JP5759054B1 - Magnet excitation rotating electrical machine system - Google Patents

Magnet excitation rotating electrical machine system Download PDF

Info

Publication number
JP5759054B1
JP5759054B1 JP2014248975A JP2014248975A JP5759054B1 JP 5759054 B1 JP5759054 B1 JP 5759054B1 JP 2014248975 A JP2014248975 A JP 2014248975A JP 2014248975 A JP2014248975 A JP 2014248975A JP 5759054 B1 JP5759054 B1 JP 5759054B1
Authority
JP
Japan
Prior art keywords
rotor
displacement
rotors
force
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014248975A
Other languages
Japanese (ja)
Inventor
市山 義和
義和 市山
Original Assignee
市山 義和
義和 市山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市山 義和, 義和 市山 filed Critical 市山 義和
Priority to JP2014248975A priority Critical patent/JP5759054B1/en
Priority to PCT/JP2015/061931 priority patent/WO2015186442A1/en
Priority to US14/726,612 priority patent/US20150357891A1/en
Application granted granted Critical
Publication of JP5759054B1 publication Critical patent/JP5759054B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Abstract

【課題】誘起電圧の位相制御により回転速度範囲の広い磁石励磁回転電機を実現する。【解決手段】電機子に対向する回転子を磁気的突極の数を同じくする3個の回転子で構成し,二つの回転子を他に対して周方向に変位させて誘起電圧を制御する回転電機システムであって回転子間の磁気結合力が小の範囲内で大きな誘起電圧抑圧が可能である。回転駆動力及び回生制動力を利用して小さな力で変位回転子の変位制御を可能にし,更に本発明の回転電機システムを駆動源として有する車両の駆動力制御方法を提案している。【選択図】図1A magnet-excited rotating electrical machine with a wide rotational speed range is realized by phase control of an induced voltage. A rotor facing an armature is composed of three rotors having the same number of magnetic salient poles, and two rotors are displaced in the circumferential direction with respect to the other to control the induced voltage. In a rotating electrical machine system, a large induced voltage can be suppressed within a range where the magnetic coupling force between the rotors is small. Proposed is a vehicle driving force control method that uses a rotational driving force and a regenerative braking force to enable displacement control of a displacement rotor with a small force, and further has a rotating electrical machine system of the present invention as a driving source. [Selection] Figure 1

Description

本発明は,永久磁石界磁を持つ発電機,電動機を含む回転電機システムに関する。   The present invention relates to a rotating electrical machine system including a generator and a motor having a permanent magnet field.

永久磁石を回転子表面近傍の磁性体内に埋め込んだ回転電機装置(IPM)は駆動電流の位相制御による弱め界磁が可能で普及している。しかしながら,低速回転に於いて銅損が顕著であり,高速回転では弱め界磁の為に直接駆動に寄与しない電流を必要としてエネルギー効率を低下させ,また不完全な弱め界磁の故に更なる回転速度範囲拡大は望めない。   A rotating electrical machine (IPM) in which a permanent magnet is embedded in a magnetic body in the vicinity of the rotor surface is widely used because it allows field weakening by phase control of drive current. However, copper loss is significant at low speed rotation, and at high speed rotation, a current that does not contribute directly to driving is required due to field weakening, resulting in lower energy efficiency and further rotation due to incomplete field weakening. The speed range cannot be expanded.

弱め界磁を実現する他の方法として,永久磁石励磁の回転子を2分し,一方の回転子を他方に対して変位させ,電機子コイルと鎖交する磁束の位相を制御して実効的に弱め界磁を実現する提案がある(特許文献1,2,3,4)。この方法は広い回転速度範囲を磁石励磁のエネルギー効率の高さを犠牲にすることなく実現できる。しかし,回転子間の磁気結合が大になる課題が存在し(特許文献4),変位の為に大出力のアクチュエータを必要としている。特許文献4では,回転子を3分して磁気結合力の低減を図るが,回転速度範囲を狭くさせ,変位制御に拘わる構造及び手順を複雑にする結果を招いている。   Another way to achieve field weakening is to divide the rotor of permanent magnet excitation into two parts, displace one rotor relative to the other, and control the phase of the magnetic flux linked to the armature coil. There is a proposal for realizing a field weakening (Patent Documents 1, 2, 3, and 4). This method can realize a wide rotational speed range without sacrificing the high energy efficiency of magnet excitation. However, there is a problem that the magnetic coupling between the rotors becomes large (Patent Document 4), and a high-power actuator is required for displacement. In Patent Document 4, the rotor is divided into three parts to reduce the magnetic coupling force, but the result is that the range of rotation speed is narrowed and the structure and procedure related to displacement control are complicated.

発明者は先に磁気的突極の数が等しい3つの回転子を電機子に対向させ,二つの回転子を他に対して周方向の互いに逆方向に相対変位させて誘起電圧を制御する回転電機システムを提案した(特願2014−165617)。この発明によれば,回転子間の磁気結合力が小の範囲内で大きな誘起電圧抑圧が可能であり,従来構造の課題を解消出来たが,広い回転速度範囲内で連続的な誘起電圧制御を具体化する方法に関しては必ずしも十分な記述が為されていなかった。   The inventor previously made three rotors having the same number of magnetic salient poles face the armature, and the two rotors were displaced relative to each other in the opposite directions in the circumferential direction to control the induced voltage. An electric system was proposed (Japanese Patent Application No. 2014-165617). According to the present invention, it is possible to suppress a large induced voltage within a range where the magnetic coupling force between the rotors is small, and the problem of the conventional structure can be solved. However, continuous induced voltage control within a wide range of rotational speed is possible. There has not always been a sufficient description of how to materialize.

米国特許3713015US Patent 3713015 特開平10−155262JP 10-155262 A 特開2002−165426JP 2002-165426 A 特開2010−154699JP 2010-154699 A

したがって,本発明が解決しようとする課題は,磁気的突極の数が等しい3つの回転子を電機子に対向させ,二つの回転子を他に対して周方向の互いに逆方向に相対変位させて誘起電圧を制御する回転電機システムに於いて,連続的な誘起電圧制御を可能とする回転電機システム,車両の駆動力を滑らかに制御する方法を提供する事である。   Therefore, the problem to be solved by the present invention is that three rotors having the same number of magnetic salient poles are opposed to the armature, and the two rotors are relatively displaced relative to each other in the circumferential direction. An object of the present invention is to provide a rotating electrical machine system that enables continuous induced voltage control and a method for smoothly controlling the driving force of a vehicle.

請求項1の発明は,ハウジングと,複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転軸と共に回転可能に構成された回転電機装置であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子は磁石励磁され,一方の軸端側回転子が固定回転子として回転軸に固定され,中間の回転子及び他方の軸端側回転子は変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成され,二つの変位回転子の何れかを周方向に変位させると両軸端の回転子が中間の回転子に対して互いに逆の周方向に相対変位されるよう3個の回転子が機械的に結合され,更に回転子位置制御手段を有し,誘起電圧が所定の値より大の時に回転子位置制御手段は固定回転子に対して変位回転子を回転方向に先行する周方向に変位させる変位量を大にさせて誘起電圧を減少させ,誘起電圧が所定の値より小の時に回転子位置制御手段は前記変位量を小にさせて誘起電圧を増大させ,回転力が最適に制御される事を特徴とする。   The invention of claim 1 has a housing, an armature in which a plurality of armature coils are arranged in the circumferential direction, and a rotor in which a plurality of magnetic salient poles are arranged in the circumferential direction. A rotating electrical machine apparatus configured to be opposed to a rotor in a radial direction through a minute gap and to be rotatable together with a rotating shaft, wherein the rotor includes three rotors having the same number of magnetic salient poles in an axial direction. The rotors at both ends of the shafts are magnetized, and the rotors at one shaft end are fixed to the rotating shaft as fixed rotors, and the intermediate rotor and the other shaft end side rotor are The displacement rotor is configured to be displaceable in the same circumferential direction with respect to the fixed rotor. When one of the two displacement rotors is displaced in the circumferential direction, the rotors at both shaft ends are displaced from the intermediate rotor. The three rotors are mechanically displaced relative to each other in the opposite circumferential direction. The rotor position control means, and when the induced voltage is greater than a predetermined value, the rotor position control means displaces the displacement rotor relative to the fixed rotor in the circumferential direction preceding the rotation direction. When the induced voltage is decreased by increasing the amount, and the induced voltage is smaller than a predetermined value, the rotor position control means reduces the amount of displacement to increase the induced voltage, and the rotational force is optimally controlled. It is characterized by things.

本発明は電機子と回転子とが径方向に対向する回転電機装置に於いて,回転子は磁気的突極の数が等しい3個の回転子で構成されると共に少なくとも両軸端の回転子は磁石励磁され,一方の軸端にある回転子を回転軸に固定し,他の二つの回転子を変位回転子として周方向に変位可能に構成し,両軸端の回転子が中間の回転子に対して互いに逆の周方向に相対変位されるよう変位回転子を変位させ,誘起電圧を制御する回転電機システムである。   The present invention relates to a rotating electrical machine apparatus in which an armature and a rotor face each other in the radial direction, and the rotor is composed of three rotors having the same number of magnetic salient poles and at least rotors at both shaft ends. Is magnet-excited, the rotor at one shaft end is fixed to the rotating shaft, and the other two rotors are configured as displacement rotors so that they can be displaced in the circumferential direction. This is a rotating electrical machine system that controls an induced voltage by displacing a displacement rotor so as to be displaced relative to each other in opposite circumferential directions.

磁気的突極は,電機子と対向する回転子の周縁部に於いて,永久磁石により磁化された区分,或いは空隙を含む非磁性体により磁気的に凸極形状とされた磁性体区分を指し,磁石励磁構造の場合は隣接する区分が互いに逆極性に磁化された区分の数を以て磁気的突極の数とする。   The magnetic salient pole refers to a section magnetized by a permanent magnet or a magnetic section magnetically formed into a convex pole shape by a non-magnetic body including air gaps at the periphery of the rotor facing the armature. In the case of a magnet excitation structure, the number of magnetic salient poles is determined by the number of sections in which adjacent sections are magnetized in opposite polarities.

軸方向の長さが等しい二つの回転子の一方を他方に対して変位させる従来構造では,二つの回転子間の変位量を電気角で2θとすると,電機子コイルに現れる誘起電圧はCosθに比例する。本発明に於いて,両軸端の回転子それぞれからの誘起電圧振幅が中間の回転子からの誘起電圧振幅の半分である場合,軸方向に隣接する回転子間の相対変位量を電気角で2θとすると,誘起電圧はCosθの自乗に比例する。   In the conventional structure in which one of two rotors having the same axial length is displaced with respect to the other, if the displacement between the two rotors is 2θ in electrical angle, the induced voltage appearing in the armature coil is Cosθ. Proportional. In the present invention, when the induced voltage amplitude from each of the rotors at both shaft ends is half of the induced voltage amplitude from the intermediate rotor, the relative displacement amount between the adjacent rotors in the axial direction is expressed as an electrical angle. Assuming 2θ, the induced voltage is proportional to the square of Cosθ.

3個の回転子が同じ磁石励磁構成である場合,誘起電圧振幅が最大となるのは3個の回転子の同じ極性の磁気的突極が軸方向に並ぶ位置である。両軸端の回転子を中間の回転子に対して互いに逆の周方向に相対変位させる事により誘起電圧振幅が制御される。従来構造で変位量2θは電気角でゼロから180度までであるが,本発明で軸方向に隣接する回転子間の周方向間隔範囲2θは電気角でそれぞれ0から180度まで,両端の回転子間の周方向間隔はゼロから360度までである。   When the three rotors have the same magnet excitation configuration, the induced voltage amplitude becomes the maximum at the position where the magnetic salient poles of the same polarity of the three rotors are arranged in the axial direction. The induced voltage amplitude is controlled by relatively displacing the rotors at both shaft ends in opposite circumferential directions with respect to the intermediate rotor. In the conventional structure, the displacement 2θ is from 0 to 180 degrees in electrical angle. However, in the present invention, the circumferential interval range 2θ between the axially adjacent rotors is 0 to 180 degrees in electrical angle, and both ends rotate. The circumferential interval between the children is from zero to 360 degrees.

3個の回転子それぞれの軸方向長さを変える或いは3個の回転子それぞれの磁極構造を互いに異ならせる事で誘起電圧がゼロになる変位量2θは変わり,上記隣接回転子間の周方向間隔範囲は180度より小さくできる。誘起電圧ピークが最大になる点からほぼゼロになる条件をそれぞれの設計仕様毎に確認し,変位回転子の変位範囲を定める。   By changing the axial length of each of the three rotors or making the magnetic pole structures of the three rotors different from each other, the displacement 2θ at which the induced voltage becomes zero changes, and the circumferential interval between the adjacent rotors changes. The range can be smaller than 180 degrees. The conditions for the induced voltage peak to become almost zero from the point at which it reaches the maximum are confirmed for each design specification, and the displacement range of the displacement rotor is determined.

高速回転では隣接する回転子間の周方向間隔を大として誘起電圧を減少させ,電源電圧と誘起電圧間に差を確保して更に高速回転でも駆動電流を供給する余裕が確保される。低速回転では前記周方向間隔を小として誘起電圧を大とし,発生するトルクが大とされ,回転力が最適化される。従来構造に比して隣接回転子間の磁気結合力が小さな領域で大きな誘起電圧抑圧比が得られ,回転力の最適化が容易である。   In high-speed rotation, the induced voltage is reduced by increasing the circumferential interval between adjacent rotors, ensuring a difference between the power supply voltage and the induced voltage, and further allowing a drive current to be supplied even at high-speed rotation. In low-speed rotation, the circumferential interval is reduced, the induced voltage is increased, the generated torque is increased, and the rotational force is optimized. A large induced voltage suppression ratio can be obtained in a region where the magnetic coupling force between adjacent rotors is small compared to the conventional structure, and the optimization of the rotational force is easy.

本発明は更に中間回転子に種々の磁極構成を採用可能にしている。すなわち,二つの回転子の一方を他方に対して変位させる従来構造では,回転駆動に際して進み位相,遅れ位相の磁界が二つの回転子それぞれに加えられるのでリラクタンストルクを有する回転子構造は採用し難かった。本発明に於いては,電機子コイルと中間の回転子との相対位置関係を基準に駆動電流の極性を切替て回転子が回転駆動されるので中間の回転子への制約は少なく,リラクタンストルク,マグネットトルク,或いは双方を共に有する回転子構造採用が可能である。   The present invention further allows various magnetic pole configurations to be employed in the intermediate rotor. That is, in the conventional structure in which one of the two rotors is displaced with respect to the other, a magnetic phase having a leading phase and a lagging phase is applied to each of the two rotors during rotation driving, and thus a rotor structure having reluctance torque is difficult to employ. It was. In the present invention, since the rotor is driven to rotate by switching the polarity of the drive current based on the relative positional relationship between the armature coil and the intermediate rotor, there are few restrictions on the intermediate rotor and the reluctance torque is reduced. , Magnet torque, or a rotor structure having both of them can be used.

回転子位置制御手段には,種々の方法が利用可能である。例えば,回転軸方向の変位を周方向変位に変える斜交溝を用いた構成,遊星ギア機構,油圧制御機構,クラッチ機構等がある。   Various methods can be used for the rotor position control means. For example, there are configurations using oblique grooves that change the displacement in the rotation axis direction to the circumferential displacement, a planetary gear mechanism, a hydraulic control mechanism, a clutch mechanism, and the like.

請求項2の発明は,請求項1記載の回転電機システムに於いて,電機子コイルと中間の回転子との相対位置関係を基準に駆動電流の極性を切替て回転子が回転駆動される事を特徴とする。中間回転子の磁気的突極は回転子全体の合成磁極と同じ位置にあり,回転子を回転駆動するには電機コイルと中間回転子の磁気的突極との相対位置関係を基準に駆動電流極性を切り替える。   According to a second aspect of the present invention, in the rotating electrical machine system according to the first aspect, the rotor is driven to rotate by switching the polarity of the drive current based on the relative positional relationship between the armature coil and the intermediate rotor. It is characterized by. The magnetic salient pole of the intermediate rotor is located at the same position as the combined magnetic pole of the entire rotor. To drive the rotor, the drive current is based on the relative positional relationship between the electric coil and the magnetic salient pole of the intermediate rotor. Switch polarity.

請求項3の発明は,請求項1記載の回転電機システムに於いて,誘起電圧抑圧比が予め定めた範囲内に留まるよう変位回転子の変位量を制限する機械的なストッパーを設けた事を特徴とする。固定回転子に対して変位回転子を周方向に変位させる場合,理論的に軸方向に隣接する回転子間の周方向間隔範囲2θは電気角でそれぞれ0から180度まで,両端の回転子間の周方向間隔はゼロから360度までである。回転駆動中或いは回生制動中に於いて,変位量の限界近辺では中間回転子,両端の回転子に加わる回転駆動力,回生制動力の方向が互いに逆になり,制御が困難になる可能性があるので変位回転子の変位量が予め定めた誘起電圧抑圧比の範囲内に留まるよう機械的なストッパーを設ける。   According to a third aspect of the present invention, in the rotating electrical machine system according to the first aspect, a mechanical stopper is provided for limiting the displacement amount of the displacement rotor so that the induced voltage suppression ratio remains within a predetermined range. Features. When the displacement rotor is displaced in the circumferential direction relative to the fixed rotor, the circumferential interval 2θ between the adjacent rotors in the axial direction is theoretically 0 to 180 degrees in electrical angle, and between the rotors at both ends. The circumferential interval is from zero to 360 degrees. During rotational driving or regenerative braking, the direction of the rotational driving force and regenerative braking force applied to the intermediate rotor and the rotors at both ends may be reversed in the vicinity of the displacement limit, making control difficult. Therefore, a mechanical stopper is provided so that the displacement amount of the displacement rotor stays within a predetermined range of the induced voltage suppression ratio.

請求項4の発明は,請求項1記載の回転電機システムに於いて,回転子を増速中に回転子位置制御手段は変位回転子を回転軸に拘束する力を緩め,回転駆動力を利用して変位回転子の変位量を大にさせ,回転子を回生制動により減速中に回転子位置制御手段は変位回転子を回転軸に拘束する力を緩め,回生制動力を利用して変位回転子の変位量を小にさせ,誘起電圧が所定の値になるよう制御される事を特徴とする。
According to a fourth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the rotor position control means loosens the force that restrains the displacement rotor on the rotating shaft and uses the rotational driving force while the rotor is accelerated. The displacement position of the displacement rotor is increased, and while the rotor is decelerated by regenerative braking, the rotor position control means loosens the force that constrains the displacement rotor to the rotating shaft, and the regenerative braking force is used for displacement rotation. It is characterized in that the amount of displacement of the child is reduced and the induced voltage is controlled to be a predetermined value.

電機子から回転子に加えられる力を利用して変位回転子を変位させる。本発明により,変位回転子を回転軸に対して変位させるに必要な力を小にできる。電機子から回転子に加えられる力とは回転駆動力及び回生制動力であって,変位回転子を回転軸に拘束する力を制御してその一部が変位回転子の変位力として配分され,前記拘束する力の緩める程度により変位力への配分が制御される。   The displacement rotor is displaced using the force applied from the armature to the rotor. According to the present invention, the force required to displace the displacement rotor with respect to the rotation axis can be reduced. The force applied from the armature to the rotor is the rotational driving force and the regenerative braking force. The force that restrains the displacement rotor on the rotating shaft is controlled, and a part of the force is distributed as the displacement force of the displacement rotor. Distribution to the displacement force is controlled by the degree to which the restraining force is loosened.

請求項5の発明は,請求項1記載の回転電機システムに於いて,回転子位置制御手段は,第一遊星ギア機構,第二遊星ギア機構,アクチュエータを有し,第一遊星ギア機構は,回転軸に固定された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギア,プラネタリーギア支持軸を有して構成され,第二遊星ギア機構は,二つの変位回転子の何れかに固定された第二サンギア,アクチュエータにより回動可能に配置された第二リングギア,第二サンギア及び第二リングギアに噛み合う第二プラネタリーギア,プラネタリーギア支持軸を有してプラネタリーギア支持軸は第一遊星ギア機構と第二遊星ギア機構とで共有され,ハウジング側に配置されたアクチュエータが第二リングギアを周方向に変位させて変位回転子が回転軸に対して周方向に変位される事を特徴とする。   According to a fifth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the rotor position control means includes a first planetary gear mechanism, a second planetary gear mechanism, and an actuator. A first sun gear fixed to the rotation shaft, a first ring gear fixed to the housing, a first sun gear, a first planetary gear meshing with the first ring gear, and a planetary gear support shaft; The planetary gear mechanism includes a second sun gear fixed to one of two displacement rotors, a second ring gear rotatably disposed by an actuator, a second sun gear, and a second planetary gear meshing with the second ring gear. The planetary gear support shaft is shared by the first planetary gear mechanism and the second planetary gear mechanism, and the actuator arranged on the housing side is connected to the second planetary gear mechanism. Gugia is displaced to the circumferential displacement rotor is characterized in that is displaced in the circumferential direction with respect to the rotation axis.

回転子位置制御手段に遊星ギア機構を利用し,ハウジング側に固定されたアクチュエータで第二リングギアを回転させる事で固定回転子と変位回転子間の周方向間隔が変更される。第一遊星ギア機構及び第二遊星ギア機構のプラネタリーギア支持軸は共通であり,プラネタリーギア支持軸の回転を外部に出力させれば,減速された回転出力が得られる。   By using a planetary gear mechanism for the rotor position control means and rotating the second ring gear with an actuator fixed on the housing side, the circumferential interval between the fixed rotor and the displacement rotor is changed. The planetary gear support shafts of the first planetary gear mechanism and the second planetary gear mechanism are common, and if the rotation of the planetary gear support shaft is output to the outside, a reduced rotational output can be obtained.

請求項6の発明は,請求項5記載の回転電機システムに於いて,回転子を増速中に回転子位置制御手段は第二サンギアが第一サンギアより速く回転させる方向に第二リングギアを周方向に回転させる回転速度を制御し,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中に回転子位置制御手段は第二サンギアが第一サンギアより遅く回転させる方向に第二リングギアを周方向に回転させる回転速度を制御し,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする。
According to a sixth aspect of the present invention, in the rotating electrical machine system according to the fifth aspect, the rotor position control means rotates the second ring gear in a direction in which the second sun gear rotates faster than the first sun gear while the rotor is accelerated. The rotational speed of rotating in the circumferential direction is controlled, the displacement amount of the displacement rotor is increased by using the rotational driving force, and the rotor position control means is operated by the second sun gear while the rotor is decelerated by regenerative braking. The rotational speed of rotating the second ring gear in the circumferential direction is controlled in the direction of rotating more slowly, and the amount of displacement of the displacement rotor is reduced using regenerative braking force.

回転駆動力は固定回転子及び変位回転子に加えられるので第二サンギアを第一サンギアより速く回転させる方向にアクチュエータを介して第二リングギアを周方向に変位させる事は変位回転子を回転軸に拘束する力を弱める事になり,更に回転駆動力により変位回転子が固定回転子に対して変位させられる。回生制動力の場合は逆方向の回転力が回転子に加えられる場合で動作原理は同じである。   Since the rotational driving force is applied to the fixed rotor and the displacement rotor, displacing the second ring gear in the circumferential direction through the actuator in a direction that causes the second sun gear to rotate faster than the first sun gear causes the displacement rotor to rotate. Therefore, the displacement rotor is displaced with respect to the fixed rotor by the rotational driving force. In the case of the regenerative braking force, the operating principle is the same when a reverse rotational force is applied to the rotor.

アクチュエータによる第二リングギアの変位速度を大にする事で変位回転子を回転軸に拘束する力を小にし,前記変位速度を小にする事で変位回転子を回転軸に拘束する力を大にする事になり,第二リングギアの変位速度で電気子から回転子に加えられる力を変位回転子の変位力への配分が制御される。本発明により小出力のアクチュエータで変位回転子の変位制御が可能となる。アクチュエータにより第二リングギアを周方向に変位させる速度を制御する事で変位回転子を回転軸に拘束させる力を制御出来る。   Increasing the displacement speed of the second ring gear by the actuator reduces the force that constrains the displacement rotor to the rotating shaft, and decreasing the displacement speed increases the force that constrains the displacement rotor to the rotating shaft. The distribution of the force applied from the electric element to the rotor at the displacement speed of the second ring gear to the displacement force of the displacement rotor is controlled. According to the present invention, the displacement of the displacement rotor can be controlled with a small output actuator. By controlling the speed at which the second ring gear is displaced in the circumferential direction by the actuator, it is possible to control the force that restrains the displacement rotor on the rotating shaft.

請求項7の発明は,請求項1記載の回転電機システムに於いて,回転子位置制御手段は,第一遊星ギア機構,第二遊星ギア機構,クラッチ機構を有し,第一遊星ギア機構は,回転軸に固定された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギア,プラネタリーギア支持軸を有して構成され,第二遊星ギア機構は,二つの変位回転子の何れかに固定された第二サンギア,ハウジングに回動可能に配置された第二リングギア,第二サンギア及び第二リングギアに噛み合う第二プラネタリーギア,プラネタリーギア支持軸を有してプラネタリーギア支持軸は第一遊星ギア機構と第二遊星ギア機構とで共有され,クラッチ機構は第二リングギアをハウジングに拘束出来る構成とし,回転子を増速中にクラッチ機構は第二リングギアをハウジングに拘束する力を緩める方向に制御され,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中にクラッチ機構は第二リングギアをハウジングに拘束する力を緩める方向に制御され,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする。   According to a seventh aspect of the present invention, in the rotating electrical machine system according to the first aspect, the rotor position control means includes a first planetary gear mechanism, a second planetary gear mechanism, and a clutch mechanism. A first sun gear fixed to the rotation shaft, a first ring gear fixed to the housing, a first sun gear, a first planetary gear meshing with the first ring gear, and a planetary gear support shaft. The two planetary gear mechanism includes a second sun gear fixed to one of the two displacement rotors, a second ring gear rotatably disposed in the housing, a second sun gear, and a second planetary meshing with the second ring gear. It has a gear and planetary gear support shaft, the planetary gear support shaft is shared by the first planetary gear mechanism and the second planetary gear mechanism, and the clutch mechanism can constrain the second ring gear to the housing During the acceleration of the rotor, the clutch mechanism is controlled in a direction to loosen the force that restrains the second ring gear to the housing, and the amount of displacement of the displacement rotor is increased by using the rotational driving force, and the rotor is regenerated. During deceleration by braking, the clutch mechanism is controlled in a direction to loosen the force that restrains the second ring gear to the housing, and the amount of displacement of the displacement rotor is reduced using the regenerative braking force.

回転駆動力は固定回転子及び変位回転子に加えられるので第二リングギアをハウジングに拘束する力を緩めれば,回転駆動力により変位回転子が固定回転子に対して変位させられる。クラッチ機構による第二リングギアをハウジングに拘束する力の制御により回転駆動力を変位回転子の変位力,回転軸の回転力への配分が変えられる。回生制動力の場合は逆方向の回転力が回転子に加えられる場合で動作原理は同じである。   Since the rotational driving force is applied to the stationary rotor and the displacement rotor, the displacement rotor is displaced relative to the stationary rotor by the rotational driving force if the force that restrains the second ring gear to the housing is loosened. The distribution of the rotational driving force to the displacement force of the displacement rotor and the rotational force of the rotating shaft can be changed by controlling the force that restrains the second ring gear to the housing by the clutch mechanism. In the case of the regenerative braking force, the operating principle is the same when a reverse rotational force is applied to the rotor.

請求項8の発明は,請求項1記載の回転電機システムに於いて,回転子位置制御手段は,クラッチ機構を有し,クラッチ機構は,二つの変位回転子の何れかを回転軸に拘束出来る構成とし,回転子を増速中にクラッチ機構は変位回転子を回転軸に拘束する力を緩める方向に制御され,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中にクラッチ機構は変位回転子を回転軸に拘束する力を緩める方向に制御され,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする。   According to an eighth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the rotor position control means has a clutch mechanism, and the clutch mechanism can constrain one of the two displacement rotors to the rotating shaft. The clutch mechanism is controlled in the direction to loosen the force that constrains the displacement rotor to the rotating shaft while the rotor is accelerating, and the amount of displacement of the displacement rotor is increased by using the rotational driving force. During deceleration by regenerative braking, the clutch mechanism is controlled in a direction to loosen the force that restrains the displacement rotor on the rotating shaft, and the amount of displacement of the displacement rotor is reduced using the regenerative braking force.

回転駆動力は固定回転子及び変位回転子に加えられるので変位回転子を回転軸に拘束する力を緩めれば,回転駆動力により変位回転子が固定回転子に対して変位させられ,前記拘束力の制御により回転駆動力の変位力への配分が変えられる。回生制動力の場合は逆方向の回転力が回転子に加えられる場合で動作原理は同じである。   Since the rotational driving force is applied to the fixed rotor and the displacement rotor, if the force that restrains the displacement rotor on the rotating shaft is loosened, the rotational rotor causes the displacement rotor to be displaced relative to the fixed rotor, and the restraint The distribution of the rotational driving force to the displacement force is changed by controlling the force. In the case of the regenerative braking force, the operating principle is the same when a reverse rotational force is applied to the rotor.

請求項9の発明は,請求項1記載の回転電機システムに於いて,両軸端の回転子は電機子と対向する回転子周縁部を周方向に沿う磁気抵抗を均一としてリラクタンストルクが存在し難いよう構成されている事を特徴とする。   A ninth aspect of the present invention is the rotating electrical machine system according to the first aspect, wherein the reluctance torque exists in the rotor at both shaft ends, with the magnetic resistance along the circumferential direction being uniform in the circumferential direction of the rotor facing the armature. It is characterized by being configured to be difficult.

両軸端の回転子の各磁極には中間の回転子磁極より位相が進み或いは遅れた駆動磁界が加えられる。駆動磁界の位相が進とリラクタンストルクはマグネットトルクより速い周期で変化し,両軸端の回転子に現れるリラクタンストルクは回転駆動力を減少させる可能性がある。両軸端の回転子にはリラクタンストルクフリーの構造が望ましく,表面磁石構造の回転子はリラクタンストルクが存在し難い磁極構成の一つである。   A driving magnetic field whose phase is advanced or delayed from that of the intermediate rotor magnetic pole is applied to each magnetic pole of the rotor at both shaft ends. When the phase of the driving magnetic field advances and the reluctance torque changes at a faster cycle than the magnet torque, the reluctance torque appearing on the rotors at the ends of both shafts may reduce the rotational driving force. The rotor at both shaft ends preferably has a reluctance torque-free structure, and a rotor with a surface magnet structure is one of the magnetic pole configurations in which reluctance torque hardly exists.

請求項10の発明は,複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,更に固定回転子に配置された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギアを有する第一遊星ギア機構を有し,2つの変位回転子の何れかに配置された第二サンギア,アクチュエータにより回動可能に配置された第二リングギア,第二サンギア及び第二リングギアとに噛み合う第二プラネタリーギアを有する第二遊星ギア機構を有し,第一プラネタリーギアと第二プラネタリーギアとは共通のプラネタリーギア支持軸とを有するよう構成し,回転子を増速中に回転速度増大を継続させると共に誘起電圧が所定の値になるようアクチュエータにより回転子の回転方向とは逆方向に回転させる第二リングギアの回転速度を制御して変位回転子を固定回転子に対して回転方向に変位させ,回転子を回生制動により減速中に回転速度減少を継続させると共に誘起電圧が所定の値になるようアクチュエータにより第二リングギアを回転子の回転方向に回転させる回転速度を制御して変位回転子を固定回転子に対して回転方向と逆方向に変位させる事を特徴とする誘起電圧制御方法である。 The invention of claim 10 has an armature in which a plurality of armature coils are arranged in the circumferential direction and a rotor in which a plurality of magnetic salient poles are arranged in the circumferential direction. A method of controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is configured to face and rotate in a radial direction through a gap, the rotor having three equal number of magnetic salient poles The rotors are arranged in the axial direction so as to face the armature, and at least the rotors at both shaft ends have a magnet excitation structure, and one shaft end rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other The rotor at the shaft end side is configured as a displacement rotor so that it can be displaced in the same circumferential direction with respect to the fixed rotor, and any of the two displacement rotors can be displaced in the circumferential direction with respect to the intermediate rotor. Three rotors at the shaft end are relatively displaced in the opposite circumferential directions. A first sun gear that mechanically couples the trochanter and further includes a first sun gear disposed on the stationary rotor, a first ring gear fixed to the housing, a first sun gear, and a first planetary gear meshing with the first ring gear; A second sun gear having a planetary gear mechanism and meshing with a second sun gear disposed on one of the two displacement rotors, a second ring gear rotatably disposed by an actuator, a second sun gear, and a second ring gear It has a second planetary gear mechanism having a planetary gear , and the first planetary gear and the second planetary gear are configured to have a common planetary gear support shaft, and the rotational speed of the rotor is increased during acceleration. Displacement rotator by controlling the rotation speed of the second ring gear which is rotated in the direction opposite to the rotation direction of the rotor by the actuator so that the induced voltage becomes a predetermined value while continuing the increase. The rotor is displaced in the rotational direction with respect to the fixed rotor, and the rotation speed is continuously reduced while the rotor is decelerated by regenerative braking. An induced voltage control method characterized by controlling a rotational speed to rotate and displacing a displacement rotor with respect to a fixed rotor in a direction opposite to the rotation direction.

回転駆動力は固定回転子及び変位回転子に加えられるので第二サンギアを第一サンギアより速く回転させる方向にアクチュエータを介して第二リングギアを周方向に変位させる事は変位回転子を回転軸に拘束する力を弱める事になり,回転駆動力により変位回転子が固定回転子に対して変位させられ,第二リングギアの回転速度により回転駆動力を変位回転子を変位させる変位力への配分が制御される。回生制動力の場合は逆方向の回転力が回転子に加えられる場合で動作原理は同じである。   Since the rotational driving force is applied to the fixed rotor and the displacement rotor, displacing the second ring gear in the circumferential direction through the actuator in a direction that causes the second sun gear to rotate faster than the first sun gear causes the displacement rotor to rotate. The displacement rotor is displaced relative to the fixed rotor by the rotational driving force, and the rotational driving force is displaced by the rotational speed of the second ring gear. Distribution is controlled. In the case of the regenerative braking force, the operating principle is the same when a reverse rotational force is applied to the rotor.

請求項11の発明は,複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の回転力制御方法であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,磁性体外周に沿う磁気抵抗を均一としてリラクタンストルクが存在し難いよう両軸端の回転子を構成し,磁性体外周に沿う磁気抵抗を周期的に変えてリラクタンストルクが得られるよう中間の回転子を構成し,変位回転子の変位量を大にさせて誘起電圧を減少させて誘起電圧に対する電源電圧の余裕分を大にし,変位回転子の変位量を小にさせて誘起電圧を増大させて発生させる回転駆動力を大にさせ,回転力を最適に制御する事を特徴とする回転力制御方法である。   The invention of claim 11 has an armature in which a plurality of armature coils are arranged in the circumferential direction, and a rotor in which a plurality of magnetic salient poles are arranged in the circumferential direction. A rotating force control method for a rotating electrical machine apparatus that is configured to face and rotate in a radial direction through a gap, wherein the rotor includes three rotors having the same number of magnetic salient poles arranged in an axial direction. Opposite the armature and at least the rotors at both shaft ends have a magnet excitation structure, one shaft end rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other shaft end rotor are The displacement rotor is configured to be displaceable in the same circumferential direction with respect to the fixed rotor, and the two rotors at the shaft end with respect to the intermediate rotor, regardless of which of the two displacement rotors is displaced in the circumferential direction The three rotors are mechanically coupled so that they are displaced relative to each other in the opposite circumferential direction. The rotors at both shaft ends are configured so that the reluctance torque does not easily exist with uniform magnetic resistance along the outer periphery of the body, and an intermediate rotor is installed so that the reluctance torque can be obtained by periodically changing the magnetic resistance along the outer periphery of the magnetic body. Generated by increasing the displacement of the displacement rotor to reduce the induced voltage, increasing the margin of the power supply voltage relative to the induced voltage, and decreasing the displacement of the displacement rotor to increase the induced voltage. This rotational force control method is characterized in that the rotational drive force to be applied is increased and the rotational force is optimally controlled.

両軸端の回転子はリラクタンストルクが存在し難い磁極構成とし,中間回転子をリラクタンストルクが得られるよう構成として高速回転域でのトルク確保を図る。   The rotors at both shaft ends have a magnetic pole configuration in which reluctance torque is unlikely to exist, and the intermediate rotor is configured to obtain reluctance torque to ensure torque in a high-speed rotation range.

請求項12の発明は,磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,更に変位回転子を回転軸に拘束する手段を有する回転電機システムを駆動源とする車両の駆動力制御方法であって,車両を増速中に回転駆動力から変位回転子の変位力及び車両の駆動力を得るよう変位回転子を回転軸に拘束する力を制御し,変位回転子の変位量を大にさせて誘起電圧が電源電圧に対して所定の値になるよう制御し,車両を回生制動により減速中に変位回転子の変位力及び車両の減速駆動力を得るよう変位回転子を回転軸に拘束する力を制御し,変位回転子の変位量を小にさせて誘起電圧が電源電圧に対して所定の値になるよう制御し,車両の駆動力を滑らかに制御する方法である。   According to the invention of claim 12, three rotors having the same number of magnetic salient poles are arranged in the axial direction so as to face the armature, and at least the rotors at both shaft ends have a magnet excitation structure, The rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other shaft end side rotor are used as displacement rotors so that they can be displaced in the same circumferential direction with respect to the fixed rotor. Even if any of the rotors is displaced in the circumferential direction, the three rotors are mechanically coupled so that the two rotors at the shaft end relative to the intermediate rotor are displaced relative to each other in the circumferential direction. A vehicle driving force control method using a rotating electrical machine system having means for constraining a rotor to a rotating shaft as a driving source, wherein the displacement driving force of the displacement rotor and the driving force of the vehicle are changed from the rotational driving force while the vehicle is accelerated. The force that restrains the displacement rotor to the rotation axis is controlled to obtain The displacement is controlled so that the induced voltage becomes a predetermined value with respect to the power supply voltage by increasing the displacement of the motor, and the displacement rotation of the displacement rotor and the deceleration driving force of the vehicle are obtained while the vehicle is decelerated by regenerative braking. A method of controlling the driving force of the vehicle smoothly by controlling the force that restrains the rotor on the rotating shaft, and controlling the induced voltage to be a predetermined value relative to the power supply voltage by reducing the displacement amount of the displacement rotor. It is.

磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させ,一方の軸端側回転子を固定回転子として回転軸に固定し,他の二つの回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成する回転電機システムを駆動源として有する車両に於いて,車両の駆動力を滑らかに制御する方法である。   Three rotors with the same number of magnetic salient poles are arranged in the axial direction to face the armature, one shaft end rotor is fixed to the rotating shaft as a fixed rotor, and the other two rotors are displaced This is a method of smoothly controlling the driving force of a vehicle in a vehicle having as a drive source a rotating electrical machine system that is configured to be displaceable in the same circumferential direction as the rotor.

車両を増速中に回転駆動力を変位回転子の変位力及び移動体の駆動力が得られるようトルク配分を行い,車両の駆動力を継続して得ながら変位回転子の変位力を得て変位量を大にさせて誘起電圧に対する電源電圧の余裕分を大にするよう制御し,更なる高速回転での回転駆動を可能にする。前記回転駆動力のトルク配分は,変位回転子の回転軸への拘束力を制御して行われる。車両を回生制動により減速中の場合も同様にして行われ,前記変位量を小にさせて回生制動力を大にすると共に低速回転での発生トルクを大とする。   While accelerating the vehicle, the torque is distributed so that the displacement driving force of the displacement rotor and the driving force of the moving body can be obtained, and the displacement force of the displacement rotor is obtained while continuously obtaining the driving force of the vehicle. Control is made to increase the amount of displacement of the power supply voltage with respect to the induced voltage by increasing the amount of displacement, enabling rotation at higher speeds. The torque distribution of the rotational driving force is performed by controlling the restraining force of the displacement rotor on the rotating shaft. The same operation is performed when the vehicle is decelerated by regenerative braking, and the amount of displacement is reduced to increase the regenerative braking force and increase the generated torque at low speed.

変位回転子の回転軸への拘束力制御によるトルク配分は,前記変位量と拘束力との関係を予めデータマップとして制御装置内に記憶して参照しながら拘束力を制御する,或いは回転電機システムの回転出力をトルクセンサーその他の手段で監視し,或いは車両の速度を監視しながら前記拘束力を制御する。本発明により,車両の駆動を全速度範囲で連続的且つ滑らかに制御出来る。   The torque distribution by the constraint force control to the rotation shaft of the displacement rotor is performed by controlling the constraint force while referring to the relationship between the displacement amount and the constraint force as a data map stored in advance in the controller. The rotation output is monitored by a torque sensor or other means, or the restraining force is controlled while monitoring the vehicle speed. According to the present invention, the driving of the vehicle can be controlled continuously and smoothly over the entire speed range.

電機子に対向する回転子を磁気的突極の数を同じくする3個の回転子で構成し,二つの回転子を他に対して周方向に変位させて誘起電圧を制御する回転電機システムであって回転子間の磁気結合力が小の範囲内で大きな誘起電圧抑圧が可能である。回転駆動力及び回生制動力を利用して小さな力で変位回転子の変位制御を可能にし,更に本発明の回転電機システムを駆動源として有する車両の駆動力制御方法を提案している。   In the rotating electrical machine system, the rotor facing the armature is composed of three rotors with the same number of magnetic salient poles, and the induced voltage is controlled by displacing the two rotors in the circumferential direction relative to the other. Thus, large induced voltage suppression is possible within a range where the magnetic coupling force between the rotors is small. Proposed is a vehicle driving force control method that uses a rotational driving force and a regenerative braking force to enable displacement control of a displacement rotor with a small force, and further has a rotating electrical machine system of the present invention as a driving source.

第一の実施例による回転電機装置の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine apparatus by a 1st Example. 図1に示された回転電機装置のA−A’に沿う断面図を示す。Sectional drawing which follows A-A 'of the rotary electric machine apparatus shown by FIG. 1 is shown. 図1に示された回転電機装置の第一回転子を第二回転子側から見た平面図である。It is the top view which looked at the 1st rotor of the rotary electric machine apparatus shown by FIG. 1 from the 2nd rotor side. 回転子結合機構を説明する為の斜視図である。It is a perspective view for demonstrating a rotor coupling | bonding mechanism. 図1に示された回転電機装置のB−B’に沿う断面図を示す。Sectional drawing which follows B-B 'of the rotary electric machine apparatus shown by FIG. 1 is shown. 図1に示された回転電機装置に於いて,第一回転子の変位量を規制するストッパーを示す為の図である。同図(a)は第一サンギア1fを第二サンギア1g側から見た平面図を,同図(b)は第二サンギア1gを第一サンギア1f側から見た平面図をそれぞれ示す。FIG. 2 is a view for showing a stopper that regulates a displacement amount of a first rotor in the rotating electrical machine apparatus shown in FIG. 1. FIG. 4A is a plan view of the first sun gear 1f viewed from the second sun gear 1g side, and FIG. 4B is a plan view of the second sun gear 1g viewed from the first sun gear 1f side. 図1に示された回転電機装置に於いて,第二回転子に対して第一,第三回転子の相対変位方向をモデル的に示す図である。同図(a)は斜視図を,同図(b)は平面図をそれぞれ示す。In the rotary electric machine apparatus shown by FIG. 1, it is a figure which shows the relative displacement direction of a 1st, 3rd rotor modelly with respect to a 2nd rotor. The figure (a) shows a perspective view, and the figure (b) shows a top view, respectively. 回転子を二分して一方を他方に対して変位させる従来構造の回転電機装置に於いて,回転子間の変位方向をモデル的に示す図である。同図(a)は斜視図を,同図(b)は平面図をそれぞれ示す。FIG. 3 is a diagram schematically showing a displacement direction between rotors in a rotating electrical machine apparatus having a conventional structure in which a rotor is divided into two parts and one of them is displaced with respect to the other. The figure (a) shows a perspective view, and the figure (b) shows a top view, respectively. 図1に示された本発明による回転電機装置,図8に示された従来構造の回転電機装置に於いて,回転子変位量と誘起電圧振幅との関係を示す。In the rotating electrical machine apparatus according to the present invention shown in FIG. 1 and the conventional rotating electrical machine apparatus shown in FIG. 8, the relationship between the rotor displacement and the induced voltage amplitude is shown. 回転子変位と磁極の関係をモデル的に示す斜視図であり,同図(a),同図(b),同図(c)はそれぞれ隣接回転子間の周方向間隔が電気角で45度,90度,135度である場合を示す。It is a perspective view which shows the relationship between a rotor displacement and a magnetic pole as a model, and the same figure (a), the figure (b), and the figure (c) are 45 degrees in the circumferential direction space | interval between adjacent rotors, respectively. , 90 degrees, and 135 degrees. 駆動電流を進角させた場合に回転子が受ける回転駆動力の変化の様子を示す。The state of change in the rotational driving force received by the rotor when the drive current is advanced is shown. 誘起電圧制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs induced voltage control. 第二の実施例による回転電機装置の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine apparatus by a 2nd Example. 図12に示された回転電機装置のC−C’に沿う断面図を示す。Sectional drawing which follows C-C 'of the rotary electric machine apparatus shown by FIG. 12 is shown. 図12に示された回転電機装置の第一回転子を第二回転子側から見た平面図である。It is the top view which looked at the 1st rotor of the rotary electric machine apparatus shown by FIG. 12 from the 2nd rotor side. 図12に示された回転電機装置の回転子位置制御手段を第一回転子側から見た平面図である。It is the top view which looked at the rotor position control means of the rotary electric machine apparatus shown by FIG. 12 from the 1st rotor side. 図12に示された回転電機装置の拡大された回転子位置制御手段を示し,クラッチ板を介して回転力が伝達されている状態を示す。12 shows an enlarged rotor position control means of the rotating electrical machine apparatus shown in FIG. 12, and shows a state in which the rotational force is transmitted through the clutch plate. 図12に示された回転電機装置の拡大された回転子位置制御手段を示し,クラッチ板を介して回転力が伝達されていない状態を示す。12 shows an enlarged rotor position control means of the rotating electrical machine apparatus shown in FIG. 12, and shows a state in which no rotational force is transmitted through the clutch plate. 第三の実施例による車両の駆動システムのブロック図である。It is a block diagram of the drive system of the vehicle by a 3rd Example.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明による回転電機装置の実施例1が図1から図12を用いて説明される。磁石励磁の3個の回転子が第一回転子,第二回転子,第三回転子として電機子に対向し,第三回転子に対して第一,第二回転子が遊星ギア機構を用いて同じ周方向に変位され,回転力が最適に制御される回転電機装置である。   A first embodiment of a rotating electrical machine apparatus according to the present invention will be described with reference to FIGS. Three magnet-excited rotors face the armature as the first rotor, second rotor, and third rotor, and the first and second rotors use planetary gear mechanisms for the third rotor. This is a rotating electrical machine device that is displaced in the same circumferential direction and whose rotational force is optimally controlled.

図1はインナーロータ構造の回転電機装置に本発明を適用した実施例の縦断面図を示し,回転軸11がベアリング13を介してハウジング12に回転可能に支持されている。第一回転子14,第二回転子15はベアリングを介して回転軸11に変位可能に保持され,第三回転子16は回転軸11に固定されている。第一回転子14,第二回転子15が変位制御される領域は,第三回転子16に対して常用の回転方向前方の領域であり,同じ極性の磁極に着目して第一回転子14が回転方向の先頭,第三回転子16が最後部,第二回転子15が両者の中間に並ぶよう構成されている。第一回転子14の軸長,第二回転子15の軸長,第三回転子16の軸長は比率にして3:4:3に設定されている。番号19は電機子コイル,番号17は電機子コア,番号18は非磁性絶縁素材のスペーサを示す。スペーサ18の厚みは隣接回転子間の間隔より小に設定されている。   FIG. 1 is a longitudinal sectional view of an embodiment in which the present invention is applied to a rotating electrical machine apparatus having an inner rotor structure. A rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The first rotor 14 and the second rotor 15 are held to be displaceable on the rotating shaft 11 via bearings, and the third rotor 16 is fixed to the rotating shaft 11. The region in which the displacement of the first rotor 14 and the second rotor 15 is controlled is a region in front of the normal rotation direction with respect to the third rotor 16, and the first rotor 14 is focused on the magnetic poles having the same polarity. Is arranged in such a manner that the third rotor 16 is arranged at the end, the second rotor 15 is arranged in the middle of both. The axial length of the first rotor 14, the axial length of the second rotor 15, and the axial length of the third rotor 16 are set to 3: 4: 3 as a ratio. Reference numeral 19 denotes an armature coil, reference numeral 17 denotes an armature core, and reference numeral 18 denotes a nonmagnetic insulating material spacer. The thickness of the spacer 18 is set smaller than the interval between adjacent rotors.

番号1aは第一回転子14側面に固定されたサイドギア,番号1bは第三回転子16側面に固定されたサイドギア,番号1cはサイドギア1aと噛み合うカップリングギア,番号1eはカップリングギア支持軸,番号1dはカップリングギア支持軸1eに固定されてカップリングギア1cと共に回転するカップリングギアをそれぞれ示す。カップリングギア支持軸1eは第二回転子14に回転可能に支持されている。サイドギア1bと噛み合うカップリングギア,カップリングギア1dと噛み合うカップリングギア及びそれらの支持軸は図1に図示されていないが,カップリングギア1c,カップリングギア1d,カップリングギア支持軸1eと共に回転子結合機構が構成され,後に説明される。   Number 1a is a side gear fixed to the side surface of the first rotor 14, Number 1b is a side gear fixed to the side surface of the third rotor 16, Number 1c is a coupling gear meshing with the side gear 1a, Number 1e is a coupling gear support shaft, Reference numeral 1d denotes a coupling gear fixed to the coupling gear support shaft 1e and rotating together with the coupling gear 1c. The coupling gear support shaft 1 e is rotatably supported by the second rotor 14. The coupling gear meshing with the side gear 1b, the coupling gear meshing with the coupling gear 1d, and their support shafts are not shown in FIG. 1, but rotate together with the coupling gear 1c, the coupling gear 1d, and the coupling gear support shaft 1e. A child coupling mechanism is constructed and described later.

番号1fは回転軸11に固定された第一サンギア,番号1kはハウジング12に固定された第一リングギア,番号1pは第一サンギア1f及び第一リングギア1kと噛み合う第一プラネタリーギアをそれぞれ示し,第一プラネタリーギア1pはプラネタリーギア軸1rに回転可能に支持されて第一遊星ギア機構が構成されている。番号1gは第一回転子14に固定された第二サンギア,番号1mはハウジング12に回転可能に支持された第二リングギア,番号1qは第二サンギア1g及び第二リングギア1mと噛み合う第二プラネタリーギアをそれぞれ示し,第二プラネタリーギア1qはプラネタリーギア軸1rに回転可能に支持されて第二遊星ギア機構が構成されている。   Reference numeral 1f denotes a first sun gear fixed to the rotary shaft 11, reference numeral 1k denotes a first ring gear fixed to the housing 12, and reference numeral 1p denotes a first planetary gear that meshes with the first sun gear 1f and the first ring gear 1k. The first planetary gear 1p is rotatably supported on the planetary gear shaft 1r to constitute a first planetary gear mechanism. Reference numeral 1g is a second sun gear fixed to the first rotor 14, reference numeral 1m is a second ring gear rotatably supported by the housing 12, and reference numeral 1q is a second gear meshing with the second sun gear 1g and the second ring gear 1m. Each of the planetary gears is shown, and the second planetary gear 1q is rotatably supported by the planetary gear shaft 1r to constitute a second planetary gear mechanism.

第一プラネタリーギア1p,第二プラネタリーギア1q,プラネタリーギア軸1rは3組が周方向に配置されてプラネタリーギア軸1rがプラネタリーギアキャリヤ1tに支持されている。番号1sはウオームギアを示し,第二リングギア1m側面に刻まれたギアと噛み合うよう構成されている。更にウオームギア1sは図示されていないアクチュエータにより回転駆動可能に接続されている。第一サンギア1fと第二サンギア1g,第一リングギア1kと第二リングギア1m,第一プラネタリーギア1pと第二プラネタリーギア1qそれぞれ同じ仕様のギアであり,上記二組の遊星ギア機構及びウオームギア1s,図示されていないアクチュエータは回転子位置制御手段を構成している。   Three sets of the first planetary gear 1p, the second planetary gear 1q, and the planetary gear shaft 1r are arranged in the circumferential direction, and the planetary gear shaft 1r is supported by the planetary gear carrier 1t. Reference numeral 1s denotes a worm gear, which is configured to mesh with a gear carved on the side surface of the second ring gear 1m. Further, the worm gear 1s is connected to be rotatable by an actuator (not shown). The first sun gear 1f and the second sun gear 1g, the first ring gear 1k and the second ring gear 1m, the first planetary gear 1p and the second planetary gear 1q have the same specifications, and the two planetary gear mechanisms described above. The worm gear 1s and the actuator (not shown) constitute rotor position control means.

図2は図1に示された回転電機装置のA−A’に沿う断面図であり,電機子及び第二回転子15の断面を示す。電機子コア17はケイ素鋼板を積層して構成され,電機子コイル19が巻回されている。電機子コイル19は12個配置され,8ポールの回転子磁極と組み合わせて8ポール12スロット構成となるよう結線されている。他の構成,例えば8ポール12スロット相当の分布巻,8ポール9スロット,10ポール12スロット等を用いても本発明を構成する事は出来る。   FIG. 2 is a cross-sectional view taken along A-A ′ of the rotating electrical machine apparatus shown in FIG. 1, and shows a cross section of the armature and the second rotor 15. The armature core 17 is formed by laminating silicon steel plates, and an armature coil 19 is wound around the armature core 17. Twelve armature coils 19 are arranged and connected to form an 8-pole 12-slot structure in combination with an 8-pole rotor magnetic pole. The present invention can also be configured by using other configurations, for example, distributed winding corresponding to 8 poles and 12 slots, 8 poles and 9 slots, 10 poles and 12 slots.

第二回転子15は第二回転子サポート25,その外周に配置された磁極部とで構成されている。磁極部はマグネットトルクとリラクタンストルクが得られるよう永久磁石が磁性体中に埋め込まれている。すなわち,積層して構成された回転子コア22のスロットに永久磁石21が挿入されて回転子の磁極部が構成されている。番号23は永久磁石21の磁化方向を示し,周方向に交互に極性が反転した8個の磁気的突極(8ポール)が配置されている。第二回転子サポート25は非磁性のステンレススチールで構成されて回転軸11に変位可能に保持されている。3組の互いに噛み合うカップリングギア1d,カップリングギア26が第二回転子サポート25内に配置されている。カップリングギア26と共に回転するカップリングギア支持軸27はカップリングギア支持軸1eと同様に第二回転子サポート25に回転可能に支持されている。   The 2nd rotor 15 is comprised by the 2nd rotor support 25 and the magnetic pole part arrange | positioned on the outer periphery. In the magnetic pole portion, a permanent magnet is embedded in the magnetic body so that magnet torque and reluctance torque can be obtained. That is, the magnetic pole part of the rotor is configured by inserting the permanent magnet 21 into the slot of the rotor core 22 formed by stacking. Reference numeral 23 indicates the magnetization direction of the permanent magnet 21, and eight magnetic salient poles (8 poles) whose polarities are alternately reversed in the circumferential direction are arranged. The second rotor support 25 is made of nonmagnetic stainless steel and is held on the rotary shaft 11 so as to be displaceable. Three sets of coupling gears 1 d and coupling gears 26 that mesh with each other are arranged in the second rotor support 25. The coupling gear support shaft 27 that rotates together with the coupling gear 26 is rotatably supported by the second rotor support 25 in the same manner as the coupling gear support shaft 1e.

図3は第一回転子14を第二回転子15側から見た平面図であり,磁極部はケイ素鋼板を積層して構成された回転子コア32,永久磁石31とより構成され,矢印33は永久磁石の磁化方向を示し,周方向に交互に極性が反転した8個の磁気的突極(8ポール)が配置されている。番号34は永久磁石31の飛散を防ぐ為の円筒状外皮であり,非磁性のステンレススチールで構成されている。リラクタンストルクが存在し難いよう表面磁石構成であるが,誘起電圧波形が正弦波に近くなるよう一つの磁極を構成する永久磁石が3分割して構成されている。磁極中心部より磁極周辺部に於ける永久磁石密度を平均的に小としたが,磁極周辺部に於いて残留磁束密度の小さい永久磁石を配置しても同様の効果が得られる。   FIG. 3 is a plan view of the first rotor 14 as viewed from the second rotor 15 side. The magnetic pole portion is composed of a rotor core 32 and a permanent magnet 31 formed by laminating silicon steel plates. Indicates the magnetization direction of the permanent magnet, and eight magnetic salient poles (8 poles) whose polarities are alternately reversed in the circumferential direction are arranged. Reference numeral 34 denotes a cylindrical outer shell for preventing the permanent magnet 31 from scattering, and is made of nonmagnetic stainless steel. The surface magnet configuration is such that reluctance torque is unlikely to exist, but the permanent magnet that constitutes one magnetic pole is divided into three so that the induced voltage waveform is close to a sine wave. Although the permanent magnet density in the magnetic pole periphery is smaller than the magnetic pole center on average, the same effect can be obtained by arranging a permanent magnet having a small residual magnetic flux density in the magnetic pole periphery.

第一回転子サポート35にサイドギア1aが配置され,サイドギア1a内周面にはカップリングギア1cと噛み合うギア36が刻まれている。図1に縦断面図が示されるように第三回転子16側面に配置されているサイドギア1bはサイドギア1aと同じ形状である。第三回転子16の磁極構成も第一回転子14と同じである。   A side gear 1a is disposed on the first rotor support 35, and a gear 36 that meshes with the coupling gear 1c is carved on the inner peripheral surface of the side gear 1a. As shown in the longitudinal sectional view of FIG. 1, the side gear 1b arranged on the side surface of the third rotor 16 has the same shape as the side gear 1a. The magnetic pole configuration of the third rotor 16 is the same as that of the first rotor 14.

図4は回転子結合機構を説明する為の斜視図であり,図1,2,3に一部の部材が示された回転子結合機構が組み合わされ,モデル的に示されている。カップリングギア支持軸1e及びカップリングギア支持軸27は第二回転子15に回転可能に支持され,カップリングギア支持軸1eにはカップリングギア1c,1dが固定され,カップリングギア支持軸27にはカップリングギア26,41が固定されている。カップリングギア1d,カップリングギア26は互いに噛み合うよう配置されている。カップリングギア1cはサイドギア1a内周面に刻まれたギア36と噛み合い,カップリングギア41はサイドギア1b内周面に刻まれたギアと噛み合うよう構成されている。   FIG. 4 is a perspective view for explaining the rotor coupling mechanism, and the rotor coupling mechanism in which some members are shown in FIGS. The coupling gear support shaft 1e and the coupling gear support shaft 27 are rotatably supported by the second rotor 15, and coupling gears 1c and 1d are fixed to the coupling gear support shaft 1e. Coupling gears 26 and 41 are fixed to each other. The coupling gear 1d and the coupling gear 26 are arranged to mesh with each other. The coupling gear 1c is configured to mesh with the gear 36 carved on the inner peripheral surface of the side gear 1a, and the coupling gear 41 is configured to mesh with the gear carved on the inner peripheral surface of the side gear 1b.

カップリングギア1c,1d,26,41,カップリングギア支持軸1e,27等で構成され,周方向に3組配置されたカップリングギア群が第一回転子14のサイドギア1aと第三回転子16のサイドギア1bと結合され,カップリングギア1d,カップリングギア26は互いに逆方向に回転するので第一回転子14,第三回転子16の何れか一方が第二回転子15に対して周方向に変位すれば他方は逆の周方向に変位する構造である。本実施例では第三回転子16が回転軸11に固定され,第一回転子14,第二回転子15が第三回転子16及び回転軸11に対して同じ周方向に変位可能に構成されているので第三回転子16−第二回転子15間,第三回転子16−第一回転子14間の周方向間隔は1:2に保たれて第一回転子14,第二回転子15が第三回転子16に対して変位させられる。   Coupling gears 1c, 1d, 26, 41, coupling gear support shafts 1e, 27, etc., and three sets of coupling gears arranged in the circumferential direction are the side gear 1a of the first rotor 14 and the third rotor. Since the coupling gear 1d and the coupling gear 26 rotate in opposite directions to each other, one of the first rotor 14 and the third rotor 16 rotates with respect to the second rotor 15. When displaced in the direction, the other is displaced in the opposite circumferential direction. In the present embodiment, the third rotor 16 is fixed to the rotating shaft 11, and the first rotor 14 and the second rotor 15 are configured to be displaceable in the same circumferential direction with respect to the third rotor 16 and the rotating shaft 11. Therefore, the circumferential intervals between the third rotor 16 and the second rotor 15 and between the third rotor 16 and the first rotor 14 are maintained at 1: 2, and the first rotor 14 and the second rotor are maintained. 15 is displaced relative to the third rotor 16.

図5は図1に示された回転電機装置のB−B’に沿う断面図であり,第一回転子14と結合されている第二遊星ギア機構が示されている。同図に於いて,第二サンギア1gは図示されていない第一回転子14に固定され,周方向に3個配置されている第二プラネタリーギア1qと噛み合い,第二プラネタリーギア1qは第二リングギア1mと噛み合うよう構成されている。更に3個の第二プラネタリーギア1qのプラネタリーギア軸1rは図1に示されたプラネタリーギアキャリヤ1tに支持されている。第二リングギア1mはハウジング12に対しては変位可能であり,更に図示していないアクチュエータにより回転可能に構成されている。回転軸11に配置された第一遊星ギア機構は第一リングギア1kがハウジング12に固定されている事を除いて同じ構成であり,説明は省略される。   FIG. 5 is a cross-sectional view taken along the line B-B ′ of the rotating electrical machine apparatus shown in FIG. 1, showing a second planetary gear mechanism coupled to the first rotor 14. In the figure, a second sun gear 1g is fixed to a first rotor 14 (not shown) and meshes with two second planetary gears 1q arranged in the circumferential direction. The second planetary gear 1q is a first planetary gear 1q. It is configured to mesh with the two ring gear 1m. Further, the planetary gear shafts 1r of the three second planetary gears 1q are supported by the planetary gear carrier 1t shown in FIG. The second ring gear 1m can be displaced with respect to the housing 12, and can be rotated by an actuator (not shown). The first planetary gear mechanism arranged on the rotating shaft 11 has the same configuration except that the first ring gear 1k is fixed to the housing 12, and the description thereof is omitted.

図5に於いて,番号51の矢印は第二サンギア1gの回転方向を示し,番号52の矢印は第二プラネタリーギア1qの回転方向を示し,番号53の矢印はプラネタリーギア軸1rの回転方向を示す。第二リングギア1mが静止している状態で,第二サンギア1gが矢印51の方向に回転すると,第二プラネタリーギア1qは矢印52の方向に回転し,プラネタリーギア軸1r及びプラネタリーギアキャリヤ1tは矢印53の方向に回転される。第一遊星ギア機構と第二遊星ギア機構とは同じ構成であり,プラネタリーギア軸1rを共有しているので第一回転子14,回転軸11,第三回転子16は同じ回転数で回転する。第二回転子15も回転子結合機構により第一回転子14,第三回転子16と結合されているので同じ回転数で回転する。プラネタリーギアキャリヤ1tは回転軸11の減速された出力として取り出す事は可能である。   In FIG. 5, the arrow 51 indicates the rotation direction of the second sun gear 1g, the arrow 52 indicates the rotation direction of the second planetary gear 1q, and the arrow 53 indicates the rotation of the planetary gear shaft 1r. Indicates direction. When the second sun gear 1g rotates in the direction of the arrow 51 while the second ring gear 1m is stationary, the second planetary gear 1q rotates in the direction of the arrow 52, and the planetary gear shaft 1r and the planetary gear are rotated. The carrier 1t is rotated in the direction of the arrow 53. Since the first planetary gear mechanism and the second planetary gear mechanism have the same configuration and share the planetary gear shaft 1r, the first rotor 14, the rotating shaft 11, and the third rotor 16 rotate at the same rotational speed. To do. Since the second rotor 15 is also coupled to the first rotor 14 and the third rotor 16 by the rotor coupling mechanism, the second rotor 15 rotates at the same rotational speed. The planetary gear carrier 1t can be taken out as a decelerated output of the rotary shaft 11.

第二リングギア1mが回転子の回転方向(矢印51と同じ方向)に外部のアクチュエータにより回転させられると,プラネタリーギア軸1rは矢印53の方向への回転速度を変更し難いので第二プラネタリーギア1qの回転速度が遅くなり,第二サンギア1gの回転速度が遅くなる。したがって第一回転子14が第三回転子16に対して矢印51と逆方向(回転子の回転方向とは逆方向)に相対的に変位させられる。第二リングギア1mが外部のアクチュエータにより回転子の回転方向とは逆方向に回転させられると第一回転子14が第三回転子16に対して矢印51と同じ方向(回転子の回転方向と同じ方向)に相対的に変位させられる。第二回転子15も回転子結合機構により第一回転子14,第三回転子16と結合されているので常に両者の中間に位置するよう変位させられる。   When the second ring gear 1m is rotated by the external actuator in the rotation direction of the rotor (the same direction as the arrow 51), the planetary gear shaft 1r is difficult to change the rotation speed in the direction of the arrow 53. The rotational speed of the Lee gear 1q is decreased, and the rotational speed of the second sun gear 1g is decreased. Accordingly, the first rotor 14 is displaced relative to the third rotor 16 in the direction opposite to the arrow 51 (the direction opposite to the rotation direction of the rotor). When the second ring gear 1m is rotated in the direction opposite to the rotation direction of the rotor by an external actuator, the first rotor 14 is in the same direction as the arrow 51 with respect to the third rotor 16 (the rotation direction of the rotor). In the same direction). Since the second rotor 15 is also coupled to the first rotor 14 and the third rotor 16 by the rotor coupling mechanism, the second rotor 15 is always displaced so as to be positioned between the two.

図6は第三回転子16に対する第一回転子14の周方向変位を規制する為のストッパー構造を示す。図6(a)は第一サンギア1fを第二サンギア1g側から見た平面図,図6(b)は第二サンギア1gを第一サンギア1f側から見た平面図である。番号61は第一サンギア1f側面に設けられた凹部を示し,この凹部61に第一回転子サポート31側面に配置されたピン62が勘合するよう構成されている。番号63は回転軸11の回転方向を示している。ピン62は第一回転子サポート31側面に配置されるが,ピン62は凹部61との関係を明確にする為に図6(a)内に示されている。図6(a)でピン62は凹部61内の端部に存在し,誘起電圧抑圧比が1.0から0.1の範囲に留まるようピン62は凹部61内を機械角で65度,電気角で260度だけ回転方向63に移動できるよう設定されている。すなわち,第一回転子14が第三回転子16に対して回転方向に電気角で260度相対変位可能に構成されている。   FIG. 6 shows a stopper structure for restricting the circumferential displacement of the first rotor 14 relative to the third rotor 16. 6A is a plan view of the first sun gear 1f viewed from the second sun gear 1g side, and FIG. 6B is a plan view of the second sun gear 1g viewed from the first sun gear 1f side. Reference numeral 61 denotes a recess provided on the side surface of the first sun gear 1 f, and the pin 62 disposed on the side surface of the first rotor support 31 is configured to engage with the recess 61. Reference numeral 63 indicates the direction of rotation of the rotary shaft 11. The pin 62 is disposed on the side surface of the first rotor support 31. The pin 62 is shown in FIG. 6A in order to clarify the relationship with the recess 61. In FIG. 6A, the pin 62 exists at the end in the recess 61, and the pin 62 has a mechanical angle of 65 degrees in the recess 61 so that the induced voltage suppression ratio remains in the range of 1.0 to 0.1. The angle is set so that it can move in the rotation direction 63 by 260 degrees. That is, the first rotor 14 is configured to be capable of relative displacement with respect to the third rotor 16 by an electrical angle of 260 degrees in the rotation direction.

図1から図6までを用いて実施例1の回転電機装置の構成が説明された。本実施例に於いて,中間の回転子である第二回転子15はマグネットトルクとリラクタンストルクとが利用可能である。駆動電流は第二回転子15の磁気的突極と電機子コイル19とが正対した位置を基準に極性を切り替えられるが,駆動電流の位相を進めた位置(例えば電気角で20度程度)で第二回転子15の発生トルクは最大になる。これは第一回転子14,第三回転子16の発生トルクが最大となる条件と異なるので合成トルクが最大となる電気角だけ進角させて駆動電流を電機子コイルに供給する,或いは変位回転子の基準位置を第二回転子15,第一回転子14,第三回転子16それぞれのトルクが最大になる位置に設定する事は可能である。   The configuration of the rotating electrical machine apparatus according to the first embodiment has been described with reference to FIGS. 1 to 6. In the present embodiment, magnet torque and reluctance torque can be used for the second rotor 15 which is an intermediate rotor. The polarity of the drive current can be switched with reference to the position where the magnetic salient pole of the second rotor 15 and the armature coil 19 face each other, but the position where the phase of the drive current is advanced (for example, about 20 degrees in electrical angle) Thus, the torque generated by the second rotor 15 is maximized. This is different from the conditions in which the generated torque of the first rotor 14 and the third rotor 16 is maximized, so that the drive current is supplied to the armature coil by advancing by the electrical angle at which the combined torque is maximized, or the displacement rotation is performed. It is possible to set the reference position of the child to a position where the torque of each of the second rotor 15, the first rotor 14, and the third rotor 16 is maximized.

回転子の回転駆動には電機コイル19内の一つの電機子コイルと第二回転子15の磁極との相対位置を基準に駆動電流極性が切り替えられるので第一回転子14,第三回転子16は第二回転子15に対して位相が進み或いは遅れた駆動電流により回転駆動される事と等価である。本実施例では両軸端にある第一回転子14,第三回転子16では永久磁石21が表面に配置され,回転子外周に沿う磁気抵抗はほぼ均一であるのでリラクタンストルクは発生し難く,変位回転子の各変位量に於いて第一回転子14,第三回転子16の発生トルクはほぼ等しい。   Since the drive current polarity is switched based on the relative position between one armature coil in the electric coil 19 and the magnetic pole of the second rotor 15 for the rotation of the rotor, the first rotor 14 and the third rotor 16 are switched. Is equivalent to being driven to rotate by a drive current whose phase is advanced or delayed with respect to the second rotor 15. In this embodiment, permanent magnets 21 are arranged on the surface of the first rotor 14 and the third rotor 16 at both shaft ends, and the reluctance torque is hardly generated because the magnetic resistance along the outer periphery of the rotor is almost uniform. The generated torques of the first rotor 14 and the third rotor 16 are substantially equal at each displacement amount of the displacement rotor.

図1から図6までを用いて実施例1の回転電機装置の構成及び第一回転子14,第二回転子15を第三回転子16に対して周方向に変位可能である事を示した。本実施例に於いて,第三回転子16−第二回転子15間,第三回転子16−第一回転子14間の周方向間隔は1:2に保たれるが,これは第一回転子14,第三回転子16を第二回転子15に対して互いに逆の周方向に相対変位させる事と同じであり,電機子コイル19への誘起電圧振幅を制御出来る動作原理が以下に説明される。図7は第一回転子14,第二回転子15,第三回転子16の相対的位置関係が理解されやすいようにモデル的に示された図であって,図7(a)は斜視図を,図7(b)は平面図をそれぞれ示している。   The configuration of the rotating electrical machine apparatus according to the first embodiment and that the first rotor 14 and the second rotor 15 can be displaced in the circumferential direction with respect to the third rotor 16 by using FIGS. 1 to 6. . In the present embodiment, the circumferential intervals between the third rotor 16 and the second rotor 15 and between the third rotor 16 and the first rotor 14 are maintained at 1: 2, which is This is the same as the relative displacement of the rotor 14 and the third rotor 16 in the opposite circumferential directions with respect to the second rotor 15, and the operation principle that can control the induced voltage amplitude to the armature coil 19 is as follows. Explained. FIG. 7 is a model diagram so that the relative positional relationship among the first rotor 14, the second rotor 15, and the third rotor 16 can be easily understood, and FIG. 7A is a perspective view. FIG. 7B is a plan view.

図7(a)は3つの回転子が第一回転子14,第二回転子15,第三回転子16の順に軸方向に並び,第一回転子14と第三回転子16が矢印71,72で示されるように第二回転子15に対して互いに逆の周方向に相対変位させられる状態をモデル的に示す。更にこれを回転軸11側から見た図が図7(b)である。回転子内の一つの磁極に着目して番号73は第二回転子15の磁極位置を,番号74は変位した第一回転子14の磁極位置を,番号75は変位した第三回転子16の磁極位置をそれぞれ示す。番号76,77は第一回転子14,第三回転子16の相対変位量を示すが,本実施例でそれら相対変位量は等しく設定されている。番号63は回転子全体の回転方向を示す。   7A, three rotors are arranged in the axial direction in the order of the first rotor 14, the second rotor 15, and the third rotor 16, and the first rotor 14 and the third rotor 16 are indicated by arrows 71, A state in which the second rotor 15 is relatively displaced in the circumferential direction opposite to each other as indicated by 72 is schematically shown. Further, FIG. 7B is a view of this as viewed from the rotating shaft 11 side. Focusing on one magnetic pole in the rotor, number 73 indicates the magnetic pole position of the second rotor 15, number 74 indicates the magnetic pole position of the displaced first rotor 14, and number 75 indicates the position of the displaced third rotor 16. Each magnetic pole position is shown. Reference numerals 76 and 77 indicate the relative displacement amounts of the first rotor 14 and the third rotor 16. In the present embodiment, these relative displacement amounts are set equal. Number 63 indicates the direction of rotation of the entire rotor.

ωを回転角周波数,tを時間,変位量76,77を電気角2θとすると,第二回転子15,第一回転子14,第三回転子16から電機子コイル19への誘起電圧はそれぞれSinωt,Sin(ωt+2θ),Sin(ωt−2θ)に比例する。第一回転子14,第二回転子15,第三回転子16から誘起電圧振幅への寄与する比をq:p:qとすると,誘起電圧は(4*q*Cosθ*Cosθ+p−2*q)*Sinωtと表される。本実施例で第一回転子14,第二回転子15,第三回転子16から誘起電圧振幅への寄与する比は3:4:3であり,最大振幅を1.0に正規化して合成された誘起電圧振幅は1.2*Cosθ*Cosθ−0.2である。   When ω is the rotational angular frequency, t is time, and the displacements 76 and 77 are the electrical angle 2θ, the induced voltages from the second rotor 15, the first rotor 14, and the third rotor 16 to the armature coil 19 are respectively It is proportional to Sinωt, Sin (ωt + 2θ), Sin (ωt−2θ). If the ratio of contribution from the first rotor 14, the second rotor 15, and the third rotor 16 to the induced voltage amplitude is q: p: q, the induced voltage is (4 * q * Cosθ * Cosθ + p-2 * q). ) * Sinωt. In this embodiment, the ratio of contribution from the first rotor 14, the second rotor 15, and the third rotor 16 to the induced voltage amplitude is 3: 4: 3, and the maximum amplitude is normalized to 1.0 and synthesized. The induced voltage amplitude is 1.2 * Cosθ * Cosθ−0.2.

したがって,図1に示された本実施例の回転電機装置は図示されていない制御装置により,電機子コイル19に誘起される誘起電圧が所定の値より大の時には図示していないアクチュエータ,ウオームギア1sを介して第二リングギア1mを回転子の回転方向と逆方向(矢印51と逆方向)に変位させると第三回転子16に対する第一回転子14,第二回転子15の相対変位量を大にさせて誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。   Therefore, the rotating electrical machine apparatus of the present embodiment shown in FIG. 1 is not shown in the figure, when the induced voltage induced in the armature coil 19 is larger than a predetermined value by the control device (not shown), the actuator and worm gear 1s not shown. When the second ring gear 1m is displaced in the direction opposite to the rotation direction of the rotor (the direction opposite to the arrow 51) via the, the relative displacement amounts of the first rotor 14 and the second rotor 15 with respect to the third rotor 16 are changed. The induced voltage is reduced by increasing it, and the margin of the power supply voltage with respect to the induced voltage is increased so that it can be driven at high speed.

誘起電圧が所定の値より小の時には図示していないアクチュエータ,ウオームギア1sを介して第二リングギア1mを回転子の回転方向(矢印51)に変位させると第三回転子16に対する第一回転子14,第二回転子15の相対変位量を小にさせて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。   When the induced voltage is smaller than a predetermined value, when the second ring gear 1m is displaced in the rotation direction of the rotor (arrow 51) via an actuator (not shown) and the worm gear 1s, the first rotor with respect to the third rotor 16 is used. 14. Reduce the relative displacement of the second rotor 15 to increase the induced voltage and increase the torque for driving the rotor.

本発明の特徴を示す為に,回転子を2分割し,一方を他方に対して周方向に変位させる従来構造の回転電機装置と比較される。図8(a)にモデル的に斜視図を示すように二つに分割された一方の回転子82が他方の回転子81に対して変位される。番号83は変位の方向を示す。図8(b)は回転軸側から見た図であり,回転子内の一つの磁極に着目して番号84は回転子81の磁極位置を,番号85は回転子82の磁極位置をそれぞれ示す。番号87は変位量を,番号86は合成磁極の位置をそれぞれ示している。   In order to show the feature of the present invention, it is compared with a rotating electrical machine apparatus having a conventional structure in which the rotor is divided into two parts and one is displaced in the circumferential direction with respect to the other. As shown in a model perspective view in FIG. 8A, one rotor 82 divided into two is displaced with respect to the other rotor 81. Number 83 indicates the direction of displacement. FIG. 8B is a view as seen from the rotating shaft side, focusing on one magnetic pole in the rotor, number 84 indicates the magnetic pole position of the rotor 81, and number 85 indicates the magnetic pole position of the rotor 82. . Reference numeral 87 indicates the amount of displacement, and reference numeral 86 indicates the position of the composite magnetic pole.

合成磁極の位置86を基準にして回転子81,回転子82から電機子コイルへの誘起電圧はそれぞれSin(ωt−θ),Sin(ωt+θ)に比例する。回転子81,回転子82の軸長は等しいとして最大振幅を1.0に正規化すると,誘起電圧は(Sin(ωt−θ)+Sin(ωt+θ))/2と表される。この表現式はCosθ*Sinωtと変形され,回転子81に対する回転子82の変位量を2θとして誘起電圧振幅はCosθに比例する。   The induced voltages from the rotor 81 and the rotor 82 to the armature coil with respect to the position 86 of the composite magnetic pole are proportional to Sin (ωt−θ) and Sin (ωt + θ), respectively. When the axial lengths of the rotor 81 and the rotor 82 are equal and the maximum amplitude is normalized to 1.0, the induced voltage is expressed as (Sin (ωt−θ) + Sin (ωt + θ)) / 2. This expression is modified as Cos θ * Sin ωt, and the induced voltage amplitude is proportional to Cos θ, where the displacement amount of the rotor 82 relative to the rotor 81 is 2θ.

従来構造と対比して本発明の回転電機装置の特徴は図9を参照して説明される。図9に於いて,縦軸95は変位量2θがゼロの最大振幅を1.0に正規化して誘起電圧振幅を表し,横軸96は変位量2θを電気角で0から180度まで示している。番号93は本実施例の誘起電圧振幅を,番号92は回転子81,回転子82の軸長を等しく構成した従来構造での誘起電圧振幅をそれぞれ示す。   The features of the rotating electrical machine apparatus of the present invention as compared with the conventional structure will be described with reference to FIG. In FIG. 9, the vertical axis 95 represents the induced voltage amplitude by normalizing the maximum amplitude at which the displacement 2θ is zero to 1.0, and the horizontal axis 96 represents the displacement 2θ from 0 to 180 degrees in electrical angle. Yes. Reference numeral 93 represents the induced voltage amplitude of the present embodiment, and reference numeral 92 represents the induced voltage amplitude in the conventional structure in which the axial lengths of the rotor 81 and the rotor 82 are configured to be equal.

図9から明かな事は,誘起電圧振幅92は変位量2θが90度程度までの小さい領域ではなかなか誘起電圧振幅を減少させる事が出来ないという点である。本実施例による誘起電圧振幅93は比較的小さい変位量2θの領域から減少する。本実施例では第一回転子14,第二回転子15,第三回転子16の軸長の比は3:4:3としたが,このように第一回転子14,第二回転子15,第三回転子16から誘起電圧振幅への寄与度合いが3:4:3となる構成を343構成と称し,軸長比を変え,或いは各回転子から誘起電圧振幅への寄与度合いを変えて誘起電圧対変位量の特性を変える事が可能である。例えば,121構成では,誘起電圧振幅はCosθ*Cosθとなり,番号91で示される。また更に212構成では1.6*Cosθ*Cosθ−0.6となり,番号94で示される。   It is clear from FIG. 9 that the induced voltage amplitude 92 cannot be reduced easily in a region where the displacement 2θ is as small as about 90 degrees. The induced voltage amplitude 93 according to the present embodiment decreases from the region of the relatively small displacement 2θ. In this embodiment, the ratio of the axial lengths of the first rotor 14, the second rotor 15, and the third rotor 16 is 3: 4: 3. The configuration in which the degree of contribution from the third rotor 16 to the induced voltage amplitude is 3: 4: 3 is referred to as a 343 configuration, and the axial length ratio is changed, or the degree of contribution from each rotor to the induced voltage amplitude is changed. It is possible to change the characteristics of induced voltage versus displacement. For example, in the 121 configuration, the induced voltage amplitude is Cosθ * Cosθ, which is indicated by reference numeral 91. Further, in the 212 configuration, 1.6 * Cosθ * Cosθ−0.6, which is indicated by the number 94.

誘起電圧を抑圧しない条件での最高回転速度を基底回転速度とし,実用的に可能な誘起電圧抑圧比で駆動可能な回転速度が決まるとシンプルに考え,誘起電圧振幅が0.1となる変位量2θで比較する。番号97を付された直線は0.1の誘起電圧振幅を示し,直線97と誘起電圧振幅91,92,93,94とが交叉する点の変位量2θはそれぞれおおよそ143度,169度,120度,97度である。従来構造では180度に近く,変位量の余裕が殆ど無いが,本発明による回転電機装置の誘起電圧振幅91,93,94では180度までかなり余裕がある。すなわち,本発明によれば,実現できる変位量2θの範囲で誘起電圧振幅を0.1まで減少させる事が出来る。表現を変えれば,基底回転速度の10倍以上の広い回転速度範囲の回転電機装置が実現される。   The maximum amount of rotation under the condition where the induced voltage is not suppressed is set as the base rotation rate, and the amount of displacement with which the induced voltage amplitude is 0.1 is simply considered when the driveable rotation speed is determined by the practically possible induced voltage suppression ratio. Compare with 2θ. A straight line numbered 97 indicates an induced voltage amplitude of 0.1, and displacements 2θ at points where the straight line 97 intersects the induced voltage amplitudes 91, 92, 93, and 94 are approximately 143 degrees, 169 degrees, and 120, respectively. It is 97 degrees. In the conventional structure, it is close to 180 degrees and there is almost no margin of displacement, but the induced voltage amplitudes 91, 93 and 94 of the rotating electrical machine apparatus according to the present invention have a considerable margin up to 180 degrees. That is, according to the present invention, the induced voltage amplitude can be reduced to 0.1 within the range of the displacement amount 2θ that can be realized. In other words, a rotating electrical apparatus having a wide rotational speed range that is 10 times or more the base rotational speed is realized.

更に本発明の特徴が図10により説明される。図10は回転子変位と磁極の関係を示す図であり,第二回転子15内の磁極に着目して隣接磁極が第一回転子14,第三回転子16の周方向変位に伴ってどのように変わるかをモデル的に示す斜視図である。図10(a)は2θが電気角で45度,図10(b)は2θが90度,図10(c)は2θが135度である場合をそれぞれ示している。番号101は第二回転子15内のN極を,番号102,103は第二回転子15内で隣接するS極をそれぞれ示している。   Further features of the present invention are illustrated by FIG. FIG. 10 is a diagram showing the relationship between the rotor displacement and the magnetic poles, and paying attention to the magnetic poles in the second rotor 15, the adjacent magnetic poles change with the circumferential displacement of the first rotor 14 and the third rotor 16. It is a perspective view which shows in model how it changes. 10A shows a case where 2θ is an electrical angle of 45 degrees, FIG. 10B shows a case where 2θ is 90 degrees, and FIG. 10C shows a case where 2θ is 135 degrees. Reference numeral 101 denotes an N pole in the second rotor 15, and reference numerals 102 and 103 denote adjacent S poles in the second rotor 15.

番号104,105は2θが0度では第二回転子15内のN極101と同じ周方向位置にある第一回転子14,第三回転子16内のN極をそれぞれ示している。番号107は2θが0度では第二回転子15内のS極102と同じ周方向位置にある第三回転子16内のS極を,番号106は2θが0度では第二回転子15内のS極103と同じ周方向位置にある第一回転子14内のS極をそれぞれ示している。番号108は第一回転子14の変位方向,番号109は第三回転子16の変位方向をそれぞれ示す。   Numbers 104 and 105 respectively indicate N poles in the first rotor 14 and the third rotor 16 at the same circumferential position as the N pole 101 in the second rotor 15 when 2θ is 0 degree. No. 107 is the S pole in the third rotor 16 at the same circumferential position as the S pole 102 in the second rotor 15 when 2θ is 0 degrees, and No. 106 is in the second rotor 15 when 2θ is 0 degrees. The S poles in the first rotor 14 at the same circumferential position as the S pole 103 are respectively shown. Reference numeral 108 denotes a displacement direction of the first rotor 14, and reference numeral 109 denotes a displacement direction of the third rotor 16.

変位角2θが45度,90度,135度と大になると,N極101周辺の磁極は図10(a),図10(b),図10(c)と変遷する。注目すべきは図10(b)である。N極104とS極107,N極105とS極106がそれぞれ周方向の同じ位置となる。互いに異なる極性の磁極が軸方向に並んで第一回転子14と第三回転子16とが電機子コア17を介して磁気的に結合する懸念があるが,二つの回転子の軸方向の間に第二回転子15が存在してその懸念は少ない。電機子コア17には回転子の軸方向間隙に対応して非磁性のスペーサ18が配置されて軸方向の磁気抵抗は大きく構成されているので軸方向の磁気抵抗は大きく,第一回転子14と第三回転子16とを磁気的に結合する磁束が存在し難い。   When the displacement angle 2θ becomes as large as 45 degrees, 90 degrees, and 135 degrees, the magnetic poles around the N pole 101 change to FIGS. 10 (a), 10 (b), and 10 (c). It should be noted that FIG. The N pole 104 and the S pole 107, and the N pole 105 and the S pole 106 are at the same position in the circumferential direction. There is a concern that magnetic poles having different polarities are aligned in the axial direction and the first rotor 14 and the third rotor 16 are magnetically coupled via the armature core 17. The second rotor 15 is present and there are few concerns. The armature core 17 is provided with nonmagnetic spacers 18 corresponding to the axial gap of the rotor and has a large axial magnetic resistance. Therefore, the axial magnetic resistance is large, and the first rotor 14 The magnetic flux that magnetically couples the third rotor 16 is unlikely to exist.

更に図10(b)での変位角2θは90度であるが,N極105とN極104間の周方向間隔は180度である。回転子を二分割した従来構造は図10に於いて第二回転子15の軸長がゼロ,すなわちN極101が存在しない場合に相当して図10(b)が制御の限界であり,軸方向に異極同士の磁極が隣接する事になるので磁気吸引力は無視し難い。図9に示されたように従来構造で誘起電圧を大きく減少させようとすると,変位角2θを180度近傍の領域にまで大きくする必要があるが,実現は困難であった。   Further, the displacement angle 2θ in FIG. 10B is 90 degrees, but the circumferential interval between the N pole 105 and the N pole 104 is 180 degrees. The conventional structure in which the rotor is divided into two parts corresponds to the case where the axial length of the second rotor 15 in FIG. 10 is zero, that is, the N pole 101 does not exist, and FIG. Since magnetic poles of different polarities are adjacent to each other in the direction, the magnetic attractive force is difficult to ignore. As shown in FIG. 9, when the induced voltage is to be greatly reduced in the conventional structure, the displacement angle 2θ needs to be increased to a region near 180 degrees, but this is difficult to realize.

更に図10(c)は変位角2θが135度と大になった図であり,N極101には軸方向に隣接する異極のS極106,S極107が近づいている。しかし,図9を用いて説明されたように誘起電圧振幅が0.1となる変位量2θはおおよそ120度であり,第二回転子15と第一回転子14,第三回転子16とが磁気吸引力の為に変位制御不能となる以前の段階で変位を停める事が出来る。更に第二回転子15の誘起電圧振幅への寄与度合いを本実施例より小さくする構成では変位角2θに対する誘起電圧振幅減少率を大にできるので更に磁気吸引力による変位阻害要因を小にできる。上記に説明したように本発明で,回転子それぞれの軸長,磁極構成を最適に選び,第一回転子14,第二回転子15,第三回転子16の順で軸方向に並ぶ構造として異極同士の磁極が軸方向に隣接する事態を起こり難くして,回転子変位を阻害する磁気吸引力は発生し難く出来る。   Further, FIG. 10C is a diagram in which the displacement angle 2θ is as large as 135 degrees, and the N pole 101 is approached by the S pole 106 and the S pole 107 of different polarities adjacent in the axial direction. However, as described with reference to FIG. 9, the displacement 2θ at which the induced voltage amplitude becomes 0.1 is approximately 120 degrees, and the second rotor 15, the first rotor 14, and the third rotor 16 are Displacement can be stopped before the displacement control becomes impossible due to the magnetic attractive force. Further, in the configuration in which the degree of contribution of the second rotor 15 to the induced voltage amplitude is made smaller than in the present embodiment, the rate of decrease of the induced voltage amplitude with respect to the displacement angle 2θ can be increased, so that the displacement inhibition factor due to the magnetic attractive force can be further reduced. As described above, in the present invention, the axial length and magnetic pole configuration of each rotor are optimally selected, and the first rotor 14, the second rotor 15, and the third rotor 16 are arranged in the axial direction in this order. This makes it difficult for the magnetic poles of different poles to be adjacent in the axial direction, and it is difficult to generate a magnetic attractive force that inhibits rotor displacement.

また,電機子コア17に設けられた非磁性のスペーサ18の軸方向長さは隣接回転子間の間隔より小に設定され,電機子コア17の磁性体が隣接回転子間の間隙に張り出しているので回転子内の磁極から隣接回転子間に漏れだした磁束は電機子コア17内の磁性体に流入しやすく,隣接回転子の同極磁極間の斥力は小さく抑えられる。上記説明のように本実施例の構成により隣接回転子の異極同士の磁気結合が大きな障害にならない事で可能にされた対処策であり,本実施例により隣接回転子間の斥力及び吸引力等の磁気力低減が実現される。   The axial length of the nonmagnetic spacer 18 provided in the armature core 17 is set to be smaller than the interval between adjacent rotors, and the magnetic body of the armature core 17 protrudes into the gap between adjacent rotors. Therefore, the magnetic flux leaked from the magnetic poles in the rotor between the adjacent rotors easily flows into the magnetic body in the armature core 17, and the repulsive force between the same-pole magnetic poles of the adjacent rotors can be kept small. As described above, this is a countermeasure that is enabled by the configuration of this embodiment so that magnetic coupling between the different poles of adjacent rotors does not become a major obstacle. Reduction of magnetic force such as is realized.

上記説明のように第一回転子14と第二回転子15が第三回転子16に対して変位される事により電機子コイル19への誘起電圧振幅が制御される事が説明された。本実施例に於いては,第一回転子14の軸長,第二回転子15の軸長,第三回転子16の軸長は比率にして3:4:3に設定されているので軸方向に隣接する回転子間の相対的変位量を電気角で2θとすると,電機子コイルへの誘起電圧振幅は1.2*Cosθ*Cosθ−0.2に比例する。この誘起電圧振幅の極性が逆転するまでが相対的変位量2θの範囲として相対的変位量2θの範囲はゼロから約132度迄である。したがって,第三回転子16に対して第二回転子15の変位範囲はゼロから約132度まで,第一回転子14の変位範囲はゼロから約264度までである。第一回転子14の変位範囲はゼロから260度までとなるようストッパーが配置されている。   It has been described that the induced voltage amplitude to the armature coil 19 is controlled by the displacement of the first rotor 14 and the second rotor 15 with respect to the third rotor 16 as described above. In the present embodiment, the axial length of the first rotor 14, the axial length of the second rotor 15, and the axial length of the third rotor 16 are set at a ratio of 3: 4: 3. If the relative displacement between the rotors adjacent in the direction is 2θ in electrical angle, the induced voltage amplitude to the armature coil is proportional to 1.2 * Cosθ * Cosθ−0.2. Until the polarity of the induced voltage amplitude is reversed, the range of the relative displacement 2θ ranges from zero to about 132 degrees. Therefore, the displacement range of the second rotor 15 with respect to the third rotor 16 is from zero to about 132 degrees, and the displacement range of the first rotor 14 is from zero to about 264 degrees. The stopper is arranged so that the displacement range of the first rotor 14 is from zero to 260 degrees.

以上の説明に於いて,誘起電圧の検出について特に説明はしなかったが,第一回転子14,第二回転子15の相対的変位量を知る上で誘起電圧振幅は重要なパラメータであり,誘起電圧振幅を常時把握する事は重要である。誘起電圧振幅と回転速度とを知れば,予め記憶してあるデータマップから第一回転子14,第二回転子15の第三回転子16に対する相対変位量を知る事が出来,駆動電流に対する回転駆動力を知り,更に次の制御への方向性を判断できる。   In the above description, the detection of the induced voltage has not been particularly described. However, the induced voltage amplitude is an important parameter for knowing the relative displacement amount of the first rotor 14 and the second rotor 15. It is important to keep track of the induced voltage amplitude at all times. If the induced voltage amplitude and the rotational speed are known, the relative displacement of the first rotor 14 and the second rotor 15 with respect to the third rotor 16 can be known from a previously stored data map, and the rotation with respect to the drive current can be determined. Knowing the driving force, you can also determine the direction to the next control.

以上,図1から図10に示した回転電機装置に於いて,第一回転子14,第二回転子15を第三回転子16に対して変位させる事で電機子コイル19への誘起電圧を制御できることを説明した。しかしながら,回転子の少なからぬ質量,本発明で軽減されたとしても残存する回転子間の磁気力等は第一回転子14,第二回転子15の速やかなる変位を阻害する要因である。本発明ではこの課題への解決策も提供し,小出力のアクチュエータにより第二リングギア1mを変位させる事で迅速に第一回転子14,第二回転子15を変位させる事が出来る。   As described above, in the rotating electrical machine apparatus shown in FIGS. 1 to 10, the induced voltage to the armature coil 19 is increased by displacing the first rotor 14 and the second rotor 15 with respect to the third rotor 16. Explained that it can be controlled. However, the considerable mass of the rotor and the magnetic force between the remaining rotors even if reduced by the present invention are factors that inhibit the rapid displacement of the first rotor 14 and the second rotor 15. In the present invention, a solution to this problem is also provided, and the first rotor 14 and the second rotor 15 can be quickly displaced by displacing the second ring gear 1m with a small output actuator.

すなわち,回転子の増速中に第二リングギア1mが外部のアクチュエータにより矢印51と逆方向に回転させられると,第二リングギア1mを介したアクチュエータの作用力に回転駆動力が加わって第一回転子14の回転方向前方への変位が早められる。更に電機子コイル19から電力が引き出される回生制動中に第二リングギア1mが外部のアクチュエータにより矢印51と同じ方向に回転させられると,第一回転子14はアクチュエータの作用力に回生制動力も加わって回転方向と逆方向への変位が早められる。このように本発明によれば,前記アクチュエータを小型・小出力タイプを採用出来る。   That is, when the second ring gear 1m is rotated in the direction opposite to the arrow 51 by the external actuator during the speed increase of the rotor, the rotational driving force is added to the acting force of the actuator via the second ring gear 1m. The forward displacement of the single rotor 14 in the rotational direction is accelerated. Further, when the second ring gear 1m is rotated in the same direction as the arrow 51 by an external actuator during the regenerative braking in which power is drawn from the armature coil 19, the first rotor 14 has a regenerative braking force in addition to the acting force of the actuator. In addition, the displacement in the direction opposite to the rotation direction is accelerated. Thus, according to the present invention, the actuator can be a small and small output type.

回転子の増速中には第二リングギア1mが矢印51と逆方向への変位圧力を受ける。したがって,矢印51と逆方向に第二リングギア1mを変位させる事は第二リングギア1mをハウジング12に拘束する力,第一回転子14を回転軸11に拘束する力を緩める事と等価である。また,回生制動により回転子の減速中には矢印51方向に第二リングギア1mを変位させる事は第二リングギア1mをハウジング12に拘束する力,第一回転子14を回転軸11に拘束する力を緩める事と等価である。このように第一回転子14を回転軸11に拘束する力を緩めて電機子から回転子に働く力を回転子の変位に利用出来るが,前記拘束力の制御は精密さを必要とする領域がある。   During the speed increase of the rotor, the second ring gear 1 m receives a displacement pressure in the direction opposite to the arrow 51. Therefore, displacing the second ring gear 1m in the direction opposite to the arrow 51 is equivalent to loosening the force that restrains the second ring gear 1m to the housing 12 and the force that restrains the first rotor 14 to the rotating shaft 11. is there. In addition, when the rotor is decelerated by regenerative braking, displacing the second ring gear 1m in the direction of the arrow 51 restricts the second ring gear 1m to the housing 12, and the first rotor 14 to the rotational shaft 11. It is equivalent to loosening the power to do. In this way, the force that acts on the rotor from the armature can be used for the displacement of the rotor by loosening the force that restrains the first rotor 14 to the rotating shaft 11, but the control of the restraining force is an area that requires precision. There is.

図11は電機子コイル19に供給される駆動電流を進角させた場合にリラクタンストルクを有しない回転子が受ける回転駆動力の減少度合いを示す。回転子の磁極が電機子コイル19に正対した時を基準に駆動電流の極性を反転させて回転子を回転駆動させるとしてその時点から駆動電流の切替タイミングをずらすと回転子が受ける回転駆動力は減少する。図11に於いて番号111は駆動電流の進角量に対して変化する回転駆動力を示し,縦軸112は最大値を1.0に正規化された回転駆動力を示し,横軸113は駆動電流の進角量を電気角で表している。負の進角量は遅れの角度を意味する。   FIG. 11 shows the degree of decrease in the rotational driving force received by the rotor having no reluctance torque when the drive current supplied to the armature coil 19 is advanced. Rotation driving force received by the rotor when the drive current switching timing is shifted from that time when the rotor is driven to rotate by reversing the polarity of the drive current with respect to the time when the rotor magnetic pole is directly facing the armature coil 19. Decrease. In FIG. 11, numeral 111 indicates a rotational driving force that changes with respect to the advance amount of the driving current, a vertical axis 112 indicates a rotational driving force normalized to 1.0, and a horizontal axis 113 indicates The advance amount of the drive current is expressed in electrical angle. A negative advance amount means a delay angle.

本実施例に於いて,3個の回転子の合成磁極は中間の第二回転子15の磁極位置と同じであるので回転子を回転駆動中に電機子コイル19を流れる駆動電流は第二回転子15の磁極位置を基準に極性が切り替えられ,第一回転子14,第三回転子16には常に位相が進んだ或いは遅れた駆動電流による回転駆動力が加えられている。注目すべき点は,同図に示されるように進角量が90度より大になった領域であり,回転駆動力の方向が反転する。   In this embodiment, the combined magnetic pole of the three rotors is the same as the magnetic pole position of the intermediate second rotor 15, so that the drive current flowing through the armature coil 19 during the rotation of the rotor is the second rotation. The polarity is switched on the basis of the magnetic pole position of the child 15, and the first rotor 14 and the third rotor 16 are always applied with a rotational driving force by a driving current whose phase is advanced or delayed. The point to be noted is a region where the advance amount is larger than 90 degrees as shown in the figure, and the direction of the rotational driving force is reversed.

すなわち,第二回転子15と第一回転子14,第三回転子16間それぞれの周方向間隔が電気角で90度以上になると,第二回転子15に加わる回転駆動力と第一回転子14,第三回転子16への回転駆動力とは方向が逆になる。したがって,回転子の加速中に第一回転子14,第二回転子15を回転軸11に拘束する力を緩めて第一回転子14,第二回転子15をフリーにすると,第一回転子14,第二回転子15に働く回転駆動力は全てが第一回転子14,第二回転子15の変位に利用され,第三回転子16に作用する回転駆動力のみで回転軸11が回転駆動される事になるが,第三回転子16への回転駆動力は回転軸11の回転方向とは逆で減速駆動される事になる。   That is, when the circumferential interval between the second rotor 15, the first rotor 14, and the third rotor 16 is 90 degrees or more in electrical angle, the rotational driving force applied to the second rotor 15 and the first rotor 14, the direction is opposite to the rotational driving force applied to the third rotor 16. Therefore, if the first rotor 14 and the second rotor 15 are freed by loosening the force that restrains the first rotor 14 and the second rotor 15 to the rotating shaft 11 during the acceleration of the rotor, the first rotor 14, all the rotational driving force acting on the second rotor 15 is used for the displacement of the first rotor 14 and the second rotor 15, and the rotary shaft 11 rotates only with the rotational driving force acting on the third rotor 16. Although it is driven, the rotational driving force to the third rotor 16 is decelerated and driven in the direction opposite to the rotational direction of the rotary shaft 11.

本発明はこの点に関し,第一回転子14,第二回転子15に働く回転駆動力を第一回転子14,第二回転子15の変位力,回転軸11の回転駆動力に適切に配分する制御方法を提案し,回転軸11を継続的に回転駆動させながら第一回転子14,第二回転子15を変位させる。本実施例では,回転子の増速中に第二リングギア1mを外部のアクチュエータにより矢印51と逆方向に回転させる回転速度を制御して第一回転子14を回転軸11に拘束する力を制御する。第二リングギア1mの回転速度大では第一回転子14を回転軸11に拘束する力が弱められて第一回転子14,第二回転子15への変位力が大にされ,第二リングギア1mの回転速度小では前記拘束力が強められて第一回転子14,第二回転子15への変位力が小にされる。回生制動力を第一回転子14,第二回転子15への変位力に利用する場合は第二リングギア1mを回転させる方向が逆になる以外は同様である。   In this regard, the present invention appropriately distributes the rotational driving force acting on the first rotor 14 and the second rotor 15 to the displacement force of the first rotor 14 and the second rotor 15 and the rotational driving force of the rotary shaft 11. A control method is proposed, and the first rotor 14 and the second rotor 15 are displaced while the rotary shaft 11 is continuously driven to rotate. In this embodiment, during the speed increase of the rotor, the rotational speed of rotating the second ring gear 1m in the direction opposite to the arrow 51 by an external actuator is controlled, and the force for restraining the first rotor 14 to the rotary shaft 11 is controlled. Control. When the rotation speed of the second ring gear 1m is large, the force that restrains the first rotor 14 to the rotating shaft 11 is weakened, and the displacement force to the first rotor 14 and the second rotor 15 is increased, and the second ring gear 1m is increased. When the rotational speed of the gear 1m is low, the restraining force is increased and the displacement force to the first rotor 14 and the second rotor 15 is reduced. When the regenerative braking force is used as the displacement force to the first rotor 14 and the second rotor 15, the same applies except that the direction in which the second ring gear 1m is rotated is reversed.

本実施例は回転駆動力を利用して誘起電圧を制御し,出力を最適化するシステムであり,回転電機システムとしての制御を更に説明する。図12は誘起電圧制御を行う回転電機システムのブロック図を示している。回転電機装置121は入力122,出力123を有するとし,制御装置124は回転電機装置121の出力123及び回転子の位置信号127を入力として誘起電圧を制御する。番号126は回転子位置制御手段を制御するアクチュエータを示し,番号125は電機子コイル19に駆動電流を供給する駆動回路を示す。回転電機装置121が発電機として用いられるのであれば,入力122は回転力であり,出力123は発電電力となる。回転電機装置121が電動機として用いられるのであれば,入力122は駆動回路125から電機子コイル19に供給される駆動電流であり,出力123は回転トルク,回転速度となる。   The present embodiment is a system for optimizing the output by controlling the induced voltage using the rotational driving force, and the control as a rotating electrical machine system will be further described. FIG. 12 shows a block diagram of a rotating electrical machine system that performs induced voltage control. The rotating electrical machine device 121 has an input 122 and an output 123, and the control device 124 receives the output 123 of the rotating electrical machine device 121 and the rotor position signal 127 as inputs and controls the induced voltage. Reference numeral 126 denotes an actuator that controls the rotor position control means, and reference numeral 125 denotes a drive circuit that supplies a drive current to the armature coil 19. If the rotating electrical machine device 121 is used as a generator, the input 122 is a rotational force and the output 123 is generated power. If the rotating electrical machine device 121 is used as an electric motor, the input 122 is a driving current supplied from the driving circuit 125 to the armature coil 19, and the output 123 is a rotational torque and a rotational speed.

回転電機装置が電動機として用いられる場合に於いて,回転駆動力を利用して誘起電圧制御を行って回転駆動力が最適に制御される。制御装置124は電機子コイル19に誘起される誘起電圧が所定の値より大となった時には第一回転子14,第二回転子15を第三回転子16に対して回転方向に変位させ,第一回転子14,第二回転子15間及び第二回転子15,第三回転子16間の周方向間隔を大にして誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。   When the rotating electrical machine apparatus is used as an electric motor, the rotational driving force is optimally controlled by performing induced voltage control using the rotational driving force. When the induced voltage induced in the armature coil 19 exceeds a predetermined value, the control device 124 displaces the first rotor 14 and the second rotor 15 in the rotational direction with respect to the third rotor 16. A power supply for the induced voltage so as to reduce the induced voltage by increasing the circumferential interval between the first rotor 14 and the second rotor 15 and between the second rotor 15 and the third rotor 16 and to drive at higher speed. Increase the voltage margin.

すなわち,駆動回路125から駆動電流を電機子コイル19に供給して回転子を増速中に,出力123の回転速度増大を継続させると共に電機子コイル19に現れる誘起電圧が所定の値になるようアクチュエータ126により第二リングギア1mを矢印51と逆方向(回転子の回転方向とは逆方向)に回転させる回転速度を制御し,第一回転子14,第二回転子15を第三回転子16に対して回転方向に変位させる。   That is, while the drive current is supplied from the drive circuit 125 to the armature coil 19 to increase the speed of the rotor, the increase in the rotation speed of the output 123 is continued and the induced voltage appearing in the armature coil 19 becomes a predetermined value. The actuator 126 controls the rotation speed of rotating the second ring gear 1m in the direction opposite to the arrow 51 (the direction opposite to the rotation direction of the rotor), and the first rotor 14 and the second rotor 15 are controlled by the third rotor. 16 is displaced in the rotational direction.

制御装置124は誘起電圧が所定の値より小となった時には第一回転子14,第二回転子15を第三回転子16に対して回転方向とは逆方向に変位させて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。すなわち,回生制動により回転子を減速中に,出力123の回転速度減少を継続させると共に電機子コイル19に現れる誘起電圧が所定の値になるようアクチュエータ126により第二リングギア1mを矢印51の方向(回転子の回転方向)に回転させる回転速度を制御し,第一回転子14,第二回転子15を第三回転子16に対して回転方向と逆方向に変位させる。   When the induced voltage becomes smaller than a predetermined value, the control device 124 displaces the first rotor 14 and the second rotor 15 with respect to the third rotor 16 in the direction opposite to the rotation direction to increase the induced voltage. To increase the torque that drives the rotor. That is, while the rotor is decelerated by regenerative braking, the rotation speed of the output 123 is continuously reduced, and the second ring gear 1m is moved in the direction of the arrow 51 by the actuator 126 so that the induced voltage appearing in the armature coil 19 becomes a predetermined value. The rotational speed rotated in (rotational direction of the rotor) is controlled, and the first rotor 14 and the second rotor 15 are displaced relative to the third rotor 16 in the direction opposite to the rotational direction.

本実施例では第二リングギア1mを回転駆動するアクチュエータ及び回転電機装置の回転駆動力を用いて第一回転子14,第二回転子15を周方向に変位させた。回転駆動力を利用して第一回転子14,第二回転子15を周方向に変位させるので小出力のアクチュエータで構成される。更にウオームギア1sとアクチュエータを第二リングギア1mの周方向位置を保持するクラッチ,ブレーキシステムに替え,第二リングギア1mをハウジング12に拘束する力を制御して第一回転子14,第二回転子15に電機子から加えられる回転駆動力,回生制動力を適切に第一回転子14,第二回転子15を周方向に変位させる力,回転軸11を駆動する力に配分して回転電機システムを構成出来る。これら何れの構成も本発明に含まれる。   In the present embodiment, the first rotor 14 and the second rotor 15 are displaced in the circumferential direction by using an actuator that rotationally drives the second ring gear 1m and the rotational driving force of the rotating electrical machine apparatus. Since the first rotator 14 and the second rotator 15 are displaced in the circumferential direction by using the rotational driving force, the actuator is constituted by a small output actuator. Furthermore, the worm gear 1s and the actuator are replaced with a clutch and brake system that holds the circumferential position of the second ring gear 1m, and the first rotor 14 and the second rotation are controlled by controlling the force that restrains the second ring gear 1m to the housing 12. The rotary drive force and regenerative braking force applied to the child 15 from the armature are appropriately distributed to the first rotor 14, the force that displaces the second rotor 15 in the circumferential direction, and the force that drives the rotary shaft 11. The system can be configured. Any of these configurations are included in the present invention.

本実施例では第一回転子14,第三回転子16の第二回転子15に対する相対変位量は等しく設定した。しかし,第一回転子14には進み位相の駆動磁界が加えられ,第三回転子16には遅れ位相の駆動磁界が加えられる。その結果としてそれぞれの回転子の永久磁石は減磁,増磁される。また,リラクタンストルクが僅かに存在する回転子構造を採用した場合も含め,第一回転子14,第三回転子16から回転子全体のトルクに対する寄与度合いが変位量によって変化する可能性もある。その場合には第一回転子14,第三回転子16の第二回転子15に対する相対変位量が異なるよう図4に示すギアのギア比を選んで構成する事が出来る。   In this embodiment, the relative displacement amounts of the first rotor 14 and the third rotor 16 with respect to the second rotor 15 are set equal. However, a leading phase driving magnetic field is applied to the first rotor 14 and a delayed phase driving magnetic field is applied to the third rotor 16. As a result, the permanent magnet of each rotor is demagnetized and magnetized. In addition, the degree of contribution of the first rotor 14 and third rotor 16 to the torque of the entire rotor may change depending on the amount of displacement, including the case where a rotor structure with a slight reluctance torque is employed. In that case, the gear ratio of the gear shown in FIG. 4 can be selected and configured so that the relative displacement amounts of the first rotor 14 and the third rotor 16 with respect to the second rotor 15 are different.

本実施例に於いて,第二回転子15に対して第一回転子14,第三回転子16それぞれの周方向変位範囲はゼロから約132度までとしたが,前記変位範囲はゼロから90度までとし,更に高速の回転速度領域では駆動電流の位相を進めて弱め界磁とする回転駆動方法も利用可能である。隣接回転子間の変位量が90度の状態は図10(b)に示す状態であり,第一回転子14,第三回転子16から回転トルクへの寄与はゼロとなり,第二回転子15の発生トルクのみとなる。変位回転子の変位によって誘起電圧振幅を抑圧した場合,マグネットトルクはその抑圧比に準じて減少するが,リラクタンストルクは残存し,高速回転領域で必要な回転トルクの確保が容易となる。   In this embodiment, the circumferential displacement range of each of the first rotor 14 and the third rotor 16 with respect to the second rotor 15 is from zero to about 132 degrees, but the displacement range is from zero to 90 degrees. It is also possible to use a rotational drive method in which the phase of the drive current is advanced to make the field weaker in the higher rotational speed region. The state in which the displacement amount between the adjacent rotors is 90 degrees is the state shown in FIG. 10B, and the contribution from the first rotor 14 and the third rotor 16 to the rotational torque becomes zero, and the second rotor 15 Only the torque generated. When the induced voltage amplitude is suppressed by the displacement of the displacement rotor, the magnet torque decreases according to the suppression ratio, but the reluctance torque remains, and it becomes easy to secure the necessary rotational torque in the high-speed rotation region.

本発明による回転電機装置の実施例2が図13から図18を用いて説明される。磁気的突極の数が等しい3個の回転子が第一回転子,第二回転子,第三回転子として電機子に対向し,両軸端の第一,第三回転子が磁石励磁構造,中間の第二回転子が磁石を持たない構造である。   A second embodiment of the rotating electrical machine apparatus according to the present invention will be described with reference to FIGS. Three rotors with the same number of magnetic salient poles face the armature as the first rotor, second rotor, and third rotor, and the first and third rotors on both shaft ends are magnet excitation structures. The intermediate second rotor does not have a magnet.

図13はインナーロータ構造の回転電機装置に本発明を適用した実施例の縦断面図を示し,回転軸11がベアリング13を介してハウジング131に回転可能に支持されている。第一回転子132,第二回転子133はベアリングを介して回転軸11に変位可能に保持され,第三回転子134は回転軸11に固定されている。第一回転子132,第二回転子133が変位制御される領域は,第三回転子134に対して常用の回転方向前方の領域であり,一つの磁性体突極に着目して第一回転子132が回転方向の先頭,第三回転子134が最後部,第二回転子133が両者の中間に位置するよう構成されている。番号19は電機子コイル,番号17は電機子コア,番号18は非磁性絶縁素材のスペーサを示す。   FIG. 13 is a longitudinal sectional view of an embodiment in which the present invention is applied to a rotating electrical machine apparatus having an inner rotor structure. A rotating shaft 11 is rotatably supported by a housing 131 via a bearing 13. The first rotor 132 and the second rotor 133 are held on the rotary shaft 11 through bearings so as to be displaceable, and the third rotor 134 is fixed to the rotary shaft 11. The region in which the displacement of the first rotor 132 and the second rotor 133 is controlled is a region in front of the normal rotation direction with respect to the third rotor 134, and the first rotation focusing on one magnetic salient pole. The rotor 132 is positioned at the head in the rotational direction, the third rotor 134 is positioned at the rearmost part, and the second rotor 133 is positioned between the two. Reference numeral 19 denotes an armature coil, reference numeral 17 denotes an armature core, and reference numeral 18 denotes a nonmagnetic insulating material spacer.

番号135はカップリングギア,番号136はカップリングギア支持軸を示し,第二回転子133に回転可能に保持されている。カップリングギア支持軸136は径方向であり,本実施例ではカップリングギア135,カップリングギア支持軸136の組み合わせが周方向に3個配置されている。番号137,138はそれぞれ第一回転子132,第三回転子134側面に配置されたサイドギアであり,周方向にギアが刻まれてそれぞれがカップリングギア135と噛み合うよう配置されている。カップリングギア135,カップリングギア支持軸136,サイドギア137,サイドギア138等で回転子結合機構が構成され,サイドギア137,サイドギア138は互いに逆方向に回転するので第二回転子133に対して第一回転子132,第三回転子134の何れか一方が周方向に変位すれば他方は逆の周方向に変位する構成である。   Reference numeral 135 denotes a coupling gear, and reference numeral 136 denotes a coupling gear support shaft, which is rotatably held by the second rotor 133. The coupling gear support shaft 136 is in the radial direction, and in this embodiment, three combinations of the coupling gear 135 and the coupling gear support shaft 136 are arranged in the circumferential direction. Reference numerals 137 and 138 are side gears arranged on the side surfaces of the first rotor 132 and the third rotor 134, respectively, and are arranged so that gears are engraved in the circumferential direction and mesh with the coupling gear 135, respectively. The coupling gear 135, the coupling gear support shaft 136, the side gear 137, the side gear 138, and the like constitute a rotor coupling mechanism, and the side gear 137 and the side gear 138 rotate in opposite directions to each other. If either one of the rotor 132 and the third rotor 134 is displaced in the circumferential direction, the other is displaced in the opposite circumferential direction.

番号139は第一回転子132側面に固定されたクラッチ板,番号13aは可動クラッチ板,番号13dはスプリング,番号13eはスプリングストッパーをそれぞれ示し,可動クラッチ板13aがスプリング13dによりクラッチ板139に押しつけられている。更に番号13c,13bはアームを示し,回転軸11とアーム13c,アーム13cとアーム13b,アーム13bと可動クラッチ板13aとはそれぞれ回動可能なジョイントで接続され,このアーム組立が周方向に3組配置されて可動クラッチ板13aが回転軸11と平行方向に変位可能であると共に回転軸11と共に回転するよう構成されている。   Reference numeral 139 denotes a clutch plate fixed to the side of the first rotor 132, reference numeral 13a denotes a movable clutch plate, reference numeral 13d denotes a spring, reference numeral 13e denotes a spring stopper, and the movable clutch plate 13a is pressed against the clutch plate 139 by the spring 13d. It has been. Reference numerals 13c and 13b denote arms. The rotary shaft 11 and the arm 13c, the arm 13c and the arm 13b, and the arm 13b and the movable clutch plate 13a are connected by a rotatable joint, respectively. The movable clutch plates 13a are arranged in groups and can be displaced in a direction parallel to the rotation shaft 11 and rotate together with the rotation shaft 11.

番号13gは回転軸11を周回する励磁コイル,番号13fは断面がC字状で回転軸11を周回する励磁コアを示し,励磁コア13fはハウジング131に固定されている。可動クラッチ板13aの励磁コア13f側部材には少なくとも磁性材料が用いられ,クラッチ板139,可動クラッチ板13a,アーム13c,アーム13b,スプリング13d,スプリングストッパー13e,励磁コア13f,励磁コイル13g等により回転子位置制御手段が構成されている。   Reference numeral 13 g denotes an exciting coil that circulates around the rotating shaft 11, and reference numeral 13 f denotes an exciting core that has a C-shaped section and circulates around the rotating shaft 11. The exciting core 13 f is fixed to the housing 131. At least the magnetic material is used for the exciting core 13f side member of the movable clutch plate 13a, and the clutch plate 139, the movable clutch plate 13a, the arm 13c, the arm 13b, the spring 13d, the spring stopper 13e, the exciting core 13f, the exciting coil 13g, etc. Rotor position control means is configured.

図14は図13に示された回転電機装置のC−C’に沿う断面図であり,電機子及び第二回転子133の断面を示す。電機子は実施例1と同じ構成であり,同一の部材には同じ番号が付され,繰り返しての説明は省略される。第二回転子133の磁極部は内周側に凸の弧状スリットが形成されたケイ素鋼板142が積層され,スリット内に非磁性体143が挿入されてフラックスバリアが構成されている。フラックスバリアにより8個の磁気的突極が配置されるよう第二回転子133の外周に沿う磁気抵抗が大,小に区分されている。第二回転子サポート141は非磁性のステンレススチールで構成されて回転軸11に変位可能に保持されている。3組のカップリングギア135,カップリングギア支持軸136が第二回転子サポート141内に配置されている。   FIG. 14 is a cross-sectional view taken along C-C ′ of the rotating electrical machine apparatus shown in FIG. 13, and shows a cross section of the armature and the second rotor 133. The armature has the same configuration as that of the first embodiment, and the same members are denoted by the same reference numerals, and repeated description is omitted. The magnetic pole part of the second rotor 133 is laminated with a silicon steel plate 142 having a convex arc-shaped slit formed on the inner peripheral side, and a nonmagnetic material 143 is inserted into the slit to constitute a flux barrier. The magnetic resistance along the outer periphery of the second rotor 133 is divided into large and small so that eight magnetic salient poles are arranged by the flux barrier. The second rotor support 141 is made of nonmagnetic stainless steel and is held on the rotary shaft 11 so as to be displaceable. Three sets of coupling gears 135 and coupling gear support shafts 136 are arranged in the second rotor support 141.

図15は第一回転子132を第二回転子133側から見た平面図である。磁極部はケイ素鋼板より成る磁性体153中に径方向のスリットが周方向に等間隔に配置され,スリット内に永久磁石152,非磁性体155が挿入されてリラクタンストルクが存在し難いよう構成されている。番号154の矢印は永久磁石152の磁化方向を示し,周方向に隣接する磁気的突極の極性が互いに異極に磁化されて8個の磁気的突極が配置されている。第一回転子サポート151にサイドギア137が配置されている。図13に縦断面図が示されるように第三回転子134側面にはサイドギア137と同じ形状のサイドギア138が配置され,第三回転子134の磁極構成は第一回転子132の磁極構成と同じである。   FIG. 15 is a plan view of the first rotor 132 viewed from the second rotor 133 side. The magnetic pole portion is configured such that radial slits are arranged at equal intervals in the circumferential direction in a magnetic body 153 made of a silicon steel plate, and a permanent magnet 152 and a non-magnetic body 155 are inserted into the slit so that reluctance torque does not easily exist. ing. The arrow with the number 154 indicates the magnetization direction of the permanent magnet 152, and the magnetic salient poles adjacent to each other in the circumferential direction are magnetized in different polarities, and eight magnetic salient poles are arranged. A side gear 137 is disposed on the first rotor support 151. As shown in FIG. 13, a side gear 138 having the same shape as that of the side gear 137 is disposed on the side surface of the third rotor 134, and the magnetic pole configuration of the third rotor 134 is the same as the magnetic pole configuration of the first rotor 132. It is.

図14,図15を用いて説明されたように第二回転子133はリラクタンストルクで回転駆動される構成であり,第一回転子132,第三回転子134はマグネットトルクのみで回転駆動される構成である。それぞれの回転子の発生トルクが最大となる周方向位置で各回転子が軸方向に並ぶ位置が基準位置であり,回転速度に応じて基準位置から変位回転子である第一回転子132,第二回転子133が常用回転方向に変位させられ,第二回転子133に対して第一回転子132,第三回転子134が互いに逆の周方向に相対的変位される。第一回転子132,第三回転子134間の周方向間隔が電気角で180度になった位置で互いに逆極性となる第一回転子132の磁気的突極と第三回転子134の磁気的突極とが軸方向に対向し,誘起電圧及び回転トルクは相殺される。したがって,この位置で変位回転子である第一回転子132,第二回転子133の変位は停止され,第二回転子133のリラクタンストルクのみで回転駆動される。   As described with reference to FIGS. 14 and 15, the second rotor 133 is rotationally driven by reluctance torque, and the first rotor 132 and the third rotor 134 are rotationally driven only by magnet torque. It is a configuration. The reference position is the position where the rotors are arranged in the axial direction at the circumferential position where the generated torque of each rotor is maximum, and the first rotor 132, which is a displacement rotor from the reference position according to the rotational speed, The two rotors 133 are displaced in the normal rotation direction, and the first rotor 132 and the third rotor 134 are relatively displaced with respect to the second rotor 133 in opposite circumferential directions. The magnetic salient poles of the first rotor 132 and the magnetism of the third rotor 134 which are opposite in polarity at a position where the circumferential interval between the first rotor 132 and the third rotor 134 is 180 degrees in electrical angle. The induced salient pole is opposed to the axial direction, and the induced voltage and the rotational torque are canceled out. Therefore, the displacement of the first rotor 132 and the second rotor 133 which are displacement rotors is stopped at this position, and the first rotor 132 and the second rotor 133 are rotated only by the reluctance torque of the second rotor 133.

図16は回転子位置制御手段を第一回転子132側から見た平面図であり,回転子位置制御手段の構成を更に説明する。可動クラッチ板13aは回転軸11を周回する構造でクラッチ板139と接する面は摺動面161である。クラッチ板139と可動クラッチ板13aの摺動面161との間で回転力が伝達される構成である。   FIG. 16 is a plan view of the rotor position control means viewed from the first rotor 132 side, and the configuration of the rotor position control means will be further described. The movable clutch plate 13a has a structure that circulates around the rotating shaft 11, and a surface that contacts the clutch plate 139 is a sliding surface 161. A rotational force is transmitted between the clutch plate 139 and the sliding surface 161 of the movable clutch plate 13a.

図16に示されるように可動クラッチ板13aは3組のアーム組立で回転軸11に支持されている。アーム組立の一つは各部材に番号が付されているようにアーム13cの両端にはジョイント部162,163が配置されている。ジョイント部162は回転軸11に固定されたピン165を中心に回動可能に構成され,ジョイント部163はアーム13bに固定されたピン166を中心に回動可能に構成されている。更にアーム13bに配置されたジョイント部164は可動クラッチ板13aに固定されたピン167を中心に回動可能に構成されている。   As shown in FIG. 16, the movable clutch plate 13a is supported on the rotary shaft 11 by three arm assemblies. In one of the arm assemblies, joints 162 and 163 are arranged at both ends of the arm 13c so that each member is numbered. The joint portion 162 is configured to be rotatable about a pin 165 fixed to the rotating shaft 11, and the joint portion 163 is configured to be rotatable about a pin 166 fixed to the arm 13b. Further, the joint portion 164 disposed on the arm 13b is configured to be rotatable about a pin 167 fixed to the movable clutch plate 13a.

このようにアーム13c,アーム13b,ジョイント部162,ジョイント部163,ジョイント部164等で構成された3組のアーム組立で可動クラッチ板13aは回転軸11に支持され,ジョイント部162,ジョイント部163,ジョイント部164は図13に示された縦断面図の面内で回動可能に構成されている。したがって,可動クラッチ板13aは回転軸11と平行方向に変位可能であると共に回転軸11と共に回転する。   In this way, the movable clutch plate 13a is supported on the rotating shaft 11 by the three sets of arms composed of the arm 13c, the arm 13b, the joint portion 162, the joint portion 163, the joint portion 164, and the like. The joint part 164 is configured to be rotatable in the plane of the longitudinal sectional view shown in FIG. Therefore, the movable clutch plate 13 a can be displaced in a direction parallel to the rotation shaft 11 and rotates together with the rotation shaft 11.

回転子位置制御手段の動作が図17,図18を用いて説明される。図17は図13に示された回転子位置制御手段が拡大された縦断面図であり,クラッチ板139に可動クラッチ板13aがスプリング13dにより押しつけられ,クラッチ板139と可動クラッチ板13aとの間で回転トルクが伝達されている状態である。この状態では第一回転子132,第二回転子133,第三回転子134が回転軸11と共に回転する。   The operation of the rotor position control means will be described with reference to FIGS. FIG. 17 is an enlarged longitudinal sectional view of the rotor position control means shown in FIG. 13. The movable clutch plate 13a is pressed against the clutch plate 139 by a spring 13d, and the gap between the clutch plate 139 and the movable clutch plate 13a is shown. In this state, the rotational torque is transmitted. In this state, the first rotor 132, the second rotor 133, and the third rotor 134 rotate together with the rotating shaft 11.

図18は図17に於いて,可動クラッチ板13aがクラッチ板139から離間させられた図を示す。励磁コイル13gに励磁電流が流されると,励磁コア13fには励磁磁束181が誘起され,少なくとも一部が磁性体で構成されている可動クラッチ板13aが励磁コア13f側に引きつけられ,可動クラッチ板13aがクラッチ板139から引き離される。図18はこの状態を示し,第三回転子134が回転軸11と共に回転するが,第一回転子132と回転軸11との結合は解除され,第一回転子132は回転軸11に対してフリーに回転できる状態となる。   FIG. 18 is a view in which the movable clutch plate 13a is separated from the clutch plate 139 in FIG. When an exciting current is passed through the exciting coil 13g, an exciting magnetic flux 181 is induced in the exciting core 13f, and the movable clutch plate 13a, at least a part of which is made of a magnetic material, is attracted to the exciting core 13f side. 13a is pulled away from the clutch plate 139. FIG. 18 shows this state, in which the third rotor 134 rotates together with the rotating shaft 11, but the coupling between the first rotor 132 and the rotating shaft 11 is released, and the first rotor 132 moves relative to the rotating shaft 11. It will be ready to rotate freely.

図18に示される状態に於いて,電機子コイル19から回転子に回転駆動力が与えられると,第三回転子134は回転軸11及び回転軸11に接続されている回転負荷と共に加速され,第一回転子132及び第二回転子133は第三回転子134より慣性モーメントが小さいので更に容易に加速されて第三回転子134に対して回転方向に変位させられる。回転子を減速させるように逆方向の回転駆動力が加えられた場合,或いは電機子コイルから電力を取り出す回生制動が掛けられた場合に第一回転子132及び第二回転子133は第三回転子134に対して回転方向とは逆方向に変位させられる。   In the state shown in FIG. 18, when a rotational driving force is applied from the armature coil 19 to the rotor, the third rotor 134 is accelerated together with the rotary shaft 11 and the rotary load connected to the rotary shaft 11. Since the first rotor 132 and the second rotor 133 have a smaller moment of inertia than the third rotor 134, the first rotor 132 and the second rotor 133 are more easily accelerated and displaced in the rotational direction with respect to the third rotor 134. When a reverse rotational driving force is applied so as to decelerate the rotor, or when regenerative braking is performed to extract electric power from the armature coil, the first rotor 132 and the second rotor 133 are rotated by the third rotation. The child 134 is displaced in the direction opposite to the rotation direction.

励磁コイル13gに流される励磁電流を大にすればスプリング13dに抗する力は大になり,励磁電流を小にすればスプリング13dに抗する力は小になる。本実施例では励磁電流の大きさを制御して可動クラッチ板13aをクラッチ板139に押しつける力を調整し,図17と図18の中間状態として可動クラッチ板13aとクラッチ板139とを互いに摺動させ,可動クラッチ板13aとクラッチ板139との間で伝達される回転駆動力或いは回生制動力を第一回転子132及び第二回転子133の変位力として配分させる。   If the exciting current passed through the exciting coil 13g is increased, the force against the spring 13d is increased, and if the exciting current is decreased, the force against the spring 13d is decreased. In this embodiment, the magnitude of the excitation current is controlled to adjust the force for pressing the movable clutch plate 13a against the clutch plate 139, and the movable clutch plate 13a and the clutch plate 139 are slid relative to each other as an intermediate state between FIGS. The rotational driving force or regenerative braking force transmitted between the movable clutch plate 13a and the clutch plate 139 is distributed as the displacement force of the first rotor 132 and the second rotor 133.

第一回転子132及び第二回転子133が回転駆動力或いは回生制動力により変位させられるが,第一回転子132,第二回転子133,第三回転子134は回転子結合機構により互いに結合されているので常に第二回転子133は第一回転子132,第三回転子134間の中間に位置するよう変位させられる。すなわち,常に第二回転子133の第三回転子134に対する変位量は,第一回転子132の第三回転子134に対する変位量の半分である。   The first rotor 132 and the second rotor 133 are displaced by a rotational driving force or a regenerative braking force, but the first rotor 132, the second rotor 133, and the third rotor 134 are coupled to each other by a rotor coupling mechanism. Therefore, the second rotor 133 is always displaced so as to be positioned between the first rotor 132 and the third rotor 134. That is, the displacement amount of the second rotor 133 relative to the third rotor 134 is always half the displacement amount of the first rotor 132 relative to the third rotor 134.

以上,図13から図18に示した回転電機装置に於いて,第一回転子132,第二回転子133を第三回転子134に対して変位できることを説明した。本実施例は誘起電圧を制御して出力を最適化するシステムであり,図12を参照して回転電機システムとしての制御が更に説明される。図12は誘起電圧制御を行う回転電機システムのブロック図を示し,実施例1に於いて既に説明されているが,本実施例で番号126は励磁コイル13gに励磁電流を供給する励磁回路と読み替える。   As described above, in the rotating electrical machine apparatus shown in FIGS. 13 to 18, it has been described that the first rotor 132 and the second rotor 133 can be displaced with respect to the third rotor 134. The present embodiment is a system that optimizes the output by controlling the induced voltage, and the control as the rotating electrical machine system will be further described with reference to FIG. FIG. 12 shows a block diagram of a rotating electrical machine system that performs induced voltage control, which has already been described in the first embodiment. In this embodiment, the number 126 is read as an excitation circuit that supplies an excitation current to the excitation coil 13g. .

回転電機装置が電動機として用いられる場合に於いて,誘起電圧制御を行って回転駆動力が最適に制御されるが,その誘起電圧制御に回転駆動力,回生制動力が利用される。制御装置124は電機子コイル19に現れる誘起電圧が所定の値より大となった時には第一回転子132,第二回転子133を第三回転子134に対して回転方向に変位させ,第一回転子132,第二回転子133間及び第二回転子133,第三回転子134間の周方向間隔を大にして誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。   In the case where the rotating electrical machine is used as an electric motor, the rotational driving force is optimally controlled by performing induced voltage control, and the rotational driving force and regenerative braking force are used for the induced voltage control. The control device 124 displaces the first rotor 132 and the second rotor 133 in the rotational direction with respect to the third rotor 134 when the induced voltage appearing in the armature coil 19 becomes larger than a predetermined value. The induction voltage is decreased by increasing the circumferential interval between the rotor 132 and the second rotor 133 and between the second rotor 133 and the third rotor 134, and the power supply voltage with respect to the induced voltage can be driven at high speed. Increase the margin.

すなわち,駆動回路125から駆動電流を電機子コイル19に供給して回転子を増速中に,出力123の回転速度増大を継続させると共に電機子コイル19に現れる誘起電圧が所定の値になるよう励磁回路126により励磁コイル13gに励磁電流を制御させてクラッチ板139に可動クラッチ板13aを押しつける力を制御し,第一回転子132,第二回転子133を第三回転子134に対して回転方向に変位させる。第一回転子132,第三回転子134間の周方向間隔が電気角で180度に達した位置で第一回転子132,第二回転子133の変位制御は停止する。   That is, while the drive current is supplied from the drive circuit 125 to the armature coil 19 to increase the speed of the rotor, the increase in the rotation speed of the output 123 is continued and the induced voltage appearing in the armature coil 19 becomes a predetermined value. The exciting circuit 126 controls the exciting current to the exciting coil 13g to control the force pressing the movable clutch plate 13a against the clutch plate 139, and the first rotor 132 and the second rotor 133 are rotated with respect to the third rotor 134. Displace in the direction. Displacement control of the first rotor 132 and the second rotor 133 stops at a position where the circumferential interval between the first rotor 132 and the third rotor 134 reaches 180 degrees in electrical angle.

制御装置124は予め定めた値より回転速度より低くなったら変位回転子の変位制御を再開し,電機子コイル19に現れる誘起電圧が所定の値より小となった時には第一回転子132,第二回転子133を第三回転子134に対して回転方向とは逆方向に変位させて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。すなわち,回生制動により回転子を減速中に,出力123の回転速度減少を継続させると共に電機子コイル19に現れる誘起電圧が所定の値になるよう励磁回路126により励磁コイル13gに励磁電流を制御させてクラッチ板139に可動クラッチ板13aを押しつける力を制御し,第一回転子132,第二回転子133を第三回転子134に対して回転方向と逆方向に変位させる。   The controller 124 resumes the displacement control of the displacement rotor when the rotational speed becomes lower than a predetermined value. When the induced voltage appearing in the armature coil 19 becomes smaller than a predetermined value, the first rotor 132, The two rotors 133 are displaced with respect to the third rotor 134 in the direction opposite to the rotation direction to increase the induced voltage and increase the torque for driving the rotors. That is, while the rotor is decelerated by regenerative braking, the rotational speed of the output 123 is continuously reduced, and the exciting current is controlled by the exciting coil 13g by the exciting circuit 126 so that the induced voltage appearing in the armature coil 19 becomes a predetermined value. Thus, the force pressing the movable clutch plate 13a against the clutch plate 139 is controlled, and the first rotor 132 and the second rotor 133 are displaced relative to the third rotor 134 in the direction opposite to the rotational direction.

本実施例に於いて,第一回転子132及び第二回転子133が回転駆動力或いは回生制動力により変位させられるが,低回転速度では回生制動力が十分ではなく,回転が停止しても変位回転子が基準位置に戻らない可能性がある。その場合には回転軸11を回転し難いよう拘束し,第一回転子132及び第二回転子133を基準位置方向に回転駆動するよう電機子コイル19に駆動電流を供給し,同時に励磁回路126により励磁コイル13gに励磁電流を制御させてクラッチ板139に可動クラッチ板13aを押しつける力を緩める方向に制御し,第一回転子132,第二回転子133を変位させる。   In the present embodiment, the first rotor 132 and the second rotor 133 are displaced by the rotational driving force or the regenerative braking force, but the regenerative braking force is not sufficient at a low rotational speed, and even if the rotation stops. The displacement rotor may not return to the reference position. In that case, the rotation shaft 11 is constrained to be difficult to rotate, and a drive current is supplied to the armature coil 19 so that the first rotor 132 and the second rotor 133 are rotationally driven in the reference position direction. Thus, the exciting current is controlled by the exciting coil 13g so as to loosen the force pressing the movable clutch plate 13a against the clutch plate 139, and the first rotor 132 and the second rotor 133 are displaced.

本実施例に於いて,可動クラッチ板13aの押しつけ力を制御して可動クラッチ板13aとクラッチ板139とを互いに摺動させ,可動クラッチ板13aとクラッチ板139との間で伝達される回転駆動力或いは回生制動力が第一回転子132及び第二回転子133の変位力に配分された。可動クラッチ板13a,クラッチ板139それぞれの相対する面を互いに勘合する凹凸形状で構成し,図17と図18の状態を交互に繰り返させ,図17と図18それぞれの持続時間比率を制御して第一回転子132及び第二回転子133の変位力が制御される方法も可能である。   In this embodiment, the pressing force of the movable clutch plate 13a is controlled to cause the movable clutch plate 13a and the clutch plate 139 to slide with each other, and the rotational drive transmitted between the movable clutch plate 13a and the clutch plate 139. The force or regenerative braking force is distributed to the displacement force of the first rotor 132 and the second rotor 133. The opposing surfaces of the movable clutch plate 13a and the clutch plate 139 are configured to have concave and convex shapes that engage each other, and the states of FIGS. 17 and 18 are alternately repeated, and the duration ratios of FIGS. 17 and 18 are controlled. A method in which the displacement force of the first rotor 132 and the second rotor 133 is controlled is also possible.

本発明による車両システムが実施例3として図19及び図1を用いて説明される。実施例1に説明された回転電機装置が駆動装置として搭載され,低速度から高速度まで車両の駆動力が滑らかに制御される。   A vehicle system according to the present invention will be described as a third embodiment with reference to FIGS. 19 and 1. The rotating electrical machine apparatus described in the first embodiment is mounted as a driving apparatus, and the driving force of the vehicle is smoothly controlled from a low speed to a high speed.

図19は車両の駆動システムをブロック図で示す図であって,番号191は実施例1に説明された回転電機装置を,番号192はウオームギア1sを回転させるアクチュエータを,番号193はバッテリーを,番号194は車両駆動システムの制御装置を,番号195は回転電機装置191に駆動電流を供給する駆動回路を,番号196はアクチュエータ192の制御回路を,番号197は車両の速度信号を発生するセンスアンプを,番号198は車輪をそれぞれ示す。   FIG. 19 is a block diagram showing a vehicle drive system. Reference numeral 191 denotes a rotating electrical machine apparatus described in the first embodiment, reference numeral 192 denotes an actuator for rotating the worm gear 1s, reference numeral 193 denotes a battery, 194 is a control device for the vehicle drive system, 195 is a drive circuit for supplying a drive current to the rotating electrical machine 191, 196 is a control circuit for the actuator 192, and 197 is a sense amplifier for generating a vehicle speed signal. , 198 indicates a wheel.

制御装置194はセンスアンプ197の出力を監視し,電機子19に現れる誘起電圧が所定の値より大となった時には第一回転子14,第二回転子15を第三回転子16に対して回転方向に変位させ,第一回転子14,第二回転子15間及び第二回転子15,第三回転子16間の周方向間隔を大にして誘起電圧を減少させ,更に高速回転で駆動できるよう常に誘起電圧が所定に値に留まるよう制御する。   The control device 194 monitors the output of the sense amplifier 197. When the induced voltage appearing in the armature 19 becomes larger than a predetermined value, the first rotor 14 and the second rotor 15 are connected to the third rotor 16. Displacement in the direction of rotation, increasing the circumferential distance between the first rotor 14 and the second rotor 15 and between the second rotor 15 and the third rotor 16 to reduce the induced voltage, and further driving at high speed rotation Control is performed so that the induced voltage always remains at a predetermined value as much as possible.

すなわち,駆動回路195から駆動電流を電機子コイル19に供給して車両を増速中に,回転速度増大を継続させると共に誘起電圧が所定の値になるよう制御回路196からアクチュエータ192を回転駆動して第二リングギア1mを回転子の回転方向とは逆方向に回転させる回転速度を制御し,第一回転子14,第二回転子15を第三回転子16に対して回転方向に変位させる。   That is, while the drive circuit 195 supplies a drive current to the armature coil 19 to increase the speed of the vehicle, the rotation speed is continuously increased and the actuator 192 is rotationally driven from the control circuit 196 so that the induced voltage becomes a predetermined value. Thus, the rotation speed of rotating the second ring gear 1m in the direction opposite to the rotation direction of the rotor is controlled, and the first rotor 14 and the second rotor 15 are displaced in the rotation direction with respect to the third rotor 16. .

制御装置194はセンスアンプ197の出力を監視し,誘起電圧が所定の値より小となった時には第一回転子14,第二回転子15を第三回転子16に対して回転方向とは逆方向に変位させて誘起電圧を増大させ,常に誘起電圧を所定に値に留まらせながら回転子を駆動するトルクを大にさせる。すなわち,回生制動により車両を減速中に,回転速度減少を継続させると共に電機子コイル19に現れる誘起電圧が所定の値になるよう制御回路196からアクチュエータ192を回転駆動して第二リングギア1mを回転子の回転方向に回転させる回転速度を制御し,第一回転子14,第二回転子15を第三回転子16に対して回転方向と逆方向に変位させる。   The control device 194 monitors the output of the sense amplifier 197. When the induced voltage becomes smaller than a predetermined value, the first rotor 14 and the second rotor 15 are opposite to the rotation direction with respect to the third rotor 16. The induced voltage is increased by displacement in the direction, and the torque for driving the rotor is increased while the induced voltage is always kept at a predetermined value. That is, while the vehicle is decelerated by regenerative braking, the rotation speed continues to decrease, and the actuator 192 is rotated from the control circuit 196 so that the induced voltage appearing in the armature coil 19 becomes a predetermined value. The rotational speed at which the rotor is rotated in the rotational direction is controlled, and the first rotor 14 and the second rotor 15 are displaced relative to the third rotor 16 in the direction opposite to the rotational direction.

本実施例によれば,上記に説明されたように車両の増速中に駆動力の一部を利用し,回生制動により車両を減速中に回生制動力の一部を利用し,第一回転子14,第二回転子15が第三回転子16に対して変位される。アクチュエータ192は小出力に出来るので車両の駆動システムは軽量化され,また回転電機装置の回転速度領域制御は連続的に行われるので車両の駆動力は全速度範囲に渡って滑らかに制御される。   According to the present embodiment, as described above, a part of the driving force is used during the acceleration of the vehicle, and a part of the regenerative braking force is used during the deceleration of the vehicle by the regenerative braking. The rotor 14 and the second rotor 15 are displaced with respect to the third rotor 16. Since the actuator 192 can have a small output, the vehicle drive system is reduced in weight, and the rotation speed region control of the rotating electrical machine is continuously performed, so that the vehicle drive force is smoothly controlled over the entire speed range.

以上,本発明の回転電機システム及び車両の駆動方法について,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。例えば上記実施例に於ける回転子の磁極構成,電機子の構成等はそれぞれ組み合わせを変えて本発明の趣旨を実現する回転電機装置を構成できる事は勿論である。   As described above, the rotating electrical machine system and the vehicle driving method of the present invention have been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. For example, it is a matter of course that a rotating electrical machine apparatus that realizes the gist of the present invention can be configured by changing the combination of the magnetic pole configuration of the rotor and the configuration of the armature in the above-described embodiment.

Claims (12)

ハウジングと,複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転軸と共に回転可能に構成された回転電機装置であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子は磁石励磁され,一方の軸端側回転子が固定回転子として回転軸に固定され,中間の回転子及び他方の軸端側回転子は変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成され,二つの変位回転子の何れかを周方向に変位させると両軸端の回転子が中間の回転子に対して互いに逆の周方向に相対変位されるよう3個の回転子が機械的に結合され,更に回転子位置制御手段を有し,誘起電圧が所定の値より大の時に回転子位置制御手段は固定回転子に対して変位回転子を回転方向に先行する周方向に変位させる変位量を大にさせて誘起電圧を減少させ,誘起電圧が所定の値より小の時に回転子位置制御手段は前記変位量を小にさせて誘起電圧を増大させ,回転力が最適に制御される事を特徴とする回転電機システム A housing, an armature in which a plurality of armature coils are arranged in a circumferential direction, and a rotor in which a plurality of magnetic salient poles are arranged in a circumferential direction, the rotor being interposed between the armature and a minute gap A rotating electrical machine apparatus configured to be opposed to each other in a radial direction and to be rotatable together with a rotating shaft, wherein the rotor has three rotors having the same number of magnetic salient poles arranged in the axial direction to face the armature. At least the rotors at both shaft ends are magnetized, one shaft end side rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other shaft end side rotor are fixed rotors as displacement rotors. The two rotors are displaced in the circumferential direction opposite to the intermediate rotor when one of the two displacement rotors is displaced in the circumferential direction. Three rotors are mechanically coupled for relative displacement and further rotated Position control means, and when the induced voltage is larger than a predetermined value, the rotor position control means increases the amount of displacement for displacing the displacement rotor in the circumferential direction preceding the rotation direction with respect to the fixed rotor. The rotation is characterized in that the induced voltage is decreased, and when the induced voltage is smaller than a predetermined value, the rotor position control means reduces the displacement amount to increase the induced voltage and optimally controls the rotational force. Electric system 請求項1記載の回転電機システムに於いて,電機子コイルと中間の回転子との相対位置関係を基準に駆動電流の極性を切替て回転子が回転駆動される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor is driven to rotate by switching the polarity of the drive current based on the relative positional relationship between the armature coil and the intermediate rotor. 請求項1記載の回転電機システムに於いて,誘起電圧抑圧比が予め定めた範囲内に留まるよう変位回転子の変位量を制限する機械的なストッパーを設けた事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a mechanical stopper for limiting a displacement amount of the displacement rotor so that the induced voltage suppression ratio remains within a predetermined range. 請求項1記載の回転電機システムに於いて,回転子を増速中に回転子位置制御手段は変位回転子を回転軸に拘束する力を緩め,回転駆動力を利用して変位回転子の変位量を大にさせ,回転子を回生制動により減速中に回転子位置制御手段は変位回転子を回転軸に拘束する力を緩め,回生制動力を利用して変位回転子の変位量を小にさせ,誘起電圧が所定の値になるよう制御される事を特徴とする回転電機システム
2. The rotating electrical machine system according to claim 1, wherein the rotor position control means relaxes the force that restrains the displacement rotor on the rotation shaft while accelerating the rotor, and uses the rotational driving force to displace the displacement rotor. While the rotor is decelerated by regenerative braking, the rotor position control means loosens the force that restrains the displacement rotor on the rotating shaft, and uses the regenerative braking force to reduce the displacement of the displacement rotor. And the rotating electrical machine system is characterized in that the induced voltage is controlled to a predetermined value.
請求項1記載の回転電機システムに於いて,回転子位置制御手段は,第一遊星ギア機構,第二遊星ギア機構,アクチュエータを有し,第一遊星ギア機構は,回転軸に固定された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギア,プラネタリーギア支持軸を有して構成され,第二遊星ギア機構は,二つの変位回転子の何れかに固定された第二サンギア,アクチュエータにより回動可能に配置された第二リングギア,第二サンギア及び第二リングギアに噛み合う第二プラネタリーギア,プラネタリーギア支持軸を有してプラネタリーギア支持軸は第一遊星ギア機構と第二遊星ギア機構とで共有され,ハウジング側に配置されたアクチュエータが第二リングギアを周方向に変位させて変位回転子が回転軸に対して周方向に変位される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor position control means includes a first planetary gear mechanism, a second planetary gear mechanism, and an actuator, and the first planetary gear mechanism is fixed to the rotating shaft. One sun gear, a first ring gear fixed to the housing, a first sun gear, a first planetary gear meshing with the first ring gear, and a planetary gear support shaft. A second sun gear fixed to one of the displacement rotors, a second ring gear rotatably disposed by an actuator, a second sun gear, a second planetary gear meshing with the second ring gear, and a planetary gear support shaft. The planetary gear support shaft is shared by the first planetary gear mechanism and the second planetary gear mechanism, and the actuator arranged on the housing side moves the second ring gear in the circumferential direction. The rotary electric machine system position is allowed to displace the rotor is characterized in that is displaced in the circumferential direction with respect to the rotation axis 請求項5記載の回転電機システムに於いて,回転子を増速中に回転子位置制御手段は第二サンギアが第一サンギアより速く回転させる方向に第二リングギアを周方向に回転させる回転速度を制御し,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中に回転子位置制御手段は第二サンギアが第一サンギアより遅く回転させる方向に第二リングギアを周方向に回転させる回転速度を制御し,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする回転電機システム
6. The rotating electrical machine system according to claim 5, wherein the rotor position control means rotates the second ring gear in the circumferential direction so that the second sun gear rotates faster than the first sun gear while the rotor is accelerated. The amount of displacement of the displacement rotor is increased using the rotational driving force, and the rotor position control means moves the second sun gear in a direction that causes the second sun gear to rotate slower than the first sun gear while the rotor is decelerated by regenerative braking. A rotating electrical machine system characterized by controlling the rotational speed of rotating the two ring gears in the circumferential direction and using the regenerative braking force to reduce the displacement of the displacement rotor
請求項1記載の回転電機システムに於いて,回転子位置制御手段は,第一遊星ギア機構,第二遊星ギア機構,クラッチ機構を有し,第一遊星ギア機構は,回転軸に固定された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギア,プラネタリーギア支持軸を有して構成され,第二遊星ギア機構は,二つの変位回転子の何れかに固定された第二サンギア,ハウジングに回動可能に配置された第二リングギア,第二サンギア及び第二リングギアに噛み合う第二プラネタリーギア,プラネタリーギア支持軸を有してプラネタリーギア支持軸は第一遊星ギア機構と第二遊星ギア機構とで共有され,クラッチ機構は第二リングギアをハウジングに拘束出来る構成とし,回転子を増速中にクラッチ機構は第二リングギアをハウジングに拘束する力を緩める方向に制御され,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中にクラッチ機構は第二リングギアをハウジングに拘束する力を緩める方向に制御され,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor position control means includes a first planetary gear mechanism, a second planetary gear mechanism, and a clutch mechanism, and the first planetary gear mechanism is fixed to the rotating shaft. The first sun gear, the first ring gear fixed to the housing, the first sun gear, the first planetary gear meshing with the first ring gear, and the planetary gear support shaft. The second sun gear fixed to one of the two displacement rotors, the second ring gear rotatably disposed in the housing, the second sun gear and the second planetary gear meshing with the second ring gear, the planetary gear support shaft The planetary gear support shaft is shared by the first planetary gear mechanism and the second planetary gear mechanism, and the clutch mechanism is configured so that the second ring gear can be restrained by the housing, and the rotor is accelerated. The clutch mechanism is controlled in the direction to loosen the force that restrains the second ring gear to the housing, the displacement of the displacement rotor is increased by using the rotational driving force, and the clutch mechanism is operated while the rotor is decelerated by regenerative braking. A rotating electrical machine system characterized in that the displacement of the displacement rotor is reduced by using a regenerative braking force, controlled in the direction to loosen the force that restrains the second ring gear to the housing 請求項1記載の回転電機システムに於いて,回転子位置制御手段は,クラッチ機構を有し,クラッチ機構は,二つの変位回転子の何れかを回転軸に拘束出来る構成とし,回転子を増速中にクラッチ機構は変位回転子を回転軸に拘束する力を緩める方向に制御され,回転駆動力を利用して変位回転子の変位量が増大され,回転子を回生制動により減速中にクラッチ機構は変位回転子を回転軸に拘束する力を緩める方向に制御され,回生制動力を利用して変位回転子の変位量が減少される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor position control means includes a clutch mechanism, and the clutch mechanism is configured such that one of the two displacement rotors can be constrained to the rotating shaft, and the number of rotors is increased. During the speed, the clutch mechanism is controlled in the direction to loosen the force that restrains the displacement rotor on the rotating shaft, the displacement of the displacement rotor is increased by using the rotational driving force, and the rotor is clutched during deceleration by regenerative braking. The mechanism is controlled in a direction to loosen the force that restrains the displacement rotor on the rotating shaft, and the amount of displacement of the displacement rotor is reduced by using the regenerative braking force. 請求項1記載の回転電機システムに於いて,両軸端の回転子は電機子と対向する回転子周縁部を周方向に沿う磁気抵抗を均一としてリラクタンストルクが存在し難いよう構成されている事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotors at both shaft ends are configured so that reluctance torque does not easily exist with uniform magnetic resistance along the circumferential direction of the rotor peripheral portion facing the armature. Rotating electrical machine system characterized by 複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,更に固定回転子に配置された第一サンギア,ハウジングに固定された第一リングギア,第一サンギア及び第一リングギアに噛み合う第一プラネタリーギアを有する第一遊星ギア機構を有し,2つの変位回転子の何れかに配置された第二サンギア,アクチュエータにより回動可能に配置された第二リングギア,第二サンギア及び第二リングギアとに噛み合う第二プラネタリーギアを有する第二遊星ギア機構を有し,第一プラネタリーギアと第二プラネタリーギアとは共通のプラネタリーギア支持軸とを有するよう構成し,回転子を増速中に回転速度増大を継続させると共に誘起電圧が所定の値になるようアクチュエータにより回転子の回転方向とは逆方向に回転させる第二リングギアの回転速度を制御して変位回転子を固定回転子に対して回転方向に変位させ,回転子を回生制動により減速中に回転速度減少を継続させると共に誘起電圧が所定の値になるようアクチュエータにより第二リングギアを回転子の回転方向に回転させる回転速度を制御して変位回転子を固定回転子に対して回転方向と逆方向に変位させる事を特徴とする誘起電圧制御方法
The armature includes a plurality of armature coils arranged in the circumferential direction and a rotor arranged with a plurality of magnetic salient poles arranged in the circumferential direction. The rotor is arranged in the radial direction via the armature and a minute gap. A method for controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is opposed and rotatable, wherein the rotor includes three rotors having the same number of magnetic salient poles arranged in an axial direction. Opposite the armature and at least the rotors at both shaft ends have a magnet excitation structure, one shaft end rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other shaft end rotor are The displacement rotor is configured to be displaceable in the same circumferential direction with respect to the fixed rotor, and the two rotors at the shaft end with respect to the intermediate rotor, regardless of which of the two displacement rotors is displaced in the circumferential direction 3 rotors are mechanically coupled so that their relative displacements in opposite circumferential directions And a first planetary gear mechanism having a first sun gear disposed on the stationary rotor, a first ring gear fixed to the housing, a first sun gear, and a first planetary gear meshing with the first ring gear, A second planetary gear having a second sun gear disposed on one of the two displacement rotors, a second ring gear disposed rotatably by an actuator, a second sun gear and a second planetary gear meshing with the second ring gear It has a gear mechanism, and the first planetary gear and the second planetary gear are configured to have a common planetary gear support shaft. The displacement rotor is moved relative to the fixed rotor by controlling the rotation speed of the second ring gear that is rotated in the direction opposite to the rotation direction of the rotor by the actuator so as to have a predetermined value. Displacement in the rotation direction, while continuing to decrease the rotation speed while decelerating the rotor by regenerative braking, control the rotation speed to rotate the second ring gear in the rotation direction of the rotor by the actuator so that the induced voltage becomes a predetermined value And an induced voltage control method characterized in that the displacement rotor is displaced relative to the stationary rotor in the direction opposite to the rotation direction.
複数の電機子コイルが周方向に配置された電機子と,複数の磁気的突極が周方向に配置された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の回転力制御方法であって,前記回転子は磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,電機子と対向する回転子周縁部を周方向に沿う磁気抵抗を均一としてリラクタンストルクが存在し難いよう両軸端の回転子を構成し,電機子と対向する回転子周縁部を周方向に沿う磁気抵抗を周期的に変えてリラクタンストルクが得られるよう中間の回転子を構成し,変位回転子の変位量を大にさせて誘起電圧を減少させて誘起電圧に対する電源電圧の余裕分を大にし,変位回転子の変位量を小にさせて誘起電圧を増大させて発生させる回転駆動力を大にさせ,回転力を最適に制御する事を特徴とする回転力制御方法 The armature includes a plurality of armature coils arranged in the circumferential direction and a rotor arranged with a plurality of magnetic salient poles arranged in the circumferential direction. The rotor is arranged in the radial direction via the armature and a minute gap. A rotating force control method for a rotating electrical machine apparatus that is opposed and rotatable, wherein the rotor has three rotors having the same number of magnetic salient poles arranged in an axial direction to face the armature and at least The rotors at both shaft ends have a magnet excitation structure, one shaft end side rotor is fixed to the rotating shaft as a fixed rotor, and the intermediate rotor and the other shaft end side rotor are fixed rotors as displacement rotors. The two rotors at the shaft end are in the opposite circumferential direction relative to the intermediate rotor regardless of which of the two displacement rotors is displaced in the circumferential direction. A rotor that mechanically couples three rotors so as to be displaced relative to each other and faces the armature The rotors at both shaft ends are configured so that the reluctance torque does not easily exist with the magnetic resistance along the circumferential direction uniform, and the magnetic resistance along the circumferential direction is periodically changed at the peripheral edge of the rotor facing the armature. An intermediate rotor is constructed so that reluctance torque can be obtained, the displacement of the displacement rotor is increased, the induced voltage is decreased, the margin of the power supply voltage with respect to the induced voltage is increased, and the displacement of the displacement rotor is increased. Rotational force control method characterized by controlling rotational force optimally by increasing the rotational driving force generated by increasing the induced voltage by reducing the pressure 磁気的突極の数が等しい3個の回転子を軸方向に並べて電機子に対向させると共に少なくとも両軸端の回転子を磁石励磁構造とし,一方の軸端側回転子を固定回転子として回転軸に固定し,中間の回転子及び他方の軸端側回転子を変位回転子として固定回転子に対して周方向の同じ方向に変位可能に構成し,二つの変位回転子の何れを周方向に変位させても中間回転子に対して軸端の二つの回転子が互いに逆の周方向に相対変位するよう3個の回転子を機械的に結合し,更に変位回転子を回転軸に拘束する手段を有する回転電機システムを駆動源とする車両の駆動力制御方法であって,車両を増速中に回転駆動力から変位回転子の変位力及び車両の駆動力を得るよう変位回転子を回転軸に拘束する力を制御し,変位回転子の変位量を大にさせて誘起電圧が電源電圧に対して所定の値になるよう制御し,車両を回生制動により減速中に変位回転子の変位力及び車両の減速駆動力を得るよう変位回転子を回転軸に拘束する力を制御し,変位回転子の変位量を小にさせて誘起電圧が電源電圧に対して所定の値になるよう制御し,車両の駆動力を滑らかに制御する方法 Three rotors with the same number of magnetic salient poles are arranged in the axial direction so as to face the armature, and at least the rotors at both shaft ends have a magnet excitation structure, and one shaft end rotor is rotated as a fixed rotor. It is fixed to the shaft, and the intermediate rotor and the other shaft end side rotor are used as displacement rotors so that they can be displaced in the same circumferential direction with respect to the fixed rotor. The three rotors are mechanically coupled so that the two rotors at the shaft end are displaced relative to each other in the opposite circumferential direction with respect to the intermediate rotor, and the displacement rotor is constrained to the rotation shaft. A method for controlling a driving force of a vehicle using a rotating electrical machine system having a means for performing a driving operation to obtain the displacement force of the displacement rotor and the driving force of the vehicle from the rotational driving force while the vehicle is accelerated. By controlling the force constrained to the rotating shaft, the displacement of the displacement rotor is increased. Force that restrains the displacement rotor to the rotating shaft so as to obtain the displacement force of the displacement rotor and the deceleration driving force of the vehicle while the induced voltage is controlled to a predetermined value with respect to the power supply voltage and the vehicle is decelerated by regenerative braking. To control the driving force of the vehicle smoothly by controlling the motor so that the displacement of the displacement rotor is reduced so that the induced voltage becomes a predetermined value with respect to the power supply voltage.
JP2014248975A 2014-06-06 2014-12-09 Magnet excitation rotating electrical machine system Expired - Fee Related JP5759054B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014248975A JP5759054B1 (en) 2014-12-09 2014-12-09 Magnet excitation rotating electrical machine system
PCT/JP2015/061931 WO2015186442A1 (en) 2014-06-06 2015-04-20 Magnet excitation rotating electric machine system
US14/726,612 US20150357891A1 (en) 2014-06-06 2015-06-01 Rotating electric machine system and method for controlling induced voltage for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014248975A JP5759054B1 (en) 2014-12-09 2014-12-09 Magnet excitation rotating electrical machine system

Publications (1)

Publication Number Publication Date
JP5759054B1 true JP5759054B1 (en) 2015-08-05

Family

ID=53887578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014248975A Expired - Fee Related JP5759054B1 (en) 2014-06-06 2014-12-09 Magnet excitation rotating electrical machine system

Country Status (1)

Country Link
JP (1) JP5759054B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155262A (en) * 1996-09-30 1998-06-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001314068A (en) * 2000-05-01 2001-11-09 Denso Corp Two-rotor synchronous machine
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2007097284A (en) * 2005-09-28 2007-04-12 Toyota Motor Corp Magnet type motor
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
WO2010098006A1 (en) * 2009-02-24 2010-09-02 有限会社クラ技術研究所 Variable magnetic flux rotating electric machine system
JP2010246196A (en) * 2009-04-02 2010-10-28 Hitachi Ltd Rotary electric machine
JP2011254609A (en) * 2010-06-02 2011-12-15 Takeo Hiramatsu Device for setting phase difference between two-divided rotors of permanent magnetic type motor
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155262A (en) * 1996-09-30 1998-06-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001314068A (en) * 2000-05-01 2001-11-09 Denso Corp Two-rotor synchronous machine
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2007097284A (en) * 2005-09-28 2007-04-12 Toyota Motor Corp Magnet type motor
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
WO2010098006A1 (en) * 2009-02-24 2010-09-02 有限会社クラ技術研究所 Variable magnetic flux rotating electric machine system
JP2010246196A (en) * 2009-04-02 2010-10-28 Hitachi Ltd Rotary electric machine
JP2011254609A (en) * 2010-06-02 2011-12-15 Takeo Hiramatsu Device for setting phase difference between two-divided rotors of permanent magnetic type motor
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine

Similar Documents

Publication Publication Date Title
US8339010B2 (en) Dual rotor electric machine having a field-controlling rotor
JP2008271640A (en) Axial gap motor
WO2008006906A1 (en) Permanent magnet rotating electric machine
CN105141092A (en) Magnetic gear type double-stator hybrid permanent magnet memory motor
US11289959B2 (en) Rotor and rotary electric machine
JP4150765B1 (en) Magnetic flux shunt control rotating electrical machine system
JP5842852B2 (en) Rotating electrical machine control system and rotating electrical machine control method
WO2015186442A1 (en) Magnet excitation rotating electric machine system
JP2015039251A (en) Magnet excitation rotary electric machine system
JP5265799B1 (en) Magnet excitation rotating electrical machine system
JP5759054B1 (en) Magnet excitation rotating electrical machine system
JP5515413B2 (en) Rotor of an embedded magnet type synchronous motor
JP5723473B1 (en) Magnet excitation rotating electrical machine system
JP6201405B2 (en) Rotating electric machine
JP6986337B2 (en) Variable magnetic flux motor
JP2010183778A (en) Electric motor and method of controlling the same
JP7039322B2 (en) Variable field motor
JP5114135B2 (en) Axial gap type motor
WO2015022733A1 (en) Magnetic excitation rotating electric machine system
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
JP4150779B1 (en) Magnetic flux shunt control rotating electrical machine system
JP6006196B2 (en) Rotating electric machine
JP7572867B2 (en) Rotating Electric Machine
JP4808529B2 (en) Electric motor
WO2012070514A1 (en) Rotating device using permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5759054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees