JP5618255B2 - Polymer electrolyte for dye-sensitized solar cell and use thereof - Google Patents

Polymer electrolyte for dye-sensitized solar cell and use thereof Download PDF

Info

Publication number
JP5618255B2
JP5618255B2 JP2010263348A JP2010263348A JP5618255B2 JP 5618255 B2 JP5618255 B2 JP 5618255B2 JP 2010263348 A JP2010263348 A JP 2010263348A JP 2010263348 A JP2010263348 A JP 2010263348A JP 5618255 B2 JP5618255 B2 JP 5618255B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
polymer electrolyte
electrolyte composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010263348A
Other languages
Japanese (ja)
Other versions
JP2012109189A (en
Inventor
政徳 柳田
政徳 柳田
克人 三浦
克人 三浦
藤本 亮輔
亮輔 藤本
岩佐 成人
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2010263348A priority Critical patent/JP5618255B2/en
Publication of JP2012109189A publication Critical patent/JP2012109189A/en
Application granted granted Critical
Publication of JP5618255B2 publication Critical patent/JP5618255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Polyethers (AREA)

Description

本発明は、色素増感太陽電池に用いられる高分子電解質とその用途に関する。   The present invention relates to a polymer electrolyte used in a dye-sensitized solar cell and its use.

従来、クリーンなエネルギーである太陽光で発電する太陽電池には、単結晶シリコンあるいは多結晶シリコン太陽電池やアモルファスシリコン太陽電池が市販されているが、それぞれ製造コストが高いという問題がある。   Conventionally, single crystal silicon, polycrystalline silicon solar cells, and amorphous silicon solar cells are commercially available as solar cells that generate electricity using sunlight, which is clean energy, but each has a problem of high manufacturing costs.

一方、これらのシリコン系の太陽電池以外では、光電変換層の電解質に有機化合物を用いた太陽電池がある。その中で色素増感太陽電池は、有機色素を利用して光起電力を得るもので、代表的な型式はグレッツエル型と呼ばれる。   On the other hand, other than these silicon solar cells, there are solar cells using an organic compound as the electrolyte of the photoelectric conversion layer. Among them, a dye-sensitized solar cell obtains a photovoltaic power using an organic dye, and a typical type is called a Gretzell type.

このグレッツエル型太陽電池は、2枚の透明電極の間に微量のルテニウム錯体などの色素を吸着させた二酸化チタン層あるいは酸化亜鉛層と、電解質を挟み込んだ構造のものである。
このグレッツエル型太陽電池は軽量で着色可能であることや、構造が単純で材料も広く開発されて比較的安価であるなどの利点があるため、現在最も多く利用されている多結晶シリコン太陽電池と比較して生産コストを大幅に低くできることが期待されている。
This Gretzell solar cell has a structure in which an electrolyte is sandwiched between a titanium dioxide layer or a zinc oxide layer in which a small amount of a dye such as a ruthenium complex is adsorbed between two transparent electrodes.
This Gretzel type solar cell has advantages such as being lightweight and capable of being colored, and having a simple structure, widely developed materials, and relatively inexpensive. Compared to this, it is expected that the production cost can be significantly reduced.

このような理由から、色素増感太陽電池に用いられる有機化合物の電解質には電解液を用いた湿式のものなどが広く研究されている(例えば、「非特許文献1」)。この色素増感太陽電池に用いられる電解液には、非プロトン性溶媒であるニトリル化合物や環状炭酸エステル、環状エステル等を用いた場合に光電変換率が高いことが知られており一般的には使用されている。   For these reasons, a wet type electrolyte using an electrolytic solution has been widely studied as an organic compound electrolyte used in a dye-sensitized solar cell (for example, “Non-Patent Document 1”). The electrolytic solution used in this dye-sensitized solar cell is known to have a high photoelectric conversion rate when a nitrile compound, a cyclic carbonate, a cyclic ester, or the like, which is an aprotic solvent, is used. It is used.

しかしながら、この湿式の太陽電池は電解液の液漏れや揮発が比較的起こりやすく、これによって光電変換効率が著しく低下すること、破損した場合には可燃性の電解液が漏洩するため危険であること、電解液の蒸散のため電池セル内圧の上昇による破損の危険があるなどの欠点がある。   However, this type of wet solar cell is relatively susceptible to electrolyte leakage and volatilization, which significantly reduces the photoelectric conversion efficiency, and if it is damaged, the flammable electrolyte leaks and is dangerous. In addition, there is a drawback that there is a risk of damage due to an increase in the internal pressure of the battery cell due to evaporation of the electrolyte.

そこで、この液漏れを防止するためにポリマーに電解液を含浸させたポリマー電解質が検討されている。そして、光電変換効率の向上に有効と思われるニトリル基を有するポリマーであるポリアクリロニトリルを擬固体化して固体電解質として用いた例があるが、光電変換効率は低く、十分な光電変換効率を発現するものが得られていない(例えば、「特許文献1」)。   Therefore, in order to prevent this liquid leakage, a polymer electrolyte obtained by impregnating a polymer with an electrolytic solution has been studied. And there is an example of using polyacrylonitrile, which is a polymer having a nitrile group that seems to be effective for improving photoelectric conversion efficiency, as a solid electrolyte by quasi-solidification, but the photoelectric conversion efficiency is low and sufficient photoelectric conversion efficiency is expressed. A thing is not obtained (for example, "patent document 1").

また、このようなポリマーをそのまま電解質に用いる場合は、通常は高粘度のポリマー溶液を直接電極に塗布する等の方法によって電極間に電解質層を形成させるが、溶液粘度を低くすれば直接電池セルに注入することも可能となる。しかしながら、この直接電池セルに注入する場合、酸化物半導体微粒子が用いられた電極の細孔内部へうまく含侵できないと導電特性が発現しない等の問題が生じる。   When such a polymer is used as an electrolyte as it is, an electrolyte layer is usually formed between the electrodes by a method such as applying a high viscosity polymer solution directly to the electrodes. It is also possible to inject it. However, in the case of direct injection into the battery cell, there arises a problem that, if the oxide semiconductor fine particles cannot be properly impregnated into the pores of the electrode, the conductive characteristics are not exhibited.

特開2002−289270号公報JP 2002-289270 A

ネイチャー,353(24)、737〜740(1991)Nature, 353 (24), 737-740 (1991)

以上のような事情を鑑み、本発明の課題は、作業性に優れ、良好な光電変換効率を有し、耐久性、形状安定性にも優れた色素増感太陽電池用高分子電解質を工業的に効率良く提供することにある。   In view of the circumstances as described above, the object of the present invention is to provide an industrially useful polymer electrolyte for dye-sensitized solar cells that has excellent workability, good photoelectric conversion efficiency, and excellent durability and shape stability. It is to provide efficiently.

本発明は、以下の式(1)のポリマーと酸化還元対を含む電解液からなる色素増感太陽電池用高分子電解質用組成物、そこにさらに架橋剤を共存させた架橋能力を有する色素増感太陽電池用高分子電解質組成物、およびそれらを用いてなる色素増感太陽電池を提供する。   The present invention relates to a composition for a polymer electrolyte for a dye-sensitized solar cell comprising an electrolyte containing a polymer of the following formula (1) and a redox couple, and a dye sensitizer having a crosslinking ability in which a crosslinking agent is further present. Provided are a polymer electrolyte composition for a solar cell and a dye-sensitized solar cell using the same.

本願発明の項1は、
(i)式(1)に示した、グリシジルエーテル重合体(n=0の場合)、または側鎖にオキシエチレンユニットを有するポリエーテル重合体(n≠0の場合)と、

Figure 0005618255
[式中、Aは活性水素含有化合物残基、Rは炭素数1〜12のアルキル基、炭素数2〜8のアルケニル基、炭素数3〜8のシクロアルキル基、炭素数6〜14のアリール基、炭素数7〜12のアラルキル基の群より選ばれる少なくとも一つの基である。また、mは1〜1,200の整数、nは0〜25の整数、pは1〜12の整数をそれぞれ表わす。]
(ii)酸化還元対を含む電解液、
からなることを特徴とする、色素増感太陽電池用高分子電解質組成物である。 Item 1 of the present invention
(i) a glycidyl ether polymer represented by formula (1) (when n = 0) or a polyether polymer having an oxyethylene unit in the side chain (when n ≠ 0);
Figure 0005618255
[Wherein, A is an active hydrogen-containing compound residue, R is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl having 6 to 14 carbon atoms. And at least one group selected from the group of aralkyl groups having 7 to 12 carbon atoms. M represents an integer of 1 to 1,200, n represents an integer of 0 to 25, and p represents an integer of 1 to 12, respectively. ]
(ii) an electrolyte containing a redox couple,
A polymer electrolyte composition for a dye-sensitized solar cell, comprising:

本願発明の項2は、上記本願発明の項1に記載の組成物に、更に、(iii)イソシアネート基を2個以上有する化合物から選ばれる少なくともひとつの架橋剤を含むことを特徴とする、請求項1に記載の色素増感太陽電池用高分子電解質組成物である。   Item 2 of the present invention further comprises (iii) at least one crosslinking agent selected from compounds having two or more isocyanate groups in the composition according to Item 1 of the present invention. Item 2. The polymer electrolyte composition for a dye-sensitized solar cell according to Item 1.

本願発明の項3は、活性水素含有化合物残基Aが多価アルコールから誘導されたものであることを特徴とする、項1または2に記載の色素増感太陽電池用高分子電解質組成物である。   Item 3 of the present invention is the polymer electrolyte composition for a dye-sensitized solar cell according to Item 1 or 2, wherein the active hydrogen-containing compound residue A is derived from a polyhydric alcohol. is there.

本願発明の項4は、架橋剤が、2,4−トリレンジイソシアネート(2,4−TDI)、2,6−トリレンジイソシアネート(2,6−TDI)、4,4′−ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、1,6,11−ウンデカントリイソシアネート、1,3,6−ヘキサメチレントリイソシアネート、トリメチロールプロパンTDI3モル付加体または、これらの任意の混合物からなる群から選ばれる少なくとも1つであることを特徴とする、請求項2または3に記載の色素増感太陽電池用高分子電解質組成物である。   Item 4 of the present invention is that the crosslinking agent is 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (MDI). ), Hexamethylene diisocyanate (HMDI), isophorone diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, trimethylolpropane The polymer electrolyte composition for a dye-sensitized solar cell according to claim 2 or 3, wherein the polymer electrolyte composition is a TDI3 molar adduct or at least one selected from the group consisting of any mixture thereof.

本願発明の項5は、酸化還元対が、ヨウ素とヨウ素化合物または臭素と臭素化合物の対であることを特徴とする、請求項1〜4のいずれかに記載の色素増感太陽電池用高分子電解質組成物である。   Item 5 of the present invention is a polymer for a dye-sensitized solar cell according to any one of claims 1 to 4, wherein the redox pair is a pair of iodine and iodine compound or bromine and bromine compound. It is an electrolyte composition.

本願発明の項6は、電解液が、非プロトン性有機溶媒であることを特徴とする、請求項1〜5のいずれかに記載の色素増感太陽電池用高分子電解質組成物である。   Item 6 of the present invention is the polymer electrolyte composition for a dye-sensitized solar cell according to any one of claims 1 to 5, wherein the electrolytic solution is an aprotic organic solvent.

本願発明の項7は、請求項1〜6のいずれかに記載の色素増感太陽電池用高分子電解質組成物を用いた色素増感太陽電池である。   Item 7 of the present invention is a dye-sensitized solar cell using the polymer electrolyte composition for a dye-sensitized solar cell according to any one of claims 1 to 6.

本発明を用いることにより、得られる色素増感太陽電池用高分子電解質組成物は作業性に優れ、良好な光電変換効率を保持する。特に該組成物が架橋剤を含む場合のその架橋体は、良好な光電変換効率を維持しつつ、耐久性および形状安定性に優れる。   By using the present invention, the obtained polymer electrolyte composition for a dye-sensitized solar cell is excellent in workability and maintains good photoelectric conversion efficiency. In particular, the crosslinked product when the composition contains a crosslinking agent is excellent in durability and shape stability while maintaining good photoelectric conversion efficiency.

以下、本発明の構成につき詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail.

式(1)の重合体は、例えば適当な触媒の存在下、活性水素化合物と式(2)で表されるグリシジルエーテルを公知の方法で重合することにより容易に得ることができる。また、この式(2)の化合物自体はエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。合成によって得られる式(2)で表される単量体では、nは0〜25であって、0〜5が好ましい。nが25より大きいと電荷移動への効果が薄れるので好ましくない。
また、Rは炭素数1〜12のアルキル基、炭素数2〜8のアルケニル基、炭素数3〜8のシクロアルキル基、炭素数6〜14のアリール基、炭素数7〜12のアラルキル基の群より選ばれる基であるが、好ましくはRは1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数3〜6のシクロアルキル基、炭素数6〜7のアリール基より選ばれる基で、さらに好ましくは、Rは1〜3のアルキル基、炭素数2〜3のアルケニル基、および炭素数3のシクロアルキル基である。
ここで、Rは上記炭化水素のみからなる官能基の他、例えば複素環のように骨格内に炭素以外の元素を有していてもよく、例えば、テトラヒドロピラニル基、テトラヒドロフラニル基であってよいが、好ましくは、テトラヒドロピラニル基である。

Figure 0005618255
The polymer of the formula (1) can be easily obtained, for example, by polymerizing the active hydrogen compound and the glycidyl ether represented by the formula (2) by a known method in the presence of a suitable catalyst. Further, the compound of the formula (2) itself can be easily synthesized by a general ether synthesis method from epihalohydrin and alcohol. In the monomer represented by the formula (2) obtained by synthesis, n is 0 to 25 and preferably 0 to 5. When n is larger than 25, the effect on charge transfer is reduced, which is not preferable.
R is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms. Preferably, R is selected from an alkyl group having 1 to 6, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 7 carbon atoms. More preferably, R is an alkyl group having 1 to 3, an alkenyl group having 2 to 3 carbon atoms, and a cycloalkyl group having 3 carbon atoms.
Here, R may have an element other than carbon in the skeleton, such as a heterocyclic ring, in addition to the functional group consisting of only the hydrocarbon, for example, a tetrahydropyranyl group or a tetrahydrofuranyl group. Preferably, it is a tetrahydropyranyl group.
Figure 0005618255

式(1)で示される骨格を有するポリエーテル重合体としては、活性水素含有化合物に式(2)で表されるグリシジルエーテル類を、触媒存在下で、数平均分子量が1,000〜100,000、すなわち、式(1)のmが1〜1,200となるように反応させて得たものである。中でも数平均分子量が1,000〜5,000、すなわち、式(1)のmが1〜50のものが好ましい。mが1,200を超えると溶液粘度が高くなり電極の細孔内部へ含浸が不十分になる。   As a polyether polymer having a skeleton represented by the formula (1), a glycidyl ether represented by the formula (2) is added to an active hydrogen-containing compound in the presence of a catalyst, and the number average molecular weight is 1,000 to 100,000. It was obtained by reacting so that m in the formula (1) is 1-1200. Among them, those having a number average molecular weight of 1,000 to 5,000, that is, m of formula (1) of 1 to 50 are preferable. If m exceeds 1,200, the solution viscosity becomes high and impregnation into the pores of the electrode becomes insufficient.

活性水素含有化合物としては、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、スクロース、ポリグリセリン等の多価アルコール;ブチルアミン、2−エチルヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、アニリン、ベンジルアミン、フェニレンジアミン等のアミン化合物;ビスフェノール−A、ハイドロキノン、ノボラック等のフェノール性活性水素化合物;モノエタノールアミン、ジエタノールアミン等の一分子中に異種の活性水素含有基を有する化合物等が挙げられるが、多価アルコールが好ましく、特にグリセリン、トリメチロールプロパン、ペンタエリスリトールの3価あるいは4価のアルコールがより好ましい。   Examples of active hydrogen-containing compounds include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, sucrose, polyglycerin; butylamine, 2-ethylhexylamine , Ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, aniline, benzylamine, phenylenediamine and other amine compounds; bisphenol-A, hydroquinone, novolac and other phenolic active hydrogen compounds; mono Examples include compounds having different active hydrogen-containing groups in one molecule such as ethanolamine and diethanolamine. Alcohol are preferred, glycerol, trimethylolpropane, trivalent or tetravalent alcohol pentaerythritol are more preferred.

重合反応は次のようにして行える。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにKを含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、活性水素含有化合物と式(2)のモノマーを溶媒の存在下又は不存在下、反応温度10〜120℃、撹拌下で反応させることによって式(1)のポリエーテル重合体が得られる。この場合、得られるポリエーテル重合体を構成する活性水素含有化合物の活性水素含有基(例えば水酸基)は少なくとも一つが重合に関与しておればよい。
重合度、あるいは得られる共重合体の性質などの点から、対イオンにKを含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤が好ましく、なかでもt−ブトキシカリウムが取り扱い易く特に好ましい。
The polymerization reaction can be performed as follows. Coordination anion initiator such as catalyst system mainly composed of organic aluminum, catalyst system mainly composed of organic zinc, organotin-phosphate ester condensate catalyst system as a ring-opening polymerization catalyst, or potassium containing K + as a counter ion Using an anionic initiator such as alkoxide, diphenylmethyl potassium or potassium hydroxide, the active hydrogen-containing compound and the monomer of formula (2) are reacted in the presence or absence of a solvent at a reaction temperature of 10 to 120 ° C. with stirring. To obtain a polyether polymer of the formula (1). In this case, at least one active hydrogen-containing group (for example, hydroxyl group) of the active hydrogen-containing compound constituting the obtained polyether polymer may be involved in the polymerization.
Anionic initiators such as potassium alkoxide, diphenylmethyl potassium, potassium hydroxide and the like containing K + in the counter ion are preferable from the viewpoint of the degree of polymerization or the properties of the resulting copolymer, and t-butoxy potassium is particularly easy to handle. Particularly preferred.

本発明で使用するグリシジルエーテル重合体、または側鎖にオキシエチレンユニットを有するポリエーテル重合体は電解質全体に対して2〜60重量%が好ましく、更に好ましいのは5〜30重量%の範囲である。
The glycidyl ether polymer used in the present invention or the polyether polymer having an oxyethylene unit in the side chain is preferably 2 to 60% by weight, more preferably 5 to 30% by weight based on the whole electrolyte. .

このポリエーテル重合体の架橋は、以下に示す架橋剤を用いることで可能である。   The polyether polymer can be crosslinked by using the following crosslinking agent.

架橋剤としては、2,4−トリレンジイソシアネート(2,4−TDI)、2,6−トリレンジイソシアネート(2,6−TDI)、4,4′−ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、1,6,11−ウンデカントリイソシアネート、1,3,6−ヘキサメチレントリイソシアネート、トリメチロールプロパンTDI3モル付加体等が挙げられ、単独またはこれらの混合物から適宜選択することができる。
この場合、架橋のメカニズムとしては、式(1)に示した、グリシジルエーテル重合体(n=0の場合)、または側鎖にオキシエチレンユニットを有するポリエーテル重合体は、その末端に水酸基を有しているので、架橋剤が有するイソシアネート基との反応により架橋することができる。式(1)のポリエーテル重合体の水酸基に対して架橋剤中のイソシアネート基数が0.1〜5.0、好ましくは0.5〜2.0倍になるように混合し反応するのが好ましい。

Examples of crosslinking agents include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate ( HMDI), isophorone diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, trimethylolpropane TDI 3 mol adduct, etc. It can be mentioned, and it can select suitably from single or these mixtures.
In this case, as a crosslinking mechanism , the glycidyl ether polymer (in the case of n = 0) or the polyether polymer having an oxyethylene unit in the side chain shown in the formula (1) has a hydroxyl group at the terminal. Therefore, it can bridge | crosslink by reaction with the isocyanate group which a crosslinking agent has. It is preferable to mix and react so that the number of isocyanate groups in the cross-linking agent is 0.1 to 5.0, preferably 0.5 to 2.0 times the hydroxyl groups of the polyether polymer of formula (1).

架橋反応をより効果的に進行させる場合は、例えば、ジブチルチンジラウレート(DBTDL)、ジブチルチンジアセテート(DBTA)、フェニル水銀プロピオン酸塩、オクテン酸鉛等の有機金属化合物や、トリエチレンジアミン、N,N′−ジメチルピペラジン、N−メチルモルホリン、テトラメチルグアニジン、トリエチルアミン等のアミン系化合物を架橋触媒として用いてもよい。   In order to proceed the crosslinking reaction more effectively, for example, dibutyltin dilaurate (DBTDL), dibutyltin diacetate (DBTA), phenylmercury propionate, lead octenoate and other organometallic compounds, triethylenediamine, N, N An amine compound such as' -dimethylpiperazine, N-methylmorpholine, tetramethylguanidine, triethylamine or the like may be used as a crosslinking catalyst.

本発明で用いる酸化還元対としては、電気化学的に酸化還元を起こす酸化還元対であればいずれでもよいが、ヨウ素とヨウ素化合物との組み合わせ、または臭素と臭素化合物との組み合わせが好ましい。中でも、I2とLiIなどのヨウ素塩との組み合わせ、Br2とLiBrなどの臭素塩との組み合わせが好ましい。またLiIの代わりに各種のイオン性液体を用いることもできる。
例えば、1−プロピル−2,3−ジメチルイミダゾリウムイオダイド、1−メチル−2−エチル−イミダゾリウムイオダイド、1−メチル−2−プロピルイミダゾリウムイオダイド、1−メチル−3−プロピルイミダゾリウムイオダイド、などのイミダゾリウム塩、テトラプロピルアンモニウムアイオダイドなどの4級アンモニウム塩、1−ブチル−4−メチルピリジニウムイオダイドなどのピリジニウム塩などが挙げられる。これらのイオン性液体を用いる場合には溶媒を用いずに使用することも可能である。酸化還元対およびイオン性液体の濃度は、電解質全体に対して0.1重量%〜30重量%であることが好ましいが、さらに好ましくは0.2重量%〜20重量%である。
The redox pair used in the present invention may be any redox pair that causes redox electrochemically, but is preferably a combination of iodine and an iodine compound or a combination of bromine and a bromine compound. Among them, a combination of I 2 and an iodine salt such as LiI, or a combination of Br 2 and a bromine salt such as LiBr is preferable. Various ionic liquids can be used instead of LiI.
For example, 1-propyl-2,3-dimethylimidazolium iodide, 1-methyl-2-ethyl-imidazolium iodide, 1-methyl-2-propylimidazolium iodide, 1-methyl-3-propylimidazolium Examples include imidazolium salts such as iodide, quaternary ammonium salts such as tetrapropylammonium iodide, and pyridinium salts such as 1-butyl-4-methylpyridinium iodide. When these ionic liquids are used, it is possible to use them without using a solvent. The concentration of the redox couple and the ionic liquid is preferably 0.1% by weight to 30% by weight, more preferably 0.2% by weight to 20% by weight, based on the entire electrolyte.

本発明で使用する電解液は非プロトン性溶媒であってよいが、電解質を溶解し、架橋後のポリエーテルポリマーと分離しないことが条件となる。ニトリル類、環状または鎖状カーボネートおよび環状エステルより選ばれる少なくとも1種であることが好ましい。ニトリル類としては、アセトニトリル、プロピオニトリル、ブチロニトリル、メトキシプロピオニトリルが好ましく、環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが好ましく、環状エステルとしては、γ−ブチロラクトン、γ−バレロラクトン、σ−ブチロラクトンなどのラクトン類が好ましい。これらの溶媒は単独で用いても良いが、2種以上の混合物として用いても良い。電解液の量は、電解質全体に対して10重量%〜98重量%であることが好ましいが、さらに好ましくは50重量%〜95重量%である。   The electrolytic solution used in the present invention may be an aprotic solvent, provided that it dissolves the electrolyte and does not separate from the crosslinked polyether polymer. It is preferably at least one selected from nitriles, cyclic or chain carbonates and cyclic esters. As the nitriles, acetonitrile, propionitrile, butyronitrile, methoxypropionitrile are preferable, as the cyclic carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate and the like are preferable, and as the cyclic ester, γ-butyrolactone, γ -Lactones such as valerolactone and σ-butyrolactone are preferred. These solvents may be used alone, or may be used as a mixture of two or more. The amount of the electrolytic solution is preferably 10% by weight to 98% by weight with respect to the whole electrolyte, and more preferably 50% by weight to 95% by weight.

本発明の色素増感太陽電池用高分子電解質は、そのまま太陽電池内部に含浸させて使用できる。また、該電解質が架橋剤を含む場合には含浸後加熱等の適当な架橋手段を用いて架橋体として使用することができる。この場合、ポリエーテル重合体を予め別途合成しているため、ポリエーテル重合時の重合開始剤や、未反応のポリエーテル重合体がほとんど存在しないことから光電変換効率に悪影響を及ぼさないため、高い光電変換効率を維持し、耐久性の高い色素増感太陽電池用高分子電解質組成物とその架橋体を効率よく提供することができる。   The polymer electrolyte for dye-sensitized solar cell of the present invention can be used by impregnating the inside of the solar cell as it is. Moreover, when this electrolyte contains a crosslinking agent, it can be used as a crosslinked body using an appropriate crosslinking means such as heating after impregnation. In this case, since the polyether polymer is synthesized separately in advance, since there is almost no polymerization initiator at the time of polyether polymerization and there is almost no unreacted polyether polymer, the photoelectric conversion efficiency is not adversely affected. The photoelectric conversion efficiency can be maintained, and a highly durable polymer electrolyte composition for dye-sensitized solar cells and a crosslinked product thereof can be efficiently provided.

本発明の色素増感型太陽電池の構成は、特に限定されることはなく、高分子電解質組成物以外は従来の公知の基本的な色素増感太陽電池の構成で実施できる。その構成の例を挙げると、透明なガラスまたはプラスチックフィルムの片面に透明導電膜をコートした2枚の透明導電基板の一方に、増感色素を担持した金属酸化物の微粒子からなる多孔質の半導体層を設けた電極と、もう一方は表面に導電性物質を導入した対向電極とし、これらの一対の電極間に電解質を配置した構造である。   The configuration of the dye-sensitized solar cell of the present invention is not particularly limited, and can be carried out with a conventional known basic configuration of a dye-sensitized solar cell except for the polymer electrolyte composition. As an example of the structure, a porous semiconductor composed of fine metal oxide particles carrying a sensitizing dye on one of two transparent conductive substrates coated with a transparent conductive film on one side of a transparent glass or plastic film. The electrode is provided with a layer, and the other is a counter electrode in which a conductive material is introduced on the surface, and an electrolyte is disposed between the pair of electrodes.

上記の半導体層には、例を上げるとCd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crなどの金属酸化物が用いられるが特に、TiO又はZnOが好ましい。半導体層は、例えば電極を有する基板の表面に、半導体微粒子を含有するスラリー液を公知の方法により塗布し、その後、400〜600℃の範囲内の温度で加熱焼結することにより形成させることが可能である。 Examples of the semiconductor layer include Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si. Metal oxides such as Cr are used, but TiO 2 or ZnO is particularly preferable. The semiconductor layer can be formed by, for example, applying a slurry liquid containing semiconductor fine particles to the surface of a substrate having electrodes by a known method, and then heat-sintering at a temperature in the range of 400 to 600 ° C. Is possible.

半導体微粒子に吸着、担持させる色素は、ルテニウムビピリジン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、シアニン系色素、トリフェニルメタン系色素、ポリフィリン系色素、フタロシアニン系色素、インジゴ系色素、ナフタロシアニン系色素等が例として挙げられるが、特にルテニウムビピリジン系色素は可視光域で吸収帯域が広いので特に好ましい。   The dyes adsorbed and supported on the semiconductor fine particles are ruthenium bipyridine dyes, azo dyes, quinone dyes, quinone imine dyes, cyanine dyes, triphenylmethane dyes, porphyrin dyes, phthalocyanine dyes, indigo dyes, Examples include phthalocyanine dyes, and ruthenium bipyridine dyes are particularly preferable because they have a wide absorption band in the visible light region.

半導体層への色素の担持方法としては、半導体層を有する電極を備えた基板を、増感色素を溶媒に溶かした色素溶液に浸漬する方法あるいは、色素溶液を半導体層に塗布することで良いが、浸漬中に加熱あるいは超音波をかけることで浸漬の効率を上げることも効果的である。
このときの溶媒としては、アルコール類、ニトリル類、ニトロメタン、ハロゲン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類、炭酸エステル類、ケトン類、炭化水素、水等の溶媒などの増感色素を溶解可能なものであればいずれも使用できる。
As a method for supporting the dye on the semiconductor layer, a method in which a substrate provided with an electrode having a semiconductor layer is immersed in a dye solution in which a sensitizing dye is dissolved in a solvent, or a dye solution is applied to the semiconductor layer may be used. It is also effective to increase the efficiency of immersion by heating or applying ultrasonic waves during immersion.
As the solvent at this time, alcohols, nitriles, nitromethane, halogenated hydrocarbons, ethers, dimethyl sulfoxide, amides, N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters Any of those that can dissolve sensitizing dyes such as solvents such as carbonates, ketones, hydrocarbons, and water can be used.

上記の半導体層を形成する導電層は、ガラスまたはフィルム等の透明な基板の一方の面に形成し、このように作成した電極は負極として作用させる。
この負極の導電層を形成するために好ましい導電剤としては、例をあげると、白金、金、銀、銅、アルミニウム、ロジウム、インジウムなどの金属、または炭素、またはインジウム−錫複合酸化物、フッ素をドープした酸化錫などの導電性の金属酸化物が挙げられる。
The conductive layer forming the semiconductor layer is formed on one surface of a transparent substrate such as glass or a film, and the electrode thus created serves as a negative electrode.
Examples of preferable conductive agents for forming the negative electrode conductive layer include metals such as platinum, gold, silver, copper, aluminum, rhodium and indium, carbon, or indium-tin composite oxide, fluorine. And conductive metal oxides such as tin oxide doped with.

もう一方の対極となる電極は太陽電池の正極として作用させる。前記の半導体層が設けられる側の電極と同様に形成することができるが、本発明における色素増感太陽電池の対電極の材料としては、電解質の還元体に電子を与える触媒作用を有する白金やグラファイトなどが好ましく太陽電池の正極として効率よく作用する。   The other counter electrode serves as the positive electrode of the solar cell. Although it can be formed in the same manner as the electrode on the side where the semiconductor layer is provided, as a material for the counter electrode of the dye-sensitized solar cell in the present invention, platinum having a catalytic action to give electrons to the electrolyte reductant, Graphite or the like is preferable, and acts efficiently as the positive electrode of the solar cell.

また、本発明では、半導体層から電解質への逆電子移動を防止するなどの目的でtert−ブチルピリジンや2−ピコリン、2,6−ルチジンなどの塩基性化合物を前述の電解質に添加することが好ましい。これら塩基性化合物を添加する場合の好ましい濃度範囲は、電解液に対し0.05〜2mol/Lである。   In the present invention, a basic compound such as tert-butylpyridine, 2-picoline, or 2,6-lutidine may be added to the aforementioned electrolyte for the purpose of preventing reverse electron transfer from the semiconductor layer to the electrolyte. preferable. A preferable concentration range when these basic compounds are added is 0.05 to 2 mol / L with respect to the electrolytic solution.

また、本発明では、光電流を更に増大させるとともに、初期の光電変換効率を更に上昇させる目的で、電解液にグアニジン塩を含むことが好ましい。グアニジン塩としては、チオシアン酸グアニジンが挙げられる。グアニジン塩を添加する場合の好ましい濃度範囲は、電解液に対し0.02〜0.5mol/Lである。   In the present invention, it is preferable that the electrolyte contains a guanidine salt for the purpose of further increasing the photocurrent and further increasing the initial photoelectric conversion efficiency. An example of a guanidine salt is guanidine thiocyanate. A preferable concentration range when adding the guanidine salt is 0.02 to 0.5 mol / L with respect to the electrolytic solution.

実施例
本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
EXAMPLES Specific modes for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.

ポリエーテル重合体およびプレポリマーの分子量測定にはゲルパーミエーションクロマトグラフィー測定を行い、標準ポリスチレン換算により数平均分子量および重量平均分子量を算出した。ゲルパーミエーションクロマトグラフィー測定は株式会社島津製作所の測定装置RID−6A、昭和電工(株)製カラムのショウデックスKD−807、KD−806、KD−806M及びKD−803、及び溶媒DMFを用いて60℃で行った。   In measuring the molecular weight of the polyether polymer and the prepolymer, gel permeation chromatography measurement was performed, and the number average molecular weight and the weight average molecular weight were calculated in terms of standard polystyrene. Gel permeation chromatography measurement is performed using a measuring device RID-6A manufactured by Shimadzu Corporation, Showex KD-807, KD-806, KD-806M and KD-803, and a solvent DMF manufactured by Showa Denko K.K. Performed at 60 ° C.

光電変換効率の測定は、以下に記載する組み立て方法に従い作成した色素増感太陽電池を山下電装(株)製ソーターシミュレーター YSS−E40型で、光の強度1Sunになるように調節した後、TiO2極にマイナス(−)、対極にプラス(+)の端子を取り付け、-0.1V〜0.8Vの電圧をかけ、測定を行った。 The photoelectric conversion efficiency was measured by adjusting a dye-sensitized solar cell prepared according to the assembly method described below with a sorter simulator YSS-E40 manufactured by Yamashita Denso Co., Ltd. so that the light intensity was 1 Sun, and then TiO 2 A minus (-) terminal was attached to the pole, and a plus (+) terminal was attached to the counter electrode, and a voltage of -0.1 V to 0.8 V was applied to perform measurement.

[合成例:式(1)のポリエーテル重合体の合成]
[合成例1]
式(1a)のポリエーテル重合体の合成は次のとおり行なった。
3つ口フラスコに、グリセリン0.2モル(18.4g)にt-ブトキシカリウム0.03モル(3.4g)を加え攪拌しながら昇温し、120℃で式(2)のn=1の2−メトキシエチルグリシジルエーテルモル2.5モル(330.5g)を3時間で滴下後120℃のまま3時間加熱後冷却し、精製した。
数平均分子量2,900である下記の式(1a)の骨格を有するポリエーテル重合体を330g得た。

Figure 0005618255
式(1a)の、Aはグリセリン残基である。 [Synthesis Example: Synthesis of Polyether Polymer of Formula (1)]
[Synthesis Example 1]
Synthesis of the polyether polymer of the formula (1a) was performed as follows.
In a three-necked flask, 0.03 mol (3.4 g) of t-butoxy potassium was added to 0.2 mol (18.4 g) of glycerin, and the temperature was raised while stirring. At 120 ° C., n = 1 2-methoxyethylglycidyl of formula (2) 2.5 mol (330.5 g) of ether was added dropwise over 3 hours, and the mixture was heated at 120 ° C. for 3 hours, cooled, and purified.
330 g of a polyether polymer having a skeleton of the following formula (1a) having a number average molecular weight of 2,900 was obtained.
Figure 0005618255
In the formula (1a), A is a glycerin residue.

[合成例2]
式(1b)のポリエーテル重合体の合成は次のとおり行なった。
3つ口フラスコに、ペンタエリスリトール0.2モル(27.2g)に微分末上の水酸化カリウム0.03モル(1.7g)を加え攪拌しながら昇温し、100℃で式(2)のn=2の2−(2−メトキシエトキシ)エトキシグリシジルエーテル 2.0モル(352.4g)を3時間で滴下後100℃のまま3時間加熱後冷却し、精製した。
数平均分子量2,200である下記の式(1b)の骨格を有するポリエーテル重合体を238g得た。

Figure 0005618255
式(1b)の、Aはペンタエリスリトール残基である。 [Synthesis Example 2]
Synthesis of the polyether polymer of formula (1b) was carried out as follows.
To a three-necked flask, 0.2 mol (27.2 g) of pentaerythritol was added 0.03 mol (1.7 g) of potassium hydroxide at the end of the differentiation, and the temperature was raised while stirring. At 100 ° C., n = 2 of formula (2) = 2 -(2-Methoxyethoxy) ethoxyglycidyl ether 2.0 mol (352.4 g) was added dropwise over 3 hours, and then heated at 100 ° C. for 3 hours, cooled and purified.
238 g of a polyether polymer having a skeleton of the following formula (1b) having a number average molecular weight of 2,200 was obtained.
Figure 0005618255
In the formula (1b), A is a pentaerythritol residue.

[電解液の調整例]
3−メトキシプロピオニトリルを溶媒として、4−t−ブチルピリジン(0.5M)、1−メチル−3−プロピルイミダゾリウムイオダイド(0.6M)、ヨウ素(0.03M)、グアニジンチオシアネート(0.1M)の濃度で溶解させた溶液を電解液とした。
[Example of electrolyte adjustment]
Using 3-methoxypropionitrile as a solvent, 4-t-butylpyridine (0.5M), 1-methyl-3-propylimidazolium iodide (0.6M), iodine (0.03M), guanidine thiocyanate (0.1M) A solution dissolved at a concentration was used as an electrolytic solution.

[色素増感太陽電池セルの組み立て]
色素増感太陽電池セルの組み立ては、Thin Solid Films 516(2008)4613-4619 に従い行なった。具体的には、次のとおりである。
[Assembly of dye-sensitized solar cells]
The assembly of the dye-sensitized solar cell was performed according to Thin Solid Films 516 (2008) 4613-4619. Specifically, it is as follows.

1)酸化物薄膜電極の製造
フッ素ドープ酸化スズ透明導電性ガラスからなる基材(厚さ4mm、抵抗値30Ω/cm)に平均粒子径30nmの酸化チタンペーストを16μm塗布し、さらに平均粒子径400nmの酸化チタンペーストを4μm塗布した後に、空気雰囲気中、325℃から500℃まで段階的に加熱することにより、透明導電性ガラスからなる基材の表面に酸化チタンからなる酸化物薄膜電極を形成した。
1) Production of oxide thin film electrode 16 μm of titanium oxide paste having an average particle diameter of 30 nm is applied to a base material (thickness 4 mm, resistance value 30 Ω / cm 2 ) made of fluorine-doped tin oxide transparent conductive glass, and further the average particle diameter After applying 4 μm of 400 nm titanium oxide paste, by heating in steps from 325 ° C. to 500 ° C. in an air atmosphere, an oxide thin film electrode made of titanium oxide is formed on the surface of a substrate made of transparent conductive glass did.

2)陽極の製造
酸化物薄膜電極の製造に用いたものと同じ透明導電性ガラスからなる基材の表面に、2mg/mLに調製した塩化白金酸のエタノール溶液を塗布し、400℃で15分間加熱することにより形成した。
2) Manufacture of anode Apply the ethanol solution of chloroplatinic acid prepared to 2 mg / mL to the surface of the base material made of the same transparent conductive glass as that used for the manufacture of the oxide thin film electrode, and then at 400 ° C. for 15 minutes. It was formed by heating.

3)色素溶液の調製
市販の色素「N719」をアセトニトリル/tert−ブタノール混合溶媒(体積比:50/50)に溶解させ、色素の濃度が0.5mmol/Lである色素溶液を調製した。
3) Preparation of dye solution A commercially available dye “N719” was dissolved in an acetonitrile / tert-butanol mixed solvent (volume ratio: 50/50) to prepare a dye solution having a dye concentration of 0.5 mmol / L.

4)陰極の製造
前記の酸化物薄膜電極を、前記色素溶液中に室温で20時間浸漬することにより、酸化物薄膜電極に色素を吸着させ、陰極を製造した。
4) Manufacture of a cathode The said oxide thin film electrode was immersed in the said pigment | dye solution at room temperature for 20 hours, the pigment | dye was made to adsorb | suck to an oxide thin film electrode, and the cathode was manufactured.

5)色素増感太陽電池の製造
前記陽極の白金焼結面と、前記陰極の酸化物薄膜電極形成面が対向するように配置し、シール材で接着し、空隙中にポリマー電解質溶液を注入して色素増感太陽電池を製造した。
[色素増感太陽電池の評価]
実施例及び比較例の色素増感太陽電池に対し、5mm角の窓をつけた光照射面積規定用マスクを装着させた上で、ソーラーシミュレーターを用いて擬似太陽光を100mW/cmの照度で照射し、開放電圧(以下、Voc)、短絡電流(以下、Jsc)、曲線因子(以下、FF)及び光電変換効率を測定した。
5) Manufacture of dye-sensitized solar cell Arranged so that the platinum sintered surface of the anode and the oxide thin film electrode forming surface of the cathode face each other, are bonded with a sealing material, and a polymer electrolyte solution is injected into the gap Thus, a dye-sensitized solar cell was manufactured.
[Evaluation of dye-sensitized solar cell]
The dye-sensitized solar cells of Examples and Comparative Examples were fitted with a light irradiation area defining mask with a 5 mm square window, and simulated sunlight was irradiated at an illuminance of 100 mW / cm 2 using a solar simulator. Irradiation was performed, and the open circuit voltage (hereinafter, Voc), short circuit current (hereinafter, Jsc), fill factor (hereinafter, FF), and photoelectric conversion efficiency were measured.

[実施例1]
合成例1で得たポリエーテル重合体0.1gに調整した電解液0.9gを加えて溶液としてポリマー電解質を調整した。この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、光電変換効率を測定した。
曲線因子FFは0.61で、光電変換効率は7.1%であった。
[Example 1]
A polymer electrolyte was prepared as a solution by adding 0.9 g of the prepared electrolyte to 0.1 g of the polyether polymer obtained in Synthesis Example 1. This solution polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the photoelectric conversion efficiency was measured.
The fill factor FF was 0.61, and the photoelectric conversion efficiency was 7.1%.

[実施例2]
合成例2で得たポリエーテル重合体0.1gに調整した電解液0.9gを加えて溶液としてポリマー電解質を調整した。この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、光電変換効率を測定した。
曲線因子FFは0.62で、光電変換効率は7.3%であった。
[Example 2]
A polymer electrolyte was prepared as a solution by adding 0.9 g of the prepared electrolyte to 0.1 g of the polyether polymer obtained in Synthesis Example 2. This solution polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the photoelectric conversion efficiency was measured.
The fill factor FF was 0.62, and the photoelectric conversion efficiency was 7.3%.

[実施例3]
合成例1で得たポリエーテル重合体0.1gに調整した電解液0.9gを加えてポリマー電解質を調整した。これに架橋助剤2,4−トリレンジイソシアネート(2,4−TDI)0.006gを加えポリマー電解質溶液を調整した。
この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、セルを80℃で30分加熱してポリマー電解質を架橋させゲル化させた後、光電変換効率を測定した。
曲線因子FFは0.61で、光電変換効率は6.8%であった。
[Example 3]
A polymer electrolyte was prepared by adding 0.9 g of the prepared electrolyte to 0.1 g of the polyether polymer obtained in Synthesis Example 1. To this was added 0.006 g of a crosslinking aid 2,4-tolylene diisocyanate (2,4-TDI) to prepare a polymer electrolyte solution.
This solution-like polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the cell was heated at 80 ° C. for 30 minutes to crosslink and gel the polymer electrolyte, and then the photoelectric conversion efficiency was measured.
The fill factor FF was 0.61, and the photoelectric conversion efficiency was 6.8%.

[実施例4]
合成例2で得たポリエーテル重合体0.1gに調整した電解液0.9gを加えてポリマー電解質を調整した。これに架橋助剤ヘキサメチレンジイソシアネート(HMDI)0.005gを加えポリマー電解質溶液を調整した。
この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、セルを80℃で30分加熱してポリマー電解質を架橋させゲル化させた後、光電変換効率を測定した。
曲線因子FFは0.61で、光電変換効率は7.0%であった。
[Example 4]
A polymer electrolyte was prepared by adding 0.9 g of the prepared electrolyte to 0.1 g of the polyether polymer obtained in Synthesis Example 2. To this was added 0.005 g of a crosslinking aid hexamethylene diisocyanate (HMDI) to prepare a polymer electrolyte solution.
This solution-like polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the cell was heated at 80 ° C. for 30 minutes to crosslink and gel the polymer electrolyte, and then the photoelectric conversion efficiency was measured.
The fill factor FF was 0.61, and the photoelectric conversion efficiency was 7.0%.

[比較例1]
[合成例1]と同様の方法によって得られた数平均分子量270,000のポリエーテル重合体を使用したこと以外は、実施例1と同様の方法でポリマー電解質を調整した。この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、光電変換効率を測定した。
曲線因子FFは0.58で、光電変換効率は4.3%であった。
[Comparative Example 1]
A polymer electrolyte was prepared in the same manner as in Example 1 except that a polyether polymer having a number average molecular weight of 270,000 obtained by the same method as in [Synthesis Example 1] was used. This solution polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the photoelectric conversion efficiency was measured.
The fill factor FF was 0.58, and the photoelectric conversion efficiency was 4.3%.

[比較例2]
ポリエーテル重合体の代わりに、市販のポリアクリロニトリルを使用したこと以外は、実施例1と同様の方法でポリマー電解質を調整した。この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、光電変換効率を測定した。
曲線因子FFは0.58で、光電変換効率は1.8%であった。
[Comparative Example 2]
A polymer electrolyte was prepared in the same manner as in Example 1 except that a commercially available polyacrylonitrile was used instead of the polyether polymer. This solution polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the photoelectric conversion efficiency was measured.
The fill factor FF was 0.58, and the photoelectric conversion efficiency was 1.8%.

[比較例3]
[合成例1]と同様の方法によって得られた数平均分子量115,000のポリエーテル重合体を使用したこと以外は、実施例2と同様の方法でポリマー電解質を調整した。これに架橋助剤2,4−トリレンジイソシアネート(2,4−TDI)0.001gを加えポリマー電解質溶液を調整した。
この溶液状のポリマー電解質を組み立てた色素増感太陽電池セルの内部に注入し、セルを80℃で30分加熱してポリマー電解質を架橋させゲル化させた後、光電変換効率を測定した。
曲線因子FFは0.57で、光電変換効率は4.0%であった。
[Comparative Example 3]
A polymer electrolyte was prepared in the same manner as in Example 2 except that a polyether polymer having a number average molecular weight of 115,000 obtained by the same method as in [Synthesis Example 1] was used. To this, 0.001 g of a crosslinking aid 2,4-tolylene diisocyanate (2,4-TDI) was added to prepare a polymer electrolyte solution.
This solution-like polymer electrolyte was injected into the assembled dye-sensitized solar cell, and the cell was heated at 80 ° C. for 30 minutes to crosslink and gel the polymer electrolyte, and then the photoelectric conversion efficiency was measured.
The fill factor FF was 0.57, and the photoelectric conversion efficiency was 4.0%.

上記の実施例および比較例の結果を表1に示す。

Figure 0005618255
The results of the above examples and comparative examples are shown in Table 1.
Figure 0005618255

本発明の高分子固体電解質用組成物は色素増感太陽電池用途に利用できる。   The composition for polymer solid electrolytes of the present invention can be used for dye-sensitized solar cells.

Claims (7)

(i)式(1)に示した、グリシジルエーテル重合体(n=0の場合)、または側鎖にオキシエチレンユニットを有するポリエーテル重合体(n≠0の場合)と、
Figure 0005618255
[式中、Aは活性水素含有化合物残基、Rは炭素数1〜12のアルキル基、炭素数2〜8のアルケニル基、炭素数3〜8のシクロアルキル基、炭素数6〜14のアリール基、炭素数7〜12のアラルキル基の群より選ばれる少なくとも一つの基である。また、mは1〜1,200の整数、nは0〜25の整数、pは1〜12の整数をそれぞれ表わす。]
(ii)酸化還元対を含む電解液、
からなることを特徴とする、色素増感太陽電池用高分子電解質組成物。
(i) a glycidyl ether polymer represented by formula (1) (when n = 0) or a polyether polymer having an oxyethylene unit in the side chain (when n ≠ 0);
Figure 0005618255
[Wherein, A is an active hydrogen-containing compound residue, R is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl having 6 to 14 carbon atoms. And at least one group selected from the group of aralkyl groups having 7 to 12 carbon atoms. M represents an integer of 1 to 1,200, n represents an integer of 0 to 25, and p represents an integer of 1 to 12, respectively. ]
(ii) an electrolyte containing a redox couple,
A polymer electrolyte composition for a dye-sensitized solar cell, comprising:
更に、(iii)イソシアネート基を2個以上有する化合物から選ばれる少なくともひとつの架橋剤を含むことを特徴とする、請求項1に記載の色素増感太陽電池用高分子電解質組成物。   The polymer electrolyte composition for a dye-sensitized solar cell according to claim 1, further comprising (iii) at least one crosslinking agent selected from compounds having two or more isocyanate groups. 活性水素含有化合物残基Aが、多価アルコールから誘導されたものであることを特徴とする、項1または2に記載の色素増感太陽電池用高分子電解質組成物。   Item 3. The polymer electrolyte composition for a dye-sensitized solar cell according to Item 1 or 2, wherein the active hydrogen-containing compound residue A is derived from a polyhydric alcohol. 架橋剤が、2,4−トリレンジイソシアネート(2,4−TDI)、2,6−トリレンジイソシアネート(2,6−TDI)、4,4′−ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、1,6,11−ウンデカントリイソシアネート、1,3,6−ヘキサメチレントリイソシアネート、トリメチロールプロパンTDI3モル付加体または、これらの任意の混合物からなる群から選ばれる少なくとも1つであることを特徴とする、請求項2または3に記載の色素増感太陽電池用高分子電解質組成物。   The crosslinking agent is 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HMDI) ), Isophorone diisocyanate, triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, trimethylolpropane TDI 3 molar adduct or these The polymer electrolyte composition for a dye-sensitized solar cell according to claim 2 or 3, wherein the polymer electrolyte composition is at least one selected from the group consisting of any mixture of the following. 酸化還元対が、ヨウ素とヨウ素化合物または臭素と臭素化合物の対であることを特徴とする、請求項1〜4のいずれかに記載の色素増感太陽電池用高分子電解質組成物。   The polymer electrolyte composition for a dye-sensitized solar cell according to any one of claims 1 to 4, wherein the redox pair is a pair of iodine and iodine compound or bromine and bromine compound. 電解液が、非プロトン性有機溶媒であることを特徴とする、請求項1〜5のいずれかに記載の色素増感太陽電池用高分子電解質組成物。   The polymer electrolyte composition for a dye-sensitized solar cell according to any one of claims 1 to 5, wherein the electrolytic solution is an aprotic organic solvent. 請求項1〜6のいずれかに記載の色素増感太陽電池用高分子電解質組成物を用いた色素増感太陽電池。
The dye-sensitized solar cell using the polymer electrolyte composition for dye-sensitized solar cells in any one of Claims 1-6.
JP2010263348A 2010-10-27 2010-11-26 Polymer electrolyte for dye-sensitized solar cell and use thereof Expired - Fee Related JP5618255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263348A JP5618255B2 (en) 2010-10-27 2010-11-26 Polymer electrolyte for dye-sensitized solar cell and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010240275 2010-10-27
JP2010240275 2010-10-27
JP2010263348A JP5618255B2 (en) 2010-10-27 2010-11-26 Polymer electrolyte for dye-sensitized solar cell and use thereof

Publications (2)

Publication Number Publication Date
JP2012109189A JP2012109189A (en) 2012-06-07
JP5618255B2 true JP5618255B2 (en) 2014-11-05

Family

ID=46494569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263348A Expired - Fee Related JP5618255B2 (en) 2010-10-27 2010-11-26 Polymer electrolyte for dye-sensitized solar cell and use thereof

Country Status (1)

Country Link
JP (1) JP5618255B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813832B2 (en) * 1989-10-26 1998-10-22 第一工業製薬株式会社 Ion conductive polymer electrolyte
JP2813834B2 (en) * 1990-05-31 1998-10-22 第一工業製薬株式会社 Ion conductive polymer electrolyte
JP3149247B2 (en) * 1992-01-24 2001-03-26 第一工業製薬株式会社 Ion conductive polymer electrolyte
JP3321201B2 (en) * 1992-08-27 2002-09-03 第一工業製薬株式会社 Ion conductive polymer electrolyte
JP3724252B2 (en) * 1999-04-19 2005-12-07 ダイソー株式会社 Crosslinked polymer solid electrolyte and use thereof
JP2001110403A (en) * 1999-10-14 2001-04-20 Daiso Co Ltd Electrode for electrochemical device
JP2002100404A (en) * 2000-09-20 2002-04-05 Hitachi Chem Co Ltd Resin composition for gel high polymer solid electrolyte, composition for the gel high polymer solid electrolyte, the gel high polymer solid electrolyte using them, composite electrode and electrochemical device
JP2003096232A (en) * 2001-09-26 2003-04-03 Nitto Denko Corp Adhesive and porous film and polymer-gel electrolyte obtained from the same and their use
JP2004327271A (en) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd High polymer gel electrolyte and photoelectric conversion element using it
JP5118805B2 (en) * 2005-03-29 2013-01-16 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012069501A (en) * 2010-08-24 2012-04-05 Daiso Co Ltd Polymer electrolyte for dye sensitized solar cell and use thereof

Also Published As

Publication number Publication date
JP2012109189A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US7880082B2 (en) Solid electrolyte, photoelectric converter and process for producing the same
AU2003264556B2 (en) Dye-sensitized solar cell
KR101348391B1 (en) Imidazole salt-bound nanoparticle, prepraration method thereof and nanogel-type electrolyte for dye-sensitized solarcell using the same
JP2000086724A (en) Cross-linked polymer, electrolyte and photoelectrochemical battery
JP3462115B2 (en) Non-aqueous electrolyte for dye-sensitized solar cell and solar cell using the same
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
CN101663277A (en) Process for production of binuclear metal complex
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP2008171812A (en) Dye-sensitized solar battery using oligomer complex with ionic bond, and its manufacturing method
JP2002184478A (en) Electrolyte, photoelectric conversion element, photoelectrochemical battery, and method of manufacturing electrolyte
JP2012069501A (en) Polymer electrolyte for dye sensitized solar cell and use thereof
JP2003086258A (en) Material kit for electrolyte composition, electrolyte composition, and photo-sensitizing type solar cell
KR102144908B1 (en) Novel pan-based block copolymer for electrolyte gelator, electrolyte gelator including said block copolymer, and polymer gel electrolyte composition including said electrolyte gelator and inorganic nanoparticles
JP2007128757A (en) Dye-sensitized solar cell
JP2004055240A (en) Secondary battery and capacitor using indole-based compound
JP5618255B2 (en) Polymer electrolyte for dye-sensitized solar cell and use thereof
JP2004124124A (en) Method for manufacturing metal-metal oxide compound electrode, photoelectric transducer, and photoelectric cell
JP2002298935A (en) Electrolyte and photoelectrochemical battery
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP2013016360A (en) Photoelectric conversion element
KR101378722B1 (en) Novel urea-containing imidazolium iodide compound, preparation method thereof and electrolyte for dye-sensitived solar cell
KR100553337B1 (en) Copolymer containing imidazolium polymers, method for preparing the same, electrolytes for dye-sensitized solar cells containing the same and dye-sensitized solar cells
JP2005112733A (en) Onium salt
JP4938288B2 (en) Dye-sensitized solar cell
JP2004127579A (en) Manufacturing method of metal-metal oxide composite electrode, photoelectric transducing element and photoelectric cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5618255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140907

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees