パターンを露出し、前記下部配線パターン上に配線幅が下部配線パターンより広い上部配線パターンを形成し、上部配線パターンを覆って上部絶縁膜を形成する工程を含む、
付記14記載の半導体装置の製造方法。
(Appendix 16)
The step of forming the main wiring region and the overhanging wiring region includes forming a lower wiring pattern on a lower interlayer insulating film, covering the lower wiring pattern, forming a lower insulating film, and removing the lower insulating film from above. Removing and exposing the lower wiring pattern, forming an upper wiring pattern having a wiring width wider than the lower wiring pattern on the lower wiring pattern, and forming an upper insulating film covering the upper wiring pattern,
15. A method for manufacturing a semiconductor device according to appendix 14.

Claims (11)

半導体基板と、
前記半導体基板上方に形成された第1絶縁キャップ層と、
前記第1絶縁キャップ層上方に形成され、ビア孔と前記ビア孔上のトレンチとを含み、前記トレンチは前記ビア孔上方で段差形状の側壁を有する層間絶縁膜と、
前記ビア孔内に形成されたビア導電体と、
前記トレンチ内に形成された配線であって、前記ビア導電体とは断面形状が異なる配線と、
前記層間絶縁膜上方に形成された第2絶縁キャップ層と、
を含み、
ここで、前記ビア上方の前記配線は、前記ビア上方に設けられ、660nmを越える第1の厚さを有する主部分と、前記主部分に亘って設けられ、前記第1の厚さより薄い第2の厚さを持ち、前記主部分の側部から外側に150nm以上張り出す、張り出し部分と、を含み、
前記層間絶縁膜の材料は、前記第1絶縁キャップ層の材料及び前記第2絶縁キャップ層の材料とは異なる、半導体装置。
A semiconductor substrate;
A first insulating cap layer formed above the semiconductor substrate;
An interlayer insulating film formed above the first insulating cap layer and including a via hole and a trench on the via hole, the trench having a step-shaped side wall above the via hole;
Via conductors formed in the via holes;
A wiring formed in the trench, the wiring having a different cross-sectional shape from the via conductor;
A second insulating cap layer formed above the interlayer insulating film;
Including
Here, the wiring above the via is provided above the via, and has a main portion having a first thickness exceeding 660 nm, and a second portion that is provided across the main portion and is thinner than the first thickness. And a projecting portion that projects out from the side portion of the main portion to the outside by 150 nm or more , and
The material of the interlayer insulating film is a semiconductor device different from the material of the first insulating cap layer and the material of the second insulating cap layer.
前記張り出し部分は、前記主部分の両側に形成されている請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the protruding portion is formed on both sides of the main portion. 前記層間絶縁膜と前記配線の間に形成されたバリアメタル膜をさらに有する請求項1に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a barrier metal film formed between the interlayer insulating film and the wiring. 前記配線は、銅を含む請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the wiring contains copper. 前記第2の厚さは、660nm以下である請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the second thickness is 660 nm or less. 前記配線は、インダクタを構成する請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the wiring forms an inductor. 前記層間絶縁膜は、第1絶縁膜と第2絶縁膜とを含み、前記第1絶縁膜は前記主部分の側面に接し、前記第2絶縁膜は前記張り出し部分の側面に接する請求項1に記載の半導体装置。   The interlayer insulating film includes a first insulating film and a second insulating film, wherein the first insulating film is in contact with a side surface of the main portion, and the second insulating film is in contact with a side surface of the projecting portion. The semiconductor device described. 前記第1絶縁膜と前記第2絶縁膜のエッチング特性は異なる、請求項に記載の半導体装置。 The semiconductor device according to claim 7 , wherein the first insulating film and the second insulating film have different etching characteristics. 断面視における前記張り出し部分は、段差形状を有し、第1、第2のサブ部を有し、第1のサブ部は第3の厚さを有し、第2のサブ部は第4の厚さを有し、第3及び第4の厚さの各々は第1の厚さより薄く、第1のサブ部は前記主部の側部から外側に張り出し、前記第2のサブ部は前記第1のサブ部の側部から外側に張り出す、請求項1に記載の半導体装置。   The protruding portion in cross-sectional view has a step shape, has first and second sub-portions, the first sub-portion has a third thickness, and the second sub-portion has a fourth thickness. Each of the third and fourth thicknesses is thinner than the first thickness, the first sub-portion projects outward from the side of the main portion, and the second sub-portion is The semiconductor device according to claim 1, wherein the semiconductor device projects outward from a side portion of one sub-portion. 半導体基板と、
前記半導体基板上方に形成された第1絶縁キャップ層と、
前記第1絶縁キャップ層上方に形成され、ビア孔と前記ビア孔上のトレンチとを含み、前記トレンチは前記ビア孔上方で段差形状の側壁を有する層間絶縁膜と、
前記ビア孔内に形成されたビア導電体と、
前記トレンチ内に形成された配線であって、前記ビア導電体とは断面形状が異なる配線と、
前記層間絶縁膜上方に形成された第2絶縁キャップ層と、
を含み、
ここで、前記ビア上方の前記配線は、前記ビア上方に設けられ、第1の厚さを有する主部分と、前記主部分に亘って設けられ、前記第1の厚さより薄い第2の厚さを持ち、前記主部分の側部から外側に張り出す、張り出し部分と、を含み、
前記層間絶縁膜の材料は、前記第1絶縁キャップ層の材料及び前記第2絶縁キャップ層の材料とは異なり、
前記配線は、複数の直線部と前記直線部を接続する少なくとも1つのコーナー部とを有し、前記コーナー部において張り出し部分が対応する主部分から張り出す量は、前記直線部において張り出し部分が対応する主部分から張り出す量より大きい半導体装置。
A semiconductor substrate;
A first insulating cap layer formed above the semiconductor substrate;
An interlayer insulating film formed above the first insulating cap layer and including a via hole and a trench on the via hole, the trench having a step-shaped side wall above the via hole;
Via conductors formed in the via holes;
A wiring formed in the trench, the wiring having a different cross-sectional shape from the via conductor;
A second insulating cap layer formed above the interlayer insulating film;
Including
Here, the wiring above the via is provided above the via and has a first portion having a first thickness, and a second thickness that is provided across the main portion and is thinner than the first thickness. And a projecting portion that projects outward from the side of the main portion, and
The material of the interlayer insulating film is different from the material of the first insulating cap layer and the material of the second insulating cap layer,
The wiring has a plurality of linear portions and at least one corner portion connecting the linear portions, and the amount of the protruding portion corresponding to the protruding portion in the corner portion corresponds to the protruding portion in the linear portion. A semiconductor device larger than the amount protruding from the main part.
前記コーナー部に含まれる前記張り出し部分の平面形状は、角型または円弧型を有する請求項10に記載の半導体装置。
The semiconductor device according to claim 10 , wherein a planar shape of the projecting portion included in the corner portion has a square shape or an arc shape.
JP2014132143A 2014-06-27 2014-06-27 Semiconductor device Expired - Fee Related JP5822000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132143A JP5822000B2 (en) 2014-06-27 2014-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132143A JP5822000B2 (en) 2014-06-27 2014-06-27 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008329258A Division JP2010153543A (en) 2008-12-25 2008-12-25 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014170976A JP2014170976A (en) 2014-09-18
JP5822000B2 true JP5822000B2 (en) 2015-11-24

Family

ID=51693085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132143A Expired - Fee Related JP5822000B2 (en) 2014-06-27 2014-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5822000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174615B (en) * 2015-09-29 2023-02-17 大日本印刷株式会社 Wiring structure manufacturing method, pattern structure forming method, and imprint mold
KR102550454B1 (en) * 2016-08-16 2023-06-30 인텔 코포레이션 Rounded metal trace edges for stress reduction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140645A (en) * 1987-11-26 1989-06-01 Nec Corp Manufacture of semiconductor integrated circuit device
JPH0382031A (en) * 1989-08-24 1991-04-08 Mitsubishi Electric Corp Semiconductor integrated circuit and manufacture thereof
JPH05182966A (en) * 1991-12-27 1993-07-23 Sony Corp Multilayer-interconnection formation method
JP2809200B2 (en) * 1996-06-03 1998-10-08 日本電気株式会社 Method for manufacturing semiconductor device
JP3164025B2 (en) * 1997-08-04 2001-05-08 日本電気株式会社 Semiconductor integrated circuit device and method of manufacturing the same
JP3199012B2 (en) * 1998-01-26 2001-08-13 日本電気株式会社 Evaluation method of semiconductor device
JP2001015508A (en) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp Semiconductor device and its manufacture
JP4979154B2 (en) * 2000-06-07 2012-07-18 ルネサスエレクトロニクス株式会社 Semiconductor device
JP3536104B2 (en) * 2002-04-26 2004-06-07 沖電気工業株式会社 Manufacturing method of semiconductor device
JP2004172337A (en) * 2002-11-20 2004-06-17 Sony Corp Semiconductor device and its manufacturing method
JP4545617B2 (en) * 2004-03-12 2010-09-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2007299850A (en) * 2006-04-28 2007-11-15 Seiko Epson Corp Semiconductor device, method for manufacturing the same, electronic device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2014170976A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP2020038982A (en) Wiring structure
JP2006032864A (en) Multilayer wiring structure, semiconductor device having the same, and manufacturing method thereof
JP2010153543A (en) Semiconductor device and method of manufacturing the same
CN1332435C (en) Solid through hole structure and method
JP2006344965A (en) Wiring structure, method for forming the same, and dual damascene structure
JP2009026989A (en) Semiconductor device, manufacturing method of the semiconductor device
US7285489B2 (en) Dual damascene process for forming a multi-layer low-k dielectric interconnect
JP5822000B2 (en) Semiconductor device
US7291557B2 (en) Method for forming an interconnection structure for ic metallization
JP2004221498A (en) Semiconductor device and method for manufacturing the same
JP2008172051A (en) Semiconductor device and its manufacturing method
KR100650907B1 (en) Copper metal inductor and method for fabricating the same
JP2004040109A (en) Method of forming both high and low dielectric constant materials on the same dielectric region and application method of these material to mixed mode circuit
US7498677B2 (en) Semiconductor device
CN210984722U (en) Semiconductor structure
KR100731075B1 (en) Semiconductor device and method for fabricating the same
JP2009016619A (en) Semiconductor device and manufacturing method thereof
JP2000306998A (en) Semiconductor device and its manufacture
KR20080001905A (en) Method of forming a metal wire in a semiconductor device
CN113035772A (en) Semiconductor structure and preparation method thereof
KR101095998B1 (en) Method for forming semiconductor device
TWI553803B (en) Semiconductor structure having contact structures with different aspect ratios and manufacturing method of the semiconductor structure
US8278758B1 (en) Multilevel reservoirs for integrated circuit interconnects
US6709975B2 (en) Method of forming inter-metal dielectric
JP2008041783A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5822000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees