JP5770876B1 - MMIC integrated module - Google Patents

MMIC integrated module Download PDF

Info

Publication number
JP5770876B1
JP5770876B1 JP2014065090A JP2014065090A JP5770876B1 JP 5770876 B1 JP5770876 B1 JP 5770876B1 JP 2014065090 A JP2014065090 A JP 2014065090A JP 2014065090 A JP2014065090 A JP 2014065090A JP 5770876 B1 JP5770876 B1 JP 5770876B1
Authority
JP
Japan
Prior art keywords
mmic
antenna
integrated module
cavity
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014065090A
Other languages
Japanese (ja)
Other versions
JP2015188174A (en
Inventor
ホジン ソン
ホジン ソン
卓郎 田島
卓郎 田島
信 矢板
信 矢板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014065090A priority Critical patent/JP5770876B1/en
Application granted granted Critical
Publication of JP5770876B1 publication Critical patent/JP5770876B1/en
Publication of JP2015188174A publication Critical patent/JP2015188174A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

【課題】電波の放射効率を改善すること。【解決手段】MMICチップ2のアンテナ10と対向するように小キャビティ7’の底面に金属性の反射板12を形成し、その反射板12を囲むように複数のビア8を形成し、更にアンテナ10を囲むように複数の接合用ボール9を配置する。【選択図】図1[PROBLEMS] To improve radio wave radiation efficiency. A metallic reflector 12 is formed on the bottom surface of a small cavity 7 'so as to face the antenna 10 of the MMIC chip 2, and a plurality of vias 8 are formed so as to surround the reflector 12, and further the antenna. A plurality of bonding balls 9 are arranged so as to surround 10. [Selection] Figure 1

Description

本発明は、ミリ波帯又はテラヘルツ波帯の無線通信に用いるMMIC(monolithic microwave integrated circuit:モノシリックマイクロ波集積回路)を実装したMMIC集積モジュールの技術に関する。   The present invention relates to a technology of an MMIC integrated module on which an MMIC (monolithic microwave integrated circuit) used for millimeter wave band or terahertz wave wireless communication is mounted.

旧来より、ミリ波又はテラヘルツ波の高周波RF(radio frequency)信号を扱うICパッケージが開発されている。このICパッケージは電磁波を入力するための導波管ポートを備えた金属体であり、金属表面には酸化防止の金メッキが形成されている。また、導波管フランジも形成されており、アライメント用のピンや固定ボルト等を必要とするため、サイズが大きく高コストとなってしまう。   Traditionally, IC packages that handle high-frequency RF (radio frequency) signals of millimeter waves or terahertz waves have been developed. This IC package is a metal body provided with a waveguide port for inputting electromagnetic waves, and an anti-oxidation gold plating is formed on the metal surface. In addition, a waveguide flange is also formed, which requires alignment pins, fixing bolts, and the like, resulting in a large size and high cost.

そこで近年では、製造上の高コスト化を抑制するため、誘電性の基板を積層させ、その積層過程において各基板にビアを形成したり基板表面に金属線を配線したりすることにより、旧来よりも簡易にICパッケージを含むMMIC集積モジュールを生成する手法が提案されている(非特許文献1)。   Therefore, in recent years, in order to suppress high manufacturing costs, dielectric substrates are laminated, and vias are formed in each substrate in the lamination process, or metal wires are wired on the substrate surface, and so on. In addition, a method for easily generating an MMIC integrated module including an IC package has been proposed (Non-Patent Document 1).

この非特許文献1に記載されたFig.1を図7に示す。このMMIC集積モジュール100は、複数の誘電性基板1’を積層し、積層させた誘電性基板群の一部でキャビティ7を形成し、そのキャビティ7の上壁面の表面に平面型のアンテナ10を配置することにより、形成されている。   Fig. 1 described in this Non-Patent Document 1. 1 is shown in FIG. In this MMIC integrated module 100, a plurality of dielectric substrates 1 ′ are laminated, a cavity 7 is formed by a part of the laminated dielectric substrate group, and a planar antenna 10 is formed on the surface of the upper wall surface of the cavity 7. It is formed by arranging.

また、誘電性基板1’の表面には、MMIC集積モジュール100の外部からキャビティ7内のアンテナ10へ信号を伝達するためのアンテナフィード線21やアンテナグランド線22が配設され、RFIC23に低周波信号を供給するための信号線24やRFIC23用のグランド線25も更に配設されている。RFIC23は、誘電性基板群の外部裏表面に配置され、信号線24を介して低周波信号を受信し、その低周波信号を用いて高周波RF信号を生成して、アンテナフィード線21を介してアンテナ10から出力する。   On the surface of the dielectric substrate 1 ′, an antenna feed line 21 and an antenna ground line 22 for transmitting a signal from the outside of the MMIC integrated module 100 to the antenna 10 in the cavity 7 are disposed, and the RFIC 23 has a low frequency. A signal line 24 for supplying signals and a ground line 25 for the RFIC 23 are further provided. The RFIC 23 is disposed on the outer back surface of the dielectric substrate group, receives a low frequency signal via the signal line 24, generates a high frequency RF signal using the low frequency signal, and passes the antenna feed line 21. Output from the antenna 10.

このようなMMIC集積モジュール100において、RFIC23は、ワイヤボンディング又はフリップチップボンディングにより誘電性基板群の外部裏表面にマウント実装されている。かかる構成より、RFIC23からの高周波RF信号は図示しないボンディングやワイヤを介してアンテナ10に到達するため、高周波RF信号の信号損失が大きくなってしまう。その結果、高周波RF信号の送信側と受信側のそれぞれにおいて、信号パワーやノイズフィギュア等の特性劣化が生じることになる。   In such an MMIC integrated module 100, the RFIC 23 is mounted on the outer back surface of the dielectric substrate group by wire bonding or flip chip bonding. With this configuration, the high-frequency RF signal from the RFIC 23 reaches the antenna 10 through bonding or wires (not shown), so that the signal loss of the high-frequency RF signal increases. As a result, characteristics such as signal power and noise figure are deteriorated on the transmission side and reception side of the high-frequency RF signal.

そのため、RFICの上にアンテナを一体的に形成する手法も提案されている。図8は、2つ目の従来のMMIC集積モジュール100の構成を示す図である。このMMIC集積モジュールは、金属筐体31の内部に形成されたキャビティ7の底面にシリコン基板32を埋め込み、そのシリコン基板32のキャビティ7側の表面にRFICを有するMMICチップ2と回路の実装基板33を配置し、そのMMICチップ2の表面にアンテナ10を形成している。また、シリコン基板32の他方の表面に半球状のシリコンレンズ3’’をダイボンディング接合し、そのシリコンレンズ3’’の球部の一部を金属筐体31から外部へ突出するように配置している。   Therefore, a method of integrally forming an antenna on the RFIC has been proposed. FIG. 8 is a diagram showing a configuration of a second conventional MMIC integrated module 100. In this MMIC integrated module, a silicon substrate 32 is embedded in the bottom surface of a cavity 7 formed inside a metal housing 31, and the MMIC chip 2 having an RFIC on the surface of the silicon substrate 32 on the cavity 7 side and a circuit mounting substrate 33. And the antenna 10 is formed on the surface of the MMIC chip 2. A hemispherical silicon lens 3 ″ is die-bonded to the other surface of the silicon substrate 32, and a part of the spherical portion of the silicon lens 3 ″ is disposed so as to protrude from the metal housing 31 to the outside. ing.

かかる構成より、MMICチップ2の上にアンテナ10が形成されているため、高周波RF信号の信号損失を抑制することができる。また、MMICチップ2に対して、そのMMICチップ2の化合物半導体材料と誘電率が近いシリコンからなるシリコン基板32とシリコンレンズ3’’を接合しているため、アンテナ10からの電波を効率良く空気中に放射することができる。   With this configuration, since the antenna 10 is formed on the MMIC chip 2, signal loss of the high-frequency RF signal can be suppressed. Further, since the silicon substrate 32 made of silicon having a dielectric constant close to that of the compound semiconductor material of the MMIC chip 2 and the silicon lens 3 ″ are bonded to the MMIC chip 2, the radio wave from the antenna 10 is efficiently air-aired. Can radiate in.

特に高抵抗シリコンは、テラヘルツ帯の領域において誘電体損失が無く、レンズやプリズムの材料として一般的に用いられている。また、シリコンレンズ3’’の半径やシリコン基板32の厚さを適切に設計することにより、ガウシアン性の良い放射パターンや高利得特性を得ることができる(特許文献1)。   In particular, high-resistance silicon has no dielectric loss in the terahertz band region and is generally used as a material for lenses and prisms. Further, by appropriately designing the radius of the silicon lens 3 ″ and the thickness of the silicon substrate 32, a radiation pattern with good Gaussian properties and high gain characteristics can be obtained (Patent Document 1).

なお、このMMIC集積モジュール100は、外部からの信号を受信可能である。アンテナ10で受信した信号は、ワイヤ34で接続された実装基板33を経由して信号端子35へ出力され、データ信号線36を通じて外部へ出力される。   The MMIC integrated module 100 can receive an external signal. A signal received by the antenna 10 is output to the signal terminal 35 via the mounting substrate 33 connected by the wire 34 and output to the outside through the data signal line 36.

特開2005−64986号公報JP 2005-64986 A

Duixian Liu、外2名、“An LTCC Superstrate Patch Antenna for 60-GHz Package Applications”、Antennas and Propagation Society International Symposium (APSURSI)、2010 IEEE、July 2010年7月、pp.1-4Duixian Liu, 2 others, “An LTCC Superstrate Patch Antenna for 60-GHz Package Applications”, Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE, July 2010, pp.1-4

しかしながら、図8に示したMMIC集積モジュールでは、MMIC上のアンテナからの電波がシリコンレンズ側と金属筐体のキャビティ側の両方に放射するため、キャビティ側に放射された電磁波は損失となってしまい、アンテナ効率や利得が低下し、更にはMMICチップ上の電気線路に再結合することにより増幅器等の回路で発振現象が発生するという課題があった。   However, in the MMIC integrated module shown in FIG. 8, since the radio wave from the antenna on the MMIC radiates to both the silicon lens side and the cavity side of the metal housing, the electromagnetic wave radiated to the cavity side is lost. However, there has been a problem that the antenna efficiency and the gain are lowered, and further, an oscillation phenomenon occurs in a circuit such as an amplifier by recombination with an electric line on the MMIC chip.

本発明は、上記事情を鑑みてなされたものであり、電波の放射効率を改善することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to improve radio wave radiation efficiency.

以上の課題を解決するため、請求項1に記載のMMIC集積モジュールは、ミリ波又はテラヘルツ波用のMMIC集積モジュールにおいて、キャビティを形成するように積み重ねられた複数の誘電性基板と、前記キャビティの開口面に配置された誘電性レンズと、アンテナの形成面が前記キャビティの底面に向かい合うように前記キャビティの内部に配置されたMMICチップと、前記アンテナに対向するように誘電性基板の表面に形成された金属層と、前記アンテナを囲むように配置された複数の金属体と、前記金属層を囲むように前記誘電性基板に形成された複数のビアと、を有し、前記複数のビアは、前記複数の金属体の配置と同じ位置で前記誘電性基板に形成されていることを要旨とする。 In order to solve the above problems, an MMIC integrated module according to claim 1 is a millimeter wave or terahertz wave MMIC integrated module, and a plurality of dielectric substrates stacked so as to form a cavity, Formed on the surface of the dielectric substrate so as to face the antenna, the dielectric lens disposed on the opening surface, the MMIC chip disposed inside the cavity such that the formation surface of the antenna faces the bottom surface of the cavity A plurality of metal bodies disposed so as to surround the antenna, and a plurality of vias formed in the dielectric substrate so as to surround the metal layer, wherein the plurality of vias are The gist is that the dielectric substrate is formed at the same position as the arrangement of the plurality of metal bodies .

本発明によれば、MMICチップ上のアンテナに対向するように金属層を形成しているため、アンテナからキャビティの内部側に放射される電波を誘電体レンズのある方向へ反射できることから、電波を効率的に放射することができる。   According to the present invention, since the metal layer is formed so as to face the antenna on the MMIC chip, the radio wave radiated from the antenna to the inner side of the cavity can be reflected in the direction of the dielectric lens. It can radiate efficiently.

本発明によれば、アンテナを複数の金属体で囲むように構成しているため、大気中への放射を抑制できることから、電波をより効率的に放射することができる。また、本発明によれば、金属層を複数のビアで囲むように構成しているため、大気中への放射を抑制できることから、電波をより効率的に放射することができる。 According to the present invention, since the antenna is configured to be surrounded by a plurality of metal bodies, radiation into the atmosphere can be suppressed, so that radio waves can be radiated more efficiently. Further, according to the present invention, since the metal layer is configured to be surrounded by a plurality of vias, radiation into the atmosphere can be suppressed, so that radio waves can be radiated more efficiently.

請求項に記載のMMIC集積モジュールは、請求項に記載のMMIC集積モジュールにおいて、前記金属体は、前記MMICチップを前記キャビティの底面にフリップチップ実装するためのバンプであることを要旨とする。 The MMIC integrated module according to claim 2 is the MMIC integrated module according to claim 1 , wherein the metal body is a bump for flip-chip mounting the MMIC chip on a bottom surface of the cavity. .

請求項に記載のMMIC集積モジュールは、請求項1又は2に記載のMMIC集積モジュールにおいて、前記アンテナと前記金属層との間に位置する誘電性基板に形成された空孔を更に有することを要旨とする。 The MMIC integrated module according to claim 3 is the MMIC integrated module according to claim 1 or 2 , further comprising a hole formed in a dielectric substrate positioned between the antenna and the metal layer. The gist.

請求項に記載のMMIC集積モジュールは、請求項1乃至のいずれかに記載のMMIC集積モジュールにおいて、前記誘電性レンズは、前記キャビティ側の表面に凸レンズを有することを要旨とする。 The MMIC integrated module according to claim 4 is the MMIC integrated module according to any one of claims 1 to 3 , wherein the dielectric lens has a convex lens on a surface on the cavity side.

請求項に記載のMMIC集積モジュールは、請求項1乃至のいずれかに記載のMMIC集積モジュールにおいて、前記金属層は、接地していることを要旨とする。 The MMIC integrated module according to claim 5 is the MMIC integrated module according to any one of claims 1 to 4 , characterized in that the metal layer is grounded.

本発明によれば、電波を効率的に放射できる。   According to the present invention, radio waves can be radiated efficiently.

第1の実施の形態に係るMMIC集積モジュールの断面図である。It is sectional drawing of the MMIC integrated module which concerns on 1st Embodiment. 第1の実施の形態に係るMMIC集積モジュールの斜視図である。1 is a perspective view of an MMIC integrated module according to a first embodiment. アンテナと接合用ボールの配置状態を示す図である。It is a figure which shows the arrangement | positioning state of an antenna and a ball | bowl for joining. 第2の実施の形態に係るMMIC集積モジュールの断面図である。It is sectional drawing of the MMIC integrated module which concerns on 2nd Embodiment. 第3の実施の形態に係るMMIC集積モジュールの断面図である。It is sectional drawing of the MMIC integrated module which concerns on 3rd Embodiment. 第4の実施の形態に係るMMIC集積モジュールの断面図である。It is sectional drawing of the MMIC integrated module which concerns on 4th Embodiment. 従来のMMIC集積モジュールの断面図である。It is sectional drawing of the conventional MMIC integrated module. 従来のMMIC集積モジュールの断面図である。It is sectional drawing of the conventional MMIC integrated module.

本発明は、アンテナを形成したMMICチップをフリップチップ実装するMMIC集積モジュールにおいて、(1)MMICチップ上のアンテナに対して対向するように誘電性基板上に金属層を形成し、(2)その金属層を囲むようにビアを形成し、(3)そのアンテナを囲むようにMMICチップと誘電性基板を接合する金属体を配置するようにしている。以下、本発明を実施する一実施の形態について図面を用いて説明する。   The present invention provides an MMIC integrated module in which an MMIC chip having an antenna formed thereon is flip-chip mounted. (1) A metal layer is formed on a dielectric substrate so as to face the antenna on the MMIC chip, and (2) Vias are formed so as to surround the metal layer, and (3) a metal body for joining the MMIC chip and the dielectric substrate is arranged so as to surround the antenna. Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings.

〔第1の実施の形態〕
図1は、第1の実施の形態に係るMMIC集積モジュール100の断面図である。図2は、そのMMIC集積モジュール100の斜視図である。本MMIC集積モジュール100は、多層型誘電性基板パッケージ1と、MMICチップ2と、レンズ3とを主に備えて構成される。
[First Embodiment]
FIG. 1 is a cross-sectional view of an MMIC integrated module 100 according to the first embodiment. FIG. 2 is a perspective view of the MMIC integrated module 100. The MMIC integrated module 100 is mainly configured by including a multilayer dielectric substrate package 1, an MMIC chip 2, and a lens 3.

多層型誘電性基板パッケージ1は、セラミックやLTCC(Low Temperature Co-fired Ceramics)等の誘電性基板を積層することにより形成される。任意の誘電性基板には、その表面において、多層型誘電性基板パッケージ1の外表面に形成・配置された外部電極4に接続される配線5が形成され、更に誘電性基板間を導通するビア6が形成される。また、最上及び中間に位置する複数の誘電性基板を用いて凹形状の内部空間(キャビティ)7が形成され、そのキャビティ7の底面の上に、配線5及びビア6を介して外部電極4に電気的に接続される内部電極8が形成・配置される。   The multilayer dielectric substrate package 1 is formed by laminating dielectric substrates such as ceramics or LTCC (Low Temperature Co-fired Ceramics). A wiring 5 connected to the external electrode 4 formed and arranged on the outer surface of the multilayer dielectric substrate package 1 is formed on the surface of an arbitrary dielectric substrate, and further, a via that conducts between the dielectric substrates. 6 is formed. In addition, a concave internal space (cavity) 7 is formed using a plurality of dielectric substrates positioned at the uppermost and middle positions, and the external electrode 4 is formed on the bottom surface of the cavity 7 via the wiring 5 and the via 6. An electrically connected internal electrode 8 is formed and arranged.

MMICチップ2は、多層型誘電性基板パッケージ1のキャビティ7に収まるサイズで形成され、そのキャビティ7の底面の上にフリップチップ実装される。例えば、金属性の接合用ボール9を用いて、キャビティ7内の内部電極8に電気的に接続する。MMICチップ2の表面には、図示しないRFIC(Radio Frequency Integrated Circuit)が形成され、更にオンチップ型のアンテナ10が形成されている。また、そのアンテナ10の形成面がキャビティ7の底面に向かい合うようにフリップチップ実装される。かかる構造により、外部電極4からの低周波信号を配線5,ビア6,内部電極8,接合用ボール9を介して受信し、その低周波信号を用いてRFICで高周波RF信号を生成し、その高周波RF信号の電波をアンテナ10から放射する。図1の場合、アンテナ10から上側と下側へ放射される。また、外部からの高周波RF信号をアンテナ10で受信し、同様の経路を逆に辿り外部電極4へ出力することも可能である。   The MMIC chip 2 is formed in a size that can fit in the cavity 7 of the multilayer dielectric substrate package 1, and is flip-chip mounted on the bottom surface of the cavity 7. For example, a metallic bonding ball 9 is used to electrically connect to the internal electrode 8 in the cavity 7. An RFIC (Radio Frequency Integrated Circuit) (not shown) is formed on the surface of the MMIC chip 2, and an on-chip type antenna 10 is further formed. The antenna 10 is flip-chip mounted so that the surface on which the antenna 10 is formed faces the bottom surface of the cavity 7. With this structure, a low frequency signal from the external electrode 4 is received via the wiring 5, the via 6, the internal electrode 8, and the bonding ball 9, and a high frequency RF signal is generated by the RFIC using the low frequency signal. A radio wave of a high frequency RF signal is radiated from the antenna 10. In the case of FIG. 1, it radiates | emits from the antenna 10 to the upper side and the lower side. It is also possible to receive a high-frequency RF signal from the outside by the antenna 10 and output it to the external electrode 4 by following the same path in reverse.

レンズ3は、半球状の形を有し、電磁波の波長の数倍以上ある径を有する。例えば、シリコン,テフロン,ポリエチレン、石英等の誘電性レンズを用いて形成される。接着剤11やUV樹脂等を用いてキャビティ7の開口面に配置され、固定される。その際、電磁波の放射パターンの中心軸がレンズ3の中心軸と一致するように配置することが好ましい。また、光学的に透明な材料をレンズ材料に用いることが好ましい。これにより、目視により、MMICチップ2やアンテナ10の位置との位置合わせが可能となり、実装も容易となる。また、シリコンを用いる場合には、例えば10kΩ・cm以上の高抵抗シリコンを用いることが好ましい。これにより、ガウシアン性の良い放射パターンや高利得特性を得ることができる。また、レンズ3の周縁を支える誘電性基板を変更したり、接合用ボール9のサイズを調整したりすることにより、そのキャビティ7に収容されるMMICチップ2に直接接合させることが好ましい。   The lens 3 has a hemispherical shape and a diameter that is several times the wavelength of the electromagnetic wave. For example, a dielectric lens such as silicon, Teflon, polyethylene, or quartz is used. It arrange | positions and fixes to the opening surface of the cavity 7 using the adhesive agent 11 or UV resin. At this time, it is preferable to arrange the electromagnetic radiation pattern so that the central axis of the radiation pattern coincides with the central axis of the lens 3. Further, it is preferable to use an optically transparent material for the lens material. As a result, it is possible to align with the positions of the MMIC chip 2 and the antenna 10 by visual observation, and mounting becomes easy. Further, when silicon is used, it is preferable to use high resistance silicon of, for example, 10 kΩ · cm or more. As a result, it is possible to obtain a radiation pattern with good Gaussian properties and high gain characteristics. Further, it is preferable to directly join the MMIC chip 2 accommodated in the cavity 7 by changing the dielectric substrate that supports the periphery of the lens 3 or adjusting the size of the joining ball 9.

このような構成要素を備えたMMIC集積モジュール100において、本実施の形態では、アンテナ10と対向する誘電性基板の表面(キャビティ7の底面)に金属性の反射板12を形成する。例えば、キャビティ7の底面に位置する誘電性基板の一部を切除等することにより、アンテナ10の存在する位置において深さd×幅wの小キャビティ7’を形成し、その小キャビティ7’の底面の上を金属層で覆うようにする。   In the MMIC integrated module 100 including such components, in the present embodiment, a metallic reflector 12 is formed on the surface of the dielectric substrate (the bottom surface of the cavity 7) facing the antenna 10. For example, a part of the dielectric substrate located on the bottom surface of the cavity 7 is cut away to form a small cavity 7 ′ having a depth d × width w at the position where the antenna 10 exists, and the small cavity 7 ′ Cover the bottom with a metal layer.

このように、小キャビティ7’の底面に金属層を形成することにより、アンテナ10から小キャビティ7’側へ放射された電波を反対方向へ反射させことができる。なお、小キャビティ7’の深さdとは、MMICチップ2のアンテナ形成面と小キャビティ7’の底面との間の距離であり、例えば、使用する帯域の中心波長λの1/6〜1/3の範囲内が好ましい。また、形成された金属層を接地するようにしても構わない。これにより、電波の反射効率を高めることができる。   Thus, by forming a metal layer on the bottom surface of the small cavity 7 ′, the radio wave radiated from the antenna 10 toward the small cavity 7 ′ can be reflected in the opposite direction. The depth d of the small cavity 7 ′ is a distance between the antenna formation surface of the MMIC chip 2 and the bottom surface of the small cavity 7 ′, and is, for example, 1/6 to 1 of the center wavelength λ of the band to be used. Within the range of / 3 is preferable. Further, the formed metal layer may be grounded. Thereby, the reflection efficiency of a radio wave can be improved.

また、本実施の形態では、反射板12を複数のビア6で囲むように形成・配置し、更にアンテナ10を複数の接合用ボール9で囲むように形成・配置する。例えば、接合用ボール9を小キャビティ7’の側壁面の一部として用いるようにする。図1のX−X’断面の一部を下から上に見た図を図3に示す。図3では、MMICチップ2上のアンテナ10と接合用ボール9との配置状態を示している。MMICチップ2のアンテナ形成面には、アンテナ10を囲むように金属層13が形成され、この金属層13の上に所定の間隔で接合用ボール9を配置する。更に、図1に示したように、図3のように配置された複数の接合用ボール9と同じ配置状態となるように複数のビア6を形成し、反射板12を囲むようにする。   In this embodiment, the reflector 12 is formed and arranged so as to be surrounded by the plurality of vias 6, and the antenna 10 is formed and arranged so as to be surrounded by the plurality of bonding balls 9. For example, the bonding ball 9 is used as a part of the side wall surface of the small cavity 7 '. FIG. 3 shows a part of the X-X ′ cross section of FIG. 1 viewed from the bottom to the top. FIG. 3 shows an arrangement state of the antenna 10 and the bonding ball 9 on the MMIC chip 2. A metal layer 13 is formed on the antenna formation surface of the MMIC chip 2 so as to surround the antenna 10, and the bonding balls 9 are arranged on the metal layer 13 at a predetermined interval. Further, as shown in FIG. 1, a plurality of vias 6 are formed so as to be in the same arrangement state as the plurality of bonding balls 9 arranged as shown in FIG.

このように、アンテナ10を囲むように複数の接合用ボール9を配置し、反射板12を囲むように複数のビア6を形成することにより、アンテナ10から小キャビティ7’側へ放射された電波が水平方向へ分散することを防止できる。なお、接合用ボール9の間隔やビア6の間隔は、使用する帯域の中心波長λの1/4以下が好ましい。また、金属層13を接地し、その金属層13上の接合用ボール9や当該接合用ボール8に電気的に接続されるビア6をRFICのアース用電極の一部として用いるようにしても構わない。   In this way, by arranging the plurality of bonding balls 9 so as to surround the antenna 10 and forming the plurality of vias 6 so as to surround the reflecting plate 12, the radio wave radiated from the antenna 10 to the small cavity 7 ′ side. Can be prevented from spreading in the horizontal direction. The interval between the bonding balls 9 and the interval between the vias 6 is preferably ¼ or less of the center wavelength λ of the band to be used. Alternatively, the metal layer 13 may be grounded, and the bonding ball 9 on the metal layer 13 and the via 6 electrically connected to the bonding ball 8 may be used as part of the RFIC ground electrode. Absent.

本実施の形態によれば、MMICチップ2上のアンテナ10と対向するように小キャビティ7’の底面に反射板12を形成し、その反射板12を囲むように複数のビア6を形成し、更にアンテナ10を囲むように複数の接合用ボール9を配置するので、アンテナ10から小キャビティ7’側へ放射された電波を反対方向のみに反射することが可能となり、MMIC集積モジュール100から電波を効率的に放射することができる。   According to the present embodiment, the reflecting plate 12 is formed on the bottom surface of the small cavity 7 ′ so as to face the antenna 10 on the MMIC chip 2, and the plurality of vias 6 are formed so as to surround the reflecting plate 12, Further, since a plurality of bonding balls 9 are disposed so as to surround the antenna 10, it is possible to reflect the radio wave radiated from the antenna 10 toward the small cavity 7 'only in the opposite direction, and the radio wave from the MMIC integrated module 100 can be reflected. It can radiate efficiently.

〔第2の実施の形態〕
図4は、第2の実施の形態に係るMMIC集積モジュール100を示す図である。同図(a)は、MMIC集積モジュール100の断面図である。同図(b)は、同図(a)のX−X’断面を上から下に見た図である。
[Second Embodiment]
FIG. 4 is a diagram illustrating the MMIC integrated module 100 according to the second embodiment. FIG. 2A is a cross-sectional view of the MMIC integrated module 100. FIG. 6B is a view of the XX ′ cross section of FIG.

本MMIC集積モジュール100は、第1の実施の形態と同様に、図示しない導体層が表面に形成された誘電体層(第1の実施の形態における誘電性基板)1’を積層することにより多層型誘電性基板パッケージ1を形成する。また、ビア6を形成した誘電体層1’を積層することにより、MMICチップ2を格納する長方形のキャビティ7を形成する。   Similar to the first embodiment, the MMIC integrated module 100 has a multilayer structure in which a dielectric layer (dielectric substrate in the first embodiment) 1 ′ having a conductor layer (not shown) formed thereon is laminated. A mold dielectric substrate package 1 is formed. Further, by laminating the dielectric layer 1 ′ in which the via 6 is formed, a rectangular cavity 7 for storing the MMIC chip 2 is formed.

キャビティ7を構成する最上の誘電体層1’に形成されたビア6aのサイズは他のビア6bのサイズと異なり、最上及びその下の誘電体層1’による枠部をステップ状とし、レンズ3を実装する。なお、誘電体層1’の材料は、セラミックスやガラスフィラーを混入したセラミックス混合材料、ポリイミド等のポリマー材料でもよいが、誘電損失が小さい材料が好ましい。セラミックス材料を用いた場合には、誘電体層1’を積層した後に高温で焼成を行う。誘電体層1’の厚さは数〜数十ミクロンであり、シルクスクリーン印刷やメッキ処理により形成する。一方、導体層の材料は、金、銀、タングステン、銅などでもよい。   The size of the via 6a formed in the uppermost dielectric layer 1 'constituting the cavity 7 is different from the size of the other vias 6b, and the frame portion formed by the uppermost and lower dielectric layer 1' is stepped to form the lens 3 Is implemented. The material of the dielectric layer 1 ′ may be a ceramic mixed material mixed with ceramics or glass filler, or a polymer material such as polyimide, but a material having a small dielectric loss is preferable. When a ceramic material is used, the dielectric layer 1 ′ is laminated and then fired at a high temperature. The dielectric layer 1 'has a thickness of several to several tens of microns and is formed by silk screen printing or plating. On the other hand, the material of the conductor layer may be gold, silver, tungsten, copper or the like.

本実施の形態では、第1の実施の形態と異なり、バンプ9’を用いてMMICチップ2をキャビティ7の底面にフリップチップ実装する。また、小キャビティ7’を形成することなく、反射板12をバンプ9’の実装面と同一平面に形成する。アンテナ10から反射板12までの距離は、第1の実施の形態と同様に、例えば、使用する帯域の中心波長λの1/6〜1/3の範囲内とする。   In the present embodiment, unlike the first embodiment, the MMIC chip 2 is flip-chip mounted on the bottom surface of the cavity 7 using bumps 9 ′. Further, the reflector 12 is formed on the same plane as the mounting surface of the bump 9 'without forming the small cavity 7'. The distance from the antenna 10 to the reflector 12 is, for example, in the range of 1/6 to 1/3 of the center wavelength λ of the band to be used, as in the first embodiment.

本実施の形態によれば、MMICチップ2のアンテナ10と対向するように、キャビティ7の底面に反射板12を形成し、そのアンテナ10を囲むように複数のバンプ9’を配置するので、アンテナ10から小キャビティ7’側へ放射された電波を反対方向のみに反射することが可能となり、MMIC集積モジュール100から電波を効率的に放射することができる。   According to the present embodiment, the reflector 12 is formed on the bottom surface of the cavity 7 so as to face the antenna 10 of the MMIC chip 2, and the plurality of bumps 9 ′ are arranged so as to surround the antenna 10. The radio waves radiated from 10 to the small cavity 7 ′ side can be reflected only in the opposite direction, and the radio waves can be efficiently radiated from the MMIC integrated module 100.

〔第3の実施の形態〕
図5は、第3の実施の形態に係るMMIC集積モジュール100を示す図である。同図(a)は、MMIC集積モジュール100の断面図である。同図(b)は、同図(a)のX−X’断面の一部を上から下に見た図である。以下、第1,2の実施の形態との相違点を中心に説明する。
[Third Embodiment]
FIG. 5 is a diagram showing an MMIC integrated module 100 according to the third embodiment. FIG. 2A is a cross-sectional view of the MMIC integrated module 100. FIG. 4B is a view of a part of the XX ′ cross section of FIG. Hereinafter, the difference from the first and second embodiments will be mainly described.

本実施の形態では、第1,2の実施の形態と異なり、反射板12をバンプ9’の実装面(誘電体層1a’)の下の誘電体層1b’の表面に形成し、その反射板12の上に位置する誘電体層1a’に複数の空孔14を形成し、その空孔14を囲むように複数のビア6を形成する。また、その複数のビア6の形成位置に沿うように誘電体層1a’の表面に金属層15を凹状に形成し、その金属層15の上にMMICチップ2をフリップチップ実装する。図5(b)では、金属層15の形成パターン、空孔14の配置パターン、ビア6の配置パターンの各例を示している。   In the present embodiment, unlike the first and second embodiments, the reflecting plate 12 is formed on the surface of the dielectric layer 1b ′ below the mounting surface (dielectric layer 1a ′) of the bump 9 ′, and the reflection thereof. A plurality of holes 14 are formed in the dielectric layer 1 a ′ located on the plate 12, and a plurality of vias 6 are formed so as to surround the holes 14. Further, a metal layer 15 is formed in a concave shape on the surface of the dielectric layer 1 a ′ so as to follow the formation positions of the plurality of vias 6, and the MMIC chip 2 is flip-chip mounted on the metal layer 15. FIG. 5B shows examples of the formation pattern of the metal layer 15, the arrangement pattern of the holes 14, and the arrangement pattern of the vias 6.

第1の実施の形態では、誘電性基板の一部を排除することにより、小キャビティ7’の深さを制御している。しかし、これによりMMIC集積モジュール100の底面の厚さが薄くなるため、物理的強度が弱くなり、誘電性基板の反りが大きくなる可能性がある。これに対し、本実施の形態では、削除対象であった誘電性基板1a’の該当部分に空孔14を形成しているので、MMIC集積モジュール1の物理的な強度が高くなり、等価的に誘電率を制御してキャビティの深さを実質的に制御することができる。   In the first embodiment, the depth of the small cavity 7 'is controlled by eliminating a part of the dielectric substrate. However, the thickness of the bottom surface of the MMIC integrated module 100 is thereby reduced, so that the physical strength is weakened and the warping of the dielectric substrate may be increased. On the other hand, in the present embodiment, since the holes 14 are formed in the corresponding portions of the dielectric substrate 1a ′ to be deleted, the physical strength of the MMIC integrated module 1 is increased and equivalently The dielectric constant can be controlled to substantially control the cavity depth.

〔第4の実施の形態〕
図6は、第4の実施の形態に係るMMIC集積モジュール100の断面図である。本実施の形態では、レンズ3の材料として、特に、テフロン,ポリエチレン,石英等の低誘電率の誘電体を使用し、レンズ3の下面に凸レンズ3’を形成している。これにより、アンテナ10から放射される電波の放射パターンを適切に制御することができ、アンテナ利得を向上することができる。
[Fourth Embodiment]
FIG. 6 is a cross-sectional view of the MMIC integrated module 100 according to the fourth embodiment. In the present embodiment, a low dielectric constant dielectric material such as Teflon, polyethylene, or quartz is used as the material of the lens 3, and the convex lens 3 ′ is formed on the lower surface of the lens 3. Thereby, the radiation pattern of the radio wave radiated from the antenna 10 can be appropriately controlled, and the antenna gain can be improved.

以上より、第1〜第4の実施の形態によれば、MMICチップ2上のアンテナ10と対向するようにキャビティ7又は小キャビティ7’の底面に反射板12を形成・配置したので、アンテナ10から電波を効率的に放射でき、電波の損失を低減でき、結果としてアンテナ効率と利得を改善することができる。また、アンテナ10を囲むように接合用ボール9又はバンプ9’を配置し、反射板12を囲むようにビア6を形成したので、大気中への放射を抑制し、MMICチップ上に形成された増幅器等の発振を防止することができる。   As described above, according to the first to fourth embodiments, the reflecting plate 12 is formed and arranged on the bottom surface of the cavity 7 or the small cavity 7 ′ so as to face the antenna 10 on the MMIC chip 2. Can efficiently radiate radio waves, reduce radio wave loss, and as a result, improve antenna efficiency and gain. Further, since the bonding balls 9 or the bumps 9 ′ are arranged so as to surround the antenna 10 and the via 6 is formed so as to surround the reflector 12, the radiation to the atmosphere is suppressed and the via is formed on the MMIC chip. Oscillation of an amplifier or the like can be prevented.

1…MMIC集積モジュール
1’…誘電体層(誘電性基板)
2…MMICチップ
3…レンズ
3’…凸レンズ
3’’…シリコンレンズ
4…外部電極
5…配線
6…ビア
7…キャビティ
7’…小キャビティ
8…内部電極
9…接合用ボール
9’…バンプ
10…アンテナ
11…接着剤
12…反射板
13…金属層
14…空孔
15…金属層
21…アンテナフィード線
22…アンテナグランド線
23…RFIC
24…信号線
25…グランド線
31…金属筐体
32…シリコン基板
33…実装基板
34…ワイヤ
35…信号端子
36…データ信号線
1 ... MMIC integrated module 1 '... Dielectric layer (dielectric substrate)
2 ... MMIC chip 3 ... Lens 3 '... Convex lens 3 "... Silicon lens 4 ... External electrode 5 ... Wiring 6 ... Via 7 ... Cavity 7' ... Small cavity 8 ... Internal electrode 9 ... Bonding ball 9 '... Bump 10 ... Antenna 11 ... Adhesive 12 ... Reflector 13 ... Metal layer 14 ... Hole 15 ... Metal layer 21 ... Antenna feed wire 22 ... Antenna ground wire 23 ... RFIC
24 ... Signal line 25 ... Ground line 31 ... Metal housing 32 ... Silicon substrate 33 ... Mounting substrate 34 ... Wire 35 ... Signal terminal 36 ... Data signal line

Claims (5)

ミリ波又はテラヘルツ波用のMMIC集積モジュールにおいて、
キャビティを形成するように積み重ねられた複数の誘電性基板と、
前記キャビティの開口面に配置された誘電性レンズと、
アンテナの形成面が前記キャビティの底面に向かい合うように前記キャビティの内部に配置されたMMICチップと、
前記アンテナに対向するように誘電性基板の表面に形成された金属層と、
前記アンテナを囲むように配置された複数の金属体と、
前記金属層を囲むように前記誘電性基板に形成された複数のビアと、を有し、
前記複数のビアは、
前記複数の金属体の配置と同じ位置で前記誘電性基板に形成されていることを特徴とするMMIC集積モジュール。
In the MMIC integrated module for millimeter wave or terahertz wave,
A plurality of dielectric substrates stacked to form a cavity;
A dielectric lens disposed on an opening surface of the cavity;
An MMIC chip disposed inside the cavity such that an antenna forming surface faces the bottom surface of the cavity;
A metal layer formed on the surface of the dielectric substrate so as to face the antenna;
A plurality of metal bodies arranged to surround the antenna;
A plurality of vias formed in the dielectric substrate so as to surround the metal layer,
The plurality of vias are
The MMIC integrated module is formed on the dielectric substrate at the same position as the plurality of metal bodies .
前記金属体は、The metal body is
前記MMICチップを前記キャビティの底面にフリップチップ実装するためのバンプであることを特徴とする請求項1に記載のMMIC集積モジュール。2. The MMIC integrated module according to claim 1, wherein the MMIC chip is a bump for flip-chip mounting the MMIC chip on a bottom surface of the cavity.
前記アンテナと前記金属層との間に位置する誘電性基板に形成された空孔を更に有することを特徴とする請求項1又は2に記載のMMIC集積モジュール。The MMIC integrated module according to claim 1, further comprising a hole formed in a dielectric substrate positioned between the antenna and the metal layer. 前記誘電性レンズは、The dielectric lens is
前記キャビティ側の表面に凸レンズを有することを特徴とする請求項1乃至3のいずれかに記載のMMIC集積モジュール。4. The MMIC integrated module according to claim 1, further comprising a convex lens on a surface on the cavity side.
前記金属層は、The metal layer is
接地していることを特徴とする請求項1乃至4のいずれかに記載のMMIC集積モジュール。5. The MMIC integrated module according to claim 1, wherein the MMIC integrated module is grounded.
JP2014065090A 2014-03-27 2014-03-27 MMIC integrated module Expired - Fee Related JP5770876B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065090A JP5770876B1 (en) 2014-03-27 2014-03-27 MMIC integrated module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065090A JP5770876B1 (en) 2014-03-27 2014-03-27 MMIC integrated module

Publications (2)

Publication Number Publication Date
JP5770876B1 true JP5770876B1 (en) 2015-08-26
JP2015188174A JP2015188174A (en) 2015-10-29

Family

ID=54187177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065090A Expired - Fee Related JP5770876B1 (en) 2014-03-27 2014-03-27 MMIC integrated module

Country Status (1)

Country Link
JP (1) JP5770876B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993935A (en) * 2017-12-07 2018-05-04 中芯长电半导体(江阴)有限公司 Fan-out package structure and preparation method thereof
WO2019245212A1 (en) * 2018-06-21 2019-12-26 삼성전자 주식회사 Antenna module comprising cavity
CN111106425A (en) * 2018-10-29 2020-05-05 奥特斯奥地利科技与系统技术有限公司 Electronic device and method for transmitting or receiving electromagnetic radiation
JP2021040005A (en) * 2019-09-02 2021-03-11 ローム株式会社 Terahertz device

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
JP2022086334A (en) 2020-11-30 2022-06-09 キヤノン株式会社 Electromagnetic wave module and electromagnetic wave camera system using the same
DE102020132330B3 (en) 2020-12-04 2022-06-09 CiTEX Holding GmbH THz sensor and THz measurement method for measuring a measurement object
US11823970B2 (en) * 2021-05-05 2023-11-21 Infineon Technologies Ag Radar package with optical lens for radar waves

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993935A (en) * 2017-12-07 2018-05-04 中芯长电半导体(江阴)有限公司 Fan-out package structure and preparation method thereof
WO2019245212A1 (en) * 2018-06-21 2019-12-26 삼성전자 주식회사 Antenna module comprising cavity
CN111106425A (en) * 2018-10-29 2020-05-05 奥特斯奥地利科技与系统技术有限公司 Electronic device and method for transmitting or receiving electromagnetic radiation
EP3648251A1 (en) * 2018-10-29 2020-05-06 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting / receiving electromagnetic radiation in a component carrier
US20200153510A1 (en) * 2018-10-29 2020-05-14 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of All Components Being Necessary for Transmitting / Receiving Electromagnetic Radiation in a Component Carrier
US10897308B2 (en) 2018-10-29 2021-01-19 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting/receiving electromagnetic radiation in a component carrier
JP2021040005A (en) * 2019-09-02 2021-03-11 ローム株式会社 Terahertz device
JP7393897B2 (en) 2019-09-02 2023-12-07 ローム株式会社 terahertz device

Also Published As

Publication number Publication date
JP2015188174A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5770876B1 (en) MMIC integrated module
US7444734B2 (en) Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate
US10103450B2 (en) Integration of area efficient antennas for phased array or wafer scale array antenna applications
US7728774B2 (en) Radio frequency (RF) integrated circuit (IC) packages having characteristics suitable for mass production
US9819098B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US7545329B2 (en) Apparatus and methods for constructing and packaging printed antenna devices
US7342299B2 (en) Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications
US8269671B2 (en) Simple radio frequency integrated circuit (RFIC) packages with integrated antennas
US8179333B2 (en) Antennas using chip-package interconnections for millimeter-wave wireless communication
US8087155B2 (en) Method of forming an integrated circuit with MM-wave antennas using conventional IC packaging
US8451618B2 (en) Integrated antennas in wafer level package
US8648454B2 (en) Wafer-scale package structures with integrated antennas
CN109244642B (en) Method for manufacturing packaged antenna
JPH09153839A (en) Very high frequency band radio communication equipment
US11114752B2 (en) Three-dimensional antenna apparatus having at least one additional radiator
CN109326584B (en) Packaged antenna and method of manufacturing the same
US20140145316A1 (en) Wireless module
KR20150108147A (en) Radar on a package for millimeter wave and radar assembly using the same
US20080238792A1 (en) Microwave Antenna for Flip-Chip Semiconductor Modules
TW201622076A (en) Integrated millimeter-wave chip package
JP5559901B1 (en) MMIC integrated module
KR102686428B1 (en) Antenna module
JP7298265B2 (en) integrated circuit package
JP2013247493A (en) Integrated patch antenna
US20240047853A1 (en) Antenna module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5770876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees