JP5522222B2 - Bipolar battery manufacturing method - Google Patents

Bipolar battery manufacturing method Download PDF

Info

Publication number
JP5522222B2
JP5522222B2 JP2012210932A JP2012210932A JP5522222B2 JP 5522222 B2 JP5522222 B2 JP 5522222B2 JP 2012210932 A JP2012210932 A JP 2012210932A JP 2012210932 A JP2012210932 A JP 2012210932A JP 5522222 B2 JP5522222 B2 JP 5522222B2
Authority
JP
Japan
Prior art keywords
electrode layer
current collector
battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012210932A
Other languages
Japanese (ja)
Other versions
JP2012256616A (en
Inventor
一 佐藤
賢司 保坂
謙二 濱田
恭一 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012210932A priority Critical patent/JP5522222B2/en
Publication of JP2012256616A publication Critical patent/JP2012256616A/en
Application granted granted Critical
Publication of JP5522222B2 publication Critical patent/JP5522222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、バイポーラ電極を構成する集電体の表面粗度を調整しうるバイポーラ電池の製造方法に関する。   The present invention relates to a method for manufacturing a bipolar battery capable of adjusting the surface roughness of a current collector constituting a bipolar electrode.

近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できる積層型のバイポーラ電池に注目が集まっている。   In recent years, reduction of carbon dioxide emissions has been strongly desired for environmental protection. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and we are eager to develop secondary batteries for motor drives that hold the key to their practical application. Has been done. As a secondary battery, attention is focused on a stacked bipolar battery that can achieve a high energy density and a high output density.

一般的なバイポーラ電池は、複数個のバイポーラ電極を電解質層を介在させて直列に接続してなる電池要素を含む。バイポーラ電極は、集電体の一方の面に正極活物質層を設けて正極が形成され、他方の面に負極活物質層を設けて負極が形成されている。正極活物質層、電解質層、および負極活物質層を順に積層したものが単電池層であり、この単電池層が一対の集電体の間に挟み込まれている。バイポーラ電池は、電池要素内においてはバイポーラ電極を積層する方向つまり電池の厚み方向(以下、「積層方向」という)に電流が流れるため、電流のパスが短く、電流ロスが少ないという利点がある。   A typical bipolar battery includes a battery element in which a plurality of bipolar electrodes are connected in series with an electrolyte layer interposed therebetween. In the bipolar electrode, a positive electrode is formed by providing a positive electrode active material layer on one surface of a current collector, and a negative electrode is formed by providing a negative electrode active material layer on the other surface. A single battery layer is formed by sequentially stacking a positive electrode active material layer, an electrolyte layer, and a negative electrode active material layer, and the single battery layer is sandwiched between a pair of current collectors. Bipolar batteries have the advantage that a current path is short and current loss is small because current flows in the direction of stacking bipolar electrodes in the battery element, that is, the thickness direction of the battery (hereinafter referred to as “stacking direction”).

上記バイポーラ電極を構成する集電体には金属箔が用いられ、金属箔の表面粗度Rzを3μm以上に規定した技術(特許文献1参照)や、金属箔の表面粗度を0.1〜0.9μmに規定し、かつ負極集電体が電解メッキにより得られる銅箔やニッケル箔である技術(特許文献2参照)が開示されている。   A metal foil is used for the current collector constituting the bipolar electrode, and the technology (see Patent Document 1) in which the surface roughness Rz of the metal foil is specified to be 3 μm or more, or the surface roughness of the metal foil is 0.1 to A technique (see Patent Document 2) is disclosed in which the thickness is 0.9 μm and the negative electrode current collector is a copper foil or nickel foil obtained by electrolytic plating.

特開平11−297307号公報JP 11-297307 A 特開平5−74479号公報JP-A-5-74479

特許文献1および2では、電極活物質の密着性を改善させるために表面粗度を規定しているが、集電体の表面が粗過ぎると接触抵抗が増大して電池特性が低下する。他方、電池特性を重視して集電体の表面粗度を低下させると、集電体間に単電池層の周囲を取り囲むように設けられるシール部材の密着性が不十分となる。   In Patent Documents 1 and 2, the surface roughness is defined in order to improve the adhesion of the electrode active material. However, if the surface of the current collector is too rough, the contact resistance increases and the battery characteristics deteriorate. On the other hand, when the battery roughness is emphasized and the surface roughness of the current collector is reduced, the adhesion of the seal member provided so as to surround the periphery of the unit cell layer between the current collectors becomes insufficient.

本発明は、バイポーラ電池において、集電体の表面粗度を最適に調整することにより、電池特性を犠牲にすることなく、シール部材の密着性を改善しうるバイポーラ電池の製造方法を提供することを目的とする。   The present invention provides a bipolar battery manufacturing method capable of improving the adhesion of a seal member without sacrificing battery characteristics by optimally adjusting the surface roughness of a current collector in a bipolar battery. With the goal.

上記目的を達成する本発明は、表面粗度1μm以下の集電体の一方の面には正極層が形成されその他方の面には負極層が形成されたバイポーラ電極と電解質層とを交互に複数積層して発電要素が形成され、前記集電体は、前記正極層及び前記負極層が形成される電極形成部分と当該電極形成部分以外のシール部材貼付部分を有するバイポーラ電池の製造方法であって、前記集電体の電極形成部分に前記正極層及び前記負極層を形成する工程と、前記集電体のシール部材貼付部分の表面粗度を1μm以上とするために、前記集電体の表面前記正極層及び前記負極層の表面表面粗度1μm以上のロール面を有するロールプレスでプレス加工する工程と、を含むことを特徴とする。 In order to achieve the above object, the present invention provides a current collector having a surface roughness of 1 μm or less having a positive electrode layer formed on one surface and a negative electrode layer formed on the other surface alternately with a bipolar electrode and an electrolyte layer. A power generation element is formed by stacking a plurality of layers, and the current collector is a method for manufacturing a bipolar battery having an electrode forming portion on which the positive electrode layer and the negative electrode layer are formed and a seal member attaching portion other than the electrode forming portion. And forming the positive electrode layer and the negative electrode layer on the electrode forming portion of the current collector, and in order to set the surface roughness of the seal member pasting portion of the current collector to 1 μm or more, surface, characterized in that it comprises a, a step of pressing by a roll press with the positive electrode layer and the surface of the surface roughness 1μm or more rolls surface of the negative electrode layer.

本発明によれば、集電体の電極層形成部分とシール部材貼付部分との表面粗度が異なっており、電極層を形成する部分とシール部材を貼付する部分との表面粗度をそれぞれ最適に調整することにより、電池特性を犠牲にすることなく、シール部材の密着性を改善することができる。   According to the present invention, the surface roughness of the electrode layer forming portion of the current collector is different from the surface roughness of the portion where the seal member is applied, and the surface roughness of the portion where the electrode layer is formed and the portion where the seal member is applied is optimum. By adjusting to, the adhesiveness of the seal member can be improved without sacrificing battery characteristics.

本発明の第1の実施形態に係るバイポーラ電池を示す斜視図である。1 is a perspective view showing a bipolar battery according to a first embodiment of the present invention. 第1の実施形態のバイポーラ電池の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the bipolar battery of 1st Embodiment. 第1の実施形態のバイポーラ電池の製造工程を示し、図3(A)は集電体の断面図、図3(B)は電極材料の塗布工程の断面図、図3(C)はプレス加工工程の断面図、図3(D)はシール部材の貼付工程の断面図、図3(F)は積層状態の断面図である。FIGS. 3A and 3B are cross-sectional views of a current collector, FIG. 3B is a cross-sectional view of an electrode material application step, and FIG. Sectional drawing of a process, FIG.3 (D) is sectional drawing of the sticking process of a sealing member, FIG.3 (F) is sectional drawing of a lamination | stacking state. 本発明の第2の実施形態に係るバイポーラ電池の製造工程を示し、図4(A)は集電体の平面図および断面図、図4(B)は研削工程の平面図および断面図、図4(C)は電極層形成工程の平面図および断面図、図4(D)はシール材貼付工程の平面図および断面図である。4A and 4B show a manufacturing process of a bipolar battery according to a second embodiment of the present invention, in which FIG. 4A is a plan view and a sectional view of a current collector, and FIG. 4B is a plan view and a sectional view of a grinding process. 4 (C) is a plan view and a cross-sectional view of the electrode layer forming step, and FIG. 4 (D) is a plan view and a cross-sectional view of the sealing material attaching step. 本発明の第3の実施形態に係るバイポーラ電池の製造工程を示し、図5(A)は集電体の平面図および断面図、図5(B)はマスキング工程の平面図および断面図、図5(C)は表面処理工程の平面図および断面図、図5(D)はマスクを除去した状態の平面図および断面図である。FIG. 5A shows a plan view and a sectional view of a current collector, FIG. 5B is a plan view and a sectional view of a masking step, and shows a manufacturing process of a bipolar battery according to a third embodiment of the present invention. 5 (C) is a plan view and a cross-sectional view of the surface treatment process, and FIG. 5 (D) is a plan view and a cross-sectional view in a state where the mask is removed. 本発明の第4の実施形態に係る組電池の概略構成図である。It is a schematic block diagram of the assembled battery which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る組電池が車両に搭載された状態を示す図である。It is a figure which shows the state by which the assembled battery which concerns on the 5th Embodiment of this invention was mounted in the vehicle.

以下に、本発明に係るバイポーラ電池の製造方法を図面に基づいて詳細に説明する。なお、以下の実施の形態で引用する図面では、バイポーラ電池を構成する各層の厚みや形状を誇張して描いているが、これは発明の内容の理解を容易にするために行っているものであり、実際のバイポーラ電池の各層の厚みや形状と整合しているものではない。   Below, the manufacturing method of the bipolar battery which concerns on this invention is demonstrated in detail based on drawing. In the drawings cited in the following embodiments, the thickness and shape of each layer constituting the bipolar battery are exaggerated, but this is done to facilitate understanding of the contents of the invention. Yes, it is not consistent with the thickness and shape of each layer of an actual bipolar battery.

(第1の実施形態)
図1は本発明の第1の実施形態に係るバイポーラ電池を示す斜視図である。バイポーラ電池100は、図に示すように長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ120A、負極タブ120Bが引き出されている。発電要素160はバイポーラ電池100の外装材(たとえばラミネートフィルム)180によって包まれ、その周囲四辺は熱融着されており、発電要素160は正極タブ120A及び負極タブ120Bを引き出した状態で密封されている。
(First embodiment)
FIG. 1 is a perspective view showing a bipolar battery according to a first embodiment of the present invention. The bipolar battery 100 has a rectangular flat shape as shown in the figure, and a positive electrode tab 120 </ b> A and a negative electrode tab 120 </ b> B for extracting electric power are drawn out from both sides thereof. The power generation element 160 is wrapped by an outer packaging material (for example, a laminate film) 180 of the bipolar battery 100, and its four sides are heat-sealed. Yes.

図2は第1の実施形態のバイポーラ電池100の積層構造を示す断面図である。図3は第1の実施形態のバイポーラ電池100の製造工程を示し、(A)は集電体の断面図、(B)は電極材料の塗布工程の断面図、(C)はプレス加工工程の断面図、(D)はシール部材の貼付工程の断面図、(F)は積層状態の断面図である。   FIG. 2 is a cross-sectional view showing a laminated structure of the bipolar battery 100 of the first embodiment. FIG. 3 shows a manufacturing process of the bipolar battery 100 of the first embodiment, (A) is a cross-sectional view of a current collector, (B) is a cross-sectional view of an electrode material application process, and (C) is a press working process. Sectional drawing, (D) is a sectional view of the sticking step of the seal member, and (F) is a sectional view in a laminated state.

第1の実施形態に係るバイポーラ電池100は、たとえば、スラリー塗布法や印刷法など種々の積層法を用いて形成することができるが、本実施形態ではスラリー塗布法を用いて発電要素160を形成する。   The bipolar battery 100 according to the first embodiment can be formed using various lamination methods such as a slurry coating method and a printing method. In this embodiment, the power generation element 160 is formed using the slurry coating method. To do.

本実施形態で使用する集電体200は、たとえば、アルミニウム(Al)、銅(Cu)、チタニウム(Ti)、ニッケルス(Ni)、ステンレス鋼(SUS)、モリブデン(Mo)およびニオブ(Nb)などから選択される導電性の金属箔によって形成されている。そして、この金属箔の表面粗度Raは1μm以下の粗さのものを用いる。   The current collector 200 used in the present embodiment is, for example, aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), molybdenum (Mo), niobium (Nb), or the like. The conductive metal foil is selected from the following. The surface roughness Ra of the metal foil is 1 μm or less.

図3(A)(B)に示すように、まず、集電体(たとえばSUS箔)200の片面のシール部材貼付部分以外の中央部分に正極スラリーを塗布し、乾燥させて正極層210を形成する。正極スラリーには、たとえば、LiMn2O4等の正極活物質に、アセチレンブラック等の導電助剤、PVDF等のバインダー、およびNMP等のスラリー粘度調整溶媒を混合したものを用いる。正極スラリーの塗布厚さは20μm以下が好ましい。   As shown in FIGS. 3A and 3B, first, positive electrode slurry is applied to the central portion of the current collector (for example, SUS foil) 200 other than the seal member pasting portion, and dried to form the positive electrode layer 210. To do. As the positive electrode slurry, for example, a mixture of a positive electrode active material such as LiMn 2 O 4 and a conductive additive such as acetylene black, a binder such as PVDF, and a slurry viscosity adjusting solvent such as NMP is used. The coating thickness of the positive electrode slurry is preferably 20 μm or less.

次に、正極層210を塗布した集電体(SUS箔)200の反対面の全面に負極スラリーを塗布し、乾燥させて負極層220を形成する。負極スラリーには、たとえば、ハードカーボン等の負極活物質、PCDF等のバインダー、およびNMP等のスラリー粘度調整溶媒を混合したものを用いる。負極スラリーの塗布厚さは20μm以下が好ましい。   Next, a negative electrode slurry is applied to the entire opposite surface of the current collector (SUS foil) 200 to which the positive electrode layer 210 is applied, and dried to form the negative electrode layer 220. As the negative electrode slurry, for example, a mixture of a negative electrode active material such as hard carbon, a binder such as PCDF, and a slurry viscosity adjusting solvent such as NMP is used. The coating thickness of the negative electrode slurry is preferably 20 μm or less.

このようにして、集電体(SUS箔)200の両面に正極層210と負極層220とがそれぞれ形成されることにより、バイポーラ電極230が形成される。   In this manner, the positive electrode layer 210 and the negative electrode layer 220 are formed on both surfaces of the current collector (SUS foil) 200, whereby the bipolar electrode 230 is formed.

バイポーラ電極230を形成した後、図3(C)に示すように、表面粗度Raが1μm以上のロール面を有するロールプレス280A、280Bを用いて、上記バイポーラ電極230の両面全体をプレス加工(粗面加工)する。すると、正極層210の周囲の集電体(SUS箔)200の表面が露出している部分の表面粗度Raが1μm以上の粗さに加工される。この部分がシール部材貼付部分200Aである。第1の実施形態では、バイポーラ電極230の両面全体をプレス加工するので、正極層210および負極層220の形成部分もプレス加工(粗面加工)されるが、電極層形成部分は元々表面粗度が粗いため、正極層210および負極層220の密度が上がるだけで粗度には影響はなく、電極層210、220と集電体200との接触抵抗は減少することになる。 After forming the bipolar electrode 230, as shown in FIG. 3C, the entire surface of the bipolar electrode 230 is pressed using roll presses 280A and 280B having a roll surface with a surface roughness Ra of 1 μm or more ( Rough surface processing). Then, the surface roughness Ra of a portion around the collector (SUS foil) 200 surface of the positive electrode layer 210 is exposed Ru is processed into more roughness 1 [mu] m. This portion is a seal member pasting portion 200A. In the first embodiment, since both the entire surfaces of the bipolar electrode 230 are pressed, portions where the positive electrode layer 210 and the negative electrode layer 220 are formed are also pressed (roughened), but the electrode layer forming portion originally has surface roughness. Therefore, only the density of the positive electrode layer 210 and the negative electrode layer 220 is increased, and the roughness is not affected, and the contact resistance between the electrode layers 210 and 220 and the current collector 200 is reduced.

次に、図3(D)に示すように、正極層210の周囲に露出し、表面粗度Raが1μm以上に粗面加工されたシール部材貼付部分200Aに矩形枠体状のシール部材260を貼付する。このシール部材260の貼付方法には、たとえば、熱可塑性樹脂を熱融着したり、熱硬化樹脂を塗布後加熱固化させたりするどの方法を用いることができる。 Next, as shown in FIG. 3D, a rectangular frame-shaped seal member 260 is applied to the seal member affixed portion 200A that is exposed around the positive electrode layer 210 and has a surface roughness Ra of 1 μm or more. Affix it. This is sticking method of the sealing member 260, for example, or heat-sealed thermoplastic resin, a thermosetting resin can be used which method Do or heated solidify after application.

また、PP製等の微多孔膜や不織布のセパレータなどを用い、該セパレータの外周部四辺の外辺から所定の部分の両面に所定の高さのシリコンゴム等のシール部を配置し、このシール部の内側に電解質層240となるプレゲル溶液を浸漬させて、不活性雰囲気下で熱重合させることにより、セパレータの中央部にゲル電解質層を保持させる。プレゲル溶液には、たとえば、ポリマー(ポリエチレンオキシドとポリプロピレンオキシドの共重合体)、EC+DMC(1:3)、1.0MLi(C2F5SO2)2N、重合開始剤(BDK)を混合したものを用いる。   Also, using a microporous membrane made of PP or a non-woven fabric separator, seal portions such as silicon rubber having a predetermined height are arranged on both sides of the predetermined portion from the outer periphery of the outer periphery of the separator. The gel electrolyte layer is held in the central portion of the separator by immersing a pregel solution to be the electrolyte layer 240 inside the portion and thermally polymerizing in an inert atmosphere. For the pregel solution, for example, a polymer (copolymer of polyethylene oxide and polypropylene oxide), EC + DMC (1: 3), 1.0 MLi (C2F5SO2) 2N, and a polymerization initiator (BDK) are used.

発電要素160の形成は、図3(F)に示すように、正極と負極とがセパレータの電解質層240を挟んで対向するように積層して単電池150を形成し、このような積層を繰り返して、図2に示すような5層の単電池150が積層された発電要素160が形成される。なお、正極末端極および負極末端極には、片面のみに正極層210を塗布し、シール部材260を貼付したもの、または負極層220を塗布したものを作製する。   As shown in FIG. 3 (F), the power generation element 160 is formed by stacking the positive electrode and the negative electrode so that they face each other with the electrolyte layer 240 of the separator therebetween, and the stacking is repeated. Thus, the power generation element 160 in which the five-layer unit cells 150 as shown in FIG. 2 are stacked is formed. In addition, the positive electrode terminal electrode and the negative electrode terminal electrode are prepared by applying the positive electrode layer 210 only on one surface and attaching the seal member 260 or applying the negative electrode layer 220 thereto.

上記電解質層240は、上述したように、ゲル溶解質により形成されていることが好ましい。電解質層240としてゲル電解質を用いることにより、漏液を防止することが可能となり、また双電極型二次電池に特有の問題である液絡を防ぎ、信頼性の高い積層型電池を実現することができる。   As described above, the electrolyte layer 240 is preferably formed of a gel solute. By using a gel electrolyte as the electrolyte layer 240, it is possible to prevent leakage, and to prevent a liquid junction, which is a problem peculiar to the dual electrode type secondary battery, to realize a highly reliable stacked battery. Can do.

ここで、全固体高分子電解質と高分子ゲル電解質との違いについて説明する。PEO(ポリエチレンオキシド)などの全固体高分子電解質に、通常、リチウムイオン電池で用いられる電解液を含んだものが高分子ゲル電解質である。また、PVDF、PANおよびPMMAなどのように、リチウムイオン伝導性をもたない高分子の骨格中に、電解液を保持させたものも高分子ゲル電解質に該当する。高分子ゲル電解質を構成するポリマーと電解液との比率は幅広く、ポリマー100%を全固体高分子電解質とし、電解液100%を液体電解質とすると、その中間体はすべて高分子ゲル電解質にあたる。他方、全固体型電解質は、高分子あるいは無機固体などのLiイオン伝導性をもつ電解質のすべてが該当する。本発明において、固体型電解質という場合は、高分子ゲル電解質と全固体高分子電解質、無機固体電解質のすべてを含むものとする。   Here, the difference between the all solid polymer electrolyte and the polymer gel electrolyte will be described. A polymer gel electrolyte is an all-solid polymer electrolyte such as PEO (polyethylene oxide) containing an electrolyte solution usually used in a lithium ion battery. Moreover, what hold | maintained electrolyte solution in polymer frame | skeleton which does not have lithium ion conductivity like PVDF, PAN, and PMMA also corresponds to a polymer gel electrolyte. The ratio of the polymer constituting the polymer gel electrolyte to the electrolyte solution is wide. When 100% of the polymer is an all solid polymer electrolyte and 100% of the electrolyte solution is a liquid electrolyte, all of the intermediates correspond to the polymer gel electrolyte. On the other hand, the all solid electrolytes include all electrolytes having Li ion conductivity such as polymers or inorganic solids. In the present invention, the solid electrolyte includes all of polymer gel electrolyte, all solid polymer electrolyte, and inorganic solid electrolyte.

また、上記正極活物質にはリチウム−遷移金属複合酸化物を用い、負極活物質にはカーボンもしくはリチウム−遷移金属複合酸化物を用いることが好ましく、これにより容量および出力特性に優れたバイポーラ電池を実現することができる。   In addition, it is preferable to use a lithium-transition metal composite oxide for the positive electrode active material and a carbon or lithium-transition metal composite oxide for the negative electrode active material, so that a bipolar battery excellent in capacity and output characteristics can be obtained. Can be realized.

上記発電要素160の最下層の負極末端極は上記負極タブ120Bに接続され、その最上層の正極末端極は上記正極タブ120Aに接続される(図1参照)。図2に示す発電要素160は、5個の単電池150が直列に接続されたものとなるので、正極タブ120Aと負極タブ120Bとの間には単電池150の5倍の電圧が現れる。   The lowermost negative electrode terminal pole of the power generation element 160 is connected to the negative electrode tab 120B, and the uppermost positive electrode terminal electrode is connected to the positive electrode tab 120A (see FIG. 1). Since the power generating element 160 shown in FIG. 2 has five unit cells 150 connected in series, a voltage five times that of the unit cell 150 appears between the positive electrode tab 120A and the negative electrode tab 120B.

なお、本実施の形態では、5個の単電池150を一組として発電要素160を構成しているが、発電要素160を構成する単電池150の積層数は本実施の形態に限るものではない。   In the present embodiment, the power generation element 160 is configured with a set of five unit cells 150. However, the number of stacks of the unit cells 150 constituting the power generation element 160 is not limited to the present embodiment. .

最後に、バイポーラ電極230、電解質層240を含むセパレータは、外装材としてのラミネートフィルム180で覆われて密封され、図1に示したように、正極タブ120Aおよび負極タブ120Bを引き出した状態でラミネートフィルム180の外周四辺の部分が熱融着される。   Finally, the separator including the bipolar electrode 230 and the electrolyte layer 240 is covered and sealed with a laminate film 180 as an exterior material, and laminated with the positive electrode tab 120A and the negative electrode tab 120B being pulled out as shown in FIG. The portions on the outer periphery four sides of the film 180 are heat-sealed.

第1の実施形態のバイポーラ電池100によれば、集電体200の電極層210、220の形成部分とシール部材260の貼付部分200Aとの表面粗度が異なっている。具体的には、正極層210および負極層220は、プレス加工(粗面加工)前の表面粗度Raが1μm以下の集電体200の両面にそれぞれ形成される(図3(B)参照)。正極層210および負極層220の形成部分の表面粗度Raを1μm以下に調整するのは、電池特性向上の観点から、表面粗度は小さい方が望ましいからである。他方、正極層210および負極層220を有するバイポーラ電極230の両面全体が表面粗度Raが1μm以上のロール面を有するロールプレス280A、280Bによりプレス加工(粗面加工)され、正極層210の周囲の集電体200の露出部分が1μm以上の粗度に加工される(図3(C)参照)。この集電体200の露出部分がシール部材貼付部分200Aとなる。シール部材260の貼付部分200Aの表面粗度Raを1μm以上に調整するのは、密着性向上の観点から、表面粗度は粗い方が望ましいからである。このように同一平面内で表面粗度を異ならせた集電体200を用いることにより、電極層210、220を形成する部分とシール部材260を貼付する部分200Aとの表面粗度をそれぞれ最適に調整することができ、電池特性を犠牲にすることなく、シール部材260の密着性を改善することができる。   According to the bipolar battery 100 of the first embodiment, the surface roughness of the portion where the electrode layers 210 and 220 of the current collector 200 are formed and the portion 200A of the sticking portion 260 of the seal member 260 are different. Specifically, the positive electrode layer 210 and the negative electrode layer 220 are respectively formed on both surfaces of the current collector 200 having a surface roughness Ra of 1 μm or less before press processing (rough surface processing) (see FIG. 3B). . The reason why the surface roughness Ra of the portions where the positive electrode layer 210 and the negative electrode layer 220 are formed is adjusted to 1 μm or less is that the smaller surface roughness is desirable from the viewpoint of improving battery characteristics. On the other hand, the entire surfaces of the bipolar electrode 230 having the positive electrode layer 210 and the negative electrode layer 220 are pressed (roughened) by roll presses 280A and 280B having a roll surface with a surface roughness Ra of 1 μm or more. The exposed portion of the current collector 200 is processed to a roughness of 1 μm or more (see FIG. 3C). The exposed portion of the current collector 200 becomes a seal member pasting portion 200A. The reason why the surface roughness Ra of the affixed portion 200A of the seal member 260 is adjusted to 1 μm or more is that it is desirable that the surface roughness is rough from the viewpoint of improving adhesion. By using the current collector 200 having different surface roughnesses in the same plane as described above, the surface roughnesses of the portions where the electrode layers 210 and 220 are formed and the portion 200A where the seal member 260 is attached are optimized. The adhesion of the seal member 260 can be improved without sacrificing battery characteristics.

また、第1の実施形態では、シール部材貼付部分200Aの粗面加工に際してバイポーラ電極230の両面全体をプレスすればよいので、加工の煩雑さがなく容易に実現できる。さらに、第1の実施形態では、後述する第2および第3の実施形態と異なり、電極層210、220の形成後に粗面加工を施すので、電極層210、220の形成が容易である。   In the first embodiment, the entire surface of the bipolar electrode 230 only needs to be pressed during the rough surface processing of the seal member pasting portion 200A, so that the processing is not complicated and can be easily realized. Furthermore, in the first embodiment, unlike the second and third embodiments, which will be described later, the roughening is performed after the electrode layers 210 and 220 are formed, so that the electrode layers 210 and 220 can be easily formed.

(第2の実施形態)
図4は本発明の第2の実施形態に係るバイポーラ電池100Aの製造工程を示し、(A)は集電体の平面図および断面図、(B)は研削工程の平面図および断面図、(C)は電極層形成工程の平面図および断面図、(D)はシール材貼付工程の平面図および断面図である。
(Second Embodiment)
4A and 4B show a manufacturing process of the bipolar battery 100A according to the second embodiment of the present invention, in which FIG. 4A is a plan view and a sectional view of a current collector, FIG. 4B is a plan view and a sectional view of a grinding process, (C) is a plan view and a sectional view of the electrode layer forming step, and (D) is a plan view and a sectional view of the sealing material attaching step.

第2の実施形態のバイポーラ電池100Aでは、第1の実施形態と同様の材質にて形成され、表面粗度Raも同様に1μm以下の集電体(たとえばSUS箔)を用いている(図4(A)参照)。まず、図4(B)に示すように、集電体200の片面の外周部四辺の外辺から所定の部分をヤスリ等により研削して、表面粗度Raが1μm以上となるように粗面加工する。この粗面加工した部分がシール部材貼付部分200Aとなる。次に、図4(C)に示すように、集電体200の片面の上記シール部材貼付部分200Aの内側の中央部分に上述した正極スラリーを塗布し乾燥させて正極層210を形成する。その後、図4(D)に示すように、正極層210と隙間を隔ててシール部材貼付部分200Aにシール部材260を熱溶着等により貼付する。第2の実施形態では、シール部材260は集電体200の周囲からはみ出すように貼付されている。   In the bipolar battery 100A of the second embodiment, a current collector (for example, a SUS foil) formed of the same material as that of the first embodiment and having a surface roughness Ra of 1 μm or less is used (FIG. 4). (See (A)). First, as shown in FIG. 4 (B), a predetermined portion is ground from the outer sides of the outer peripheral portion of one side of the current collector 200 with a file or the like so that the surface roughness Ra becomes 1 μm or more. Process. The roughened portion becomes a seal member pasting portion 200A. Next, as shown in FIG. 4C, the positive electrode slurry is applied to the inner central portion of the seal member pasting portion 200 </ b> A on one side of the current collector 200 and dried to form the positive electrode layer 210. Thereafter, as shown in FIG. 4D, a seal member 260 is attached to the seal member attaching portion 200A with a gap from the positive electrode layer 210 by thermal welding or the like. In the second embodiment, the seal member 260 is pasted so as to protrude from the periphery of the current collector 200.

図示していないが、シール部材260を貼付した後、正極層210を塗布した集電体200の反対面の全面に負極スラリーを塗布し、乾燥させて負極層220を形成することにより、バイポーラ電極が完成する。発電要素の形成は、第1の実施形態と同様に、正極と負極とがセパレータの電解質層を挟んで対向するように積層して単電池を形成し、このような積層を繰り返して、所望の積層数の発電要素が形成される。発電要素の最下層の負極末端極は上記負極タブ120Bに接続され、その最上層の正極末端極は上記正極タブ120Aに接続されて(図1参照)、第2の実施形態のバイポーラ電池100Aが完成する。   Although not shown in the drawings, after applying the seal member 260, the negative electrode slurry is applied to the entire opposite surface of the current collector 200 to which the positive electrode layer 210 has been applied, and dried to form the negative electrode layer 220. Is completed. In the same way as in the first embodiment, the power generation element is formed by laminating the positive electrode and the negative electrode so as to face each other with the electrolyte layer of the separator interposed therebetween, and forming a unit cell. A power generation element having a number of stacks is formed. The lowermost negative electrode terminal pole of the power generation element is connected to the negative electrode tab 120B, the uppermost positive electrode terminal electrode is connected to the positive electrode tab 120A (see FIG. 1), and the bipolar battery 100A of the second embodiment is formed. Complete.

第2の実施形態によれば、集電体200の片面の外周部四辺の外辺から所定の部分を研削して、表面粗度Raが1μm以上となるように粗面加工するので、ロールプレス等の大掛かりな装置を必要とせず、コストの低減化に対応しえ、製造が容易である。   According to the second embodiment, since a predetermined portion is ground from the outer sides of the outer peripheral portion of one side of the current collector 200 and the surface roughness Ra is set to 1 μm or more, a roll press is performed. Such a large-scale apparatus is not required, can cope with cost reduction, and is easy to manufacture.

(第3の実施形態)
図5は本発明の第3の実施形態に係るバイポーラ電池100Bの製造工程を示し、(A)は集電体の平面図および断面図、(B)はマスキング工程の平面図および断面図、(C)は表面処理工程の平面図および断面図、(D)はマスクを除去した状態の平面図および断面図である。
(Third embodiment)
FIG. 5 shows a manufacturing process of the bipolar battery 100B according to the third embodiment of the present invention, in which (A) is a plan view and a sectional view of a current collector, (B) is a plan view and a sectional view of a masking process, C) is a plan view and a cross-sectional view of the surface treatment process, and FIG.

第3の実施形態のバイポーラ電池100Bでは、第1および第2の実施形態と同様の材質にて形成され、表面粗度Raも同様に1μm以下の集電体(たとえばSUS箔)を用いている(図5(A)参照)。まず、図5(B)に示すように、集電体200の片面の表面処理が不要な部分にマスキングを施す。具体的には、集電体200の外周部四辺の外辺から所定の部分を除く中央部分に長方形状のマスク290を貼付する。次に、図5(C)に示すように、マスク290から露出した部分つまり集電体200の外周部四辺の外辺から所定の部分を表面処理して、表面粗度Raが1μm以上となるように粗面加工する。表面処理は、エッチング等の薬品による化学的処理の他、サンドブラスト、ワイヤーブラシ、ヤスリ等による機械的処理であっても構わない。この表面処理により粗面加工した部分がシール部材貼付部分200Aとなる。マスク290の材質は、粗面加工を施す表面処理の種類に応じて適宜選択される。表面処理の終了後、必要に応じて洗浄を施し、図5(D)に示すように、集電体200の片面の上記シール部材貼付部分200Aの内側の中央部分に貼付したマスク290を除去する。   In the bipolar battery 100B of the third embodiment, a current collector (for example, a SUS foil) that is formed of the same material as that of the first and second embodiments and has a surface roughness Ra of 1 μm or less is also used. (See FIG. 5A). First, as shown in FIG. 5B, masking is performed on a portion of the current collector 200 that does not require surface treatment on one side. Specifically, a rectangular mask 290 is attached to the central portion excluding a predetermined portion from the outer sides of the outer peripheral portion of the current collector 200. Next, as shown in FIG. 5C, a surface treatment is performed on a portion exposed from the mask 290, that is, a predetermined portion from the outer sides of the outer peripheral portion of the current collector 200, and the surface roughness Ra becomes 1 μm or more. To roughen the surface. The surface treatment may be a mechanical treatment such as sand blasting, wire brush, or file, in addition to chemical treatment such as etching. The portion roughened by this surface treatment becomes a seal member pasting portion 200A. The material of the mask 290 is appropriately selected according to the type of surface treatment to be roughened. After completion of the surface treatment, cleaning is performed as necessary, and as shown in FIG. 5D, the mask 290 attached to the central portion inside the seal member attaching portion 200A on one side of the current collector 200 is removed. .

そして、図示していないが、このマスク290を除去した部分つまり上記シール部材貼付部分200Aの内側の中央部分に、上述した正極スラリーを塗布し乾燥させて正極層210を形成する。その後、第2の実施形態と同様に、正極層210と隙間を隔ててシール部材貼付部分200Aにシール部材を熱溶着等により貼付する。シール部材を貼付した後、正極層210を塗布した集電体200の反対面の全面に負極スラリーを塗布し、乾燥させて負極層220を形成することにより、バイポーラ電極が完成する。発電要素の形成は、第1および第2の実施形態と同様に、正極と負極とがセパレータの電解質層を挟んで対向するように積層して単電池を形成し、このような積層を繰り返して、所望の積層数の発電要素が形成される。発電要素の最下層の負極末端極は上記負極タブ120Bに接続され、その最上層の正極末端極は上記正極タブ120Aに接続されて(図1参照)、第3の実施形態のバイポーラ電池100Bが完成する。   Although not shown, the positive electrode slurry 210 is formed by applying the positive electrode slurry to the portion where the mask 290 is removed, that is, the central portion inside the seal member attaching portion 200A, and drying. Thereafter, as in the second embodiment, a seal member is attached to the seal member attaching portion 200A with a gap from the positive electrode layer 210 by thermal welding or the like. After applying the seal member, the negative electrode slurry is applied to the entire surface of the opposite surface of the current collector 200 to which the positive electrode layer 210 has been applied, and dried to form the negative electrode layer 220, thereby completing the bipolar electrode. As in the first and second embodiments, the power generation element is formed by stacking the positive electrode and the negative electrode so that the electrolyte layer of the separator faces each other to form a unit cell, and repeating such stacking A power generation element having a desired number of layers is formed. The lowermost negative electrode terminal pole of the power generation element is connected to the negative electrode tab 120B, the uppermost positive electrode terminal electrode is connected to the positive electrode tab 120A (see FIG. 1), and the bipolar battery 100B of the third embodiment is formed. Complete.

第3の実施形態によれば、集電体200の片面の表面処理が不要な部分にマスキングを施すので、シール部材貼付部分200Aのみに選択的に表面処理を施して粗面加工することができ、コストの低減化に対応しえ、製造が容易である。   According to the third embodiment, since masking is performed on a portion of the current collector 200 that does not require surface treatment, the surface treatment can be selectively performed only on the seal member pasting portion 200A to roughen the surface. It is easy to manufacture because it can cope with cost reduction.

なお、上記の第1から第3の実施形態にあっては、シール部材貼付部分200Aを粗面加工しているが、表面粗度を粗くする代わりに、少なくともシール部材貼付部分200Aに穴開け加工、うろこ状加工、集電体200の材質と同組成の微紛の焼き付け加工などの加工を施してもよい。   In the first to third embodiments described above, the seal member pasting portion 200A is roughened, but instead of roughening the surface roughness, at least the seal member pasting portion 200A is perforated. Further, processing such as scaly processing or baking of fine powder having the same composition as the material of the current collector 200 may be performed.

(第4の実施形態)
以上説明してきたバイポーラ電池100、(100A、100B)は、直列に又は並列に複数接続して電池モジュール250(図6参照)を形成し、この電池モジュール250をさらに複数、直列に又は並列に接続して組電池300を形成することもできる。図示する電池モジュール250は、上記バイポーラ電池100を複数個積層してモジュールケース内に収納し、各バイポーラ電池100を並列に接続したものである。図6は、本発明の第4の実施形態に係る組電池300の平面図(図A)、正面図(図B)、側面図(図C)を示しているが、作成した電池モジュール250は、バスバーのような電気的な接続手段を用いて相互に接続し、電池モジュール250は接続治具310を用いて複数段積層される。何個のバイポーラ電池100を接続して電池モジュール250を作成するか、また、何段の電池モジュール250を積層して組電池300を作成するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
(Fourth embodiment)
Bipolar batteries 100 (100A, 100B) described above are connected in series or in parallel to form a battery module 250 (see FIG. 6), and a plurality of battery modules 250 are connected in series or in parallel. Thus, the assembled battery 300 can also be formed. The illustrated battery module 250 is obtained by stacking a plurality of the bipolar batteries 100 and storing them in a module case, and connecting the bipolar batteries 100 in parallel. FIG. 6 shows a plan view (FIG. A), a front view (FIG. B), and a side view (FIG. C) of an assembled battery 300 according to the fourth embodiment of the present invention. The battery modules 250 are connected to each other using an electrical connection means such as a bus bar, and the battery modules 250 are stacked in a plurality of stages using a connection jig 310. How many bipolar batteries 100 are connected to create the battery module 250 and how many battery modules 250 are stacked to create the assembled battery 300 are determined by the battery capacity of the vehicle (electric vehicle) to be mounted. Depending on the output.

このように、電池モジュール250を複数直並列接続されてなる組電池300は、高容量、高出力を得ることができ、一つ一つの電池モジュール250の信頼性が高いことから、組電池300としての長期的な信頼性の維持が可能である。また一部の組電池モジュール250が故障しても、その故障部分を交換するだけで修理が可能になる。   As described above, the assembled battery 300 in which a plurality of battery modules 250 are connected in series and parallel can obtain high capacity and high output, and the reliability of each battery module 250 is high. It is possible to maintain long-term reliability. Further, even if some of the assembled battery modules 250 fail, repair can be performed by simply replacing the failed part.

(第5の実施形態)
図7は、本発明の第5の実施形態に係る車両として自動車400を示す概略構成図である。上述したバイポーラ電池100、電池モジュール250および/または組電池300を自動車や電車などの車両に搭載し、モータなどの電気機器の駆動用電源に使用することができる。
(Fifth embodiment)
FIG. 7 is a schematic configuration diagram showing an automobile 400 as a vehicle according to the fifth embodiment of the present invention. The above-described bipolar battery 100, battery module 250, and / or assembled battery 300 can be mounted on a vehicle such as an automobile or a train and used as a power source for driving an electric device such as a motor.

組電池300を、電気自動車400に搭載するには、図7に示すように、電気自動車400の車体中央部の座席下に搭載する。座席下に搭載すれば、車内空間およびトランクルームを広く取ることができるからである。なお、組電池300を搭載する場所は、座席下に限らず、後部トランクルームの下部でもよいし、車両前方のエンジンルームでも良い。以上のような組電池300を用いた電気自動車400は高い耐久性を有し、長期間使用しても十分な出力を提供しうる。さらに、燃費、走行性能に優れた電気自動車、ハイブリッド自動車を提供できる。   In order to mount the assembled battery 300 on the electric vehicle 400, the battery pack 300 is mounted under the seat in the center of the vehicle body of the electric vehicle 400 as shown in FIG. This is because if it is installed under the seat, the interior space and the trunk room can be widened. The place where the assembled battery 300 is mounted is not limited to the position under the seat, but may be a lower part of the rear trunk room or an engine room in front of the vehicle. The electric vehicle 400 using the assembled battery 300 as described above has high durability and can provide sufficient output even when used for a long period of time. Furthermore, it is possible to provide electric vehicles and hybrid vehicles that are excellent in fuel efficiency and running performance.

なお、本発明では、組電池300だけではなく、使用用途によっては、電池モジュール250のみを搭載するようにしてもよいし、これら組電池300と電池モジュール250を組み合わせて搭載するようにしてもよい。また、本発明の組電池または組電池モジュールを搭載することのできる車両としては、上記の電気自動車やハイブリッドカーが好ましいが、これらに制限されるものではない。   In the present invention, not only the assembled battery 300 but also only the battery module 250 may be mounted depending on the intended use, or the assembled battery 300 and the battery module 250 may be mounted in combination. . Further, as the vehicle on which the assembled battery or the assembled battery module of the present invention can be mounted, the above-described electric vehicle and hybrid car are preferable, but are not limited thereto.

100、100A、100B バイポーラ電池、
120A 正極タブ、
120B 負極タブ、
150 単電池、
160 発電要素、
180 外装材、
200 集電体、
200A シール部材貼付部分、
210 正極層、
220 負極層、
230 バイポーラ電極、
240 電解質層、
250 電池モジュール、
260 シール部材、
280A、280B ロールプレス、
290 マスク、
300 組電池、
310 接続治具、
400 車両。
100, 100A, 100B bipolar battery,
120A positive electrode tab,
120B negative electrode tab,
150 cells,
160 power generation elements,
180 exterior material,
200 current collector,
200A seal member pasting part,
210 positive electrode layer,
220 negative electrode layer,
230 bipolar electrodes,
240 electrolyte layer,
250 battery module,
260 sealing member,
280A, 280B roll press,
290 mask,
300 battery packs,
310 connection jig,
400 vehicles.

Claims (2)

表面粗度1μm以下の集電体の一方の面には正極層が形成されその他方の面には負極層が形成されたバイポーラ電極と電解質層とを交互に複数積層して発電要素が形成され、前記集電体は、前記正極層及び前記負極層が形成される電極形成部分と当該電極形成部分以外のシール部材貼付部分を有するバイポーラ電池の製造方法であって、
前記集電体の電極形成部分に前記正極層及び前記負極層を形成する工程と、
前記集電体のシール部材貼付部分の表面粗度を1μm以上とするために、前記集電体の表面前記正極層及び前記負極層の表面表面粗度1μm以上のロール面を有するロールプレスでプレス加工する工程と、
を含むことを特徴とするバイポーラ電池の製造方法。
A power generation element is formed by alternately laminating a plurality of bipolar electrodes and electrolyte layers each having a positive electrode layer formed on one surface and a negative electrode layer on the other surface of a current collector having a surface roughness of 1 μm or less. The current collector is a method of manufacturing a bipolar battery having an electrode forming portion on which the positive electrode layer and the negative electrode layer are formed and a sealing member pasting portion other than the electrode forming portion,
Forming the positive electrode layer and the negative electrode layer on the electrode forming portion of the current collector;
The surface roughness of the seal member sticking portion of the current collector to the above 1 [mu] m, the surface of the current collector, the positive electrode layer and a roll press having a surface of the surface roughness 1 [mu] m or more rolls surface of the negative electrode layer The process of pressing in
A method for manufacturing a bipolar battery, comprising:
前記プレス加工する工程の後に、さらに、前記集電体、前記正極層及び前記負極層を覆うシール材を前記シール部材貼付部分に貼付ける工程を含むことを特徴とする請求項1に記載のバイポーラ電池の製造方法。   2. The bipolar according to claim 1, further comprising a step of affixing a sealing material covering the current collector, the positive electrode layer, and the negative electrode layer to the sealing member affixing portion after the pressing process. Battery manufacturing method.
JP2012210932A 2012-09-25 2012-09-25 Bipolar battery manufacturing method Active JP5522222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210932A JP5522222B2 (en) 2012-09-25 2012-09-25 Bipolar battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210932A JP5522222B2 (en) 2012-09-25 2012-09-25 Bipolar battery manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006005693A Division JP2007188746A (en) 2006-01-13 2006-01-13 Bipolar battery, battery pack, and vehicle mounting their batteries

Publications (2)

Publication Number Publication Date
JP2012256616A JP2012256616A (en) 2012-12-27
JP5522222B2 true JP5522222B2 (en) 2014-06-18

Family

ID=47527962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210932A Active JP5522222B2 (en) 2012-09-25 2012-09-25 Bipolar battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5522222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905167B1 (en) * 2017-04-24 2018-10-08 한국생산기술연구원 Bipolar All Solid-State Battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218400B2 (en) * 2003-04-15 2009-02-04 日産自動車株式会社 Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP2004356462A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Electric double layer chip capacitor and chip electrolyte battery
JP4370902B2 (en) * 2003-12-24 2009-11-25 日産自動車株式会社 Bipolar battery and manufacturing method thereof.
KR100790631B1 (en) * 2004-03-09 2008-01-02 닛본 덴끼 가부시끼가이샤 Film enclosed electric device and collector covering member for the film enclosed electric device

Also Published As

Publication number Publication date
JP2012256616A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP2007188746A (en) Bipolar battery, battery pack, and vehicle mounting their batteries
JP4736580B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP5526481B2 (en) Secondary battery and manufacturing method thereof
JP5017843B2 (en) Battery module and battery pack
JP5272494B2 (en) Bipolar secondary battery
JP5200367B2 (en) Bipolar battery electrode
US8852295B2 (en) Secondary battery and method of producing the secondary battery
US10177387B2 (en) Bipolar battery current collector that contracts to interrupt a flow of electric current in a direction thereof and bipolar battery
JP5028812B2 (en) Battery module
JP5070703B2 (en) Bipolar battery
JP5401756B2 (en) Secondary battery
JP4894129B2 (en) Thin battery and battery pack
JP2005276486A (en) Laminated battery, battery pack, and vehicle
JPWO2006062204A1 (en) Bipolar battery
JP2006202680A (en) Polymer battery
JP5631537B2 (en) Bipolar secondary battery
JP2006120577A (en) Polymer battery
JP4042613B2 (en) Bipolar battery
JP4956777B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP5471018B2 (en) Bipolar electrode manufacturing method, bipolar electrode, bipolar secondary battery manufacturing method, bipolar secondary battery, assembled battery, and vehicle
JP5343663B2 (en) Method and apparatus for manufacturing bipolar secondary battery
JP4622294B2 (en) Bipolar battery, bipolar battery manufacturing method, assembled battery, and vehicle equipped with the same
JP5205749B2 (en) Bipolar battery manufacturing method
JP5522222B2 (en) Bipolar battery manufacturing method
JP2004327374A (en) Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R151 Written notification of patent or utility model registration

Ref document number: 5522222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151