JP5746820B2 - Flavored fruit wine and method for producing the same - Google Patents
Flavored fruit wine and method for producing the same Download PDFInfo
- Publication number
- JP5746820B2 JP5746820B2 JP2009289912A JP2009289912A JP5746820B2 JP 5746820 B2 JP5746820 B2 JP 5746820B2 JP 2009289912 A JP2009289912 A JP 2009289912A JP 2009289912 A JP2009289912 A JP 2009289912A JP 5746820 B2 JP5746820 B2 JP 5746820B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- lactic acid
- yeast
- fermentation
- fruit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 49
- 235000019990 fruit wine Nutrition 0.000 title claims description 41
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 164
- 238000000855 fermentation Methods 0.000 claims description 142
- 230000004151 fermentation Effects 0.000 claims description 142
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 100
- 239000002994 raw material Substances 0.000 claims description 83
- 239000004310 lactic acid Substances 0.000 claims description 82
- 235000014655 lactic acid Nutrition 0.000 claims description 82
- 241000894006 Bacteria Species 0.000 claims description 80
- 235000013761 grape skin extract Nutrition 0.000 claims description 62
- 239000002243 precursor Substances 0.000 claims description 52
- 239000011550 stock solution Substances 0.000 claims description 46
- 235000009754 Vitis X bourquina Nutrition 0.000 claims description 44
- 235000012333 Vitis X labruscana Nutrition 0.000 claims description 44
- 235000014787 Vitis vinifera Nutrition 0.000 claims description 44
- 235000013399 edible fruits Nutrition 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 26
- 235000015203 fruit juice Nutrition 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 17
- 239000000284 extract Substances 0.000 claims description 13
- 235000011389 fruit/vegetable juice Nutrition 0.000 claims description 9
- 235000020097 white wine Nutrition 0.000 claims description 7
- TYZFMFVWHZKYSE-UHFFFAOYSA-N 3-mercaptohexanol Chemical compound CCCC(S)CCO TYZFMFVWHZKYSE-UHFFFAOYSA-N 0.000 claims description 6
- 230000001476 alcoholic effect Effects 0.000 claims description 6
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 5
- 239000004201 L-cysteine Substances 0.000 claims description 3
- JUCARGIKESIVLB-UHFFFAOYSA-N 3-mercaptohexyl acetate Chemical compound CCCC(S)CCOC(C)=O JUCARGIKESIVLB-UHFFFAOYSA-N 0.000 claims description 2
- 241000219095 Vitis Species 0.000 claims 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 96
- 229960003180 glutathione Drugs 0.000 description 62
- 240000006365 Vitis vinifera Species 0.000 description 42
- 235000010633 broth Nutrition 0.000 description 36
- 235000014101 wine Nutrition 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 32
- 150000008442 polyphenolic compounds Chemical class 0.000 description 27
- 235000013824 polyphenols Nutrition 0.000 description 27
- 238000000605 extraction Methods 0.000 description 19
- 240000006024 Lactobacillus plantarum Species 0.000 description 15
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 14
- 229940072205 lactobacillus plantarum Drugs 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 230000002354 daily effect Effects 0.000 description 12
- 238000000926 separation method Methods 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 239000000796 flavoring agent Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 7
- 235000019634 flavors Nutrition 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 238000011081 inoculation Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 235000019640 taste Nutrition 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 108010059820 Polygalacturonase Proteins 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 108010093305 exopolygalacturonase Proteins 0.000 description 6
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- 235000019674 grape juice Nutrition 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000003203 everyday effect Effects 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- -1 yeast cell wall Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 239000004254 Ammonium phosphate Substances 0.000 description 4
- 241000186660 Lactobacillus Species 0.000 description 4
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 4
- 241000186851 Lactobacillus mali Species 0.000 description 4
- 241000186684 Lactobacillus pentosus Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000235070 Saccharomyces Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 4
- 235000019289 ammonium phosphates Nutrition 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 239000003205 fragrance Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000006872 mrs medium Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 240000000560 Citrus x paradisi Species 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- 241000186685 Lactobacillus hilgardii Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 235000000370 Passiflora edulis Nutrition 0.000 description 3
- 244000288157 Passiflora edulis Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 241000219094 Vitaceae Species 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000021021 grapes Nutrition 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 229940039696 lactobacillus Drugs 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 3
- 239000001253 polyvinylpolypyrrolidone Substances 0.000 description 3
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 101710082056 Ethanol acetyltransferase 1 Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 241000481961 Lachancea thermotolerans Species 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 241000191996 Pediococcus pentosaceus Species 0.000 description 2
- 244000253897 Saccharomyces delbrueckii Species 0.000 description 2
- 235000018370 Saccharomyces delbrueckii Nutrition 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000014681 Torulaspora delbrueckii Nutrition 0.000 description 2
- 244000078534 Vaccinium myrtillus Species 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 235000019606 astringent taste Nutrition 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 235000019658 bitter taste Nutrition 0.000 description 2
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 2
- 229960002079 calcium pantothenate Drugs 0.000 description 2
- 235000011132 calcium sulphate Nutrition 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 235000019700 dicalcium phosphate Nutrition 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 235000019985 fermented beverage Nutrition 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229930003935 flavonoid Natural products 0.000 description 2
- 235000017173 flavonoids Nutrition 0.000 description 2
- 150000002215 flavonoids Chemical class 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 229960003512 nicotinic acid Drugs 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 2
- 229940043349 potassium metabisulfite Drugs 0.000 description 2
- 235000010263 potassium metabisulphite Nutrition 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 229960000344 thiamine hydrochloride Drugs 0.000 description 2
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 2
- 239000011747 thiamine hydrochloride Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- NBCQBGBECVUZMK-UHFFFAOYSA-N (4-carboxyphenyl)mercury;hydrate Chemical compound O.OC(=O)C1=CC=C([Hg])C=C1 NBCQBGBECVUZMK-UHFFFAOYSA-N 0.000 description 1
- WVXRAFOPTSTNLL-NKWVEPMBSA-N 2',3'-dideoxyadenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO)O1 WVXRAFOPTSTNLL-NKWVEPMBSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 1
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 1
- XVHGKKGBUDMTIQ-UHFFFAOYSA-N 4-Methoxy-2-methyl-2-butanethiol Chemical compound COCCC(C)(C)S XVHGKKGBUDMTIQ-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 1
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 1
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 101100348341 Caenorhabditis elegans gas-1 gene Proteins 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 235000009008 Eriobotrya japonica Nutrition 0.000 description 1
- 244000061508 Eriobotrya japonica Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 241000186777 Fructobacillus fructosus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241000028630 Lactobacillus acidipiscis Species 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 240000001929 Lactobacillus brevis Species 0.000 description 1
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 1
- 241000186840 Lactobacillus fermentum Species 0.000 description 1
- 241001468191 Lactobacillus kefiri Species 0.000 description 1
- 241000183331 Lactobacillus paracasei subsp. tolerans Species 0.000 description 1
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 1
- 241000192132 Leuconostoc Species 0.000 description 1
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 1
- 240000003394 Malpighia glabra Species 0.000 description 1
- 235000014837 Malpighia glabra Nutrition 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000005135 Micromeria juliana Nutrition 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 101100447658 Mus musculus Gas1 gene Proteins 0.000 description 1
- 101100447665 Mus musculus Gas2 gene Proteins 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 241000192001 Pediococcus Species 0.000 description 1
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000011158 Prunus mume Nutrition 0.000 description 1
- 244000018795 Prunus mume Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 240000001987 Pyrus communis Species 0.000 description 1
- 235000001466 Ribes nigrum Nutrition 0.000 description 1
- 241001312569 Ribes nigrum Species 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 235000007315 Satureja hortensis Nutrition 0.000 description 1
- 240000002114 Satureja hortensis Species 0.000 description 1
- 240000002751 Sideroxylon obovatum Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 102400000472 Sucrase Human genes 0.000 description 1
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- 241000235006 Torulaspora Species 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229940010556 ammonium phosphate Drugs 0.000 description 1
- 235000015197 apple juice Nutrition 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- DEDGUGJNLNLJSR-UHFFFAOYSA-N enol-phenylpyruvic acid Chemical class OC(=O)C(O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000011899 heat drying method Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 229940012969 lactobacillus fermentum Drugs 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Alcoholic Beverages (AREA)
Description
本発明は、香味豊かな果実酒及びその製造方法に関し、果実酒は、例えば、デイリーワインである。 The present invention relates to a flavorful fruit wine and a method for producing the same, and the fruit wine is, for example, a daily wine.
デイリーワイン(daily wine)は、例えば、毎日飲むのにふさわしいワインと定義できる。デイリーワインは、毎日飲んでも大きな経済的負担がなく、即ち、比較的安価であり、かつ毎日飲んでも飽きが来ないものでなければならない。甘口過ぎるワイン、癖のある香味のワイン、極端な安ワインもデイリーワインには向かない。デイリーワインと呼ばれるワインは市場にあふれているが、実際に、このように定義されるものに該当するワインは少ないのが実情である。単に安く手に入りやすいワインをデイリーワインと呼んでいるようにも思える。裏を返せば、低価格で、毎日飲んでも飽きが来ない品質のワインを提供するのは容易なことではない。 Daily wine can be defined, for example, as a wine suitable for drinking every day. Daily wines should not have a significant economic burden even if they are drunk every day, that is, they should be relatively inexpensive and never get bored even if they are drunk every day. Too sweet wines, savory wines and extremely cheap wines are not suitable for daily wines. Wines called daily wines are abundant in the market, but in fact there are few wines that fall under this definition. It seems to simply call cheap wines that are readily available as daily wines. In other words, it is not easy to provide a quality wine that is low in price and can be enjoyed every day.
これまでのデイリーワインは、産地においてより低価格に製造し、その際に、味や香りについてもある程度品質を保持したワインを当てるのが一般的である。 Conventional daily wine is generally produced at a lower price in the production area, and at that time, it is common to apply a wine having a certain level of quality in terms of taste and aroma.
そこで本発明の目的は、デイリーワインなどの、低価格で、毎日飲んでも飽きが来ない、香味豊かな果実酒を提供する新たな手段を提供することにある。 Accordingly, an object of the present invention is to provide a new means for providing a fruit wine that is rich in flavor, such as daily wine, that is inexpensive and does not get tired even if it is drunk every day.
本発明者らは、比較的安価に果実酒を製造できる濃縮果汁を原料の少なくとも一部として用い、かつ濃縮果汁を原料とする果実酒に不足する香味を、3-メルカプトヘキサン-1-オール(3MHと略記することがある)を含有する原液で補うことで香味豊かな果実酒の製造ができること、さらには、前記3MHを含有する原液を新たな手法により比較的容易に入手できるようにしたことで、本発明を完成させた。 The present inventors have used concentrated fruit juice, which can produce fruit liquor at a relatively low cost, as at least a part of the raw material, and a flavor that is lacking in fruit liquor made from concentrated fruit juice as a raw material, with 3-mercaptohexane-1-ol ( Supplemented with a stock solution containing 3MH), and a fruit juice with a rich flavor can be produced, and further, the stock solution containing 3MH can be obtained relatively easily by a new method. Thus, the present invention has been completed.
本発明は、以下のとおりである。
[1]
濃縮果汁を原料の少なくとも一部として使用した果汁液をアルコール発酵して原料果実酒を得る工程、
3-メルカプトヘキサン-1-オール(以下、3MHと略記する)を含有する原液を調製する工程、
前記原料果実酒に原液を添加して、3MH濃度を強化した果実酒を得る工程、
を含む香味豊かな果実酒の製造方法。
[2]
3MHを含有する原液は、果皮抽出液を乳酸菌及び酵母で発酵して製造する[1]に記載の製造方法。
[3]
果皮抽出液を乳酸菌及び酵母で発酵することによる3MHを含有する原液の製造は、
S-3-(ヘキサン-1-オール)-グルタチオン及びS-3-(ヘキサン-1-オール)-L-システインを含有する原料水溶液に乳酸菌及び酵母を接種して、3MH及びアルコールを生成させることを含む、[2]に記載の製造方法。
[4]
前記原料水溶液は、ブドウ果皮抽出液の含有液であり、
前記乳酸菌が、S-3-(ヘキサン-1-オール)-グルタチオンをS-3-(ヘキサン-1-オール)-L-システインに変換することができる乳酸菌であり、かつ、
前記原料水溶液に乳酸菌を接種した後0〜6日発酵させた後に、前記水溶液に酵母を接種してアルコール発酵を行う、[3]に記載の製造方法。
[5]
前記ブドウ果皮抽出液は、ブドウ果皮を水に浸漬して3MH前駆体を抽出することを含む方法で調製される、[4]に記載の製造方法。
[6]
ブドウ果皮がソーヴィニヨン・ブラン種またはシャルドネ種のものである[5]に記載の製造方法。
[7]
原料果実酒及び果実酒が白ワインである[1]〜[6]のいずれかに記載の製造方法。
[8]
果実酒の3MH濃度が4〜160nMの範囲となるように原液を添加する、[1]〜[7]のいずれかに記載の製造方法。
[9]
原液の3MH濃度が100〜6000nMの範囲である[1]〜[8]のいずれかに記載の製造方法。
[10]
濃縮果汁を原料の少なくとも一部として使用した果汁液を発酵して得た原料果実酒に3-メルカプトヘキサン-1-オールを含有する原液を3MH濃度が4〜160nMの範囲となるように添加してなる、果実酒。
[11]
3MHを含有する原液が果皮抽出液を乳酸菌及び酵母で発酵して得たものである[10]に記載の果実酒。
[12]
原料果実酒及び果実酒が白ワインである[10]または[11]に記載の果実酒。
[13]
アルコール含有量が5〜15%の範囲である[10]〜[12]のいずれかに記載の果実酒。
The present invention is as follows.
[1]
A step of alcoholic fermentation of a juice obtained by using concentrated fruit juice as at least a part of the raw material to obtain a raw fruit wine;
A step of preparing a stock solution containing 3-mercaptohexan-1-ol (hereinafter abbreviated as 3MH),
Adding a stock solution to the raw fruit liquor to obtain a fruit liquor with enhanced 3MH concentration,
A method for producing a flavorful fruit liquor containing
[2]
The stock solution containing 3MH is produced by fermenting the pericarp extract with lactic acid bacteria and yeast, [1].
[3]
Production of a stock solution containing 3MH by fermenting the peel extract with lactic acid bacteria and yeast,
Inoculating lactic acid bacteria and yeast into an aqueous raw material solution containing S-3- (hexane-1-ol) -glutathione and S-3- (hexane-1-ol) -L-cysteine to produce 3MH and alcohol The production method according to [2], comprising:
[Four]
The raw material aqueous solution is a liquid containing grape skin extract,
The lactic acid bacterium is a lactic acid bacterium capable of converting S-3- (hexane-1-ol) -glutathione into S-3- (hexane-1-ol) -L-cysteine, and
The method according to [3], wherein the raw aqueous solution is inoculated with lactic acid bacteria and then fermented for 0 to 6 days, and then the aqueous solution is inoculated with yeast to perform alcoholic fermentation.
[Five]
The said grape skin extract is a manufacturing method as described in [4] prepared by the method including immersing grape skin in water and extracting a 3MH precursor.
[6]
The production method according to [5], wherein the grape skin is of Sauvignon Blanc or Chardonnay.
[7]
The production method according to any one of [1] to [6], wherein the raw fruit wine and the fruit wine are white wine.
[8]
The production method according to any one of [1] to [7], wherein the stock solution is added so that the 3MH concentration of the fruit wine is in the range of 4 to 160 nM.
[9]
The production method according to any one of [1] to [8], wherein the 3MH concentration of the stock solution is in the range of 100 to 6000 nM.
[Ten]
Add the stock solution containing 3-mercaptohexan-1-ol to the raw fruit wine obtained by fermenting the juice using concentrated juice as at least a part of the raw material so that the 3MH concentration ranges from 4 to 160 nM. Fruit wine.
[11]
The fruit liquor according to [10], wherein the stock solution containing 3MH is obtained by fermenting a peel extract with lactic acid bacteria and yeast.
[12]
The fruit wine according to [10] or [11], wherein the raw fruit wine and the fruit wine are white wines.
[13]
The fruit liquor according to any one of [10] to [12], wherein the alcohol content is in the range of 5 to 15%.
本発明によれば、香味豊かな果実酒を、比較的容易に、そのため安価に製造でき、デイリーワインとして飲用できる、安価でしかも飽きの来にくい香味豊かな果実酒を提供できる。 According to the present invention, it is possible to provide a fruit wine that is rich in flavor and can be produced relatively inexpensively and therefore inexpensively and can be drunk as a daily wine.
[香味豊かな果実酒の製造方法]
本発明の第1の態様は、香味豊かな果実酒の製造方法に関する。この製造方法は、以下の3つの工程を含む。
(1)濃縮果汁を原料の少なくとも一部として使用した果汁液をアルコール発酵して原料果実酒を得る工程、
(2)3MHを含有する原液を調製する工程、
(3)前記原料果実酒に原液を添加して、3MH濃度を強化した果実酒を得る工程
[Method for producing flavorful fruit wine]
The first aspect of the present invention relates to a method for producing a flavorful fruit wine. This manufacturing method includes the following three steps.
(1) a process for obtaining a raw fruit wine by alcoholic fermentation of a fruit juice using concentrated fruit juice as at least a part of the raw material;
(2) a step of preparing a stock solution containing 3MH,
(3) A process of obtaining a fruit liquor with enhanced 3MH concentration by adding a stock solution to the raw fruit liquor
工程(1):原料果実酒製造工程
工程(1)では、濃縮果汁を原料の少なくとも一部として使用した果汁液をアルコール発酵して原料果実酒を得る。原料果実酒の原料としては、濃縮果汁を少なくとも一部として用いる。果汁としては、飲用に用いられる果汁であれば特に限定されないが、例えば、ブドウ果汁、リンゴ果汁、カンキツ果汁(オレンジ、ミカン、グレープフルーツ、レモン、ライムなどの果汁)、パイナップル、グアバ、バナナ、マンゴー、アセロラ、パパイヤ、パッションフルーツ、チェリー、カキ、スモモ、アンズ、ビワ、モモ、ナシ、ウメ、ベリー(カシス、クランベリー、ブルーベリー、ブラックベリー、ラズベリー、ボイセンベリー、マルベリー、イチゴなどの果汁)、キウイフルーツ、メロンの各果汁などが挙げられる。特に、香味豊かな果実酒としてデイリーワインにもなり得るワインを製造する場合には、ブドウ果汁を好適に用いることができる。
Step (1): Raw material fruit liquor production step In step (1), fruit juice using concentrated fruit juice as at least part of the raw material is subjected to alcohol fermentation to obtain the raw material fruit liquor. Concentrated fruit juice is used as at least part of the raw material fruit sake. The fruit juice is not particularly limited as long as it is used for drinking. For example, grape juice, apple juice, citrus juice (fruit juices such as orange, mandarin, grapefruit, lemon, lime), pineapple, guava, banana, mango, Acerola, papaya, passion fruit, cherry, oyster, plum, apricot, loquat, peach, pear, ume, berry (cassis, cranberry, blueberry, blackberry, raspberry, boysenberry, mulberry, strawberry, etc.), kiwi fruit, Examples include melon juices. In particular, when producing wine that can also be used as a daily wine as a flavorful fruit wine, grape juice can be preferably used.
濃縮果汁とは、果汁を常法により濃縮したものであり、通常、濃縮前の果汁の1.5〜10倍の濃度に濃縮され、Brix25〜70%程度に調整されたものが一般的である。本発明では、濃縮果汁を原料果実酒製造に適した濃度に還元したものを原料として、常法によりアルコール発酵させて原料果実酒を得る。発酵原料には、濃縮果汁以外に、濃縮果汁に含まれる成分を考慮して、発酵に適した条件を整えるために、例えば、酸類(例えば乳酸、リンゴ酸、酒石酸、亜硫酸等)、塩類(例えば、食塩、リン酸水素カルシウム、リン酸アンモニウム、硫酸マグネシウム、硫酸カルシウム、メタ重亜硫酸カリウム、塩化カルシウム、塩化マグネシウム、硝酸カリウム、硫酸アンモニウム等)、除酸剤(例えば、炭酸カルシウム、アンモニア等)、酵母発酵助成剤(不活性酵母、酵母エキス、酵母細胞壁、リン酸アンモニウム、硫酸マグネシウム、チアミン塩酸塩、葉酸、パントテン酸カルシウム、ナイアシン、ビオチンの全部又は一部で構成されるもの)等の添加物等をさらに添加することもできる。アルコール発酵に用いる酵母には特に制限はなく、酵母の例としては、サッカロマイセス属酵母(例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)等)が挙げられる。また、サッカロマイセス属酵母と共にクロイベロマイセス属酵母(例えば、クロイベロマイセス・サーモトラレンス(Kluyveromyces thermotolerans)等)、トルラスポラ属酵母(例えば、トルラスポラ・デルブレキ(Torulaspora delbrueckii)等)を混合して使用してもよい。 Concentrated fruit juice is obtained by concentrating fruit juice by a conventional method, and generally concentrated to 1.5 to 10 times the concentration of fruit juice before concentration and adjusted to about Brix 25 to 70%. In the present invention, raw fruit wine is obtained by subjecting concentrated fruit juice to a raw material that has been reduced to a concentration suitable for raw fruit wine production, and subjecting it to alcohol fermentation by a conventional method. In order to prepare conditions suitable for fermentation in consideration of the components contained in the concentrated fruit juice in addition to the concentrated fruit juice, for example, acids (for example, lactic acid, malic acid, tartaric acid, sulfurous acid, etc.), salts (for example, Salt, calcium hydrogen phosphate, ammonium phosphate, magnesium sulfate, calcium sulfate, potassium metabisulfite, calcium chloride, magnesium chloride, potassium nitrate, ammonium sulfate, etc.), deoxidizer (eg, calcium carbonate, ammonia, etc.), yeast fermentation Additives such as aids (inactive yeast, yeast extract, yeast cell wall, ammonium phosphate, magnesium sulfate, thiamine hydrochloride, folic acid, calcium pantothenate, niacin, biotin) and other additives Further, it can be added. There is no restriction | limiting in particular in the yeast used for alcoholic fermentation, As an example of yeast, Saccharomyces genus yeast (For example, Saccharomyces cerevisiae (Saccharomyces cerevisiae etc.) etc.) is mentioned. In addition, Saccharomyces genus yeast and Kloyveromyces thermotolerans (for example, Kluyveromyces thermotolerans), Torlaspora genus yeast (for example, Torulaspora delbrueckii) are used in combination. May be.
原料果実酒のアルコール濃度は特に限定されないが、例えば、1〜14%程度が適当であり、より好ましくは5〜12%程度である。 The alcohol concentration of the raw fruit wine is not particularly limited, but for example, about 1 to 14% is appropriate, and more preferably about 5 to 12%.
工程(2):3MH含有原液調製
工程(2)では、3MH含有原液を調製する。3MHは、ソーヴィニヨン・ブラン種等のブドウから醸造されたワインに含有されることが報告されており、その分子構造内に-SH基を有するチオール化合物である。3MHの閾値は非常に低く(閾値60ng/L(0.45nM))、ワイン中に微量に存在するだけでグレープフルーツやパッションフルーツ等、ワインを含めたその他発酵飲料の品質に正に貢献するニュアンスを与える重要な成分である。
Step (2): Preparation of 3MH-containing stock solution In Step (2), a 3MH-containing stock solution is prepared. 3MH has been reported to be contained in wines brewed from grapes such as Sauvignon Blanc, and is a thiol compound having a -SH group in its molecular structure. The threshold of 3MH is very low (threshold 60 ng / L (0.45 nM)), and presents a nuance that contributes positively to the quality of other fermented beverages including wine, such as grapefruit and passion fruit, when present in trace amounts in wine. It is an important ingredient.
従来から比較的高い濃度で3MHを含有するワインが得られたという報告はあるが、そのようなワインを得るのは非常に難しく、3MHの含有量が高く良好な芳香を有するワインを容易に製造することはできなかった。本発明者らは、3MHの含有量が高く良好な芳香を有するワインを容易に製造する方法について長年研究した結果、3MH含有量が高く、ワインを含む種々の飲料や食品に3MHの香りを付加できる着香剤として利用できる3MH含有原液の製造方法を新たに開発した。本発明ではこの方法により製造した3MH含有原液を用いることができる。 Although it has been reported that wine containing 3MH at a relatively high concentration has been obtained in the past, it is very difficult to obtain such wine, and it is easy to produce wine with high 3MH content and good aroma. I couldn't. The present inventors have studied for many years how to easily produce wine with a high 3MH content and a good aroma, and as a result, the 3MH content is high, and a 3MH fragrance is added to various beverages and foods including wine. We have developed a new 3MH-containing stock solution that can be used as a flavoring agent. In the present invention, a 3MH-containing stock solution produced by this method can be used.
この製造方法は、果皮抽出液を乳酸菌及び酵母で発酵することで、3MH含有原液を得るものである。果皮抽出液を乳酸菌及び酵母で発酵することによる3MHを含有する原液の製造は、より具体的には、S-3-(ヘキサン-1-オール)-グルタチオン(3MH-S-GSHと略記することがある)及びS-3-(ヘキサン-1-オール)-L-システイン(3MH-S-Cysと略記することがある)を含有する原料水溶液に乳酸菌及び酵母を接種して、3MH及びアルコールを生成させることを含む。さらに前記原料水溶液は、ブドウ果皮抽出液の含有液であり、前記乳酸菌が、3MH-S-GSHを3MH-S-Cysに変換することができる乳酸菌であり、かつ、前記原料水溶液に乳酸菌を接種した後0〜6日発酵させた後に、前記水溶液に酵母を接種してアルコール発酵を行う方法であることができ、3MHを含有するアルコール含有発酵液として、3MH含有原液を得ることができる。以下に詳細に説明する。 In this production method, a 3MH-containing stock solution is obtained by fermenting the peel extract with lactic acid bacteria and yeast. The production of a stock solution containing 3MH by fermenting the peel extract with lactic acid bacteria and yeast is more specifically abbreviated as S-3- (hexane-1-ol) -glutathione (3MH-S-GSH). And inoculate lactic acid bacteria and yeast into a raw material aqueous solution containing S-3- (hexane-1-ol) -L-cysteine (sometimes abbreviated as 3MH-S-Cys), and 3MH and alcohol. Including generating. Furthermore, the raw material aqueous solution is a solution containing grape skin extract, the lactic acid bacteria are lactic acid bacteria capable of converting 3MH-S-GSH to 3MH-S-Cys, and the raw aqueous solution is inoculated with lactic acid bacteria. Then, after fermenting for 0 to 6 days, yeast can be inoculated into the aqueous solution to perform alcohol fermentation, and a 3MH-containing stock solution can be obtained as an alcohol-containing fermentation broth containing 3MH. This will be described in detail below.
尚、3MHは、ブドウ果粒中で3MH-S-GSH及び3MH-S-Cysという前駆体の形で存在する(非特許文献1及び2参照)。一般に3MH-S-GSHから3MH-S-Cysへの変換は、ブドウが成熟するのに伴ってブドウ自身の持つ酵素によって起こることが知られている。これら3MH前駆体がアルコール発酵中に酵母により代謝され、ワイン中に3MHとして遊離される。この反応は酵母のもつβ-リアーゼ活性を有する酵素等の働きによるものと考えられており、酵母の種類によってその力価が異なる。したがって、発酵原料中の3MH前駆体から3MHへの変換効率は、主に酵母の種類に依存する。 3MH exists in the form of precursors 3MH-S-GSH and 3MH-S-Cys in grape grains (see Non-Patent Documents 1 and 2). In general, it is known that the conversion of 3MH-S-GSH to 3MH-S-Cys is caused by the grape's own enzyme as the grape ripens. These 3MH precursors are metabolized by yeast during alcohol fermentation and released as 3MH in wine. This reaction is thought to be due to the action of an enzyme having β-lyase activity of yeast, and the titer varies depending on the type of yeast. Therefore, the conversion efficiency from 3MH precursor in fermentation raw material to 3MH mainly depends on the kind of yeast.
また、遊離された3MHの一部は、酵母由来のアルコールアセチルトランスフェラーゼ等の酵素により酢酸エステル体である3-メルカプトヘキシルアセテート(以下、3MHAと略記することがある)となる。3MHAはパッションフルーツ、ツゲやエニシダのニュアンスを与え、閾値4ng/L(0.02nM)と3MHと同様に香りへの貢献度が高い物質である。一般に、遊離された3MHの量が増加すれば、3MHAの量も増加する。 In addition, a part of the released 3MH is converted to 3-mercaptohexyl acetate (hereinafter sometimes abbreviated as 3MHA), which is an acetate ester, by an enzyme such as yeast-derived alcohol acetyltransferase. 3MHA gives passion fruit, boxwood and licorice nuances, and has a threshold value of 4 ng / L (0.02 nM) and a high contribution to fragrance as well as 3 MH. In general, as the amount of released 3MH increases, so does the amount of 3MHA.
<原料水溶液>
3MH含有原液の製造方法では、3MH-S-GSH及び3MH-S-Cysを含有する原料水溶液を用いる。以下、3MH-S-GSH及び3MH-S-Cysを3MH前駆体と呼ぶ。
<Raw material aqueous solution>
In the method for producing a 3MH-containing stock solution, a raw material aqueous solution containing 3MH-S-GSH and 3MH-S-Cys is used. Hereinafter, 3MH-S-GSH and 3MH-S-Cys are referred to as 3MH precursors.
3MH前駆体を含有する原料水溶液としては、ブドウ果皮抽出液の含有液を用いる。ブドウ果皮抽出液は、3MH前駆体を高濃度で含有するものを調製できることから、高濃度の3MHを含有するアルコール含有発酵液を得るための原料として最適である。 As the raw material aqueous solution containing the 3MH precursor, a solution containing grape skin extract is used. Since grape skin extract can be prepared to contain a high concentration of 3MH precursor, it is optimal as a raw material for obtaining an alcohol-containing fermentation broth containing a high concentration of 3MH.
ブドウ果皮抽出液は、例えば、以下の工程(a)及び(b)を含む方法で調製することができる。
(a)ブドウ果皮を、ブドウ果皮の湿重量に対して、例えば、0.5〜3倍量の水に浸漬し、0〜20℃で0.5〜96時間保持し、3MH-S-GSH及び3MH-S-Cysを抽出する工程、
(b)ブドウ果皮浸漬液を固液分離に付し、ブドウ果皮を除去してブドウ果皮抽出液を取得する工程
The grape skin extract can be prepared, for example, by a method including the following steps (a) and (b).
(a) Grape peel is immersed in 0.5-3 times the amount of water with respect to the wet weight of grape peel, and held at 0-20 ° C. for 0.5-96 hours, 3MH-S-GSH and 3MH-S -Cys extraction step,
(b) A step of subjecting the grape skin immersion liquid to solid-liquid separation, removing the grape skin and obtaining a grape skin extract
工程(a)
工程(a)では、ブドウ果皮を水に浸漬して、ブドウ果皮に含有される3MH-S-GSH及び3MH-S-Cysを抽出する。抽出条件は、3MH-S-GSH及び3MH-S-Cysの抽出効率を考慮して、適宜決定できる。例えば、ブドウ果皮を浸漬する水の量はブドウ果皮の湿重量に対して0.5〜3倍量が適当である。3倍を超えると、3MH前駆体や糖分の濃度が薄くなり、そのままでは発酵原料として使用しにくくなるうえ、総ポリフェノール濃度が相対的に高まってしまう。0.5倍より少ないと、抽出や固液分離の操作性が悪くなる傾向がある。
Step (a)
In the step (a), the grape skin is immersed in water to extract 3MH-S-GSH and 3MH-S-Cys contained in the grape skin. The extraction conditions can be appropriately determined in consideration of the extraction efficiency of 3MH-S-GSH and 3MH-S-Cys. For example, the amount of water in which grape skin is immersed is suitably 0.5 to 3 times the wet weight of grape skin. If it exceeds 3 times, the concentration of 3MH precursors and sugars becomes thin, making it difficult to use as it is as a fermentation raw material, and the total polyphenol concentration is relatively increased. If it is less than 0.5 times, the operability of extraction and solid-liquid separation tends to deteriorate.
また抽出効率向上、固液分離の操作性向上を目的として、浸漬用の水にペクチナーゼ等の酵素活性を有する酵素剤を添加することもできる。酵素剤としては、市販品を用いることができ、例えば、スクラーゼ(三共(株)社製)、ペクチナーゼG、ペクチナーゼPL、ニューラーゼF、ペクチナーゼPL、ペクチナーゼG(以上天野エンザイム(株)社製)、LAFASE FRUIT、LAFAZYM PRESS(以上、LAFFORT社製)、SCOTTZYME BG、SCOTTZYME CINFREE、SCOTTZYME HC、SCOTTZYME KS、SCOTTZYME PEC5L(以上、SCOTT LABORATORIES社製)、LALLZYME EXV、LALLZYME EXV、LALLZYME BETA(以上、LALLEMAND社製)等を例示することができる。但し、これらに限定されるものではない。酵素の使用量は、酵素活性にもよるが、上記の浸漬条件では、例えば、10ppm〜500ppmの範囲とすることができる。同様な目的で、ブドウ果皮を冷凍した後に水に浸漬することで3MH前駆体の抽出効率が増し、浸漬時間を短縮することができる。 In addition, for the purpose of improving extraction efficiency and operability of solid-liquid separation, an enzyme agent having enzyme activity such as pectinase can be added to water for immersion. As the enzyme agent, commercially available products can be used. For example, sucrase (manufactured by Sankyo Co., Ltd.), pectinase G, pectinase PL, neurase F, pectinase PL, pectinase G (manufactured by Amano Enzyme Co., Ltd.) , LAFASE FRUIT, LAFAZYM PRESS (above, manufactured by LAFFORT), SCOTTZYME BG, SCOTTZYME CINFREE, SCOTTZYME HC, SCOTTZYME KS, SCOTTZYME PEC5L (above, made by SCOTT LABORATORIES), LALLZYME EXV, BETALALLYYL Manufactured) and the like. However, it is not limited to these. The amount of the enzyme used depends on the enzyme activity, but can be in the range of 10 ppm to 500 ppm, for example, under the above immersion conditions. For the same purpose, the extraction efficiency of the 3MH precursor is increased and the immersion time can be shortened by immersing the grape skin in water after freezing.
またブドウ果皮を浸漬し、3MH前駆体を抽出する温度は、0〜20℃が適当である。0℃以上であれば3MH前駆体を効率的に抽出できるが、0℃を下回ると浸漬中に凍結し、抽出や固液分離の操作性が悪くなる傾向がある。また、温度が20℃を超えると呈味性や発酵特性の点でマイナス要因となる総ポリフェノール量が相対的に多くなる傾向がある。また抽出時のpHは、特に調整する必要はない。pH2〜11の範囲ではpHによる抽出効率の変動がほとんどないためである。総ポリフェノール量が多くなると、渋味や苦味等、呈味性の著しい悪化、発酵性の悪化がみられる。そのため、果皮抽出液中の総ポリフェノール濃度がBrix20%換算で6000ppm以下となるように抽出条件を決定することが好ましく、2000ppm以下に抑えられる条件とすることがより好ましく、600ppm以下に抑えられる条件とすることが最も好ましい。浸漬水の量、温度、攪拌速度等の条件にもよるが、抽出時間は0.5〜96時間の範囲とすることができる。抽出された3MH前駆体の濃度を適宜測定し、その結果から抽出作業終了時間を決定できる。抽出作業終了時間は、例えば、測定された濃度がほぼ一定になった時点とすることができる。なお、本発明におけるBrix(%)とは屈折糖度計を用いて計測した可溶性固形分を表す数値であり、水溶液中の可溶性固形分を重量パーセント濃度で示したものである。また、Brix20%換算時の3MH前駆体濃度とは、水溶液中の3MH前駆体濃度を、同水溶液のBrix(%)を基準として、Brix20%に換算したときの3-メルカプトヘキサン-1-オール前駆体濃度を示す。 Moreover, 0-20 degreeC is suitable for the temperature which immerses grape skin and extracts 3MH precursor. If it is 0 ° C or higher, the 3MH precursor can be efficiently extracted, but if it is lower than 0 ° C, it freezes during immersion, and the operability of extraction and solid-liquid separation tends to deteriorate. Moreover, when temperature exceeds 20 degreeC, there exists a tendency for the total amount of polyphenol which becomes a negative factor in the point of taste property or a fermentation characteristic to increase relatively. The pH during extraction need not be adjusted. This is because in the range of pH 2 to 11, there is almost no variation in extraction efficiency due to pH. When the total amount of polyphenol is increased, a marked deterioration in taste and a deterioration in fermentability are observed, such as astringency and bitterness. Therefore, it is preferable to determine the extraction conditions so that the total polyphenol concentration in the peel extract is 6000 ppm or less in terms of Brix20%, more preferably a condition that can be suppressed to 2000 ppm or less, and a condition that can be suppressed to 600 ppm or less. Most preferably. Although depending on conditions such as the amount of immersion water, temperature, and stirring speed, the extraction time can be in the range of 0.5 to 96 hours. The concentration of the extracted 3MH precursor is appropriately measured, and the extraction operation end time can be determined from the result. The extraction work end time can be, for example, the time when the measured concentration becomes substantially constant. In the present invention, Brix (%) is a numerical value representing the soluble solid content measured using a refractometer, and represents the soluble solid content in an aqueous solution in terms of weight percent concentration. The 3MH precursor concentration at the time of Brix 20% conversion means that the 3MH precursor concentration in the aqueous solution is the 3-mercaptohexane-1-ol precursor when converted to Brix 20% based on the Brix (%) of the aqueous solution. Indicates body concentration.
工程(b)
工程(a)で抽出作業を終えたブドウ果皮浸漬物は固液分離に付される。固液分離は、例えば、圧搾機(メンブランプレス、バスケットプレス)、遠心分離、フィルタープレス等の固液分離装置を用いて行われ、残渣を分離して、清澄なブドウ果皮抽出液を取得することができる。得られたブドウ果皮抽出液は、そのまま本発明の製造方法の原料として用いることもできるが、所望により濃縮することもできる。
Step (b)
The grape skin soaked product that has been extracted in step (a) is subjected to solid-liquid separation. Solid-liquid separation is performed using a solid-liquid separation device such as a press (membrane press, basket press), centrifugal separation, filter press, etc., and the residue is separated to obtain a clear grape skin extract. Can do. The obtained grape skin extract can be used as it is as a raw material for the production method of the present invention, but can also be concentrated if desired.
ブドウ果皮抽出液を濃縮する場合には、蒸発濃縮(例えば、減圧蒸発濃縮等)、膜濃縮、冷凍濃縮等の公知の濃縮方法を適用することができる。蒸発濃縮であれば、循環式(液膜流下型)濃縮装置、ワンパス式(噴流薄膜型)濃縮装置、フラッシュエバポレーター等の通常の減圧蒸発濃縮装置等を用いることができる。減圧蒸発濃縮は、品温30〜110℃、真空度0.04〜0.4bar等の条件で実施できるが、ブドウ果皮抽出液に含まれる3MH前駆体の分解を防ぐために比較的低い温度、例えば品温40〜100℃の条件が好ましい。膜処理であれば逆浸透膜を利用し、操作圧力60〜150bar等の条件で、Brix10〜68%程度まで濃縮することができる。 When the grape skin extract is concentrated, a known concentration method such as evaporation concentration (for example, reduced pressure evaporation concentration), membrane concentration, freeze concentration or the like can be applied. In the case of evaporative concentration, it is possible to use an ordinary reduced pressure evaporative concentration apparatus such as a circulation type (liquid film falling type) concentrating apparatus, a one-pass type (jet thin film type) concentrating apparatus, or a flash evaporator. Evaporation under reduced pressure can be performed under conditions such as a product temperature of 30 to 110 ° C. and a vacuum degree of 0.04 to 0.4 bar, but a relatively low temperature, for example, a product temperature of 40, is used to prevent decomposition of the 3MH precursor contained in the grape skin extract. A condition of ˜100 ° C. is preferred. In the case of membrane treatment, a reverse osmosis membrane can be used, and it can be concentrated to about Brix 10 to 68% under conditions such as an operating pressure of 60 to 150 bar.
ブドウ果皮抽出液は、固液分離により得られたブドウ果皮抽出液(非濃縮品)及びその後濃縮されたブドウ果皮抽出液(濃縮品)のいずれをも包含する。さらに、ブドウ果皮抽出液(濃縮品及び非濃縮品)は、必要に応じて清澄化、殺菌をしてもよく、それらの処理方法は特に限定されるものではなく、公知の方法を適用すればよい。本発明におけるブドウ果皮抽出液は、これら清澄化、殺菌されたものも包含する。 The grape skin extract includes both a grape skin extract (non-concentrated product) obtained by solid-liquid separation and a grape skin extract (concentrated product) concentrated thereafter. Furthermore, the grape skin extract (concentrated and non-concentrated) may be clarified and sterilized as necessary, and their treatment method is not particularly limited, and any known method may be applied. Good. The grape skin extract in the present invention includes those clarified and sterilized.
上記ブドウ果皮抽出液の調製で用いるブドウ果皮は、厳密な意味でのブドウ果実の果皮だけに限定されるものでなく、ブドウ果汁やワインの製造工程中で多量に排出されるブドウ果実の搾汁粕のようにブドウ種子、梗等を含んでいてもよい。通常のブドウ果汁やワインの製造工程中で得られるブドウ果皮の水分含量は、常圧加熱乾燥法で計測した場合、50%(w/w)〜80%(w/w)である。酸化防止、微生物の繁殖防止のため、ブドウ果皮は搾汁後、比較的速やかに使用することが望ましい。但し、搾汁後、ブドウ果皮を所定の時間放置することでブドウ果皮中の3MH前駆体が増加する。そのため、所定時間放置後に水浸漬による抽出を行うことで3MH前駆体濃度が高くかつ総ポリフェノール濃度が低い抽出液が得られる。搾汁後、0.5〜24時間放置後に水に浸漬することが好ましい。放置時間が24時間を超えると雑菌による汚染などが発生する可能性があるため望ましくない。搾汁後、水浸漬までの放置時間は、得られる抽出液の3MH前駆体濃度及び総ポリフェノール濃度を考慮すると1〜4時間程度がより好ましい。尚、放置によるブドウ果皮中の3MH前駆体の増加は、ブドウ果皮中の酵素による反応であり、冷凍処理や加熱処理などの酵素の失活を伴う操作、水浸漬による酵素及び基質の拡散を伴う操作で反応が停止すると推察され、また放置によるブドウ果皮抽出液中の総ポリフェノール濃度の低下は、ポリフェノール類が酸化重合することによって不溶化し、沈殿が生じるためと推察される。また、作業の都合上一定期間ブドウ果皮を保存する場合は、例えば冷凍での保存、保存料を使用することによって酸化防止、微生物の繁殖を抑制することが適当である。冷凍保存する場合には、上述の理由のため、冷凍保存する前に搾汁後のブドウ果皮を上述した範囲で所定の時間放置することが好ましい。 The grape skin used in the preparation of the above-mentioned grape skin extract is not limited to the grape skin in the strict sense, but the juice of grape fruits discharged in large quantities during the production process of grape juice and wine. It may contain grape seeds, infarcts, etc. like cocoons. The moisture content of grape skin obtained in the normal grape juice and wine production process is 50% (w / w) to 80% (w / w) when measured by a normal pressure heat drying method. In order to prevent oxidation and prevent the growth of microorganisms, it is desirable to use grape skin relatively quickly after squeezing. However, 3MH precursors in the grape skin increase by leaving the grape skin for a predetermined time after squeezing. Therefore, an extraction liquid having a high 3MH precursor concentration and a low total polyphenol concentration can be obtained by performing extraction by immersion in water after standing for a predetermined time. After squeezing, it is preferable to immerse in water after leaving for 0.5 to 24 hours. If the standing time exceeds 24 hours, it is not desirable because contamination by various bacteria may occur. In consideration of the 3MH precursor concentration and the total polyphenol concentration in the resulting extract, the standing time until immersing in water after squeezing is more preferably about 1 to 4 hours. The increase in 3MH precursors in grape skin by standing is a reaction by the enzyme in grape skin, and it involves an operation involving inactivation of the enzyme such as freezing treatment and heat treatment, and diffusion of the enzyme and substrate by immersion in water. The reaction is presumed to be stopped by the operation, and the decrease in the total polyphenol concentration in the grape skin extract due to standing is presumed to be due to the insolubility caused by the oxidative polymerization of polyphenols and precipitation. In addition, when the grape skin is stored for a certain period of time for convenience of work, it is appropriate to prevent oxidation and suppress the growth of microorganisms by using, for example, freezing storage and preservatives. In the case of storing frozen, for the reasons described above, it is preferable to leave the grape skin after squeezing for a predetermined time in the above-mentioned range before storing frozen.
ブドウ果皮として用いることのできるブドウの品種は、特に制限はなく、甲州、巨峰、デラウエア、シャルドネ、ソーヴィニヨン・ブラン、ソーヴィニヨン・ヴェール、ソーヴィニヨン・グリ、リースリング、トンプソン・シードレス、セミヨン、ヴィオニエ、コロンバール、マスカット・オブ・アレキサンドリア、モスカテル・デ・アウストリア、モスカテル・ロサーダ、ピノ・ノワール、ピノ・グリ、ピノ・ブラン、カベルネ・ソーヴィニヨン、メルロー、シラー、マルベック、ペドロ・ヒメネス、トロンテス・リオハーノ、トロンテス・メンドシーノ、トロンテス・サンファニーノ、トロンテル、シュナン・ブラン、ユニ・ブラン、セレサ、クリオージャ、レッドグローブ等の多くの品種を使用することができる。但し、3MH前駆体を多く含む点においてソーヴィニヨン・ブラン種、シャルドネ種のブドウ果皮を用いることが好ましい。 Grape varieties that can be used as grape skins are not particularly limited, Koshu, Kyoho, Delaware, Chardonnay, Sauvignon Blanc, Sauvignon Veil, Sauvignon Gris, Riesling, Thompson Seedless, Semillon, Viognier, Colombar, Muscat of Alexandria, Moscatel de Austoria, Moscatel Rosada, Pinot Noir, Pinot Gris, Pinot Blanc, Cabernet Sauvignon, Merlot, Schiller, Malbec, Pedro Jimenez, Toronto Tes Riohano, Toronto Tes Mendocino, Many varieties such as Torontos San Juanino, Toronto, Chenin Blanc, Uni Blanc, Selesa, Crioja and Red Grove can be used. However, it is preferable to use grape skins of Sauvignon Blanc and Chardonnay in terms of containing a large amount of 3MH precursors.
上記方法で得られるブドウ果皮抽出液は、原料とするブドウ果皮の種類や抽出条件、さらには濃縮の有無や程度により、3MH前駆体の濃度は変化するが、Brix20%換算した場合、3MH-S-GSH濃度が300nM〜8000nMの範囲であり、3MH-S-Cys濃度が70nM〜11100nMの範囲であるものである。さらに、上記方法で得られるブドウ果皮抽出液は、Brix20%換算した場合、3MH-S-GSH及び3MH-S-Cysの合計濃度が500nM〜15500nMの範囲である。但し、3MH-S-GSH濃度、3MH-S-Cys濃度、両者の合計濃度は上記範囲より低いものも抽出や濃縮条件を変更することで、適宜調製することができる。 The grape skin extract obtained by the above method has a 3MH-S concentration when converted to Brix 20%, although the concentration of 3MH precursor varies depending on the type and extraction conditions of the grape skin as a raw material, and whether or not it is concentrated. The -GSH concentration is in the range of 300 nM to 8000 nM, and the 3MH-S-Cys concentration is in the range of 70 nM to 11100 nM. Furthermore, the grape skin extract obtained by the above method has a total concentration of 3MH-S-GSH and 3MH-S-Cys in the range of 500 nM to 15500 nM when converted to Brix 20%. However, 3MH-S-GSH concentration, 3MH-S-Cys concentration, and the total concentration of both can be appropriately prepared by changing the extraction and concentration conditions.
また、ブドウ果皮抽出液中の総ポリフェノール濃度は6000ppm以下、より好ましくは2000ppm以下、さらに好ましくは600ppm以下に抑えることが望ましい。前述のように、総ポリフェノール濃度が多くなると、渋みや苦味等、呈味性の著しい悪化、乳酸菌および酵母の発酵性の低下をもたらすことがあるためである。 The total polyphenol concentration in the grape skin extract is preferably 6000 ppm or less, more preferably 2000 ppm or less, and even more preferably 600 ppm or less. As described above, an increase in the total polyphenol concentration may cause a marked deterioration in taste, such as astringency and bitterness, and a decrease in fermentability of lactic acid bacteria and yeast.
なお、本明細書における総ポリフェノール濃度とは、SingletonとRossiらの方法(Am. J. Agric. Enol. Vitic. 16: 144 (1965).)に従い、ガリック酸換算で算出した数値である。この方法は、ガリック酸に含まれる水酸基換算で定量を行うため、フラボノイド系のみならず、非フラボノイド系(ヒドロキシシンナム酸類等)も含めた全てのフェノール化合物が定量される。アルコール濃度(%v/v)は、国税庁所定分析法(改正平成19年国税庁訓令第6号)p5-7、アルコール分の項に記載のガスクロマトグラフ分析法に基づいて測定した。滴定酸度(mL)は、国税庁所定分析法(改正平成19年国税庁訓令第6号)p28-29、総酸(遊離酸)の項に記載の分析法に基づいて測定した。 The total polyphenol concentration in the present specification is a numerical value calculated in terms of gallic acid according to the method of Singleton and Rossi et al. (Am. J. Agric. Enol. Vitic. 16: 144 (1965).). Since this method performs quantification in terms of hydroxyl groups contained in gallic acid, all phenol compounds including not only flavonoids but also non-flavonoids (such as hydroxycinnamates) are quantified. The alcohol concentration (% v / v) was measured based on the gas chromatographic analysis method described in the National Tax Agency Predetermined Analysis Method (Revised 2007 National Tax Agency Instruction No. 6) p5-7, Alcohol Content. The titrated acidity (mL) was measured based on the analytical method described in the section of the National Tax Agency Predetermined Analytical Method (Revised 2007 National Tax Agency Instruction No. 6) p28-29, Total Acid (Free Acid).
なお、上記方法により得られるブドウ果皮抽出液は、3MH前駆体に加えて、酵母や乳酸菌の発酵あるいは増殖に必要なアミノ酸、糖、ミネラル等を含有する。 The grape skin extract obtained by the above method contains amino acids, sugars, minerals and the like necessary for fermentation or growth of yeast and lactic acid bacteria in addition to the 3MH precursor.
原料水溶液として、ブドウ果皮抽出液を含有する溶液を用いる。ブドウ果皮抽出液を含有する溶液は、例えば、ブドウ果皮抽出液を、単独で、あるいは適宜水等で希釈して用いることができ、あるいは、例えば公知の糖液、果汁、麦芽汁、穀類を原料とした糖化液と混合して、3MH前駆体濃度等を調整して使用してもよい。さらに、上記溶液に添加物を加えたものであることもできる。 A solution containing grape skin extract is used as the raw material aqueous solution. The solution containing the grape skin extract can be used, for example, the grape skin extract alone or appropriately diluted with water or the like, or, for example, a known sugar solution, fruit juice, malt juice, cereal It may be used by adjusting the concentration of 3MH precursor and the like by mixing with the saccharified solution. Further, an additive may be added to the above solution.
発酵を助成促進する目的で、原料水溶液に酸類(例えば乳酸、リンゴ酸、酒石酸、亜硫酸等)、塩類(例えば、食塩、リン酸水素カルシウム、リン酸アンモニウム、硫酸マグネシウム、硫酸カルシウム、メタ重亜硫酸カリウム、塩化カルシウム、塩化マグネシウム、硝酸カリウム、硫酸アンモニウム等)、除酸剤(例えば、炭酸カルシウム、アンモニア等)、酵母発酵助成剤(不活性酵母、酵母エキス、酵母細胞壁、リン酸アンモニウム、硫酸マグネシウム、チアミン塩酸塩、葉酸、パントテン酸カルシウム、ナイアシン、ビオチンの全部又は一部で構成されるもの)等の添加物を加えてもよい。 For the purpose of accelerating fermentation, acid (eg lactic acid, malic acid, tartaric acid, sulfurous acid, etc.), salts (eg, sodium chloride, calcium hydrogen phosphate, ammonium phosphate, magnesium sulfate, calcium sulfate, potassium metabisulfite) , Calcium chloride, magnesium chloride, potassium nitrate, ammonium sulfate, etc.), deoxidizers (eg, calcium carbonate, ammonia, etc.), yeast fermentation aids (inactive yeast, yeast extract, yeast cell wall, ammonium phosphate, magnesium sulfate, thiamine hydrochloride) An additive such as a salt, folic acid, calcium pantothenate, niacin, or all or part of biotin) may be added.
原料水溶液の3MH前駆体濃度は、目的とする3MH及びアルコール含有液の3MH濃度や発酵条件等を考慮して適宜決定できる。例えば、Brix20%換算した場合、3MH-S-GSH濃度は300nM以上の範囲であり、かつ3MH-S-Cys濃度が70nM以上の範囲であること、さらには3MH-S-GSH及び3MH-S-Cysの合計濃度が500nM以上の範囲であることが、3MH及びアルコール含有液の3MH濃度がより高濃度になるという観点からは適当である。 The 3MH precursor concentration of the raw material aqueous solution can be appropriately determined in consideration of the 3MH concentration of the target 3MH and the alcohol-containing liquid, fermentation conditions, and the like. For example, when converted to Brix 20%, the 3MH-S-GSH concentration is in the range of 300 nM or more, the 3MH-S-Cys concentration is in the range of 70 nM or more, and further 3MH-S-GSH and 3MH-S- It is appropriate that the total concentration of Cys is in the range of 500 nM or more from the viewpoint that the 3MH concentration of 3MH and the alcohol-containing liquid becomes higher.
なお、前述のように3MHは、酵母由来のアルコールアセチルトランスフェラーゼ等の酵素により酢酸エステル体である3MHAに変換され得る。本発明の製造方法においても、酵母により製造される3MHは、発酵中にその一部が3MHAに変換される場合がある。一般に、3MH量が多いほど3MHAの量も増加する。また、酵母の種類によっても3MHAへの変換率は変化する。しかし、前述のように、3MHAは3MHと同様に香りへの貢献度が高い物質であり、この製造方法においては、目的生成物である3MH含有原液は、3MHAをさらに含有することができる。さらに、本願特許請求の範囲及び明細書においては、3MH濃度と3MHA濃度の合計を総3-メルカプトヘキサン-1-オール濃度(以下、総3MH濃度と略記することがある)という。3MH濃度及び3MHA濃度は、T.Tominagaらの方法(J. Agric. Food Chem. 1998, 46, 1044-1048.)に従った分析法により測定できる。 As described above, 3MH can be converted to 3MHA, which is an acetate ester, by an enzyme such as alcohol acetyltransferase derived from yeast. Also in the production method of the present invention, 3MH produced by yeast may be partially converted to 3MHA during fermentation. In general, the amount of 3MHA increases as the amount of 3MH increases. Also, the conversion rate to 3MHA varies depending on the type of yeast. However, as described above, 3MHA is a substance having a high contribution to fragrance as with 3MH, and in this production method, the 3MH-containing stock solution that is the target product can further contain 3MHA. Further, in the claims and specification of the present application, the sum of the 3MH concentration and the 3MHA concentration is referred to as a total 3-mercaptohexan-1-ol concentration (hereinafter sometimes abbreviated as a total 3MH concentration). The 3MH concentration and 3MHA concentration can be measured by an analytical method according to the method of T. Tominaga et al. (J. Agric. Food Chem. 1998, 46, 1044-1048.).
具体的には、原料水溶液は、Brix20%換算した場合、3MH-S-GSH濃度が300nM〜8000nMの範囲であり、かつ3MH-S-Cys濃度が70nM〜11100nMの範囲であるものを用いることが好ましい。加えて、原料水溶液の3MH-S-GSH及び3MH-S-Cysの合計濃度が500nM〜15500nMの範囲であるものを用いることが好ましい。3MH-S-GSH濃度、3MH-S-Cys濃度及び両者の合計濃度の各範囲の下限は、より高濃度の3MHを含有する液を得るという観点から設定される。また、3MH-S-GSH濃度、3MH-S-Cys濃度及び両者の合計濃度の各範囲の上限は、原料水溶液に含まれるブドウ果皮抽出液を調製する上で、実用上可能であるという観点から設定される。3MH-S-GSH濃度及び3MH-S-Cys濃度は、ブドウ果皮抽出液を単独で用いる場合には、ブドウ果皮抽出液の調製条件(例えば、抽出条件及び濃縮条件)を調整することで適宜変更できる。また、ブドウ果皮抽出液と他の溶液を混合する場合には、ブドウ果皮抽出液の3MH-S-GSH濃度及び3MH-S-Cys濃度並びに他の溶液との混合比により適宜決定できる。 Specifically, the raw material aqueous solution having a 3MH-S-GSH concentration in the range of 300 nM to 8000 nM and a 3MH-S-Cys concentration in the range of 70 nM to 11100 nM when converted to Brix 20% is used. preferable. In addition, it is preferable to use a raw material aqueous solution having a total concentration of 3MH-S-GSH and 3MH-S-Cys in the range of 500 nM to 15500 nM. The lower limit of each range of 3MH-S-GSH concentration, 3MH-S-Cys concentration, and the total concentration of both is set from the viewpoint of obtaining a liquid containing higher concentration of 3MH. In addition, the upper limit of each range of 3MH-S-GSH concentration, 3MH-S-Cys concentration and the total concentration of both is practically possible in preparing grape skin extract contained in the raw material aqueous solution. Is set. 3MH-S-GSH concentration and 3MH-S-Cys concentration are appropriately changed by adjusting the preparation conditions (eg, extraction conditions and concentration conditions) of grape skin extract when using grape skin extract alone it can. In addition, when the grape skin extract is mixed with another solution, it can be appropriately determined depending on the 3MH-S-GSH concentration and 3MH-S-Cys concentration of the grape skin extract and the mixing ratio with other solutions.
原料水溶液は、3MH-S-GSH濃度が300nM〜8000nMの範囲であることで、乳酸菌発酵により、3MH-S-GSHを3MH-S-Cysに転換して、最終生成物であるアルコール含有発酵液中の3MH濃度をより高めることができる。さらに、3MH-S-Cys濃度が70nM〜11100nMの範囲であることで、最終生成物であるアルコール含有発酵液として、高濃度の3MHを含有するアルコール含有発酵液を得ることができる。加えて、3MH-S-GSH及び3MH-S-Cysの合計濃度が、500nM〜15500nMの範囲であることで、高濃度の3MHを含有するアルコール含有発酵液を得ることができる。3MH-S-GSH及び3MH-S-Cysの合計濃度の範囲の下限は、好ましくは1000nM、より好ましくは1500nM、さらに好ましくは2000nMである。3MH-S-GSH濃度と3MH-S-Cys濃度の比率に関わらず、3MH-S-GSH及び3MH-S-Cysの合計濃度が高ければ高いほど、3MH濃度がより高いアルコール含有発酵液として3MH含有原液を得ることができるからである。 The aqueous raw material solution has a 3MH-S-GSH concentration in the range of 300 nM to 8000 nM, so it converts 3MH-S-GSH to 3MH-S-Cys by lactic acid bacteria fermentation, resulting in an alcohol-containing fermentation broth that is the final product. The concentration of 3MH can be further increased. Furthermore, when the 3MH-S-Cys concentration is in the range of 70 nM to 11100 nM, an alcohol-containing fermentation broth containing a high concentration of 3MH can be obtained as the alcohol-containing fermentation broth that is the final product. In addition, when the total concentration of 3MH-S-GSH and 3MH-S-Cys is in the range of 500 nM to 15500 nM, an alcohol-containing fermentation broth containing a high concentration of 3MH can be obtained. The lower limit of the range of the total concentration of 3MH-S-GSH and 3MH-S-Cys is preferably 1000 nM, more preferably 1500 nM, and still more preferably 2000 nM. Regardless of the ratio of 3MH-S-GSH concentration to 3MH-S-Cys concentration, the higher the total concentration of 3MH-S-GSH and 3MH-S-Cys, the higher the 3MH concentration of alcohol It is because a containing stock solution can be obtained.
一方、原料水溶液の3MH前駆体濃度の上限は、実用的には、ブドウ果皮抽出液の3MH前駆体濃度に依存し、また、目的とする3MH含有原液の3MH濃度に応じて適宜設定できる。より実用的な観点からは、原料水溶液の3MH-S-GSH濃度の上限は3000nM程度であり、3MH-S-Cys濃度の上限は5000nM程度であり、3MH-S-GSH及び3MH-S-Cysの合計濃度の上限は8000nM程度である。但し、この範囲に限定される意図ではなく、ブドウ果皮抽出液の調製条件(例えば、抽出条件及び濃縮条件)を調整することで、より高濃度の3MH-S-GSH及び/又は3MH-S-Cysを含有するブドウ果皮抽出液を得ることは技術的には可能である。 On the other hand, the upper limit of the 3MH precursor concentration of the raw material aqueous solution practically depends on the 3MH precursor concentration of the grape skin extract, and can be appropriately set according to the 3MH concentration of the target 3MH-containing stock solution. From a more practical viewpoint, the upper limit of the 3MH-S-GSH concentration of the raw material aqueous solution is about 3000 nM, the upper limit of the 3MH-S-Cys concentration is about 5000 nM, 3MH-S-GSH and 3MH-S-Cys. The upper limit of the total concentration is about 8000 nM. However, it is not intended to be limited to this range, and by adjusting the preparation conditions (eg, extraction conditions and concentration conditions) of grape skin extract, higher concentrations of 3MH-S-GSH and / or 3MH-S- It is technically possible to obtain a grape skin extract containing Cys.
前記の範囲で3MH前駆体を含有する原料水溶液を用いることで、高濃度の3MHを含有する溶液(発酵液)を得ることができる。例えば、発酵条件により、総3MH濃度が25〜5500nMの範囲である発酵液(3MH及びアルコール含有液)を得ることができる。このように高濃度で3MHを含有する溶液は、工程(1)で製造した原料果実酒に少量または微量添加することで、芳香を高めることができる。 By using the raw material aqueous solution containing the 3MH precursor within the above range, a solution (fermentation liquid) containing a high concentration of 3MH can be obtained. For example, a fermentation liquid (3MH and alcohol-containing liquid) having a total 3MH concentration in the range of 25 to 5500 nM can be obtained depending on the fermentation conditions. The solution containing 3MH at a high concentration as described above can enhance the aroma by adding a small amount or a trace amount to the raw fruit wine produced in the step (1).
さらに、原料水溶液の可溶性固形分は、例えば、Brix(%)が10〜28%の範囲であることができる。原料水溶液のBrix(%)の範囲は、目的とするアルコール濃度に応じて適宜決定される。また、原料水溶液のBrix(%)は、使用するブドウ果皮抽出液が有するBrix(%)及び混合または添加する果汁や添加物の種類により適宜調整できる。なお、アルコール濃度とBrix(%)との関係については後述する。 Furthermore, the soluble solid content of the raw material aqueous solution can be, for example, in a range of Brix (%) of 10 to 28%. The range of Brix (%) of the raw material aqueous solution is appropriately determined according to the target alcohol concentration. The Brix (%) of the aqueous raw material solution can be appropriately adjusted depending on the Brix (%) of the grape skin extract to be used and the kind of juice or additive to be mixed or added. The relationship between the alcohol concentration and Brix (%) will be described later.
<発酵条件>
発酵原料である原料水溶液の初発pHは、例えば、pH3〜9の範囲が適当であり、好ましくはpH4〜9、さらに好ましくはpH5〜9の範囲が望ましい。pHが3を下回ると乳酸菌及び酵母の生育が極端に遅くなり、pHが9を超えるとでき上がった発酵液の色が濃くなりやすいうえ、異臭を伴う等、正常な品質が得られないことがあるためである。pH調整にはpH調整剤を用いることができ、pH調整剤は特に限定されず、公知のpH調整剤を使用することができる。例えば、pHを下げる目的では酒石酸やリンゴ酸等の有機酸類等を用いることができ、pHを上げる目的ではアンモニアや炭酸カルシウム等を用いることができる。
<Fermentation conditions>
The initial pH of the raw material aqueous solution that is the fermentation raw material is, for example, suitably in the range of pH 3-9, preferably in the range of pH 4-9, more preferably in the range of pH 5-9. When the pH is below 3, the growth of lactic acid bacteria and yeast becomes extremely slow, and when the pH is above 9, the color of the finished fermentation liquor tends to become dark, and it may not be possible to obtain normal quality such as a strange odor. Because. A pH adjusting agent can be used for pH adjustment, and the pH adjusting agent is not particularly limited, and a known pH adjusting agent can be used. For example, organic acids such as tartaric acid and malic acid can be used for the purpose of lowering pH, and ammonia, calcium carbonate and the like can be used for the purpose of raising pH.
発酵温度は、乳酸菌および酵母の発酵あるいは増殖に適した温度であればよく、例えば、10℃〜40℃の範囲が適当であり、好ましくは15℃〜35℃の範囲、さらに好ましくは20℃〜30℃の範囲が望ましい。発酵温度が10℃を下回ると乳酸菌の生育が極端に遅くなり、3MH-S-Cysに変換されずに残存する3MH-S-GSHが多くなり、その結果、酵母によって先行して消費される頻度が高まるからである。一方、発酵温度が40℃を超えると酵母の生育が悪くなるとともにでき上がった発酵液に加熱臭が生じ、品質が悪くなることがあるためである。発酵温度は、乳酸菌による発酵と酵母による発酵を同じ温度としても、あるいは異なる温度としてもよい。製造操作の容易さは、両者を同じ温度とする方が勝っている。しかし、乳酸菌による発酵は、乳酸菌の発酵と増殖により適した温度とし、酵母による発酵は酵母の発酵と増殖により適した温度とすることで、製造条件をより最適化することもできる。 The fermentation temperature may be any temperature suitable for fermentation or growth of lactic acid bacteria and yeast, for example, a range of 10 ° C to 40 ° C is appropriate, preferably a range of 15 ° C to 35 ° C, more preferably 20 ° C to A range of 30 ° C is desirable. When the fermentation temperature is below 10 ° C, the growth of lactic acid bacteria becomes extremely slow, and there is a large amount of 3MH-S-GSH remaining without being converted to 3MH-S-Cys. This is because it increases. On the other hand, when the fermentation temperature exceeds 40 ° C., the growth of yeast deteriorates, and a heated odor is produced in the finished fermentation broth, which may deteriorate the quality. The fermentation temperature may be the same temperature for fermentation by lactic acid bacteria and fermentation by yeast, or different temperatures. The ease of manufacturing operation is better when both are at the same temperature. However, the fermentation conditions by lactic acid bacteria can be optimized for fermentation and growth of lactic acid bacteria, and the fermentation conditions for yeast can be optimized by adjusting the temperature to be suitable for fermentation and growth of yeast.
酵母を接種する時期は、発酵原料の初発pH、発酵温度等の条件にもよるが、乳酸菌を接種後0〜6日の範囲が適当であり、好ましくは1〜5日の範囲、より好ましくは2〜4日の範囲である。乳酸菌接種前に酵母を接種した場合、発酵原料中に含まれる3MH-S-GSHを3MH-S-Cysに乳酸菌が変換するより先に酵母が3MH-S-GSHを消費してしまい、その結果、高濃度の3MHを得られなくなるという問題がある。また、乳酸菌接種後6日を超えると、その他の雑菌による発酵液の汚染のリスクが高まる傾向がある。 The time of inoculating the yeast depends on conditions such as the initial pH of the fermentation raw material, the fermentation temperature, etc., but the range of 0-6 days after inoculation with lactic acid bacteria is appropriate, preferably in the range of 1-5 days, more preferably It ranges from 2 to 4 days. When yeast was inoculated before lactic acid bacteria inoculation, yeast consumed 3MH-S-GSH before lactic acid bacteria converted 3MH-S-GSH contained in fermentation raw material to 3MH-S-Cys, and as a result There is a problem that high concentration of 3MH cannot be obtained. In addition, if it exceeds 6 days after inoculation with lactic acid bacteria, there is a tendency for the risk of contamination of the fermentation broth by other miscellaneous bacteria.
発酵期間は、乳酸菌や酵母の種類、pH、発酵温度、もしくは目標とするアルコール濃度等により適宜設定されるため、特に限定されないものの、例えば2日〜20日間が好ましい。これより短期間で発酵が行われると十分に3MHが遊離されず、これより長時間で発酵が行われると発酵液中の3MHが酸化し、香りが失われる危険性が高まるためである。発酵期間は、より好ましくは4日〜15日間である。さらに、発酵期間は、酵母を接種する時期と、酵母を接種後に必要な発酵期間も考慮して適宜決定できる。 The fermentation period is appropriately set depending on the type of lactic acid bacteria and yeast, pH, fermentation temperature, target alcohol concentration, and the like, and is not particularly limited. However, for example, 2 days to 20 days is preferable. This is because if the fermentation is carried out in a shorter period than this, 3MH is not sufficiently released, and if the fermentation is carried out for a longer period of time, the 3MH in the fermentation liquid is oxidized and the risk of losing the aroma is increased. The fermentation period is more preferably 4 days to 15 days. Furthermore, the fermentation period can be appropriately determined in consideration of the time for inoculating the yeast and the fermentation period required after inoculating the yeast.
乳酸菌は、3MH-S-GSHを3MH-S-Cysに変換することができる乳酸菌である。3MH-S-GSHを3MH-S-Cysに変換することができる乳酸菌としては、例えば、Lactobacillus属乳酸菌(例えば、Lactobacillus plantarum、Lactobacillus pentosus、 Lactobacillus brevis、Lactobacillus delbruekii subsp.delbrueckii、Lactobacillus delbruekii subsp.bulgaricus、Lactobacillus mali、Lactobacillus acidophilus、Lactobacillus rhamnosus、Lactobacillus hilgardii、Lactobacillus kefiri、Lactobacillus fructosus、Lactobacillus acidipiscis、Lactobacillus fermentum、Lactobacillus paracasei subsp.tolerans、Lactobacillus sakei subsp.sakei等)、Leuconostoc属乳酸菌(例えば、Leuconostoc mesenteroides等)、Pediococcus属乳酸菌(例えば、Pediococcus pentosaceus等)が挙げられる。なかでもその変換能力の高いLactobacillus plantarum、Lactobacillus pentosus、Lactobacillus mali、Lactobacillus hilgardiiを用いるのが好適である。接種する乳酸菌は1種類を単独で使用してもよいし、複数を混合して使用してもよい。乳酸菌は、例えば、約105〜108cfu/mLの範囲で接種すればよい。なお、マロラクティック発酵に利用されるOenococus属乳酸菌(例えば、Oenococus oeni)は、3MH-S-GSHを3MH-S-Cysに変換する能力が非常に弱く、従って、3MHの変換率を高める効果はない。 Lactic acid bacteria are lactic acid bacteria that can convert 3MH-S-GSH to 3MH-S-Cys. Examples of lactic acid bacteria that can convert 3MH-S-GSH to 3MH-S-Cys include, for example, lactic acid bacteria belonging to the genus Lactobacillus (e.g., Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus delbruekii subsp.delbrueckii, Lactobacillus delbruekii subsp.bulgarus, Lactobacillus mali, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus hilgardii, Lactobacillus kefiri, Lactobacillus fructosus, Lactobacillus acidipiscis, Lactobacillus fermentum, Lactobacillus paracasei subsp.tolerans, sp. The genus lactic acid bacteria (for example, Pediococcus pentosaceus etc.) are mentioned. Among them, it is preferable to use Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus mali, and Lactobacillus hilgardii having high conversion ability. One kind of lactic acid bacteria to be inoculated may be used alone, or a plurality of lactic acid bacteria may be mixed and used. Lactic acid bacteria may be inoculated, for example, in the range of about 10 5 to 10 8 cfu / mL. In addition, Oenococus lactic acid bacteria (for example, Oenococus oeni) used for malolactic fermentation have a very weak ability to convert 3MH-S-GSH to 3MH-S-Cys, and thus increase the conversion rate of 3MH. There is no.
酵母は、一般に発酵飲料の製造に用いられる酵母であれば特に限定されないが、例えばSaccharomyces属酵母(例えば、Saccharomyces cerevisiae、Saccharomyces bayanus等)が挙げられる。接種する酵母は1種類を単独で使用してもよいし、複数を混合して使用してもよい。また、Saccharomyces属酵母と共にKluyveromyces属酵母(例えば、Kluyveromyces thermotolerans等)、Torulaspora属酵母(例えば、Torulaspora delbrueckii等)を混合して使用してもよい。酵母は、約105〜108cfu/mLの範囲で接種すればよい。 The yeast is not particularly limited as long as it is generally used in the production of fermented beverages, and examples thereof include Saccharomyces genus yeast (for example, Saccharomyces cerevisiae, Saccharomyces bayanus, etc.). One kind of yeast to be inoculated may be used alone, or a plurality of yeasts may be mixed and used. In addition, yeasts of the genus Kluyveromyces (for example, Kluyveromyces thermotolerans) and yeasts of the genus Torulaspora (for example, Torulaspora delbrueckii) may be used in combination with the yeasts of the genus Saccharomyces. The yeast may be inoculated in the range of about 10 5 to 10 8 cfu / mL.
得られる発酵液のアルコール濃度は特に限定されないが、0.5〜14%程度が適当であり、より好ましくは5〜12%程度である。前記範囲のアルコール濃度の発酵液を得るためには、原料水溶液中のBrix(%)が約10%〜25%であることが望ましい。さらには発酵経過中のアルコール濃度を適宜測定し、目的とするアルコール濃度となった時点で発酵を止めることで所望のアルコール濃度の発酵液を得ることができる。発酵停止法は公知の方法を適用することができる。例えば、酵母や乳酸菌の生育を抑制するため、亜硫酸を50ppm〜200ppm添加して、品温を下げ、上澄み液を濾過除菌(例えば、フィルター濾過、珪藻土濾過等)する方法、遠心分離機を用いて例えば約3500〜12000rpm、約5分〜4時間等の条件で遠心し、酵母及び乳酸菌を分離・除去する方法等が挙げられる。 Although the alcohol concentration of the obtained fermentation broth is not specifically limited, about 0.5-14% is suitable, More preferably, it is about 5-12%. In order to obtain a fermentation broth having an alcohol concentration in the above range, the Brix (%) in the raw material aqueous solution is preferably about 10% to 25%. Furthermore, a fermentation liquor having a desired alcohol concentration can be obtained by appropriately measuring the alcohol concentration during the course of fermentation and stopping the fermentation when the target alcohol concentration is reached. A known method can be applied to the fermentation stopping method. For example, in order to suppress the growth of yeast and lactic acid bacteria, add 50 ppm to 200 ppm of sulfurous acid, lower the product temperature, and filter and disinfect the supernatant (for example, filter filtration, diatomaceous earth filtration, etc.), using a centrifuge For example, a method of separating and removing yeast and lactic acid bacteria by centrifuging under conditions of about 3500 to 12000 rpm, about 5 minutes to 4 hours, and the like.
発酵終了後の3MH含有液は、ペクチン、タンパク質、金属等の混濁の原因となる成分を除去する目的で、必要に応じ公知の清澄法を適用することができる。例えば、この製造方法により得られる発酵液は、次の工程で原料果実酒に添加されるが、そこで得られる果実酒が酒税法上の果実酒となる場合には、発酵液は、ゼラチン、卵白、ベントナイト、ペクチナーゼ、二酸化珪素、ポリビニルポリピロリドン等を清澄剤として用いることができる。 A known clarification method can be applied to the 3MH-containing liquid after the completion of fermentation for the purpose of removing components that cause turbidity such as pectin, protein, metal, and the like. For example, the fermented liquor obtained by this production method is added to the raw fruit wine in the next step, and when the obtained fruit liquor becomes fruit liquor under the liquor tax law, the fermented liquor is gelatin, egg white, Bentonite, pectinase, silicon dioxide, polyvinyl polypyrrolidone and the like can be used as a clarifying agent.
<3MH含有原液>
上記製造方法によれば、3MHを含有し、かつアルコールも含有する発酵液を製造することができ、この発酵液をそのまま3MH含有原液として用いることができる。但し、必要により希釈して用いることもできる。発酵液中の総3MH濃度は、原料中の3MH前駆体濃度、発酵条件等により適宜調整できるが、例えば、3MH前駆体合計濃度が500〜15500nMの発酵原料を、上記の一定の発酵条件下で乳酸菌と酵母で発酵させた場合、総3MH濃度が25〜5500nMの範囲である3MH含有発酵液が得られる。3MH含有原液の3MH濃度に限定はなく、原料果実酒に添加して「香味豊かな果実酒」が得られるに十分な3MH濃度を有していればよい。従って、得られた3MH含有発酵液は、「香味豊かな果実酒」が得られる総3MH濃度になる添加量で原料果実酒に添加することができる。
<3MH-containing stock solution>
According to the above production method, a fermentation broth containing 3MH and also containing alcohol can be produced, and this fermentation broth can be used as it is as a 3MH-containing stock solution. However, it can be diluted as necessary. The total 3MH concentration in the fermentation broth can be adjusted as appropriate depending on the 3MH precursor concentration in the raw material, the fermentation conditions, etc.For example, a fermentation raw material having a total 3MH precursor concentration of 500 to 15500 nM can be obtained under the above-mentioned constant fermentation conditions. When fermented with lactic acid bacteria and yeast, a 3MH-containing fermentation broth with a total 3MH concentration in the range of 25-5500 nM is obtained. There is no limitation on the 3MH concentration of the 3MH-containing stock solution as long as it has a 3MH concentration sufficient to be added to the raw fruit wine to obtain a “flavored fruit wine”. Therefore, the obtained 3MH-containing fermentation broth can be added to the raw fruit wine at an addition amount that gives a total 3MH concentration that provides a “flavored fruit wine”.
工程(3):3MH濃度を強化した果実酒の調製
工程(3)では、工程(1)で得られた原料果実酒に、工程(2)で得られた3MH含有原液を添加して、3MH濃度を強化した果実酒を得る。原料果実酒に対する3MH含有原液の添加量は、3MH濃度を強化した果実酒の総3MH濃度が、例えば、1〜200nMの範囲、好ましくは2〜180nMの範囲、より好ましくは4〜160nMの範囲になるように決定することが、「香味豊かな果実酒」を得るという観点から適当である。
Step (3): Preparation of fruit liquor with enhanced 3MH concentration In step (3), the 3MH-containing stock solution obtained in step (2) is added to the raw fruit liquor obtained in step (1) to obtain 3MH. Obtain fruit wine with enhanced concentration. The amount of 3MH-containing stock solution added to the raw fruit wine is such that the total 3MH concentration of the fruit liquor with enhanced 3MH concentration is, for example, in the range of 1 to 200 nM, preferably in the range of 2 to 180 nM, more preferably in the range of 4 to 160 nM. It is appropriate to determine so as to obtain a “flavored fruit wine”.
本発明の製造方法においては、原料果実酒及び果実酒が白ワインであることが好ましい。3MHに起因する香味は、白ワインにより適合し、原料果実酒の香味をより豊かにできる。 In the production method of the present invention, the raw fruit wine and the fruit wine are preferably white wines. The flavor attributed to 3MH is more suitable for white wine and can enrich the flavor of raw fruit wine.
[果実酒]
本発明の第2の態様は、濃縮果汁を原料の少なくとも一部として使用した果汁液を発酵して得た原料果実酒に3MHを含有する原液を総3MH濃度が4〜160nMの範囲となるように添加してなる、果実酒である。この果実酒は、上記本発明の製造方法により製造できるものである。果実酒に含有される総3MH濃度によって、果実酒の香味は決まり、飲み手の嗜好にもよるが、総3MH濃度が6〜100 nMの範囲であることが、香味豊かな果実酒という観点からは好ましい。
[Fruit wine]
In the second aspect of the present invention, a stock solution containing 3 MH is added to a raw material fruit liquor obtained by fermenting a fruit juice using concentrated fruit juice as at least a part of the raw material so that the total 3 MH concentration is in the range of 4 to 160 nM. It is a fruit liquor added to This fruit liquor can be produced by the production method of the present invention. Depending on the taste of the drinker, the flavor of the fruit liquor is determined by the total 3MH concentration contained in the fruit liquor, but the total 3MH concentration is in the range of 6 to 100 nM from the perspective of flavorful fruit wine. preferable.
本発明の果実酒は、原料果実酒が白ワインであり、最終製品である果実酒も白ワインであることが適当である。本発明の果実酒は、アルコール濃度が、例えば、5〜15%の範囲であることができる。なお、包装工程、貯蔵工程などのその他の工程は公知の方法を適応できる。 In the fruit liquor of the present invention, it is appropriate that the raw fruit liquor is white wine and the fruit liquor that is the final product is also white wine. The fruit liquor of the present invention can have an alcohol concentration in the range of 5 to 15%, for example. In addition, a well-known method can be applied to other processes, such as a packaging process and a storage process.
以下、本発明を実施例によりさらに詳細に説明する。但し、実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, it is not intended to be limited to the examples.
本実施例において総3MH濃度(3MH濃度および3MHA濃度の合計)は、3MHおよび3MHAをT.Tominagaらの方法(J. Agric. Food Chem. 1998, 46, 1044-1048.)に従った以下の分析法で測定し、これら2物質の濃度の和で示した。 In this example, the total 3 MH concentration (the sum of 3 MH concentration and 3 MHA concentration) was determined as follows according to the method of T. Tominaga et al. (J. Agric. Food Chem. 1998, 46, 1044-1048.). It was measured by an analytical method and expressed as the sum of the concentrations of these two substances.
(分析法)
試料中の3MH(分子量134)および3MHA(分子量176)を、p-ヒドロキシ水銀安息香酸(p-hydroxymercuribenzoate)を用いた選択抽出を行った後、窒素気流下で濃縮した。内部標準は4-メトキシ-2-メチル-2-メルカプトブタン(4-methoxy-2-methyl-2-mercaptobutane)を用いた。このようにして濃縮した試料をGC/MSシステム(アジレントテクノロジーズ 6890N GCシステムおよび5973MSDシステム)に供試した。カラムはJ&W Scientific社製DB-XLB(50m×0.25μm×0.25μm)を使用し、GCサイクルは40℃で5分保持した後、170℃まで4℃/分で、その後230℃まで8℃/分で上昇させ、最後に5分間維持することで1サイクルとした。各標品のマススペクトルをSCANモードで確認後、SIMモードに切り替え、3MH m/z 134、3MHA m/z 116で定量を行った。
(Analysis method)
3MH (molecular weight 134) and 3MHA (molecular weight 176) in the sample were selectively extracted using p-hydroxymercuribenzoate and then concentrated under a nitrogen stream. As the internal standard, 4-methoxy-2-methyl-2-mercaptobutane was used. The sample thus concentrated was subjected to a GC / MS system (Agilent Technologies 6890N GC system and 5973MSD system). The column used was J & W Scientific DB-XLB (50m × 0.25μm × 0.25μm), and the GC cycle was held at 40 ° C for 5 minutes, then to 170 ° C at 4 ° C / min, then to 230 ° C at 8 ° C / The cycle was increased in minutes and lasted for 5 minutes to make one cycle. After confirming the mass spectrum of each sample in the SCAN mode, the sample was switched to the SIM mode, and quantification was performed using 3MH m / z 134 and 3MHA m / z 116.
3MH前駆体は、前述のように3MH-S-GSH(分子量407)および3MH-S-Cys(分子量221)である。3MH前駆体の濃度は、これら2物質を以下の分析方法を用いて測定し、これら2物質の濃度の和で示したものである。 The 3MH precursors are 3MH-S-GSH (molecular weight 407) and 3MH-S-Cys (molecular weight 221) as described above. The concentration of the 3MH precursor is determined by measuring these two substances using the following analytical method and indicating the concentration of these two substances.
(分析法)
試料を0.1%(v/v)蟻酸を含む10%(v/v)メタノール水溶液を用いて適当な倍率で希釈し、0.45μmのフィルターでろ過したものをLC/MS/MSシステムを用いて定量する。検量線を引くために用いた標品は3MH-S-GSHはC. P. des Gachons、T. Tominagaらの方法(J. Agric. Food Chem. 2002, 50, 4076-4079.)に従い、また3MH-S-CysはC. Thibon、S. Shinkaruk らの方法(J. Chromatogr A 2008, 1183, 150-157.)に従い、有機合成することで得た。
(Analysis method)
The sample was diluted with a 10% (v / v) aqueous methanol solution containing 0.1% (v / v) formic acid at an appropriate magnification, and then filtered through a 0.45 μm filter and quantified using an LC / MS / MS system. To do. The standard used to draw the calibration curve is 3MH-S-GSH according to the method of CP des Gachons, T. Tominaga et al. (J. Agric. Food Chem. 2002, 50, 4076-4079.) And 3MH-S -Cys was obtained by organic synthesis according to the method of C. Thibon, S. Shinkaruk et al. (J. Chromatogr A 2008, 1183, 150-157.).
[使用機器]
3200 QTRAP LC/MC/MSシステム(アプライドバイオシステムズ社)
[LC/MS/MS条件]
インターフェース:Turbo V source
イオン化モード:ESI(positiveモード)
イオン源パラメーター:curtain gas 15psi、collision gas 3psi、ionspray voltage 5500V、temperature 700℃、ion source gas1 70psi、ion source gas2 70psi、interface heater ON
測定モード:MRMモード
選択イオン:3MH-S-GSH m/z 408.2→162.1(collision energy 27V)、3MH-S-Cys m/z 222.2→83.2(collision energy 19V)
[Used equipment]
3200 QTRAP LC / MC / MS system (Applied Biosystems)
[LC / MS / MS conditions]
Interface: Turbo V source
Ionization mode: ESI (positive mode)
Ion source parameters: curtain gas 15psi, collision gas 3psi, ionspray voltage 5500V, temperature 700 ℃, ion source gas1 70psi, ion source gas2 70psi, interface heater ON
Measurement mode: MRM mode selection ions: 3MH-S-GSH m / z 408.2 → 162.1 (collision energy 27V), 3MH-S-Cys m / z 222.2 → 83.2 (collision energy 19V)
[LC条件]
カラム:アトランティス(Atlantis) T3、3μm、2.1×150mm(ウォーターズ社)
カラム温度:40℃
注入量:10μL
移動相 A:0.1%(v/v)蟻酸を含む水
移動相 B:0.1%(v/v)蟻酸を含むアセトニトリル
流速:0.2mL/min
グラジエント:移動相Aと移動相Bの混合率を移動相A:移動相B=90:10から移動相A:移動相B=0:100まで10分かけて上げ、その後移動相A:移動相B=90:10に戻し、5分間キープした。
[LC condition]
Column: Atlantis T3, 3μm, 2.1 x 150mm (Waters)
Column temperature: 40 ° C
Injection volume: 10μL
Mobile phase A: Water mobile phase containing 0.1% (v / v) formic acid B: Acetonitrile flow containing 0.1% (v / v) formic acid: 0.2 mL / min
Gradient: Increase the mixing ratio of mobile phase A and mobile phase B from mobile phase A: mobile phase B = 90:10 to mobile phase A: mobile phase B = 0: 100 over 10 minutes, then mobile phase A: mobile phase Returned to B = 90: 10 and kept for 5 minutes.
実施例1
デイリーワインの調製(3MH最適濃度の検討)
Example 1
Daily wine preparation (3MH optimal concentration study)
[ブドウ果皮抽出液の製造]
ブドウ(シャルドネ種)をメンブランプレス(ブーハー・バスラン社製)で搾汁して得た水分含量66.8%(w/w)のブドウ果皮を30〜50日間冷凍保存した。冷凍状態のブドウ果皮8tに対して16t(2倍量)の水を加え、15〜20℃でメンブランプレス(ブーハー・バスラン社製)内で回転させながら3時間浸漬した後、圧搾し、Brix4.6%のブドウ果皮抽出液を得た。得られたブドウ果皮抽出液に混濁成分の沈降促進のため、ポリビニルポリピロリドン(PVPP)1000ppmとベントナイト500ppm添加後30分攪拌し、5℃で24時間静置した。上澄みを遠心(4000rpm)し、95℃で加熱殺菌した後、真空薄膜式循環濃縮機にて品温30〜40℃で減圧濃縮し、Brix50%まで濃縮した。ブドウ果皮抽出液の3MH前駆体濃度および総ポリフェノール濃度を測定し、Brix20%換算で算出したところ、ブドウ果皮抽出液中に含まれる3MH-S-GSHが1960.8nM(800ppb)(A)、3MH-S-Cysが5203.6nM(1150ppb)(B)であり、3MH前駆体濃度[(A)+(B)]は7164.4nM(1950 ppb)、総ポリフェノール濃度は568ppmであった。
[Manufacture of grape skin extract]
Grape skins with a water content of 66.8% (w / w) obtained by squeezing grapes (Chardonnay seeds) with a membrane press (manufactured by Boucher Basslan) were stored frozen for 30 to 50 days. Add 16t (2 times amount) of water to 8t of frozen grape skin, immerse for 3 hours while rotating in a membrane press (manufactured by Boucher Vaslan) at 15-20 ° C, press, and Brix4. 6% grape skin extract was obtained. In order to accelerate sedimentation of turbid components, the resulting grape skin extract was stirred for 30 minutes after adding 1000 ppm of polyvinylpolypyrrolidone (PVPP) and 500 ppm of bentonite, and then allowed to stand at 5 ° C. for 24 hours. The supernatant was centrifuged (4000 rpm), sterilized by heating at 95 ° C., and then concentrated under reduced pressure at a product temperature of 30 to 40 ° C. using a vacuum thin film circulating concentrator, and concentrated to Brix 50%. 3MH precursor concentration and total polyphenol concentration in grape skin extract were measured and calculated in terms of Brix 20%. 3MH-S-GSH contained in grape skin extract was 1960.8nM (800ppb) (A), 3MH- The S-Cys was 5203.6 nM (1150 ppb) (B), the 3MH precursor concentration [(A) + (B)] was 7164.4 nM (1950 ppb), and the total polyphenol concentration was 568 ppm.
[3HM含有原液の製造]
このブドウ果皮抽出液をおよそBrix22%(pH4.2)に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は6956.1nM(3MH-S-Cys:5203.6nM、3MH-S-GSH:1752.5nM)、総ポリフェノール濃度は625ppmであった。この発酵原料を500mLを750mL容のガラス容器に分注し、発酵温度30℃で乳酸菌(Lactobacillus plantarum:THT030702(THT社製))を約1.0×106cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種し、8日間静置発酵させ、その後遠心分離によって酵母あるいは乳酸菌を除去し、3HM含有原液を得た。得られた3HM含有原液の3MHおよび3MHA濃度を測定した結果、3MH濃度は718.9nM、3MHA濃度は73.4nMであった。
[Production of 3HM-containing stock solution]
This grape skin extract was adjusted to approximately Brix 22% (pH 4.2) and used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 6956.1 nM (3MH-S-Cys: 5203.6 nM, 3MH-S-GSH: 1752.5 nM), and the total polyphenol concentration was 625 ppm. 500 mL of this fermentation raw material is dispensed into a 750 mL glass container, inoculated with about 1.0 × 10 6 cfu / mL of lactic acid bacteria (Lactobacillus plantarum: THT030702 (THT)) at a fermentation temperature of 30 ° C., and yeast ( Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) was inoculated with about 2.0 × 10 6 cfu / mL, allowed to stand for 8 days, and thereafter yeast or lactic acid bacteria were removed by centrifugation to obtain a 3HM-containing stock solution. As a result of measuring the 3MH and 3MHA concentrations of the obtained 3HM-containing stock solution, the 3MH concentration was 718.9 nM and the 3MHA concentration was 73.4 nM.
[デイリーワインの調製]
上記3HM含有原液を、白ブドウ濃縮果汁(Brix68%)を水で還元し、Brix20%に調整し、発酵して得たワイン(果実酒)に0〜20v/v%混合し、それぞれ調製した。3HM含有原液を含まないものを比較例1、1〜20v/v%含むものをそれぞれ実施例1a〜1fとした。
[Daily wine preparation]
The above 3HM-containing stock solution was prepared by reducing white grape concentrated fruit juice (Brix68%) with water, adjusting to Brix20%, and mixing it with 0-20 v / v% of wine (fruit wine) obtained by fermentation. Comparative Examples 1 and 3 to 1 v / v%, which do not contain the 3HM-containing stock solution, were designated Examples 1a to 1f, respectively.
[官能評価]
調整した比較例1および実施例1a〜1eの飲料について、7名の専門パネラーにより、「鼻で嗅いだときの果実香(フルーティな香り)の強さ」、「飲み込んだ後の果実香の余韻の強さ」、「嗜好性」をそれぞれ5段階で評価した。その結果、3HM含有原液を混合した実施例1a〜1eで「鼻で嗅いだときの果実香(フルーティな香り)の強さ」、「飲み込んだ後の果実香の余韻の強さ」が向上し、「嗜好性」が増すと評価された。なかでも実施例1c、1dが果実香、果実香の余韻の強さのバランスが優れていた。また実施例1eでは嗜好性が高く評価されたものの、果実香(フルーティな香り)、果実香の余韻のやや強すぎる傾向にあった。
[sensory evaluation]
About the drink of the adjusted comparative example 1 and Example 1a-1e, 7 expert panelists "The intensity of the fruit incense (fruity fragrance) when sniffing with a nose", "The afterglow of the fruit incense after swallowing 'Strength' and 'taste' were rated on a five-point scale. As a result, in Examples 1a to 1e mixed with 3HM-containing stock solutions, the “strength of fruit scent (fruity scent) when sniffed with nose” and “strength of fruit scent after swallowing” were improved. It was evaluated that “taste” would increase. In particular, Examples 1c and 1d were excellent in the balance between the fruit scent and the intensity of the fruit scent. Further, in Example 1e, although palatability was highly evaluated, there was a tendency that the fruit scent (fruity scent) and the scent of fruit scent were slightly too strong.
参考例1
MRS培地を用いた各種乳酸菌の3MH-S-GSHから3MH-S-Cysへの変換能力の評価(1)
Difco社製Lactobacilli MRS Brothを1Lのイオン交換水に55g混合し、オートクレーブにより滅菌することでMRS培地(pH6.5)を作成し、クリーンベンチ内で有機合成によって得た3MH-S-GSHを1250nMとなるように溶解させ、次いで混合した。これを滅菌済15mLファルコンチューブに約10mLずつ分注した。そこに表2記載の各種乳酸菌を約1.0×106cfu/mL接種し、30℃で3日間静置培養した後、基質である3MH-S-GSHと生成物である3MH-S-Cysの濃度を上記分析方法で測定した。結果を表2に示す。
Reference example 1
Evaluation of conversion ability of various lactic acid bacteria from 3MH-S-GSH to 3MH-S-Cys using MRS medium (1)
Difco Lactobacilli MRS Broth was mixed with 55 g of 1 L ion exchange water and sterilized by autoclaving to create MRS medium (pH 6.5), and 1250 nM of 3MH-S-GSH obtained by organic synthesis in a clean bench And then mixed. About 10 mL of this was dispensed into a sterilized 15 mL falcon tube. After inoculating the various lactic acid bacteria listed in Table 2 at about 1.0 × 10 6 cfu / mL and incubating at 30 ° C. for 3 days, the substrate 3MH-S-GSH and the product 3MH-S-Cys The concentration was measured by the above analytical method. The results are shown in Table 2.
結果、Lactobacillus属乳酸菌であるLactobacillus plantarum、Lactobacillus pentosus、 Leuconostoc属乳酸属であるLeuconostoc mesenteroides、Pediococcus属乳酸菌であるPediococcus pentosaceusで3MH-S-GSHから3MH-S-Cysへの変換能力を有していた。なかでもLactobacillus pentosus、Lactobacillus plantarumが高い変換能力を有していた。 As a result, Lactobacillus plantarum Lactobacillus plantarum, Lactobacillus pentosus, Leuconostoc lactic acid genus Leuconostoc mesenteroides, and Pediococcus lactic acid bacteria Pediococcus pentosaceus had the ability to convert 3MH-S-GSH to 3MH-S-Cys. . Among them, Lactobacillus pentosus and Lactobacillus plantarum had high conversion ability.
参考例2
MRS培地を用いた各種乳酸菌の3MH-S-GSHから3MH-S-Cysへの変換能力の評価(2)
参考例1と同様にMRS培地(pH6.5)を調整し、有機合成により調製した3MH-S-GSHを1000nMにとなるように溶解させ、次いで滅菌済15mLファルコンチューブに約10mLずつ分注した。これに表3記載の各種乳酸菌を約1.0×106cfu/mL接種し、30℃で3日間静置培養した後、基質である3MH-S-GSHと生成物である3MH-S-Cysの濃度を参考例1と同様の分析方法で測定した。結果を表3に示す。
Reference example 2
Evaluation of conversion ability of various lactic acid bacteria from 3MH-S-GSH to 3MH-S-Cys using MRS medium (2)
In the same manner as in Reference Example 1, MRS medium (pH 6.5) was prepared, 3MH-S-GSH prepared by organic synthesis was dissolved to 1000 nM, and then about 10 mL was dispensed into a sterilized 15 mL falcon tube. . This was inoculated with about 1.0 × 10 6 cfu / mL of various lactic acid bacteria listed in Table 3, and after static culture at 30 ° C. for 3 days, the substrate 3MH-S-GSH and the product 3MH-S-Cys The concentration was measured by the same analysis method as in Reference Example 1. The results are shown in Table 3.
結果、表3に記載の全てのLactobacillus属乳酸菌で3MH-S-GSHから3MH-S-Cysへの変換能力を有していた。なかでもLactobacillus delbruekii subsp.delbrueckii、Lactobacillus delbruekii subsp.bulgaricus、Lactobacillus mali、Lactobacillus plantarumが高い変換能力を有していた。 As a result, all Lactobacillus lactic acid bacteria listed in Table 3 had the ability to convert 3MH-S-GSH to 3MH-S-Cys. Among them, Lactobacillus delbruekii subsp. Delbrueckii, Lactobacillus delbruekii subsp. Bulgaricus, Lactobacillus mali, and Lactobacillus plantarum had high conversion ability.
参考例3
果皮抽出液を用いた各種乳酸菌の3MH-S-GSHから3MH-S-Cysへの変換能力の評価(1)
ブドウ(シャルドネ種)をメンブランプレス(ブーハー・バスラン社製)で搾汁して得た水分含量66.8%のブドウ果皮を1ヶ月間冷凍保存した。冷凍状態のブドウ果皮1.5kgに対して、3.0kg(2倍量)の水を加え、20℃で24時間浸漬後、手動の圧搾式ジューサーで圧搾し、Brix5%のブドウ果皮抽出液を得た。得られたブドウ果皮抽出液にベントナイトを500ppm添加後30分攪拌し、5℃で24時間静置した。上澄みを珪藻土濾過した後、フラッシュエバポレーターにて品温60℃で減圧濃縮し、Brix50%まで濃縮した。ブドウ果皮抽出液の3MH前駆体濃度および総ポリフェノール濃度を測定し、Brix20%換算で算出したところ、ブドウ果皮抽出液中に含まれる3MH前駆体濃度9014.2nM(3MH-S-Cys:2895.8nM、3MH-S-GSH:6118.4nM)、総ポリフェノール濃度は1414ppmであった。
Reference example 3
Evaluation of conversion ability of various lactic acid bacteria from 3MH-S-GSH to 3MH-S-Cys using peel extract (1)
Grape skin with a moisture content of 66.8% obtained by squeezing grapes (Chardonnay) with a membrane press (manufactured by Boucher Basslan) was frozen and stored for 1 month. Add 1.5 kg (2 times the amount) of water to 1.5 kg of frozen grape skin, soak it for 24 hours at 20 ° C, and press it with a manual squeezed juicer to obtain a 5% Brix skin extract. It was. To the obtained grape skin extract, 500 ppm of bentonite was added and stirred for 30 minutes and allowed to stand at 5 ° C. for 24 hours. The supernatant was filtered through diatomaceous earth, and then concentrated under reduced pressure at a product temperature of 60 ° C. using a flash evaporator, and concentrated to Brix 50%. The 3MH precursor concentration and total polyphenol concentration in grape skin extract were measured and calculated in terms of Brix 20% .The concentration of 3MH precursor contained in grape skin extract was 9014.2nM (3MH-S-Cys: 2895.8nM, 3MH -S-GSH: 6118.4 nM), the total polyphenol concentration was 1414 ppm.
このブドウ果皮抽出液をBrix20%に調整し、発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は9014.2nM(3MH-S-Cys:2895.8nM、3MH-S-GSH:6118.4nM)、総ポリフェノール濃度は1414ppmであった。これに発酵助成剤Fermaid K(Lallemand社)100mg/L、リン酸二水素アンモニウム1g/Lを加え、100mLずつ180mL容のガラス容器に分注した。このとき、pHは4.4であった。表4記載の乳酸菌をそれぞれ約1.0×107cfu/mL添加し、20℃で2日間静置培養した。培養した後、基質である3MH-S-GSHと生成物である3MH-S-Cysの濃度を参考例1と同様の分析方法で測定した。また、3MH-S-Cys生成量は培養後の発酵液中の3MH-S-Cys濃度から培養前の発酵原料中の3MH-S-Cys濃度を引くことで求めた。結果を表4に示す。 This grape skin extract was adjusted to Brix 20% and used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 9014.2 nM (3MH-S-Cys: 2895.8 nM, 3MH-S-GSH: 6118.4 nM), and the total polyphenol concentration was 1414 ppm. Fermentation aid Fermaid K (Lallemand) 100 mg / L and ammonium dihydrogen phosphate 1 g / L were added to this, and each 100 mL was dispensed into a 180 mL glass container. At this time, the pH was 4.4. About 1.0 × 10 7 cfu / mL of each lactic acid bacterium described in Table 4 was added, and static culture was performed at 20 ° C. for 2 days. After culturing, the concentrations of 3MH-S-GSH as a substrate and 3MH-S-Cys as a product were measured by the same analysis method as in Reference Example 1. The amount of 3MH-S-Cys produced was determined by subtracting the 3MH-S-Cys concentration in the fermentation raw material before culturing from the 3MH-S-Cys concentration in the fermentation broth after culturing. The results are shown in Table 4.
結果、表4に記載の全てのLactobacillus plantarumで3MH-S-GSHから3MH-S-Cysへの変換能力を有していた。 As a result, all Lactobacillus plantarum listed in Table 4 had the ability to convert 3MH-S-GSH to 3MH-S-Cys.
参考例4
果皮抽出液を用いた各種乳酸菌の3MH-S-GSHから3MH-S-Cysへの変換能力の評価(2)
実施例1と同様にブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液をおよそBrix20%(pH4.2)に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は7165nM(3MH-S-Cys:5204nM、3MH-S-GSH:1961nM)、総ポリフェノール濃度は568ppmであった。この発酵原料を300mLずつ360mL容のガラス容器に分注し、表5記載の乳酸菌を約1.0×107cfu/mL添加し、30℃で2日間静置培養した。培養した後、基質である3MH-S-GSHと生成物である3MH-S-Cysの濃度を参考例1と同様の分析方法で測定した。また、3MH-S-Cys生成量は培養後の発酵液中の3MH-S-Cys濃度から培養前の発酵原料中の3MH-S-Cys濃度を引くことで求めた。結果を表5に示す。
Reference example 4
Evaluation of conversion ability of various lactic acid bacteria from 3MH-S-GSH to 3MH-S-Cys using peel extract (2)
The grape skin extract obtained by extracting and concentrating grape skin with water in the same manner as in Example 1 was adjusted to approximately Brix 20% (pH 4.2), and this was used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 7165 nM (3MH-S-Cys: 5204 nM, 3MH-S-GSH: 1961 nM), and the total polyphenol concentration was 568 ppm. 300 mL of this fermentation raw material was dispensed into a 360 mL glass container, and about 1.0 × 10 7 cfu / mL of the lactic acid bacteria listed in Table 5 was added, followed by stationary culture at 30 ° C. for 2 days. After culturing, the concentrations of 3MH-S-GSH as a substrate and 3MH-S-Cys as a product were measured by the same analysis method as in Reference Example 1. The amount of 3MH-S-Cys produced was determined by subtracting the 3MH-S-Cys concentration in the fermentation raw material before culturing from the 3MH-S-Cys concentration in the fermentation broth after culturing. The results are shown in Table 5.
結果、表5に記載の全てのLactobacillus属乳酸菌で3MH-S-GSHから3MH-S-Cysへの変換能力を有していた。なかでもLactobacillus hilgardii、Lactobacillus plantarum、Lactobacillus maliが高い変換能力を有していた。 As a result, all Lactobacillus lactic acid bacteria listed in Table 5 had the ability to convert 3MH-S-GSH to 3MH-S-Cys. Among them, Lactobacillus hilgardii, Lactobacillus plantarum, and Lactobacillus mali had high conversion ability.
参考例5
ブドウ果皮抽出液(シャルドネ種)を発酵原料として用いた3MH含有原液の製造−乳酸菌と酵母の最適接種時期の検討−
実施例1と同様にブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液をおよそBrix22%(pH4.2)に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は8028.1nM(3MH-S-Cys:6244.3nM、3MH-S-GSH:1784.8nM)、総ポリフェノール濃度は625ppmであった。
Reference Example 5
Production of 3MH-containing stock solution using grape skin extract (Chardonnay) as fermentation raw material -Investigation of optimal inoculation time of lactic acid bacteria and yeast-
The grape skin extract obtained by extracting and concentrating grape skin with water in the same manner as in Example 1 was adjusted to approximately Brix 22% (pH 4.2), and this was used as a fermentation raw material. At this time, the concentration of the 3MH precursor contained in the fermentation raw material was 80281 nM (3MH-S-Cys: 6244.3 nM, 3MH-S-GSH: 1784.8 nM), and the total polyphenol concentration was 625 ppm.
この発酵原料各500mLを発酵温度20℃で酵母のみを接種する試験区(参考例 5−6)、乳酸菌と同酵母を同時に接種する試験区(参考例5−1)、乳酸菌接種1日後、酵母を接種する試験区(参考例5−2)、乳酸菌接種2日後、酵母を接種する試験区(参考例5−3)、乳酸菌接種4日後、酵母を接種する試験区(参考例5−4)、乳酸菌接種6日後、酵母を接種する試験区(参考例5−5)を設け、13日〜15日間静置発酵させ、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれの発酵液を得た。このとき使用した乳酸菌(Lactobacillus plantarum:Viniflora plantarum(クリスチャンハンセン社製))は約7.0×106cfu/mL、酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約1.0×106cfu/mLをそれぞれ接種した。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した。結果を表6に示す。 A test plot (Reference Example 5-6) inoculating only 500 mL of each fermentation raw material at a fermentation temperature of 20 ° C. (Reference Example 5-6), a test plot inoculating lactic acid bacteria and the same yeast at the same time (Reference Example 5-1), Test group inoculating yeast (Reference Example 5-2), test group inoculating yeast 2 days after lactic acid bacteria inoculation (Reference Example 5-3), test group inoculating yeast 4 days after lactic acid bacteria inoculation (Reference Example 5-4) 6 days after inoculation with lactic acid bacteria, a test section (Reference Example 5-5) for inoculating yeast was provided and allowed to stand and fermented for 13 to 15 days, after which yeast or lactic acid bacteria were removed by centrifugation to obtain respective fermentation broths. . Lactobacillus plantarum (Viniflora plantarum (made by Christian Hansen)) used at this time is about 7.0 × 10 6 cfu / mL, yeast (Saccharomyces cerevisiae: CY3079 (made by Lallemand)) is about 1.0 × 10 6 cfu / mL Each was inoculated. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the 3MH conversion rate was calculated. The results are shown in Table 6.
表6に示したとおり、参考例5−6と比較して、参考例5−1〜5−5では、総3MH濃度が高く、3MH変換率が向上していた。なかでも参考例5−3、5−4と5−5で3MH変換率が顕著に向上していた。 As shown in Table 6, in Reference Examples 5-1 to 5-5, the total 3MH concentration was high and the 3MH conversion rate was improved as compared with Reference Example 5-6. Among them, the 3MH conversion rate was remarkably improved in Reference Examples 5-3, 5-4 and 5-5.
参考例6
ブドウ果皮抽出液(シャルドネ種)を発酵原料として用いた3MH含有原液の製造−発酵温度依存性の検討−
実施例1と同様に、ブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液をおよそBrix22%(pH4.2)に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は6216.5nM(3MH-S-Cys:4796.4nM、3MH-S-GSH:1420.1nM)、総ポリフェノール濃度は625ppmであった。この発酵原料各500mLを750mL容のガラス容器に分注し、10〜40℃の各発酵温度で一方は酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種し、6〜18日間発酵させ(参考例6−1a〜4a)、他方は乳酸菌(Lactobacillus plantarum:Viniflora plantarum(クリスチャンハンセン社製))を6.0×107cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種し、6〜18日間静置発酵させ(参考例6−1b〜4b)、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれ発酵液を得た。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した結果を表7に示す。
Reference Example 6
Production of 3MH-containing stock solution using grape skin extract (Chardonnay) as fermentation raw material -Examination of fermentation temperature dependence-
As in Example 1, the grape skin extract obtained by extracting and concentrating grape skin with water was adjusted to approximately Brix 22% (pH 4.2), and this was used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 6216.5 nM (3MH-S-Cys: 4796.4 nM, 3MH-S-GSH: 1420.1 nM), and the total polyphenol concentration was 625 ppm. Dispense 500 mL of each fermentation raw material into a 750 mL glass container, and inoculate about 2.0 × 10 6 cfu / mL of yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) at each fermentation temperature of 10 to 40 ° C. And fermented for 6 to 18 days (Reference Examples 6-1a to 4a), and the other was inoculated with lactic acid bacteria (Lactobacillus plantarum: Viniflora plantarum (manufactured by Christian Hansen)) at 6.0 × 10 7 cfu / mL, and two days later yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) is inoculated with about 2.0 × 10 6 cfu / mL, allowed to stand for 6 to 18 days (Reference Example 6-1b to 4b), and thereafter the yeast or lactic acid bacteria are removed by centrifugation. Each fermented liquid was obtained. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the results of calculating the 3MH conversion rate are shown in Table 7.
表7に示したとおり、各発酵温度において酵母のみで発酵させた発酵液と比較して、乳酸菌と酵母を用いて発酵させた発酵液は、3MH変換率が向上していた。なかでも参考例6−2b、6−3bで3MH変換率が顕著に向上していた。 As shown in Table 7, the 3MH conversion rate of the fermented liquid fermented using lactic acid bacteria and yeast was improved as compared with the fermented liquid fermented with yeast alone at each fermentation temperature. Among them, the 3MH conversion rate was remarkably improved in Reference Examples 6-2b and 6-3b.
参考例7
ブドウ果皮抽出液(シャルドネ種)を発酵原料として用いた3MH含有原液の製造−pH依存性の検討−
実施例1と同様に、ブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液をおよそBrix20%に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は5669.4nM(3MH-S-Cys:4416.3nM、3MH-S-GSH:1253.1nM)、総ポリフェノール濃度は568ppmであった。この発酵原料各500mLを水酸化ナトリウムまたは塩酸を用いて初発pH3〜9に調整した後、750mL容のガラス容器に分注し、発酵温度20℃で一方は酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種し、6〜18日間発酵させ(参考例7−1a〜4a)、他方は乳酸菌(Lactobacillus plantarum:Viniflora plantarum(クリスチャンハンセン社製))を約6.0×107cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種し、6〜18日間静置発酵させ(参考例7−1b〜4b)、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれの発酵液を得た。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した結果を表8に示す。
Reference Example 7
Manufacture of 3MH-containing stock solution using grape skin extract (Chardonnay) as fermentation raw material -Investigation of pH dependence-
As in Example 1, the grape skin extract obtained by extracting and concentrating grape skin with water was adjusted to approximately Brix 20%, and this was used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 5669.4 nM (3MH-S-Cys: 4416.3 nM, 3MH-S-GSH: 1253.1 nM), and the total polyphenol concentration was 568 ppm. Each 500 mL of this fermentation raw material is adjusted to an initial pH of 3 to 9 using sodium hydroxide or hydrochloric acid, and then dispensed into a 750 mL glass container. At a fermentation temperature of 20 ° C., one is yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand) )) About 2.0 × 10 6 cfu / mL and fermented for 6 to 18 days (Reference Examples 7-1a to 4a), and the other is about 6.0 × lactic acid bacteria (Lactobacillus plantarum: Viniflora plantarum (manufactured by Christian Hansen)). 10 7 cfu / mL was inoculated, and after 2 days, yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) was inoculated with about 2.0 × 10 6 cfu / mL and allowed to stand for 6 to 18 days (Reference Example 7-1b) 4b) After that, the yeast or lactic acid bacteria were removed by centrifugation to obtain each fermentation broth. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the results of calculating the 3MH conversion rate are shown in Table 8.
表8に示したとおり、各初発pHにおいて酵母のみで発酵させた発酵液と比較して、乳酸菌と酵母を用いて発酵させた発酵液は、3MH変換率が向上していた。なかでも参考例7−2b、7−3b、7−4bで3MH変換率が顕著に向上していた。 As shown in Table 8, the 3MH conversion rate of the fermented liquid fermented using lactic acid bacteria and yeast was improved as compared with the fermented liquid fermented with only yeast at each initial pH. Among them, the 3MH conversion rate was remarkably improved in Reference Examples 7-2b, 7-3b, and 7-4b.
参考例8
ブドウ果皮抽出液(シャルドネ種)を発酵原料として用いた3MH含有原液の製造−Oenococus Oeniとの比較−
実施例1と同様に、ブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液をおよそBrix22%(pH4.2)に調整し、これを発酵原料とした。このとき、発酵原料中に含まれる3MH前駆体濃度は5985.9nM(3MH-S-Cys: 4909.9nM、3MH-S-GSH: 1076.0nM)、総ポリフェノール濃度は625ppmであった。この発酵原料各500mLを750mL容のガラス容器に分注し、発酵温度30℃で酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種したもの(参考例8−1)、乳酸菌(Oenococus oeni:MVP41(Lallemand社製))を約1.0×107cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種したもの(参考例8−2)、乳酸菌(Lactobacillus plantarum:NBRC101978)を1.0×107cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:CY3079(Lallemand社製))を約2.0×106cfu/mL接種したもの(参考例8−3)を用意し、それぞれ10日間静置発酵させ、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれ発酵液を得た。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した結果を表9に示す。
Reference Example 8
Production of 3MH-containing stock solution using grape skin extract (Chardonnay) as fermentation raw material -Comparison with Oenococus Oeni-
As in Example 1, the grape skin extract obtained by extracting and concentrating grape skin with water was adjusted to approximately Brix 22% (pH 4.2), and this was used as a fermentation raw material. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 5985.9 nM (3MH-S-Cys: 4909.9 nM, 3MH-S-GSH: 1076.0 nM), and the total polyphenol concentration was 625 ppm. 500 mL of each fermentation raw material was dispensed into a 750 mL glass container and inoculated with about 2.0 × 10 6 cfu / mL of yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) at a fermentation temperature of 30 ° C. (Reference Example 8- 1) About 1.0 × 10 7 cfu / mL of lactic acid bacteria (Oenococus oeni: MVP41 (manufactured by Lallemand)) is inoculated, and two days later, yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) is about 2.0 × 10 6 cfu / mL Inoculated with mL (Reference Example 8-2), lactic acid bacteria (Lactobacillus plantarum: NBRC101978) at 1.0 × 10 7 cfu / mL, and two days later, yeast (Saccharomyces cerevisiae: CY3079 (manufactured by Lallemand)) was about 2.0 × 10 6 cfu / mL inoculated samples (Reference Example 8-3) were prepared and allowed to stand and fermented for 10 days, respectively, and then yeast or lactic acid bacteria were removed by centrifugation to obtain fermentation solutions. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the results of calculating the 3MH conversion rate are shown in Table 9.
表9に示したとおり、全ての参考例で高い総3MH濃度を示した。酵母のみで発酵させた発酵液と乳酸菌(Oenococus oeni)と酵母を用いて発酵させた発酵液は同程度の3MH変換率であった。それらと比較して、乳酸菌(Lactobacillus plantarum)と酵母を用いて発酵させた発酵液の3MH変換率は向上していた。 As shown in Table 9, all the reference examples showed high total 3MH concentration. The fermentation broth fermented with only yeast and the fermented broth fermented with lactic acid bacteria (Oenococus oeni) and yeast had comparable 3MH conversion rates. Compared with them, the 3MH conversion rate of the fermentation broth fermented with lactic acid bacteria (Lactobacillus plantarum) and yeast was improved.
参考例9
ブドウ果皮抽出液(シャルドネ種)を発酵原料として用いた3MH含有原液の製造−ブドウ果皮抽出液の使用量の検討−
実施例1と同様に、ブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液(Brix50%)と含水結晶ぶどう糖(日本食品化工社製)を混合したものを水で希釈し、表10記載の発酵原料を3種類調整した(参考例9−1〜3)。
Reference Example 9
Production of 3MH-containing stock solution using grape skin extract (Chardonnay) as fermentation raw material-Examination of the amount of grape skin extract used-
In the same manner as in Example 1, the grape skin extract was extracted with water and concentrated to obtain a mixture of grape skin extract (Brix50%) and water-containing crystalline glucose (manufactured by Nippon Shokuhin Kako Co., Ltd.). Three types of fermentation raw materials described in Table 10 were prepared (Reference Examples 9-1 to 3).
この発酵原料各500mLを750mL容のガラス容器に分注し、発酵温度30℃でそれぞれ乳酸菌(Lactobacillus plantarum:THT030702(THT社製))を約1.0×106cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:VIN13(Anchor社製))を約2.0×106cfu/mL接種し、8日間静置発酵させ、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれ発酵液を得た。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した結果を表11に示す。 Dispense 500 mL of each fermentation raw material into a 750 mL glass container, inoculate about 1.0 × 10 6 cfu / mL of lactic acid bacteria (Lactobacillus plantarum: THT030702 (THT)) at a fermentation temperature of 30 ° C., and yeast two days later (Saccharomyces cerevisiae: VIN13 (manufactured by Anchor)) was inoculated with about 2.0 × 10 6 cfu / mL, allowed to stand for 8 days, and thereafter yeast or lactic acid bacteria were removed by centrifugation to obtain a fermentation broth. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the results of calculating the 3MH conversion rate are shown in Table 11.
表11に示したように、ブドウ果皮抽出液の使用量を増やすことによって総3MH濃度は増加した。一方でブドウ果皮抽出液の使用量を抑えることによって、3MH変換率が向上した。これは、相対的な総ポリフェノール量が減少したため、乳酸菌や酵母の3MH変換能力が向上したものと推察される。 As shown in Table 11, the total 3MH concentration was increased by increasing the amount of grape skin extract used. On the other hand, the 3MH conversion rate was improved by reducing the amount of grape skin extract used. This is probably because the relative total polyphenol content decreased and the 3MH conversion capacity of lactic acid bacteria and yeast was improved.
参考例10
総ポリフェノール濃度が3MH濃度に及ぼす影響調査
実施例1と同様に、ブドウ果皮を水で抽出し、濃縮することで得たブドウ果皮抽出液(Brix50%)150gと含水結晶ぶどう糖(日本食品化工社製)45gを混合したものを水で希釈し、およそBrix22%の発酵原料を500mL(pH4.6)調整した。このとき、発酵原料中に含まれる3MH前駆体濃度は4147.7nM(3MH-S-Cys: 3054.3nM、3MH-S-GSH: 1093.4nM)、総ポリフェノール濃度は421ppmであった。この発酵原料を各100mLに対してそれぞれポリフェノールの1種であるガリック酸を加え、総ポリフェノール濃度を421、803、1222、2414、4851ppmにそれぞれ調整したのち、180mL容のガラス容器に移し、発酵温度30℃で乳酸菌(Lactobacillus plantarum:THT030702(THT社製))を約1.0×106cfu/mL接種し、2日後に酵母(Saccharomyces cerevisiae:VIN13(Anchor社製))を約2.0×106cfu/mL接種し、6日間静置発酵させ、その後遠心分離によって酵母あるいは乳酸菌を除去し、それぞれ発酵液を得た。得られた発酵液の3MHおよび3MHA濃度を測定した。また、発酵原料中に含まれていた3MH前駆体濃度に対する得られた発酵液中の総3MH濃度の割合を計算し、3MH変換率を算出した結果を表12に示す。
Reference Example 10
Investigation of the effect of total polyphenol concentration on 3MH concentration In the same way as in Example 1, 150g of grape skin extract (Brix50%) obtained by extracting and concentrating grape skin with water and water-containing crystalline glucose (manufactured by Nippon Food Chemical Co., Ltd.) ) A mixture of 45 g was diluted with water, and 500 mL (pH 4.6) of approximately 22% Brix fermentation raw material was adjusted. At this time, the concentration of 3MH precursor contained in the fermentation raw material was 4147.7 nM (3MH-S-Cys: 3054.3 nM, 3MH-S-GSH: 1093.4 nM), and the total polyphenol concentration was 421 ppm. Add 100 g of this fermentation raw material to each 100 mL of gallic acid, which is a polyphenol, and adjust the total polyphenol concentration to 421, 803, 1222, 2414, and 4851 ppm, respectively, and then transfer it to a 180 mL glass container. Lactobacillus plantarum (THT030702 (manufactured by THT)) is inoculated at about 1.0 × 10 6 cfu / mL at 30 ° C., and yeast (Saccharomyces cerevisiae: VIN13 (manufactured by Anchor)) is about 2.0 × 10 6 cfu / mL after 2 days. Inoculated mL and allowed to stand for 6 days, and then the yeast or lactic acid bacteria were removed by centrifugation to obtain a fermentation broth. The 3MH and 3MHA concentrations of the obtained fermentation broth were measured. Further, the ratio of the total 3MH concentration in the obtained fermentation broth to the 3MH precursor concentration contained in the fermentation raw material was calculated, and the results of calculating the 3MH conversion rate are shown in Table 12.
参考例11
表13に記載した各種果実を手動の圧搾式ジューサーで搾汁し、各種ブドウ果汁を得た。得られたブドウ果汁について、Brix(%)及び3MH前駆体量を測定した。
Reference Example 11
Various fruits listed in Table 13 were squeezed with a manual squeeze juicer to obtain various grape juices. About the obtained grape juice, Brix (%) and the amount of 3MH precursor were measured.
本発明は果実酒の製造分野に有用である。 The present invention is useful in the field of fruit wine production.
Claims (9)
3-メルカプトヘキサン-1-オール(以下、3MHと略記する)を含有する原液を調製する工程、
前記原料果実酒に原液を添加して、3MH濃度を強化した果実酒を得る工程、
を含む香味豊かな果実酒の製造方法であって、
3MHを含有する原液は、果皮抽出液を乳酸菌及び酵母で発酵して製造することを特徴とする、製造方法。 A step of alcoholic fermentation of a juice obtained by using concentrated fruit juice as at least a part of the raw material to obtain a raw fruit wine;
A step of preparing a stock solution containing 3-mercaptohexan-1-ol (hereinafter abbreviated as 3MH),
Adding a stock solution to the raw fruit liquor to obtain a fruit liquor with enhanced 3MH concentration,
A method for producing a flavorful fruit liquor containing
A method for producing a stock solution containing 3MH, wherein the pericarp extract is fermented with lactic acid bacteria and yeast.
S-3-(ヘキサン-1-オール)-グルタチオン及びS-3-(ヘキサン-1-オール)-L-システインを含有する原料水溶液に乳酸菌及び酵母を接種して、3MH及びアルコールを生成させることを含む、請求項1に記載の製造方法。 Production of a stock solution containing 3MH by fermenting the peel extract with lactic acid bacteria and yeast,
Inoculating lactic acid bacteria and yeast into an aqueous raw material solution containing S-3- (hexane-1-ol) -glutathione and S-3- (hexane-1-ol) -L-cysteine to produce 3MH and alcohol The production method according to claim 1, comprising:
前記乳酸菌が、S-3-(ヘキサン-1-オール)-グルタチオンをS-3-(ヘキサン-1-オール)-L-システインに変換することができる乳酸菌であり、かつ、
前記原料水溶液に乳酸菌を接種した後0〜6日発酵させた後に、前記水溶液に酵母を接種してアルコール発酵を行う、請求項2に記載の製造方法。 The raw material aqueous solution is a liquid containing grape skin extract,
The lactic acid bacterium is a lactic acid bacterium capable of converting S-3- (hexane-1-ol) -glutathione into S-3- (hexane-1-ol) -L-cysteine, and
3. The production method according to claim 2, wherein the raw aqueous solution is inoculated with lactic acid bacteria and fermented for 0 to 6 days, and then the aqueous solution is inoculated with yeast to perform alcoholic fermentation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009289912A JP5746820B2 (en) | 2009-06-05 | 2009-12-22 | Flavored fruit wine and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135657 | 2009-06-05 | ||
JP2009135657 | 2009-06-05 | ||
JP2009175418 | 2009-07-28 | ||
JP2009175418 | 2009-07-28 | ||
JP2009289912A JP5746820B2 (en) | 2009-06-05 | 2009-12-22 | Flavored fruit wine and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011045356A JP2011045356A (en) | 2011-03-10 |
JP5746820B2 true JP5746820B2 (en) | 2015-07-08 |
Family
ID=43832328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009289912A Active JP5746820B2 (en) | 2009-06-05 | 2009-12-22 | Flavored fruit wine and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5746820B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251835A1 (en) * | 2020-06-10 | 2021-12-16 | Phantasm Limited | Grape skin compositions and compounds, and methods of preparation and use therefor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101470586B1 (en) * | 2013-07-08 | 2014-12-10 | 정구홍 | Mothod for improving stuck fermentation of blueberry wine |
CN103555514B (en) * | 2013-11-14 | 2015-04-01 | 贵州省生物研究所 | Seedless spiny pear fruit wine and production method thereof |
CN107384663A (en) * | 2017-08-23 | 2017-11-24 | 长顺丹索亚刺梨庄园有限公司 | A kind of preparation method of grape thorn pear wine |
BE1025550B1 (en) * | 2017-08-24 | 2019-04-09 | Anheuser-Busch Inbev Nv | METHOD FOR MAKING A FERMENTED BEVERAGE INCLUDING HOPRANK LEAVES OR HOP RANK STEMS |
CN110437955A (en) * | 2019-09-17 | 2019-11-12 | 中国农业科学院特产研究所 | The method made wine using vitis amurensis husk slag |
CN111117828B (en) * | 2020-02-06 | 2022-12-27 | 江苏大学 | Method for preparing mulberry fruit wine by adding fruit and vegetable lactobacillus fermentation liquor |
CN113025456A (en) * | 2021-04-09 | 2021-06-25 | 安徽昌荣农业综合开发有限公司 | Brewing process of mixed-strain fermented blueberry fruit wine |
CN114276883B (en) * | 2021-12-29 | 2024-05-28 | 四川黑金椹阳光农业有限公司 | Mulberry dry red wine and preparation process thereof |
CN115537286B (en) * | 2022-10-19 | 2023-03-28 | 东北农业大学 | Blueberry wine fermented by adding lactobacillus plantarum J26 and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021B2 (en) * | 1982-11-30 | 1985-01-05 | 麒麟麦酒株式会社 | Lactic acid bacteria beverage and its manufacturing method |
JPS61100182A (en) * | 1984-10-22 | 1986-05-19 | Asahi Breweries Ltd | Preparation of white wine |
JP2000069945A (en) * | 1998-09-01 | 2000-03-07 | Sunstar Inc | Beverage blended with extract of grape rind and seed, and production thereof |
JP4072312B2 (en) * | 2000-11-02 | 2008-04-09 | 三栄源エフ・エフ・アイ株式会社 | Additives for tea-containing food and drink |
JP4440594B2 (en) * | 2003-10-07 | 2010-03-24 | サントリーホールディングス株式会社 | Method for producing concentrated grape juice and wine |
JP5129471B2 (en) * | 2006-10-19 | 2013-01-30 | 小川香料株式会社 | Fragrance composition |
WO2010070836A1 (en) * | 2008-12-18 | 2010-06-24 | メルシャン株式会社 | Soft drink, grape pericarp extract and methods for producing same |
JP5632292B2 (en) * | 2008-12-18 | 2014-11-26 | メルシャン株式会社 | Method for producing 3-mercaptohexane-1-ol and alcohol-containing liquid |
-
2009
- 2009-12-22 JP JP2009289912A patent/JP5746820B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251835A1 (en) * | 2020-06-10 | 2021-12-16 | Phantasm Limited | Grape skin compositions and compounds, and methods of preparation and use therefor |
AU2021288251B2 (en) * | 2020-06-10 | 2022-12-22 | Phantasm Limited | Grape skin compositions and compounds, and methods of preparation and use therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2011045356A (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5746820B2 (en) | Flavored fruit wine and method for producing the same | |
JP6174078B2 (en) | Soft drink, grape skin extract and method for producing them | |
JP5595803B2 (en) | Soft drink and method for producing the same | |
EP1895862B1 (en) | Process for preparing probiotic enriched and low-organic acid food products | |
US20200045999A1 (en) | Method for producing beverages by acid removal | |
JP5876128B2 (en) | Method for producing 3-mercaptohexane-1-ol and alcohol-containing liquid | |
Han et al. | A comparative study of the effect of bacteria and yeasts communities on inoculated and spontaneously fermented apple cider | |
Joshi et al. | Cider vinegar: Microbiology, technology and quality | |
Butnariu et al. | The evolution and the development phases of wine | |
Sun et al. | Screening and characterization of indigenous non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production | |
JPH0445777A (en) | Non-alcohol beer and production thereof | |
Rivera-Espinoza et al. | Characterization of a wine-like beverage obtained from sugarcane juice | |
JP4440594B2 (en) | Method for producing concentrated grape juice and wine | |
WO2022080507A1 (en) | Fermented infusions | |
CN103114012B (en) | Preparation method for ice pomegranate-grape wine | |
WO2022080508A1 (en) | Fermented tea infusions | |
JP6004638B2 (en) | Wine-style beverages and foods and drinks containing the same | |
KR101033181B1 (en) | Method for manufacturing Orange Liquor | |
JP7518643B2 (en) | Fruit wine and its manufacturing method | |
CN106434265A (en) | Preparation method for pineapple roselle compound fruit vinegar | |
JP2014023500A (en) | Non-alcoholic beverages and production method thereof | |
Pavelescu et al. | THE INFLUENCE OF YEASTS ON THE AROMA PROFILE OF VIENNESE SAUVIGNON BLANC WINES | |
JP2021094015A (en) | Wine taste beverage | |
CN109971588A (en) | A kind of brewage process of snow lotus fruit wine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120127 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5746820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |