JP5722601B2 - Silicon cutting waste treatment method - Google Patents
Silicon cutting waste treatment method Download PDFInfo
- Publication number
- JP5722601B2 JP5722601B2 JP2010267334A JP2010267334A JP5722601B2 JP 5722601 B2 JP5722601 B2 JP 5722601B2 JP 2010267334 A JP2010267334 A JP 2010267334A JP 2010267334 A JP2010267334 A JP 2010267334A JP 5722601 B2 JP5722601 B2 JP 5722601B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- cutting waste
- solid
- liquid
- waste liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Treatment Of Sludge (AREA)
- Silicon Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Description
本発明は、シリコン切削廃液の処理方法、さらに詳しくは、半導体素子製造などにおける結晶シリコンの切削加工で排出されるシリコン切削廃液を簡便廉価な手段で良好に固液分離させ、シリコン切削廃液中に含有されたシリコン並びにその他の有用成分の現実的な回収、再生、再利用を可能または容易なものとするシリコン切削廃液の処理方法に関する。 The present invention relates to a method for treating silicon cutting waste liquid, more specifically, silicon cutting waste liquid discharged by cutting of crystalline silicon in semiconductor element manufacturing or the like is well-liquid separated by simple and inexpensive means, and the silicon cutting waste liquid is The present invention relates to a method for treating silicon cutting waste liquid that enables or easily recovers, recycles, and reuses the contained silicon and other useful components.
半導体素子や太陽電池などの製造工程では、基材となる単結晶もしくは多結晶のシリコンに切断、研削、切削、研磨の加工(以下、必要に応じて「切削加工」と総称する。)を施しているが、これら切削加工によって生じる多量のシリコン切削屑の多くは徒に廃棄されている。 In the manufacturing process of semiconductor elements, solar cells, etc., single crystal or polycrystalline silicon serving as a base material is subjected to cutting, grinding, cutting, and polishing processes (hereinafter collectively referred to as “cutting process” as necessary). However, many of the large amounts of silicon chips generated by these cutting operations are discarded.
例えば、半導体素子製造においては、素材である単結晶のシリコンインゴットを薄板状のシリコンウェハに切断(スライシング)し、このシリコンウェハに面取りと両面研削を施すと共に研磨して鏡面に加工した後、シリコンウェハ表面に分割ラインを以て区画された多数の矩形領域に同一回路を形成し、シリコンウェハの裏面を研削加工(バックグラインディング)により所定厚さまで薄くした上で、切削加工(ダイシング)によって半導体素子の個片(チップ)に分割切断しており、これら一連の切削加工によって生じたシリコン切削屑の微細な切粉は各加工工程で加工部に供給される加工水(研削水や切削水など)や洗浄水に含有されて廃液(以下、本明細書では、上記した一連の切削加工工程の全てまたは一部の加工工程で生じて排出される廃液のいずれをもシリコン切削廃液と呼ぶ。)として製造工程から排出されている。 For example, in the manufacture of semiconductor elements, a single crystal silicon ingot as a material is cut into a thin silicon wafer (slicing), the silicon wafer is chamfered and double-sided and polished to a mirror surface, and then silicon. The same circuit is formed in a number of rectangular areas partitioned by dividing lines on the wafer surface, the back surface of the silicon wafer is thinned to a predetermined thickness by grinding (back grinding), and then the semiconductor element is cut by dicing. It is divided and cut into individual pieces (chips), and fine chips of silicon chips generated by a series of cutting processes are processed water (grinding water, cutting water, etc.) The waste liquid contained in the cleaning water (hereinafter referred to in this specification as a result of all or part of the above-described series of cutting processes being discharged. Are discharged from the production process as a.) Called a silicon cutting waste any of waste liquid.
これら切削加工によって生じシリコン切削廃液に含有されて排出され廃棄されるシリコン切削屑は多量に上り、例えば特許文献1には、「シリコンインゴットの体積を100%とした場合、シリコンインゴットをスライスしてベースとなるウエーハを形成する際に廃棄される体積は20%、鏡面加工される際に廃棄される体積は20%、ウエーハの裏面を研削してウエーハの厚みを薄くする際に廃棄される体積は55%、ウエーハを個々のデバイスに分割する際に廃棄される体積は1%となり、デバイスを得るまでにシリコンインゴットの96%が廃棄されることになる。」と記されている。 A large amount of silicon cutting waste generated by these cutting processes and contained in the silicon cutting waste liquid is discharged and discarded. For example, Patent Document 1 states that “when the volume of the silicon ingot is 100%, the silicon ingot is sliced. The volume discarded when forming the base wafer is 20%, the volume discarded when mirror finishing is 20%, and the volume discarded when the wafer back surface is ground to reduce the thickness of the wafer. Is 55%, the volume discarded when the wafer is divided into individual devices is 1%, and 96% of the silicon ingot is discarded before the device is obtained. "
このように多量のシリコンを徒に廃棄することは、半導体素子製品の製造コストを押し上げる要因となるばかりでなく、貴重な資源の有効利用という点からも、廃棄による環境負荷の点からも大きな問題であることが明らかである上に、シリコン切削廃液から回収されたシリコンを再精製し溶融のうえ再凝固してシリコンインゴットとなした場合、純度の点で半導体素子製造での再利用に供することは現実的でないものの、太陽電池の基板材料や液晶ディスプレイのTFTを構成する半導体基板の製造においてなお再利用の余地があるほか、鉄鋼製造における電炉の保温剤や製錬工程で使用する脱酸剤、自動車用DPFや砥粒に用いられる炭化ケイ素の原料、環境半導体として注目される鉄シリサイドの原料など、再利用の用途は多様に期待できる。 Disposing a large amount of silicon in this way not only increases the manufacturing cost of semiconductor device products, but it is also a major problem in terms of effective use of valuable resources and the environmental impact of disposal. In addition, when silicon recovered from silicon cutting waste liquid is re-refined, melted and re-solidified into a silicon ingot, it must be reused in semiconductor element manufacturing in terms of purity. Although it is not realistic, there is still room for reuse in the manufacture of semiconductor substrate materials for solar cell substrate materials and TFTs for liquid crystal displays, as well as deoxidizers used in electric furnace insulation and smelting processes in steel production. Various uses for recycling, such as raw materials for silicon DPF used in automobile DPF and abrasive grains, and raw materials for iron silicide, which is attracting attention as an environmental semiconductor, are expected. Kill.
このため、シリコン切削廃液に含有されたシリコン切削屑はもとより、砥粒やクーラントなどその他の有用成分も含めて回収、再生、再利用する必要が強く求められ、そのための提案も種々重ねられてきたが、再生および再利用の前提となる上記有用成分の分離回収に複雑な処理工程と設備並びに施設の大きな負担が伴う反面、商業的な採算を満たすだけの十分な回収効率が確保されておらず、シリコン切削屑をはじめシリコン切削廃液に含まれた有用成分の多くが今もなお廃棄され続けており、回収、再生、再利用を実践する現実的な道が拓かれているとは言えない。 For this reason, it is strongly required to collect, recycle, and reuse not only silicon cutting waste contained in silicon cutting waste liquid but also other useful components such as abrasive grains and coolant, and various proposals have been made for this purpose. However, the separation and recovery of the above-mentioned useful components, which are prerequisites for regeneration and reuse, involve a heavy burden on complicated processing steps, equipment, and facilities, but sufficient recovery efficiency is not secured to meet commercial profitability. Many of the useful components contained in silicon cutting waste fluid, including silicon cutting waste, are still being discarded, and it cannot be said that a practical way to practice recovery, recycling, and reuse has been opened.
このように、シリコン切削廃液に含有された有用成分の回収に処理工程や設備並びに施設の大きな負担を強い、現実的な回収、再生、再利用を阻んでいる主因について、本発明者は次のように考える。 As described above, the present inventor has the following major factors that impede a large burden on the processing steps, equipment and facilities for the recovery of useful components contained in the silicon cutting waste liquid, and prevent the practical recovery, regeneration and reuse. Think like that.
すなわち、シリコン切削廃液には、シリコン切削屑や砥粒など有用な固体成分と砥石やワイヤーソーの摩耗片並びに破砕砥粒など不純物の固体成分が微細な粒子となって含有されているが、これら固体成分粒子がコロイド状に分散してシリコン切削廃液を安定した懸濁液となしているため、固体成分の自然沈殿、フィルターもしくは分離膜による濾過、遠心分離など通常手段によって良好な固液分離を図り固相を分離回収することは極めて困難であり、また、シリコン切削廃液中でシリコン切削屑の微粒子の酸化反応により活発に水素ガスを発生するため、蒸留による分離も極めて大きな危険を伴ってしまう。 In other words, silicon cutting waste liquid contains useful solid components such as silicon cutting scraps and abrasive grains and solid components of impurities such as abrasive pieces of grinding wheels and wire saws and crushed abrasive grains as fine particles. Since solid component particles are colloidally dispersed to form silicon cutting waste liquid as a stable suspension, good solid-liquid separation can be achieved by ordinary means such as natural precipitation of solid components, filtration with a filter or separation membrane, and centrifugation. It is extremely difficult to separate and recover the solid phase, and because hydrogen gas is actively generated in the silicon cutting waste liquid due to the oxidation reaction of the fine particles of silicon cutting waste, separation by distillation is also extremely dangerous. .
この点はすでに従来技術においても指摘されているところで、例えば、特許文献4を見ると、シリコン切削廃液を沈殿槽に集めて自然沈殿を図りpH調整を施しても廃棄を目的とするレベルの固液分離しかできず、遠心分離装置で固液分離をした場合にも液相は濾過による再利用に供し得るものの固相の処理は困難を極める上に処理速度が遅く処理効率が悪い旨を指摘されており、さらに、分離膜による濾過を試みても固体成分捕捉のため分画性能を微細にせざるを得ないために濾過速度が遅く処理量に追いつけないとされている。 This point has already been pointed out in the prior art. For example, when Patent Document 4 is viewed, even if silicon cutting waste liquid is collected in a sedimentation tank and spontaneous precipitation is performed and pH adjustment is performed, the solid waste is at a level intended for disposal. Although only liquid separation is possible, even when solid-liquid separation is performed with a centrifuge, the liquid phase can be reused by filtration, but the solid phase treatment is extremely difficult and the processing speed is slow and the processing efficiency is poor. Further, even if filtration with a separation membrane is attempted, the fractionation performance has to be made fine for capturing the solid components, so the filtration rate is slow and the throughput cannot be kept up.
以上のように、シリコン切削廃液に対しては現実的な実施に耐えるレベルの有効且つ良好な固液分離が極めて困難なため、不十分な固液分離それ自体に大きな負担を強いられる上、このように不十分な固液分離によって回収された固相からシリコンや砥粒など所望の有用な固体成分を各別に分離回収する処理工程も、固相が十分に分離回収されていない液相からクーラントなどの有用成分を分離回収する処理工程も、複雑で煩雑な処理と設備並びに施設の大きな負担を求め現実的な実施を阻むコストを必要とする結果を招いている。 As described above, since effective and good solid-liquid separation at a level that can withstand practical implementation is extremely difficult for silicon cutting waste liquid, this imposes a heavy burden on insufficient solid-liquid separation itself. The process of separating and recovering desired useful solid components such as silicon and abrasive grains from the solid phase recovered by insufficient solid-liquid separation as well as coolant from the liquid phase where the solid phase is not sufficiently separated and recovered The processing steps for separating and recovering useful components such as these have resulted in complicated and cumbersome processing, equipment, and a large burden on facilities, and costs that hinder practical implementation.
その一つの例をなすのが特許文献5に挙げた「シリコンの回収方法」で、図2にその処理工程をフローチャートにして示した通り、シリコン切削廃液からシリコンを回収するために非常に多くの処理工程が必要とされている上、各工程の処理が複雑且つ煩雑であると共に多大な設備並びに施設の負担を求める反面、特許文献2によれば固形分を有機溶剤で洗浄しても分散剤などの不純物除去は困難で固形分中に残留して回収されるシリコンの純度向上の妨げになること、固形分を気流中に投入しても酸化シリコンおよび砥粒を必ずしも十分に除去できず高純度のシリコンを得ることが困難であることを問題として指摘されており、さらに、その特許文献2に係る「廃棄スラッジからのシリコンの製造方法」も、磁性体を分離した廃スラッジを遠心分離でシリコン分散液と砥粒を主体とする固形不純物の沈降層に分離しているが、遠心分離では十分な固液分離がなし得ないため、これに続く処理工程が多大な負担を求めるものとなっており、現実の実施に耐え得るまでに簡便で効率の良いものになっているとは言い難い。 One example of this is the “silicon recovery method” cited in Patent Document 5, and as shown in the flowchart of FIG. In addition to the need for processing steps and complicated and cumbersome processing of each step and a great burden on equipment and facilities, according to Patent Document 2, even if the solid content is washed with an organic solvent, a dispersant is used. It is difficult to remove impurities such as, preventing the improvement of the purity of the silicon that remains in the solid content and recovered, and even if the solid content is thrown into the airflow, the silicon oxide and abrasive grains are not necessarily removed sufficiently. It has been pointed out as a problem that it is difficult to obtain pure silicon. Further, the “method for producing silicon from waste sludge” according to Patent Document 2 also discloses waste sludge from which magnetic materials are separated. Although it is separated into a sedimentation layer of solid impurities mainly composed of silicon dispersion and abrasive grains by center separation, sufficient solid-liquid separation cannot be achieved by centrifugation, so the subsequent processing steps demand a great burden. It is difficult to say that it is simple and efficient before it can withstand actual implementation.
逆に、シリコン切削廃液の処理の初段階において、良好な固液分離を簡便且つ廉価に実現できるならば、固液分離工程それ自体の処理負担とコストを大きく減じることができるばかりでなく、これに続いて分離回収された固相と液相から有用成分を各別に分離して再生再利用に供する処理工程も簡便容易で廉価なものとなる上に、シリコン切削廃液中に含有される全ての有用成分を分離回収することも従来に比して容易になるから、シリコン切削廃液に含有されながら多くが廃棄されてきたシリコンなどの有用成分を回収して再生し再利用する現実的な道が大きく拓かれることになるが、従来技術に照らす限りそのような処理に関する有意味な提案も示唆も見出すことができない。 Conversely, if good solid-liquid separation can be realized easily and inexpensively at the initial stage of processing of silicon cutting waste liquid, not only can the processing load and cost of the solid-liquid separation process itself be greatly reduced, but this In addition, the processing steps for separating and recovering useful components separately from the separated solid phase and liquid phase for recycling and recycling are simple, easy and inexpensive, and all of the silicon cutting waste liquid contains. Since it is also easier to separate and recover useful components than in the past, there is a realistic way to recover, recycle and reuse useful components such as silicon that have been disposed of while being contained in silicon cutting waste liquid. Although it will be greatly developed, as far as the conventional technology is concerned, no meaningful proposal or suggestion regarding such processing can be found.
本発明の課題は、シリコン切削屑など含有された固体成分の微細粒子がコロイド状に分散して懸濁したシリコン切削廃液を簡便廉価な手段で良好に固液分離して、分離された固相と液相の双方から所望の有用成分を低負担且つ低コストで回収し再生と再利用に供することを可能または容易にするシリコン切削廃液の処理方法を提供するところにある。 The object of the present invention is to solid-liquid-separate the silicon cutting waste liquid in which fine particles of solid components, such as silicon cutting scraps, are dispersed and suspended in a colloidal form by a simple and inexpensive means, and to separate the solid phase It is an object of the present invention to provide a method for treating silicon cutting waste liquid that makes it possible or easy to recover a desired useful component from both the liquid phase and the liquid phase at a low burden and at a low cost and to recycle and reuse.
本発明者は、研究と実験を継続的に重ねた結果、半導体素子などの製造工程において生じるシリコン切削屑並びにその他の個体成分の微細粒子を含有して排出されるシリコン切削廃液において、これら微細粒子がコロイド状に分散して懸濁し容易な固液分離を拒む理由について、次のように考えるに至っている。 As a result of continuous research and experiment, the present inventor has found that these fine particles in silicon cutting waste liquid discharged containing silicon cutting waste and other solid particles generated in the manufacturing process of semiconductor devices and the like. The reason why the refractory material is dispersed and suspended in a colloidal form and refuses easy solid-liquid separation is as follows.
すなわち、例えば半導体素子製造においてシリコンインゴットからシリコンウェハを切り出すスライシング加工では、切断用のワイヤーソーとシリコンインゴットの押接部に砥粒とクーラント(切削油)からなるスラリーを循環供給しながら切断をするためシリコン切削廃液には廃スラリー(砥粒とクーラント)も含まれることとなるが、このクーラントの主成分はジオール系溶剤やその部分エーテル及びそれらの混合物と界面活性剤やpH調整剤であるから、シリコン切削廃液中に含有された固体成分微細粒子の表面にジオール系溶剤や界面活性剤が吸着することでミセルを形成してコロイドミセルとなし、このコロイドミセル同士が互いに電気的に反発して安定した分散状態が保持され、固相の自然沈殿や濾過などによる固液分離を妨げているものと考えられる。 That is, for example, in slicing processing for cutting a silicon wafer from a silicon ingot in semiconductor element manufacturing, cutting is performed while circulating and supplying slurry consisting of abrasive grains and coolant (cutting oil) to the pressing portion of the wire saw for cutting and the silicon ingot. Therefore, the silicon cutting waste liquid contains waste slurry (abrasive grains and coolant), but the main components of this coolant are diol solvents, their partial ethers and their mixtures, surfactants and pH adjusters. , A diol solvent or surfactant is adsorbed on the surface of the solid component fine particles contained in the silicon cutting waste liquid to form micelles to form colloid micelles, and these colloid micelles repel each other electrically. A stable dispersion state is maintained, preventing solid-liquid separation by spontaneous precipitation of solid phase or filtration. It is believed that there.
であるならば、シリコン切削廃液中に含有された固体成分微細粒子表面の電荷を中和するなどの方法によりコロイドミセルを崩壊させれば安定した分散が失われることとなり、静電相互作用に基づく分子間力によって固体成分微細粒子同士が接触し集塊化する二次凝集を起こして固相を凝集沈殿させることができるものと考えられるため、シリコン切削廃液の分散系に有機溶媒を添加したところ、コロイドミセルの崩壊と固体成分微細粒子の二次凝集を起こすことができ固相が凝集沈殿した。 If this is the case, colloidal micelles may be destroyed by a method such as neutralizing the charge on the surface of the solid component fine particles contained in the silicon cutting waste liquid, resulting in the loss of stable dispersion, which is based on electrostatic interactions. Because it is considered that the solid component fine particles come into contact with each other due to intermolecular force and agglomerate to cause secondary agglomeration, so that the solid phase can be agglomerated and precipitated. , Colloidal micelle collapse and solid component fine particles can be agglomerated and the solid phase was agglomerated and precipitated.
以上の知見に基づいて本発明者が研究と実験を進めた結果、シリコン切削廃液に次に区分される成分などを添加した場合、本発明者が求める良好な固液分離が容易に確保されることを見出すことができた。(以下、本明細書ではこれらを「相分離成分」と呼ぶ。)
(1)分子内に電気双極子モーメントが存在する極性分子からなり通常条件ではプロトンを解離しない極性非プロトン性溶媒
(2)同様に極性分子からなるがプロトン供与性を持つ極性プロトン性溶媒
(3)非イオン性であるノニオン系凝集剤
(4)有機キレート剤(アミノカルボン酸系、多価カルボン酸系、ホスホン酸系など)、塩酸や硫酸などの無機酸
As a result of the inventor's research and experiment based on the above knowledge, when the components classified into the following are added to the silicon cutting waste liquid, the good solid-liquid separation required by the inventor is easily secured. I was able to find out. (Hereinafter, these are referred to as “phase separation components” in this specification.)
(1) Polar aprotic solvent consisting of polar molecules having an electric dipole moment in the molecule and not dissociating protons under normal conditions (2) Polar protic solvent consisting of polar molecules but having proton donating properties (3 ) Nonionic flocculants that are nonionic (4) Organic chelating agents (aminocarboxylic acids, polycarboxylic acids, phosphonic acids, etc.), inorganic acids such as hydrochloric acid and sulfuric acid
本発明は、上記した本発明者の研究と実験の成果に係るものであって、請求項1の発明は、半導体素子製造などにおける結晶シリコンの切削加工によって生じるシリコン切削屑などが分散して懸濁したシリコン切削廃液にアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニトリル、1,4−ジオキサン、1,3−ジオキソラン又はテトラヒドロフランのいずれかを含む極性非プロトン性溶媒である相分離成分を添加して固液分離を行うこと、を特徴とするシリコン切削廃液の処理方法である。 The present invention relates to the results of the above-mentioned researches and experiments by the present inventors. The invention of claim 1 is based on dispersion of silicon cutting scraps and the like generated by cutting of crystalline silicon in semiconductor element manufacturing or the like. A phase separation component which is a polar aprotic solvent containing any of acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonitrile, 1,4-dioxane, 1,3-dioxolane or tetrahydrofuran is added to the turbid silicon cutting waste liquid to form a solid liquid A method for treating silicon cutting waste liquid, characterized in that separation is performed.
請求項2の発明は、前記相分離成分によって固液分離した前記シリコン切削廃液からフィルタープレス、ベルトプレス、遠心分離機、加圧または減圧式ろ過器を用いて固相を分離回収すること、を特徴とする請求項1に記載したシリコン切削廃液の処理方法である。 The invention of claim 2 is to separate and recover the solid phase from the silicon cutting waste liquid solid-liquid separated by the phase separation component using a filter press, a belt press, a centrifuge, a pressurized or reduced pressure filter. It is the processing method of the silicon cutting waste liquid of Claim 1 characterized by the above-mentioned.
請求項3の発明は、前記固相を分離回収した後の前記シリコン切削廃液を減圧または常圧蒸留して切削油の原料と相分離用溶媒とに分離して回収すること、を特徴とする請求項6に記載したシリコン切削廃液の処理方法である。 The invention of claim 3 is characterized in that the silicon cutting waste liquid after separating and recovering the solid phase is separated into a cutting oil raw material and a phase separation solvent and recovered by decompression or atmospheric distillation. It is a processing method of the silicon cutting waste liquid described in Claim 6.
本発明によれば、シリコン切削屑など含有された固体成分の微細粒子がコロイド状に分散して懸濁し固液分離が困難なシリコン切削廃液に対して、相分離成分を添加するという極めて簡便廉価な手段だけで固相を容易に凝集沈降させることができるから、処理工程の初めの段階で良好な固液分離を確保し、分離された固相と液相の双方から所望の有用成分を低負担且つ低コストで回収して再生と再利用に供することを可能または容易にするシリコン切削廃液の処理方法を提供するものに他ならない。 According to the present invention, it is extremely simple and inexpensive to add a phase separation component to silicon cutting waste liquid in which fine particles of solid component contained such as silicon cutting waste are dispersed and suspended in a colloidal form and solid-liquid separation is difficult. The solid phase can be easily coagulated and settled by simple means, ensuring good solid-liquid separation at the beginning of the treatment process, and reducing the useful components from both the separated solid phase and liquid phase. It is nothing but providing a method for treating silicon cutting waste liquid that makes it possible or easy to collect and recycle and reuse at a low cost.
以下に、図1を参照しながら、本発明に係る一実施例を説明する。 An embodiment according to the present invention will be described below with reference to FIG.
本実施例で処理対象とするシリコン切削廃液は、半導体素子製造における単結晶シリコンの切削加工(シリコンインゴットからシリコンウェハを切り出すスライシングから回路を形成した半導体素子の個片を分割切断するダイシングに亘る切断、研削、切削、研磨の一連の加工)によって生じたシリコン切削屑などを含んで排出される加工水(研削水、切削水など)や洗浄水からなる廃液で、下記の表1に示す成分を含有してなり(表からも明らかなように、含有固体成分を十分に分離回収した本発明に係る処理後の液相は全て再利用に供することができるものと考える)、また、このシリコン切削廃液に添加する相分離成分としては極性非プロトン性溶媒の一つであるメチルエチルケトンを選んだ。 The silicon cutting waste liquid to be treated in this embodiment is a single crystal silicon cutting process in semiconductor element manufacturing (slicing from dicing to slicing a silicon wafer from a silicon ingot to dicing and cutting individual semiconductor element pieces forming a circuit. Waste water consisting of processing water (grinding water, cutting water, etc.) and cleaning water discharged including silicon cutting waste generated by grinding, cutting and polishing). The components shown in Table 1 below (As is clear from the table, it is considered that the liquid phase after the treatment according to the present invention in which the contained solid components are sufficiently separated and recovered can be used for reuse). As a phase separation component added to the waste liquid, methyl ethyl ketone, which is one of polar aprotic solvents, was selected.
本実施例においては、半導体素子の製造工程から排出された上記のシリコン切削廃液を樹脂容器(容量200L)に収容して処理現場に搬送、処理現場において樹脂容器の蓋を開披して水素ガスを十分に放出した後、固体成分粒子がコロイド状に分散して懸濁した暗褐色の廃液の所望量(2000g)をSUS304製の処理容器(容量5L)に移し、相分離成分の添加に備えた。 In the present embodiment, the silicon cutting waste liquid discharged from the semiconductor element manufacturing process is accommodated in a resin container (capacity 200 L) and transported to the processing site, and the lid of the resin container is opened at the processing site to show hydrogen gas. After a sufficient amount of is released, the desired amount (2000 g) of dark brown waste liquid in which solid component particles are dispersed and suspended in a colloidal form is transferred to a SUS304 processing container (capacity 5 L) to prepare for the addition of phase separation components. It was.
しかる後、処理容器内に準備したシリコン切削廃液2000gに対して、相分離成分として選択した液状のメチルエチルケトン2000gを滴下タンクから速やかに添加しプロペラ式モーター撹拌機を用いて急速撹拌のうえ静置したところ、5分後にはシリコン切削廃液中における固体成分の凝集が認められ、20分後には固相が処理容器の底部に凝縮沈殿して清澄な液相と良好に分離した。 Thereafter, 2000 g of liquid methyl ethyl ketone selected as a phase separation component was quickly added from the dropping tank to 2000 g of silicon cutting waste liquid prepared in the processing vessel, and the mixture was allowed to stand after rapid stirring using a propeller motor agitator. However, after 5 minutes, agglomeration of solid components in the silicon cutting waste liquid was observed, and after 20 minutes, the solid phase was condensed and precipitated at the bottom of the processing vessel and was well separated from the clear liquid phase.
以上のように、処理容器底部に固体成分が凝縮沈殿し固相と液相が分離したシリコン切削廃液を遠心分離機に導入して15分間にわたり東興機械株式会社製底部排出型遠心分離機TD−12(ろ布パイレン製PS2111、通気量0.75ml/cm2/秒)を使用して500Gにて遠心分離を施したところ、粘土状の分離ケーキ相600gが回収され、また、固相を分離回収した後の液相を別途分析した結果、シリコンを含む残存固形物の総重量は0.1gであった。 As described above, the silicon cutting waste liquid in which the solid component is condensed and precipitated at the bottom of the processing vessel and the solid phase and the liquid phase are separated is introduced into the centrifuge, and the bottom discharge centrifuge TD- manufactured by Toko Machine Co., Ltd. is used for 15 minutes. 12 (filter cloth pyrene PS2111, aeration rate of 0.75 ml / cm 2 / sec) was centrifuged at 500 G. As a result, 600 g of a clay-like separated cake phase was recovered, and the solid phase was separated. As a result of separately analyzing the liquid phase after the recovery, the total weight of the remaining solid containing silicon was 0.1 g.
比較のため、同一条件のシリコン切削廃液2000gを如何なる相分離成分も添加することのないまま上記と同一の遠心分離機に導入し15分間に亘って500Gにて遠心分離を施したところ、液相を多量に含み過剰に湿潤した汚泥状態の固相約50gが分離回収され、別途行った固相分離回収後の液相の分析結果もシリコンを含む残存固形物の総重量は約375gであった。 For comparison, 2000 g of silicon cutting waste fluid under the same conditions was introduced into the same centrifuge without adding any phase separation component and centrifuged at 500 G for 15 minutes. About 50 g of a solid phase in a sludge state containing a large amount and excessively wet was separated and recovered, and the total weight of the remaining solids containing silicon was also about 375 g in the analysis result of the liquid phase after the solid phase separation and recovery performed separately. .
以上、シリコン切削廃液に相分離成分であるメチルエチルケトンを添加して固相を凝集沈殿させた本実施例と相分離成分を添加しない比較例の実施結果を下記の表2に整理したが、表2に照らして対比すれば明らかなように、シリコン切削廃液に相分離成分を添加するだけで廃液処理の初めの段階において良好で十分な固液分離を確保することが可能になっている。 As described above, the results of the present example in which methyl ethyl ketone as a phase separation component was added to silicon cutting waste liquid to coagulate and precipitate the solid phase and the comparative example in which no phase separation component was added were summarized in Table 2 below. As is clear from the above, it is possible to ensure good and sufficient solid-liquid separation at the initial stage of waste liquid treatment only by adding a phase separation component to silicon cutting waste liquid.
このように、本実施例に係るシリコン切削廃液の処理方法によれば、処理の上でも設備並びに施設の上でも特段の負担を伴うことなく廃液処理の初めの段階で良好な固液分離が確保されており、この結果、回収された固相と液相のそれぞれについて有用成分を各別に分離回収して再生再利用に供するその後の処理工程の負担も大きく低減されて簡便廉価なものとすることができたので、以下はこの点について説明する。 Thus, according to the silicon cutting waste liquid processing method according to the present embodiment, good solid-liquid separation is ensured at the initial stage of the waste liquid treatment without any particular burden on the processing and on the equipment and facilities. As a result, for each of the recovered solid phase and liquid phase, the burden on the subsequent processing steps for separating and recovering useful components separately for use in recycling and recycling is greatly reduced, making the system simple and inexpensive. Since this has been done, the following explains this point.
先ず、固相の処理工程につき説明するに、前記した遠心分離によってシリコン切削廃液から分離回収された固相は有用成分であるシリコン並びに砥粒と不純物である砥石やワイヤーソーの摩耗片と破砕砥粒などが集塊した凝集物であり、さらに不純物を除去し有用成分を各別に分離回収する処理を行わなければならないが、湿潤してクーラントが付着した状態にあるため、事後の取り扱いを容易にする乾燥処理を施すものとし、外気を遮断した減圧空間内を間接加熱する方式の流動式乾燥機(コニカル乾燥機)を用いて乾燥固相を得たが、本実施例による回収固相が良好な固液分離を経ておりクーラント及び相分離成分付着量率は約35重量%であったため、特段の配慮や付帯処理を必要とせず、さらにクーラント組成がジエチレングリコールとプロピレングリコールモノメチルエーテル及び水といった共沸を生じ易い組成であったため容易に乾燥ができ、極めて簡便に効率的な乾燥処理を図ることができた。 First, the solid phase treatment process will be described. The solid phase separated and recovered from the silicon cutting waste liquid by the above-described centrifugal separation is silicon, which is a useful component, and abrasive pieces and grinders such as abrasive grains and impurities, and worn pieces and crushing abrasives It is agglomerates of agglomerated particles, etc., and impurities must be removed and useful components separated and recovered separately. However, because it is wet and has a coolant attached, it is easy to handle afterwards. A dry solid phase was obtained using a fluid-type dryer (conical dryer) that indirectly heated the vacuum space where the outside air was shut off, but the recovered solid phase in this example was good. Since it has undergone solid-liquid separation and the adhesion rate of coolant and phase separation components is about 35% by weight, no special consideration or incidental treatment is required, and the coolant composition is diethylene glycol. And because it was easily composition resulting azeotropic such propylene glycol monomethyl ether and water can easily dry, it was possible to achieve a very simple efficient drying process.
上記の乾燥処理によって得られた塊状の乾燥固相を粉砕して粉末となした後、公知の方法に従って、例えば塩酸及びフッ化水素酸処理によりワイヤーソーの摩耗片(主に鉄分)を分離除去し、5000Gの高速遠心分離機により砥粒と破砕砥粒を分離してシリコン成分だけからなる水スラリー液を得ると共に、ターボ分級機によって砥粒を容易に分離することができた。 After crushing the massive dry solid phase obtained by the above drying treatment into a powder, according to a known method, for example, separation and removal of wire saw wear pieces (mainly iron) by hydrochloric acid and hydrofluoric acid treatment In addition, the abrasive grains and the crushed abrasive grains were separated by a 5000 G high-speed centrifuge to obtain a water slurry liquid consisting only of a silicon component, and the abrasive grains could be easily separated by a turbo classifier.
次いで、本実施例における遠心分離によって得られた回収液相も固体成分が十分に分離されている結果、残留固体成分を除去するために従来行われていた開き目0.1μm程度の高価なセラミックフィルター等による精密ろ過の処理も、残留シリコンに起因する水素ガスに対する安全確保の処理も配慮も必要としないため、その有用成分の分離回収は極めて簡便で特段の負担を伴わないものとなっており、本実施例ではメチルエチルケトンが添加された回収液相を常圧蒸留することによって、クーラントの原料と相分離用溶媒に容易に分離回収することができた。 Next, the recovered liquid phase obtained by centrifugation in the present example also has a solid component sufficiently separated, and as a result, an expensive ceramic having an opening of about 0.1 μm that has been conventionally used to remove the residual solid component The process of microfiltration using a filter, etc., does not require consideration of the process of ensuring safety against hydrogen gas caused by residual silicon, so separation and recovery of useful components is extremely simple and does not involve any particular burden. In this example, the recovered liquid phase to which methyl ethyl ketone was added could be easily separated and recovered into the coolant raw material and the phase separation solvent by atmospheric distillation.
以上に説明の通り、本実施例によれば、固体成分の微細粒子が分散して懸濁したシリコン切削廃液に対し、相分離成分としてのメチルエチルケトンを添加するという極めて簡便廉価な手段で固相を容易に凝集沈殿させ、処理工程の初めの段階において良好な固液分離を確保しているから、従来例(図2)と比較しても明らかなように、始めの段階の固液分離のみならず、分離された固相と液相から所望の有用成分を分離回収する処理も低負担且つ低コストで簡便に実施することができる。 As described above, according to this embodiment, the solid phase is formed by a very simple and inexpensive means of adding methyl ethyl ketone as a phase separation component to silicon cutting waste liquid in which fine particles of a solid component are dispersed and suspended. As it is easy to agglomerate and ensure good solid-liquid separation at the first stage of the treatment process, as is clear from the comparison with the conventional example (Fig. 2), In addition, the process of separating and recovering a desired useful component from the separated solid phase and liquid phase can be easily carried out with low burden and low cost.
なお、本実施例においては、相分離成分としてメチルエチルケトンを用いたが、極性非プロトン性溶媒の多くが利用可能であり、本発明者が実験で確認した限りでも、メチルエチルケトンと並んで、アセトン、メチルイソブチルケトン、アセトニトリル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、などが良好な固液分離をもたらした。 In this example, methyl ethyl ketone was used as a phase separation component, but many polar aprotic solvents can be used, and as long as the present inventors have confirmed through experiments, acetone, methyl Isobutyl ketone, acetonitrile, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, etc. are good solids. A liquid separation resulted.
また、本実施例並びに以下の各例では、半導体素子製造における全切削加工工程(スライシング、鏡面加工、バックグラインディング、ダイシングに亘る切断、研削、切削、研磨の一連の加工)で排出されたシリコン切削廃液を処理対象としたが、シリコンの切削加工工程で排出されシリコン切削屑を含有する廃液であれば半導体素子製造に限られることはなく、同様に、一部の切削加工工程で排出される廃液だけを処理対象とすることもできる。 Further, in the present embodiment and the following examples, all cutting steps in the semiconductor device manufacturing silicon discharged in (slicing, mirror polishing, back grinding, cutting across the dicing, grinding, cutting, a series of processing of grinding) Although the cutting waste liquid was treated, the waste liquid discharged in the silicon cutting process and containing silicon cutting waste is not limited to semiconductor element manufacturing, and is similarly discharged in some cutting processes. Only waste liquid can be treated.
さらに、本実施例において示すシリコン切削廃液の固液分離手段、該固液分離によって回収された固相と液相に対する有用成分分離回収の処理は一例を示したもので、これら分離回収処理のための手段も装置も本発明を限定するところはなく、例えば、相分離成分を添加して固相が凝縮沈殿したシリコン切削廃液に対する分離手段は本実施例に挙げた遠心分離機のほかフィルタープレス、ベルトプレス、加圧または減圧式ろ過器などを用いても簡便容易に固相と液相の良好な分離回収が確保できるほか、乾燥処理も流動式乾燥機以外の乾燥機の利用を排除するものではなく、また、回収液相の分離に当たり本実施例における常圧蒸留に代えて減圧蒸留を行っても差し支えはない。 Furthermore, solid-liquid separation means of the silicon cutting waste shown in the present embodiment, the processing of a useful component separation return on recovered solid phase and the liquid phase by solid-liquid separation shows an example, these separation and recovery process There is no place to limit the present invention in terms of means and apparatus for the purpose. For example, the separation means for the silicon cutting waste liquid in which the solid phase is condensed and precipitated by adding a phase separation component is not limited to the centrifuge described in this embodiment. In addition to ensuring easy separation and recovery of the solid and liquid phases using a press, belt press, pressurized or vacuum filter, etc., the use of dryers other than fluid-type dryers is eliminated. In addition, when separating the recovered liquid phase, vacuum distillation may be performed instead of atmospheric distillation in the present embodiment.
次の例は、シリコン切削廃液の処理方法を実施した他の例を示すものであり、処理対象は実施例1と同一条件のシリコン切削廃液で、相分離成分としては極性プロトン性溶媒であるメタノールを用いており、シリコン切削廃液2000gに対して2500gのメタノールを添加し撹拌静置したところ、40分後には固相と液相が明瞭に分離した。 The following example shows another example in which the silicon cutting waste liquid treatment method is implemented. The treatment target is silicon cutting waste liquid under the same conditions as in Example 1, and methanol is a polar protic solvent as a phase separation component. When 2500 g of methanol was added to 2000 g of silicon cutting waste liquid and left to stir, the solid phase and the liquid phase were clearly separated after 40 minutes.
以下、実施例1と同一条件にて遠心分離を施し、粘土状の分離ケーキ相650gが回収され、また、固相を分離回収した後の液相を別途分析した結果、シリコンを含む残存固形物の総重量は0.5gであった。 Thereafter, centrifugal separation was performed under the same conditions as in Example 1, and 650 g of a clay-like separated cake phase was recovered. As a result of separately analyzing the liquid phase after separating and recovering the solid phase, residual solids containing silicon were obtained. The total weight of was 0.5 g.
メタノールは最も安価な溶媒であり沸点が低く固液分離に係る費用が安く済む点が特徴であるが、凝集沈殿物の粒度がメチルエチルケトンの場合に比較してやや細かく、分離に必要な液量も増加する。 Methanol is the cheapest solvent and has a low boiling point and lower costs for solid-liquid separation, but the particle size of the aggregated precipitate is slightly finer than that of methyl ethyl ketone, and the amount of liquid required for separation increases. To do.
以上、シリコン切削廃液に相分離成分としてメタノールを添加した本例と相分離成分を添加しない比較例の実施結果を下記の表3に整理したが、メタノールを添加した本実施例でも廃液処理の初めの段階において良好で十分な固液分離を確保することができた。 As mentioned above, the implementation results of the present example in which methanol was added as a phase separation component to silicon cutting waste liquid and the comparative example in which no phase separation component was added are summarized in Table 3 below. In this stage, good and sufficient solid-liquid separation could be secured.
また、本例においても、メタノールを添加して固液分離した固相と液相のそれぞれについて実施例1と同様の処理を施して各有用成分の分離回収を図ったが、廃液処理の初めの段階で良好な固液分離が確保されている結果、実施例1と同様に各処理工程の負担とコストを大きく低減することができた。 Also in this example , each of the solid phase and liquid phase separated by solid-liquid separation by adding methanol was subjected to the same treatment as in Example 1 to separate and recover each useful component. As a result of ensuring good solid-liquid separation at each stage, as in Example 1, the burden and cost of each processing step could be greatly reduced.
なお、本例においては、相分離成分としてメタノールを用いたが、水、炭素数1 から4 のアルコールなど他の極性プロトン性溶媒も利用可能であり、良好な固液分離をもたらした。 In this example , methanol was used as the phase separation component, but other polar protic solvents such as water and alcohols having 1 to 4 carbon atoms can also be used, resulting in good solid-liquid separation.
次の例も本発明に係るシリコン切削廃液の処理方法を実施した他の例を示すもので、処理対象は実施例1と同一条件のシリコン切削廃液であり、相分離成分としてはノニオン系凝集剤であるダイヤフロックNP800(ダイヤニトリックス株式会社製)を用い、
シリコン切削廃液2000gに対してダイヤフロックNP800の0.1重量%水溶液を60g添加し撹拌静置したところ、120分後には固相と液相が明瞭に分離した。
The following example also shows another example in which the processing method of the silicon cutting waste liquid according to the present invention is carried out. The processing target is silicon cutting waste liquid under the same conditions as in Example 1, and the nonionic flocculant is used as the phase separation component. Using Diaflock NP800 (made by Diamond Nitrix Co., Ltd.)
60 g of 0.1 wt% aqueous solution of Diafloc NP800 was added to 2000 g of silicon cutting waste liquid, and the mixture was allowed to stand with stirring. After 120 minutes, the solid phase and the liquid phase were clearly separated.
以下、実施例1と同一条件にて遠心分離を施し、粘土状の分離ケーキ相800gが回収され、また、固相を分離回収した後の液相を別途分析した結果、シリコンを含む残存固形物の総重量は0.05gであった。 Thereafter, centrifugation was performed under the same conditions as in Example 1, and 800 g of a clay-like separated cake phase was recovered. As a result of separately analyzing the liquid phase after separating and recovering the solid phase, residual solids containing silicon were obtained. The total weight of was 0.05 g.
有機高分子系凝集剤は少量でも凝集効果が大であり固液分離に係る費用が安く済む点が特徴であり液相側の回収に主眼を置いた場合は非常に有効な手段であるが、固相側に有機高分子系凝集剤が残留し再利用のためのプロセスが煩雑となり金属汚染物も一緒に引き込むため純度の高いシリコンや砥粒を得ることが難しい。 Organic polymer flocculants are characterized by the fact that they have a large agglomeration effect even in a small amount, and the cost for solid-liquid separation can be reduced.This is a very effective means when focusing on the recovery on the liquid phase side The organic polymer flocculant remains on the solid phase side and the process for reuse becomes complicated, and metal contaminants are also drawn together, so it is difficult to obtain high-purity silicon and abrasive grains.
シリコン切削廃液に相分離成分としてノニオン系凝集剤を添加した本例についても、相分離成分を添加しない比較例との実施結果を下記の表4に整理したが、本実施例でも廃液処理の初めの段階において良好で十分な固液分離を確保することができた。 Regarding this example in which the nonionic flocculant was added as a phase separation component to the silicon cutting waste liquid, the results of the comparison with the comparative example in which no phase separation component was added are summarized in Table 4 below. In this stage, good and sufficient solid-liquid separation could be secured.
また、本例においても、ノニオン系凝集剤を添加して固液分離した固相と液相のそれぞれについて実施例1と同様の処理を施して各有用成分の分離回収を図ったが、前述の如く回収されるシリコンや砥粒に高純度を求めることは難しいものの、実施例1と同様に各処理工程の負担とコストは大きく低減した。 In this example , each of the solid phase and the liquid phase separated by adding a nonionic flocculant and subjected to solid-liquid separation was treated in the same manner as in Example 1 to separate and recover each useful component. Although it is difficult to obtain high purity for the silicon and abrasive grains recovered as described above , as in Example 1, the burden and cost of each processing step were greatly reduced.
次の例も、本発明に係るシリコン切削廃液の処理方法を実施した他の例を示すものであり、処理対象は実施例1と同一条件のシリコン切削廃液で、相分離成分としてはエチレンジアミン四酢酸を用い、シリコン切削廃液2000gに対してエチレンジアミン四酢酸を20g添加し撹拌静置したところ、180分後には固相と液相が明瞭に分離した。 The following example also shows another example in which the silicon cutting waste liquid treatment method according to the present invention is implemented. The processing object is silicon cutting waste liquid under the same conditions as in Example 1, and the phase separation component is ethylenediaminetetraacetic acid. When 20 g of ethylenediaminetetraacetic acid was added to 2000 g of silicon cutting waste liquid and allowed to stand with stirring, the solid phase and the liquid phase were clearly separated after 180 minutes.
以下、実施例1と同一条件にて遠心分離を施して粘土状の分離ケーキ相750gが回収され、また、固相を分離回収した後の液相を別途分析した結果、シリコンを含む残存固形物の総重量は0.3gであった。 Thereafter, 750 g of a clay-like separated cake phase was recovered by centrifugation under the same conditions as in Example 1, and the liquid phase after separating and recovering the solid phase was analyzed separately. As a result, residual solids containing silicon The total weight of was 0.3 g.
効果としてはほぼ有機高分子系凝集剤の場合と同様であるが、相分離成分の分子量が小さいため固相側の精製時に熱分解法により完全に除去が可能である点が特徴である。 The effect is almost the same as in the case of the organic polymer-based flocculant. However, since the molecular weight of the phase separation component is small, it can be completely removed by a thermal decomposition method during purification on the solid phase side.
相分離成分としてエチレンジアミン四酢酸を添加した本例についても、相分離成分を添加しない比較例との実施結果を下記の表5に対比したが、本例でも廃液処理の初めの段階において良好で十分な固液分離を確保することができた。 Phase regard to this embodiment with the addition of ethylenediaminetetraacetic acid as a separate component, but compares working results of the comparative example without the addition of phase-separated components in Table 5 below, satisfactory in the beginning stage of effluent treatment, even this example sufficient Solid-liquid separation could be secured.
また、本例においても、メタノールを添加して固液分離した固相と液相のそれぞれについて実施例1と同様の処理を施して各有用成分の分離回収を図ったが、回収されたシリコンや砥粒に高純度を求めにくいものの、実施例1乃至前例と同様に各処理工程の負担とコストは大きく低減した。 Also in this example , each of the solid phase and the liquid phase separated by solid-liquid separation by adding methanol was subjected to the same treatment as in Example 1 to separate and recover each useful component. Although it is difficult to obtain high purity for the abrasive grains, the burden and cost of each processing step are greatly reduced as in the case of Example 1 to the previous example.
なお、本例においては、相分離成分としてエチレンジアミン四酢酸を用いたが、他に有機キレート剤(アミノカルボン酸系、多価カルボン酸系、ホスホン酸系など)、塩酸や硫酸などの無機酸でも良好な固液分離が確認された。 In this example , ethylenediaminetetraacetic acid was used as a phase separation component, but other organic chelating agents (aminocarboxylic acid type, polyvalent carboxylic acid type, phosphonic acid type, etc.), inorganic acids such as hydrochloric acid and sulfuric acid, etc. Good solid-liquid separation was confirmed.
Claims (3)
を特徴とするシリコン切削廃液の処理方法。 Silicon cutting waste generated by the cutting of crystalline silicon in semiconductor device manufacturing is dispersed and suspended in silicon cutting waste liquid containing acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonitrile, 1,4-dioxane, 1,3-dioxolane, or tetrahydrofuran. Adding a phase separation component which is a polar aprotic solvent containing any one to perform solid-liquid separation,
A method for treating silicon cutting waste fluid.
を特徴とする請求項1に記載したシリコン切削廃液の処理方法。 Separating and recovering the solid phase from the silicon cutting waste liquid separated into solid and liquid by the phase separation component using a filter press, a belt press, a centrifuge, a pressurized or reduced pressure filter,
The processing method of the silicon cutting waste liquid of Claim 1 characterized by these.
を特徴とする請求項2に記載したシリコン切削廃液の処理方法。 Separating and recovering the silicon cutting waste liquid after separating and recovering the solid phase into a raw material of cutting oil and a phase separation solvent by distillation under reduced pressure or atmospheric pressure;
The processing method of the silicon cutting waste liquid of Claim 2 characterized by these.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010267334A JP5722601B2 (en) | 2010-11-30 | 2010-11-30 | Silicon cutting waste treatment method |
CN2011103882999A CN102559361A (en) | 2010-11-30 | 2011-11-29 | Processing Method Of Silicon Cutting Waste Liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010267334A JP5722601B2 (en) | 2010-11-30 | 2010-11-30 | Silicon cutting waste treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012115758A JP2012115758A (en) | 2012-06-21 |
JP5722601B2 true JP5722601B2 (en) | 2015-05-20 |
Family
ID=46405978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010267334A Expired - Fee Related JP5722601B2 (en) | 2010-11-30 | 2010-11-30 | Silicon cutting waste treatment method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5722601B2 (en) |
CN (1) | CN102559361A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101703127B1 (en) * | 2015-04-06 | 2017-02-06 | 주식회사 씨에스이엔지 | Manufacturing method of heat increasing and component controlling element for steel making |
KR101703128B1 (en) * | 2015-04-13 | 2017-02-06 | 주식회사 씨에스이엔지 | Manufacturing method of heat increasing and component controlling element for steel making |
KR101890311B1 (en) * | 2015-09-23 | 2018-09-28 | (주)클린솔루션 | Manufacturing method of heat increasing and component controlling briquette used in steel manufacturing process |
KR101890312B1 (en) * | 2015-09-24 | 2018-09-28 | (주)클린솔루션 | Manufacturing method of heat increasing and component controlling briquette used in steel manufacturing process |
CN105386075A (en) * | 2015-11-30 | 2016-03-09 | 马鞍山泓宇材料科技有限公司 | Treatment method for grinding cutting oil sludge |
CN105861133A (en) * | 2016-04-12 | 2016-08-17 | 绵阳正合科技有限公司 | Metal working fluid and cycle use method thereof |
CN108219913B (en) * | 2018-02-27 | 2021-07-20 | 浙江绿保再生资源科技有限公司 | Composite flocculant and waste lubricating oil flocculation regeneration process |
CN108773934A (en) * | 2018-06-28 | 2018-11-09 | 阜宁协鑫光伏科技有限公司 | The processing method and processing system of silicon chip cutting waste liquor |
CN109103073A (en) * | 2018-08-29 | 2018-12-28 | 汉能新材料科技有限公司 | A kind of reuse method of discarded chip and the chip being prepared |
CN110902886A (en) * | 2019-12-06 | 2020-03-24 | 扬州海吉科技有限公司 | Method for directly curing cutting waste liquid |
CN113582438B (en) * | 2021-07-13 | 2023-04-07 | 枣阳市一鸣化工有限公司 | Treatment method and treatment system for organic silicon waste liquid |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0687607A (en) * | 1991-09-05 | 1994-03-29 | Nec Corp | Method for recovering silicon |
JP3102309B2 (en) * | 1995-07-25 | 2000-10-23 | 信越半導体株式会社 | Silicon processing wastewater treatment method |
JP2001278612A (en) * | 2000-03-31 | 2001-10-10 | Nippei Toyama Corp | Method of recovering silicon |
JP4630240B2 (en) * | 2005-08-24 | 2011-02-09 | 株式会社トクヤマ | Treatment method for wastewater containing silicon powder |
JP2007246366A (en) * | 2006-03-17 | 2007-09-27 | Sharp Corp | Method for recovering silicon-containing material |
JP2007246367A (en) * | 2006-03-17 | 2007-09-27 | Sharp Corp | Method for recovering silicon-containing material |
JP4925706B2 (en) * | 2006-03-31 | 2012-05-09 | 株式会社トクヤマ | Method for producing silica-based composite oxide particles |
JP2008188683A (en) * | 2007-02-01 | 2008-08-21 | Mitsubishi Electric Corp | Silicon ingot cutting method and cutting device |
ITRM20070677A1 (en) * | 2007-12-27 | 2009-06-28 | Garbo S R L | PROCEDURE FOR SEPARATION AND RECOVERY OF THE SUSPENDENT CONTENT IN SUSPENSIONS EXHAUSTED FROM THE SILICON MECHANICAL PROCESSES. |
JP5090191B2 (en) * | 2008-01-24 | 2012-12-05 | 三和油化工業株式会社 | Method for recovering dispersion medium from waste slurry slurry |
JP2009297618A (en) * | 2008-06-11 | 2009-12-24 | Ihi Corp | Method and apparatus for collecting particulate chip |
EP2382291A2 (en) * | 2008-12-31 | 2011-11-02 | MEMC Singapore Pte. Ltd. | Methods to recover and purify silicon particles from saw kerf |
JP2010258111A (en) * | 2009-04-22 | 2010-11-11 | Sumco Corp | Method of manufacturing material for silicon-based solar cell |
JP5474523B2 (en) * | 2009-12-22 | 2014-04-16 | 株式会社新菱 | Purified silicon-containing powder recovery method |
CN101892118A (en) * | 2010-03-26 | 2010-11-24 | 连云港佳宇电子材料科技有限公司 | Simplified industrial method for recovering cutting fluid from silicon chip cutting and processing mortar |
JP2011218503A (en) * | 2010-04-12 | 2011-11-04 | Sharp Corp | Method for disposing silicon-containing waste liquid |
CN101804983A (en) * | 2010-04-23 | 2010-08-18 | 连云港佳宇电子材料科技有限公司 | Recovery, purification and classification method of high-purity silicon carbide micro-powder |
-
2010
- 2010-11-30 JP JP2010267334A patent/JP5722601B2/en not_active Expired - Fee Related
-
2011
- 2011-11-29 CN CN2011103882999A patent/CN102559361A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN102559361A (en) | 2012-07-11 |
JP2012115758A (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5722601B2 (en) | Silicon cutting waste treatment method | |
JP2008115040A (en) | Silicon reclamation apparatus and method of reclaiming silicon | |
JP4369095B2 (en) | Slurry regeneration method | |
JP5474523B2 (en) | Purified silicon-containing powder recovery method | |
JP2001278612A (en) | Method of recovering silicon | |
JP4966938B2 (en) | Silicon regeneration method | |
WO2000001519A1 (en) | Method for the separation, regeneration and reuse of an exhausted glycol-based slurry | |
JP2009196849A (en) | Silicon recovery method and silicon recovery apparatus | |
JP5001589B2 (en) | Method for producing silicon from waste sludge | |
JP5114436B2 (en) | Metal content removal method and silicon purification method | |
CN102275930B (en) | Recycling method for silicon powder | |
JP2011218503A (en) | Method for disposing silicon-containing waste liquid | |
Hecini et al. | Recovery of cutting fluids used in polycrystalline silicon ingot slicing | |
JP4520331B2 (en) | Method for producing hydrogen gas | |
WO2009081725A1 (en) | Silicon reclamation method | |
JP2006315099A (en) | Recovery treatment method of waste liquid of silicon cutting slurry | |
JP2009084069A (en) | Apparatus and method for regenerating silicon | |
KR20060028191A (en) | Apparatus and method for recycling the disposed sludge produced in the manufacturing process of the silicon wafer | |
TWI523817B (en) | The recovery method of diamond abrasive grain | |
TWI458680B (en) | Recovery method for solid particle | |
KR101188313B1 (en) | Recycling Method for Waste Sludge Formed by Solar Cell Wafer Manufacturing and Recycling System Thereof | |
JP5109012B2 (en) | Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide | |
KR101554901B1 (en) | Method of manufacturing recycling waste sludge of nonorganic abrasive for grinding glass panel | |
JP5860026B2 (en) | Silicon slurry waste liquid recycling system, coolant recovery liquid, recovered abrasive grains, and recovered cutting powder | |
KR101331446B1 (en) | Method For Purificating Abrasive Cutting Sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141006 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20141006 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141010 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20141010 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150326 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5722601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |