JP5502437B2 - Non-destructive quality judgment device - Google Patents

Non-destructive quality judgment device Download PDF

Info

Publication number
JP5502437B2
JP5502437B2 JP2009270770A JP2009270770A JP5502437B2 JP 5502437 B2 JP5502437 B2 JP 5502437B2 JP 2009270770 A JP2009270770 A JP 2009270770A JP 2009270770 A JP2009270770 A JP 2009270770A JP 5502437 B2 JP5502437 B2 JP 5502437B2
Authority
JP
Japan
Prior art keywords
vegetables
fruits
specific gravity
cavity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009270770A
Other languages
Japanese (ja)
Other versions
JP2011112575A (en
Inventor
久也 山田
伸明 田中
咲子 高田
春彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2009270770A priority Critical patent/JP5502437B2/en
Publication of JP2011112575A publication Critical patent/JP2011112575A/en
Application granted granted Critical
Publication of JP5502437B2 publication Critical patent/JP5502437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、トマト、いちご、りんご、梨等の青果物の品質を非破壊で判定する非破壊品質判定装置の技術に関する。   The present invention relates to a technique for a nondestructive quality determination device that nondestructively determines the quality of fruits and vegetables such as tomatoes, strawberries, apples and pears.

従来、トマト、いちご、りんご、梨等の青果物の内部における空洞の有無を、測定対象である青果物を破壊することなく連続して測定できる装置としては、X線を用いた非破壊品質判定装置が公知となっている。例えば、特許文献1においては、X線を特定方向に搬送される青果物に対して照射して、青果物内を通過して外部に出射されるX線を測定することにより青果物内部の空洞部等の有無を判定する青果物の非破壊品質判定装置(内部判定装置)が開示されている。   Conventionally, as a device that can continuously measure the presence or absence of cavities in fruits and vegetables such as tomatoes, strawberries, apples, and pears without destroying the fruits and vegetables to be measured, a non-destructive quality judgment device using X-rays is used. It is publicly known. For example, in Patent Document 1, X-rays are irradiated to fruits and vegetables conveyed in a specific direction, and X-rays passing through the fruits and vegetables and emitted to the outside are measured. A nondestructive quality determination device (internal determination device) for fruits and vegetables for determining the presence or absence is disclosed.

一方、青果物の糖度及び酸度を、青果物を破壊することなく連続してできる装置としては、赤外線を用いた非破壊品質判定装置が公知となっている。例えば、特許文献2においては、青果物を搬送する搬送手段と、赤外線を照射して青果物の糖度、酸度等を非破壊で判定する品質判定手段と、青果物の形状を解析する画像処理手段と、を備えた非破壊品質判定装置(内部品質判定装置)が開示されている。この非破壊品質判定装置は、青果物中に含まれる糖度に係る成分や酸度に係る成分が赤外線の特定の波長成分を吸収することから、その吸収量を測定することにより青果物の糖度、酸度を判定するようになっている。   On the other hand, a nondestructive quality determination apparatus using infrared rays is known as an apparatus capable of continuously producing sugar and acidity of fruits and vegetables without destroying the fruits and vegetables. For example, in Patent Document 2, a conveying unit that conveys fruits and vegetables, a quality determination unit that non-destructively determines the sugar content and acidity of fruits and vegetables by irradiating infrared rays, and an image processing unit that analyzes the shape of the fruits and vegetables. A nondestructive quality determination device (internal quality determination device) provided is disclosed. This non-destructive quality determination device determines the sugar content and acidity of fruits and vegetables by measuring the amount of absorption because components related to sugar content and components related to acidity contained in fruits and vegetables absorb specific wavelength components of infrared rays. It is supposed to be.

特開平11−174001号公報Japanese Patent Laid-Open No. 11-174001 特開2008−14873号公報JP 2008-14873 A

しかしながら、特許文献1における非破壊品質判定装置においては、青果物の内部における空洞の有無を判定できるものの、当該判定をX線を用いて行うため、有資格者の監督が必要となり、非破壊品質判定装置の取り扱いが制限されるという問題があった。つまり、非破壊品質判定装置を誰でも簡単に用いて、青果物の内部における空洞の有無の判定を行うことができなかった。   However, in the non-destructive quality determination apparatus in Patent Document 1, although the presence or absence of a cavity in the fruit or vegetable can be determined, since the determination is performed using X-rays, supervision of a qualified person is necessary, and non-destructive quality determination There was a problem that handling of the device was limited. That is, no one can easily use the nondestructive quality determination device to determine the presence or absence of cavities in the fruits and vegetables.

また、特許文献2における非破壊品質判定装置においては、青果物の糖度及び酸度は判定できるものの、青果物の内部における空洞の有無を直接判定することができないという問題があった。つまり、青果物の内部における空洞の有無の判定と、青果物の糖度及び酸度の測定とを赤外分光法を用いた同一の装置で行うことができず、非破壊品質判定装置における作業効率が悪かった。   Moreover, in the nondestructive quality determination apparatus in Patent Document 2, there is a problem that although the sugar content and acidity of fruits and vegetables can be determined, the presence or absence of cavities in the fruits and vegetables cannot be directly determined. In other words, the determination of the presence or absence of cavities inside the fruits and vegetables and the measurement of sugar and acidity of the fruits and vegetables could not be performed with the same device using infrared spectroscopy, and the work efficiency in the nondestructive quality determination device was poor. .

そこで、本発明は、青果物の糖度及び酸度と、青果物の内部における空洞の有無との判定を非破壊で容易に行うことができる非破壊品質判定装置を提供する。   Therefore, the present invention provides a non-destructive quality determination device that can easily and non-destructively determine the sugar content and acidity of fruits and vegetables and the presence or absence of cavities in the fruits and vegetables.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

請求項1においては、青果物(2)に、赤外線を照射する照射手段(51)と、前記照射手段(51)により照射されて、前記青果物(2)を透過又は反射した前記赤外線を検出する検出手段(52)と、該検出手段(52)が検出した赤外線を、特定波長の光を分光する回折格子又はプリズムにより分光し、分光された光を電気信号に変換する検出器を具備し、該変換した電気信号を制御装置(70)へ送信する分光器(60)と、前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の糖度及び酸度を測定する糖度・酸度測定手段(72)と、同じく、前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の内部における空洞の有無を判定する空洞判定手段(73)とを具備し、該空洞判定手段(73)は、前記糖度・酸度測定手段(72)を構成する分光器(60)から取得した、同じ電気信号において、前記照射手段(51)から照射される赤外線中の特定の波長成分の吸収量を検出し、該吸収量を、該青果物(2)の種類又は品種毎に予め試験を行うことによって、前記吸収量と青果物(2)の比重との関係を求めて作成し、前記制御装置(70)の記憶部(75)に記憶した比重マップに当てはめて、該青果物(2)の比重を予測し、予測した青果物(2)の比重に基づいて、当該比重から青果物(2)の空洞率を求め、当該空洞率の大きさから青果物(2)の内部における空洞の有無を、糖度及び酸度の測定と同時に判定し、前記青果物(2)のサイズを判定するサイズ判定手段(74)を、撮像用投光手段(53)と撮像手段(54)により構成して具備させ、前記記憶部(75)には、青果物(2)の規格サイズの所定領域ごとに複数の比重マップを記憶させ、前記サイズ判定手段(74)が判定した青果物(2)の規格サイズに応じて、該記憶部(75)に記憶させた異なる比重マップを選択し、選択した当該比重マップに、前記分光器(60)から取得した電気信号に基づいて得られる赤外線中の特定の波長成分の吸収量を当てはめ、前記空洞判定手段(73)は、前記青果物(2)の内部における空洞の有無を、当該青果物(2)のサイズ別に異なる比重マップから判定するものである。 In claim 1, the vegetables and fruits (2), an irradiation means for irradiating the infrared (51) is irradiated by said irradiating means (51), detecting for detecting the infrared rays transmitted through or reflected by the fruit or vegetable (2) Means (52), and a detector that splits the infrared light detected by the detection means (52) with a diffraction grating or a prism that splits light of a specific wavelength, and converts the split light into an electrical signal, A detection result by the spectroscope (60) for transmitting the converted electric signal to the control device (70) and the detection means (52) is acquired, and the sugar content and acidity of the fruits and vegetables (2) are measured based on the detection result. Similarly to the sugar content / acidity measurement means (72), the detection result obtained by the detection means (52) is acquired, and the cavity determination means for determining the presence or absence of a cavity in the fruits and vegetables (2) based on the detection result ( 7 The cavity determining means (73) is irradiated from the irradiating means (51) with the same electrical signal acquired from the spectroscope (60) constituting the sugar / acidity measuring means (72). By detecting the amount of absorption of a specific wavelength component in the infrared ray and testing the amount of absorption in advance for each type or variety of the fruits and vegetables (2), the absorption amount and the specific gravity of the fruits and vegetables (2) Based on the specific gravity of the predicted fruits and vegetables (2), the specific gravity of the fruits and vegetables (2) is predicted by creating a relationship and applying it to the specific gravity map stored in the storage unit (75) of the control device (70). , determine the void content of the fruits or vegetables (2) from the specific gravity, the presence or absence of a cavity in the interior of the fruit or vegetable (2) from the size of the void content was determined simultaneously with the measurement of the sugar content and acidity, the size of the fruit or vegetable (2) Size determining means (74) for determining A plurality of specific gravity maps are stored for each predetermined area of the standard size of the fruits and vegetables (2) in the storage unit (75). In accordance with the standard size of the fruits and vegetables (2) determined by the size determination means (74), a different specific gravity map stored in the storage unit (75) is selected, and the spectroscope (60 is added to the selected specific gravity map. ) Is applied to the absorption amount of the specific wavelength component in the infrared ray obtained based on the electrical signal obtained from (2), and the cavity determining means (73) determines whether or not there is a cavity inside the fruit (2). ) From different specific gravity maps according to size .

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、青果物(2)に、赤外線を照射する照射手段(51)と、前記照射手段(51)により照射されて、前記青果物(2)を透過又は反射した前記赤外線を検出する検出手段(52)と、該検出手段(52)が検出した赤外線を、特定波長の光を分光する回折格子又はプリズムにより分光し、分光された光を電気信号に変換する検出器を具備し、該変換した電気信号を制御装置(70)へ送信する分光器(60)と、前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の糖度及び酸度を測定する糖度・酸度測定手段(72)と、同じく、前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の内部における空洞の有無を判定する空洞判定手段(73)とを具備し、該空洞判定手段(73)は、前記糖度・酸度測定手段(72)を構成する分光器(60)から取得した、同じ電気信号において、前記照射手段(51)から照射される赤外線中の特定の波長成分の吸収量を検出し、該吸収量を、該青果物(2)の種類又は品種毎に予め試験を行うことによって、前記吸収量と青果物(2)の比重との関係を求めて作成し、前記制御装置(70)の記憶部(75)に記憶した比重マップに当てはめて、該青果物(2)の比重を予測し、予測した青果物(2)の比重に基づいて、当該比重から青果物(2)の空洞率を求め、当該空洞率の大きさから青果物(2)の内部における空洞の有無を、糖度及び酸度の測定と同時に判定するので、青果物の糖度及び酸度と、青果物の内部における空洞の有無との判定を非破壊で、同時に、かつ、容易に行うことができる。 In claim 1, the vegetables and fruits (2), an irradiation means for irradiating the infrared (51) is irradiated by said irradiating means (51), detecting for detecting the infrared rays transmitted through or reflected by the fruit or vegetable (2) Means (52), and a detector that splits the infrared light detected by the detection means (52) with a diffraction grating or a prism that splits light of a specific wavelength, and converts the split light into an electrical signal, A detection result by the spectroscope (60) for transmitting the converted electric signal to the control device (70) and the detection means (52) is acquired, and the sugar content and acidity of the fruits and vegetables (2) are measured based on the detection result. Similarly to the sugar content / acidity measurement means (72), the detection result obtained by the detection means (52) is acquired, and the cavity determination means for determining the presence or absence of a cavity in the fruits and vegetables (2) based on the detection result ( 7 The cavity determining means (73) is irradiated from the irradiating means (51) with the same electrical signal acquired from the spectroscope (60) constituting the sugar / acidity measuring means (72). By detecting the amount of absorption of a specific wavelength component in the infrared ray and testing the amount of absorption in advance for each type or variety of the fruits and vegetables (2), the absorption amount and the specific gravity of the fruits and vegetables (2) Based on the specific gravity of the predicted fruits and vegetables (2), the specific gravity of the fruits and vegetables (2) is predicted by creating a relationship and applying it to the specific gravity map stored in the storage unit (75) of the control device (70). The cavity ratio of the fruits and vegetables (2) is obtained from the specific gravity, and the presence or absence of cavities in the fruits and vegetables (2) is determined from the size of the cavity ratio simultaneously with the measurement of the sugar content and the acidity. The presence of cavities inside the fruits and vegetables Nondestructively determination that, at the same time, and can be easily performed.

また、前記青果物(2)のサイズを判定するサイズ判定手段(74)を、撮像用投光手段(53)と撮像手段(54)により構成して具備させ、前記記憶部(75)には、青果物(2)の規格サイズの所定領域ごとに複数の比重マップを記憶させ、前記サイズ判定手段(74)が判定した青果物(2)の規格サイズに応じて、該記憶部(75)に記憶させた異なる比重マップを選択し、選択した当該比重マップに、前記分光器(60)から取得した電気信号に基づいて得られる赤外線中の特定の波長成分の吸収量を当てはめ、前記空洞判定手段(73)は、前記青果物(2)の内部における空洞の有無を、当該青果物(2)のサイズ別に異なる比重マップから判定するので、青果物のサイズによって青果物の内部における空洞の有無の判定結果にばらつきが生じにくくなる。 The size determination means (74) for determining the size of the fruits and vegetables (2) is constituted by an imaging light projecting means (53) and an imaging means (54), and the storage section (75) A plurality of specific gravity maps are stored for each predetermined area of the standard size of the fruits and vegetables (2), and are stored in the storage unit (75) according to the standard sizes of the fruits and vegetables (2) determined by the size determining means (74). Different specific gravity maps are selected, and the absorption amount of a specific wavelength component in infrared rays obtained based on the electrical signal acquired from the spectroscope (60) is applied to the selected specific gravity map, and the cavity determination means (73 ) Determines the presence or absence of cavities in the fruits and vegetables (2) from the specific gravity maps that differ depending on the size of the fruits and vegetables (2). The variation is less likely to occur in.

従って、青果物の内部における空洞の有無を精度よく判定することができる。   Accordingly, it is possible to accurately determine the presence or absence of a cavity in the fruit or vegetable.

本発明の第1実施形態に係る非破壊品質判定装置の全体的な構成を示す一部断面側面図。The partial cross section side view which shows the whole structure of the nondestructive quality determination apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る非破壊品質判定装置の全体的な構成を示す一部断面平面図。The partial cross section top view which shows the whole structure of the nondestructive quality determination apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る非破壊品質判定装置の制御系を示すブロック図。The block diagram which shows the control system of the nondestructive quality determination apparatus which concerns on 1st Embodiment of this invention. トマトの比重と、トマトの空洞率との関係を示すグラフ。The graph which shows the relationship between the specific gravity of a tomato and the cavity ratio of a tomato. 分光器から取得したスペクトルによって予測したトマトの比重と、電子比重計によって測定したトマトの比重との関係を示すグラフ。The graph which shows the relationship between the specific gravity of the tomato estimated with the spectrum acquired from the spectrometer, and the specific gravity of the tomato measured with the electronic hydrometer. 規格サイズ3L−Lのトマトにおける分光器から取得したスペクトルによって予測したトマトの比重と、電子比重計によって測定したトマトの比重との関係を示すグラフ。The graph which shows the relationship between the specific gravity of the tomato estimated with the spectrum acquired from the spectroscope in the tomato of standard size 3L-L, and the specific gravity of the tomato measured with the electronic hydrometer. 規格サイズM−3Sのトマトにおける分光器から取得したスペクトルによって予測したトマトの比重と、電子比重計によって測定したトマトの比重との関係を示すグラフ。The graph which shows the relationship between the specific gravity of the tomato estimated with the spectrum acquired from the spectroscope in the tomato of standard size M-3S, and the specific gravity of the tomato measured with the electronic hydrometer.

本発明の第1実施形態に係る非破壊品質判定装置1について説明する。本発明において、「青果物」とは、トマト、いちご、りんご、梨等の果実及び蔬菜をいい、特に、本発明においては、内部に空洞の生じるおそれがある果実及び蔬菜をいう。   A nondestructive quality determination apparatus 1 according to a first embodiment of the present invention will be described. In the present invention, “fruits and vegetables” refers to fruits such as tomatoes, strawberries, apples and pears, and side dishes, and particularly in the present invention, refers to fruits and side dishes that may cause cavities inside.

図1及び図2に示すように、非破壊品質判定装置1は、青果物2を搬送しながら、青果物2の品質(青果物2の内部における空洞の有無、青果物2の糖度、酸度、大きさ)の測定及び判定を行うものである。非破壊品質判定装置1は、搬送装置3と、測定装置4とを具備する。   As shown in FIG. 1 and FIG. 2, the nondestructive quality determination device 1 conveys the fruits and vegetables 2 while checking the quality of the fruits and vegetables 2 (the presence or absence of cavities inside the fruits and vegetables 2, the sugar content, the acidity, and the size of the fruits and vegetables 2) Measurement and judgment are performed. The nondestructive quality determination device 1 includes a transport device 3 and a measurement device 4.

搬送装置3は、青果物2を搬送するものである。搬送装置3は、載置部10・10・・・と、左側搬送チェーン20と、右側搬送チェーン30と、モータ等の駆動装置とを具備する。なお、図1及び図2中の矢印90の方向を、搬送装置3による青果物2の搬送方向前方と定義して、以下の説明を行う。   The conveying device 3 conveys the fruits and vegetables 2. .., The left side transport chain 20, the right side transport chain 30, and a driving device such as a motor. In addition, the direction of the arrow 90 in FIG.1 and FIG.2 is defined as the conveyance direction front of the fruits and vegetables 2 by the conveying apparatus 3, and the following description is performed.

載置部10は、その上部に青果物2を載置するものである。載置部10は、略直方体状の部材である。載置部10の上面には、平面視略円形状の凹部11が上向きに開口して外周部から中央部に向かうに従って徐々に深くなるように形成される。凹部11の平面視略中央部、即ち最深部には、貫通孔12が当該底部を上下に貫通するように形成される。   The mounting part 10 mounts the fruits and vegetables 2 on the upper part. The mounting part 10 is a substantially rectangular parallelepiped member. A concave portion 11 having a substantially circular shape in plan view is formed on the upper surface of the mounting portion 10 so as to open upward and gradually become deeper from the outer peripheral portion toward the central portion. A through hole 12 is formed in the substantially central portion of the concave portion 11 in plan view, that is, at the deepest portion so as to penetrate the bottom portion up and down.

左側搬送チェーン20及び右側搬送チェーン30は、搬送方向に沿って延出されるとともに、左右方向に所定間隔を隔てて対向配置される。左側搬送チェーン20及び右側搬送チェーン30は、それぞれの搬送方向前端部及び後端部でスプロケット(不図示)に巻回される。左側搬送チェーン20及び右側搬送チェーン30は、それぞれの前端部又は後端部に設けられるスプロケットが駆動装置により駆動されることにより回転可能とされる。   The left transport chain 20 and the right transport chain 30 extend along the transport direction, and are disposed to face each other with a predetermined interval in the left-right direction. The left conveyance chain 20 and the right conveyance chain 30 are wound around a sprocket (not shown) at the front end and the rear end in the respective conveyance directions. The left transport chain 20 and the right transport chain 30 can be rotated by driving sprockets provided at respective front end portions or rear end portions by a driving device.

そして、左側搬送チェーン20と右側搬送チェーン30との間に、複数の載置部10・10・・・が搬送方向に所定間隔ごとに配置される。各載置部10は、左側搬送チェーン20及び右側搬送チェーン30の上側にピン軸等によって支持される。左側搬送チェーン20及び右側搬送チェーン30が回転することにより、載置部10・10・・・が後方から前方へ移動して、載置部10上に載置された青果物2が搬送されることとなる。   .. Are arranged at predetermined intervals in the transport direction between the left transport chain 20 and the right transport chain 30. Each placement unit 10 is supported on the upper side of the left conveyance chain 20 and the right conveyance chain 30 by a pin shaft or the like. When the left conveyance chain 20 and the right conveyance chain 30 rotate, the placement units 10, 10... Move from the rear to the front, and the fruits and vegetables 2 placed on the placement unit 10 are conveyed. It becomes.

測定装置4は、青果物2の品質の測定及び判定を行うものである。測定装置4は、測定部50と、分光器60と、制御装置70と、出力手段80とを具備する。   The measuring device 4 measures and determines the quality of the fruits and vegetables 2. The measuring device 4 includes a measuring unit 50, a spectroscope 60, a control device 70, and output means 80.

まず、測定部50について説明する。   First, the measurement unit 50 will be described.

測定部50は、青果物2の品質の測定を行うものである。測定部50は、照射手段51と、検出手段52と、撮像用投光手段53と、撮像手段54と、筐体55とを具備する。測定部50は、搬送装置3により搬送される青果物2の搬送経路の途中に配設される。   The measuring unit 50 measures the quality of the fruits and vegetables 2. The measurement unit 50 includes an irradiation unit 51, a detection unit 52, an imaging light projecting unit 53, an imaging unit 54, and a housing 55. The measurement unit 50 is disposed in the middle of the conveyance path of the fruits and vegetables 2 conveyed by the conveyance device 3.

照射手段51は、青果物2に赤外線を照射するものである。照射手段51は、LEDやハロゲンランプ等により構成される発光部51aを有する。照射手段51は、左側搬送チェーン20及び右側搬送チェーン30の前後(搬送)方向途中部に設けられる筐体55内であって、載置部10及びその上に載置された青果物2よりも下方に配置される。照射手段51は、搬送中の青果物2が所定位置に至ったとき、赤外線を所定のタイミングで載置部10の貫通孔12を介して上方へ向かって発し、当該載置部10上の青果物2に照射する。   The irradiation means 51 irradiates the fruits and vegetables 2 with infrared rays. The irradiating means 51 has a light emitting unit 51a configured by an LED, a halogen lamp, or the like. The irradiation means 51 is in a housing 55 provided in the middle of the left and right conveyance chains 20 and the right conveyance chain 30 in the front-rear (conveyance) direction, and below the placement unit 10 and the fruits and vegetables 2 placed thereon. Placed in. The irradiating means 51 emits infrared rays upward through the through-holes 12 of the placement unit 10 at a predetermined timing when the transporting fruits and vegetables 2 reach a predetermined position, and the fruits and vegetables 2 on the placement unit 10 are emitted. Irradiate.

検出手段52は、照射手段51により青果物2に照射されて、当該青果物2を透過した赤外線を検出するものである。検出手段52は、フォトダイオードやフォトトランジスタ、CCD等により構成される検出部52aを有する。検出手段52は、筐体55内であって、載置部10及びその上に載置された青果物2よりも上方に前記発光部51aと対向するように配置される。検出手段52は、照射手段51の発光部51aから照射されて載置部10上の青果物2を透過した赤外線を検出する。なお、検出手段は、本実施形態においては、青果物2を透過した赤外線(赤外線の透過光)を検出する構成としているが、青果物2により反射された赤外線(赤外線の反射光)を検出する構成としてもよい。   The detection means 52 detects infrared rays that are irradiated on the fruits and vegetables 2 by the irradiation means 51 and transmitted through the fruits and vegetables 2. The detection unit 52 includes a detection unit 52a configured by a photodiode, a phototransistor, a CCD, or the like. The detection means 52 is disposed in the housing 55 so as to face the light emitting part 51a above the placement part 10 and the fruits and vegetables 2 placed thereon. The detection unit 52 detects infrared rays that are emitted from the light emitting unit 51 a of the irradiation unit 51 and transmitted through the fruits and vegetables 2 on the placement unit 10. In the present embodiment, the detection means is configured to detect infrared rays (infrared transmitted light) transmitted through the fruits and vegetables 2, but is configured to detect infrared rays (infrared reflected light) reflected by the fruits and vegetables 2. Also good.

撮像用投光手段53は、搬送装置3によって搬送される青果物2を所定位置で照明するものである。撮像用投光手段53は、LEDやハロゲンランプ、蛍光灯等により構成される発光部53aを有する。撮像用投光手段53は、筐体55内であって、載置部10及びその上に載置された青果物2よりも上方に配置される。撮像用投光手段53の発光部53aは、左側搬送チェーン20及び右側搬送チェーン30と、載置部10とがある下方に向けられている。撮像用投光手段53は、発光部53aが向けられた下方を搬送中の青果物2が至った時に照明する。   The imaging light projecting means 53 illuminates the fruits and vegetables 2 conveyed by the conveying device 3 at a predetermined position. The imaging light projecting unit 53 includes a light emitting unit 53a configured by an LED, a halogen lamp, a fluorescent lamp, or the like. The imaging light projecting means 53 is disposed in the housing 55 above the placement unit 10 and the fruits and vegetables 2 placed thereon. The light emitting portion 53a of the imaging light projecting means 53 is directed downward where the left conveyance chain 20, the right conveyance chain 30, and the placement portion 10 are located. The imaging light projecting means 53 illuminates when the fruits and vegetables 2 being conveyed reach the lower part to which the light emitting part 53a is directed.

撮像手段54は、搬送装置3によって搬送される青果物2を所定のタイミングで撮像するものである。撮像手段54は、CCDカメラ等により構成される。撮像手段54は、撮像用投光手段53により照明される青果物2を撮像することができるように、筐体55内であって、載置部10及びその上に載置された青果物2よりも上方に配置される。つまり、撮像手段54は、検出手段52及び撮像用投光手段53とともに、筐体55内であって、載置部10及びその上に載置された青果物2よりも上方に配置される。   The imaging means 54 images the fruits and vegetables 2 conveyed by the conveying device 3 at a predetermined timing. The imaging means 54 is constituted by a CCD camera or the like. The imaging means 54 is located in the housing 55 so as to be able to take an image of the fruits and vegetables 2 illuminated by the imaging light projecting means 53 and more than the placement portion 10 and the fruits and vegetables 2 placed thereon. Arranged above. That is, the imaging unit 54 is disposed in the housing 55 together with the detection unit 52 and the imaging light projecting unit 53, above the mounting unit 10 and the fruits and vegetables 2 mounted thereon.

筐体55は、照射手段51、検出手段52、撮像用投光手段53、及び撮像手段54を覆う略箱状の部材である。筐体55は、左側搬送チェーン20及び右側搬送チェーン30の前後(搬送)方向途中部に設けられる。筐体55の後側壁には、筐体55の内部空間と外部空間とを連通する入口開口部55aが形成される。筐体55の前側壁には、筐体55の内部空間と外部空間とを連通する出口開口部55bが形成される。入口開口部55aと出口開口部55bとは、互いに対向する位置に形成され、搬送装置3の左側搬送チェーン20及び右側搬送チェーン30が貫通配置される。こうして、搬送装置3により搬送される青果物2は、その搬送経路の途中で入口開口部55aから筐体55の内部空間へと搬入され、出口開口部55bから筐体55の外部空間へと搬出されることとなる。   The housing 55 is a substantially box-shaped member that covers the irradiation unit 51, the detection unit 52, the imaging light projecting unit 53, and the imaging unit 54. The housing 55 is provided in the middle in the front-rear (conveyance) direction of the left conveyance chain 20 and the right conveyance chain 30. An entrance opening 55 a that communicates the internal space of the housing 55 and the external space is formed on the rear side wall of the housing 55. On the front side wall of the housing 55, an outlet opening 55b that connects the internal space of the housing 55 and the external space is formed. The inlet opening 55a and the outlet opening 55b are formed at positions facing each other, and the left conveyance chain 20 and the right conveyance chain 30 of the conveyance device 3 are disposed through. Thus, the fruits and vegetables 2 transported by the transport device 3 are carried into the internal space of the housing 55 from the entrance opening 55a in the middle of the transport path, and are transported from the exit opening 55b to the external space of the housing 55. The Rukoto.

このような筐体55を測定部50に具備することにより、筐体55内へ侵入する外乱光を低減させることが可能となっている。なお、筐体55は、入口開口部55a及び出口開口部55bにカーテン等の遮蔽部材を備える構成としてもよい。これにより、筐体55内へ侵入する外乱光をさらに低減させることができる。   By providing such a case 55 in the measurement unit 50, it is possible to reduce disturbance light entering the case 55. In addition, the housing | casing 55 is good also as a structure provided with shielding members, such as a curtain, in the entrance opening part 55a and the exit opening part 55b. Thereby, the disturbance light which penetrates into the housing 55 can be further reduced.

次に、分光器60について説明する。   Next, the spectroscope 60 will be described.

分光器60は、特定の波長の光を取り出し(分光し)、当該特定波長の光を電気信号に変換し、光の強度に関する情報として出力するものである。分光器60は、その内部に、特定波長の光を分光する回折格子やプリズム等、及び分光された光を電気信号に変換する検出器等を具備する。分光器60は、検出手段52が検出した赤外線を分光し、電気信号に変換する。分光器60は、変換した電気信号を制御装置70へ送信する。   The spectroscope 60 takes out (splits) light of a specific wavelength, converts the light of the specific wavelength into an electric signal, and outputs it as information on the intensity of the light. The spectroscope 60 includes therein a diffraction grating, a prism, and the like that split light of a specific wavelength, and a detector that converts the split light into an electrical signal. The spectroscope 60 separates infrared rays detected by the detecting means 52 and converts them into electric signals. The spectroscope 60 transmits the converted electrical signal to the control device 70.

なお、本実施形態において、検出手段52と分光器60とは別個に具備される構成としたが、本発明はこれに限るものではない。例えば、検出手段52と分光器60とを一体に構成することや、分光器60と制御装置70とを一体に構成することも可能である。   In the present embodiment, the detection means 52 and the spectroscope 60 are provided separately, but the present invention is not limited to this. For example, the detection means 52 and the spectroscope 60 can be configured integrally, or the spectroscope 60 and the control device 70 can be configured integrally.

次に、制御装置70について、図1及び図3により説明する。   Next, the control device 70 will be described with reference to FIGS. 1 and 3.

制御装置70は、搬送装置3、照射手段51、撮像用投光手段53、撮像手段54及び出力手段80を制御するとともに、検出手段52による検出結果及び撮像手段54による撮像結果(撮像データ)に基づいて青果物2の品質を測定及び判定するものである。制御装置70は、中央処理装置や記憶装置等から構成され、糖度・酸度測定手段72と、空洞判定手段73と、サイズ判定手段74と、記憶部75とを有する。制御装置70は、搬送装置3、照射手段51、撮像用投光手段53、撮像手段54、及び出力手段80と接続される。また、制御装置は、検出手段52と分光器60を介して接続される。   The control device 70 controls the transport device 3, the irradiation unit 51, the imaging light projecting unit 53, the imaging unit 54, and the output unit 80, and converts the detection result by the detection unit 52 and the imaging result (imaging data) by the imaging unit 54. Based on this, the quality of the fruits and vegetables 2 is measured and judged. The control device 70 includes a central processing unit, a storage device, and the like, and includes a sugar content / acidity measurement unit 72, a cavity determination unit 73, a size determination unit 74, and a storage unit 75. The control device 70 is connected to the transport device 3, the irradiation unit 51, the imaging light projecting unit 53, the imaging unit 54, and the output unit 80. The control device is connected to the detection means 52 via the spectroscope 60.

糖度・酸度測定手段72は、検出手段52による検出結果に基づいて青果物2の糖度及び酸度を測定するものである。詳細には、糖度・酸度測定手段72は、検出手段52が検出した赤外線を分光器60が分光して変換した電気信号(スペクトル)に基づいて青果物2の糖度及び酸度を測定するものである。   The sugar content / acidity measuring means 72 measures the sugar content and acidity of the fruits and vegetables 2 based on the detection result of the detection means 52. Specifically, the sugar content / acidity measuring means 72 measures the sugar content and acidity of the fruits and vegetables 2 based on an electric signal (spectrum) obtained by spectrally converting the infrared rays detected by the detecting means 52 by the spectroscope 60.

空洞判定手段73は、検出手段52による検出結果、即ち分光器60からの電気信号(スペクトル)、及び撮像手段54からの撮像結果(撮像データ)に基づいて、青果物2の内部における空洞の有無を判定するものである。また、空洞判定手段73は、分光器60からの電気信号(スペクトル)のみに基づいて、青果物2の内部における空洞の有無を判定することもできる。   The cavity determination means 73 determines whether or not there is a cavity in the fruit and vegetables 2 based on the detection result by the detection means 52, that is, the electrical signal (spectrum) from the spectroscope 60 and the imaging result (imaging data) from the imaging means 54. Judgment. The cavity determination means 73 can also determine the presence or absence of a cavity in the fruit and vegetables 2 based only on the electrical signal (spectrum) from the spectroscope 60.

サイズ判定手段74は、撮像手段54による撮像結果(撮像データ)に基づいて、青果物2の規格サイズ(L・M・S等)を判定するものである。サイズ判定手段74は、撮像手段54から取得した撮像結果(撮像データ)に基づいて青果物2の大きさ(実測値)を測定する。さらに、サイズ判定手段74は、その測定した青果物2の大きさ(実測値)が予め記憶部75に記憶しておいたどの規格サイズに相当するか否かを比較する。そして、サイズ判定手段74は、その比較結果から、判定対象となる青果物2が、どの規格サイズの青果物2であるかを判定する。   The size determination unit 74 determines the standard size (L, M, S, etc.) of the fruits and vegetables 2 based on the imaging result (imaging data) by the imaging unit 54. The size determination unit 74 measures the size (actual value) of the fruit 2 based on the imaging result (imaging data) acquired from the imaging unit 54. Furthermore, the size determination means 74 compares the standard size stored in the storage unit 75 in advance with the measured size (actual value) of the fruits and vegetables 2. Then, the size determination unit 74 determines which standard size of the fruits and vegetables 2 is the determination target fruits and vegetables 2 from the comparison result.

記憶部75は、搬送装置3、照射手段51、撮像用投光手段53、撮像手段54及び出力手段80を制御するための種々のプログラム及びデータ、青果物2の糖度及び酸度を測定するための種々のプログラム及びデータ、及び、青果物2の内部における空洞の有無を判定するための種々のプログラム及びデータ、青果物2の規格サイズ(L・M・S等)を判定するための種々のプログラム及びデータを格納する。   The storage unit 75 has various programs and data for controlling the transport device 3, the irradiation unit 51, the imaging light projecting unit 53, the imaging unit 54, and the output unit 80, and various types for measuring the sugar content and acidity of the fruits and vegetables 2. Programs and data, various programs and data for determining the presence or absence of cavities inside the fruits and vegetables 2, and various programs and data for determining the standard sizes (L, M, S, etc.) of the fruits and vegetables 2. Store.

出力手段80は、各種の設定値、青果物2の品質、各種の判定結果等を表示又は印字して出力するものである。出力手段80は、例えば、ディスプレイ等の表示装置やプリンタ等の印刷装置である。   The output unit 80 displays or prints various set values, the quality of the fruits and vegetables 2, various determination results, and the like. The output unit 80 is, for example, a display device such as a display or a printing device such as a printer.

次に、非破壊品質判定装置1の動作態様について説明する。   Next, the operation | movement aspect of the nondestructive quality determination apparatus 1 is demonstrated.

図1及び図2に示すように、青果物2は、一つの載置部10に一つ載置された状態で、搬送装置3により搬送方向後方、即ち上流側から前方、即ち下流側へと搬送される。青果物2を搬送方向後方上流側で各載置部10に載置する方法としては、作業者の手作業による方法や、自動化された装置により行う方法等があるが、当該方法を限定するものではない。青果物2は、搬送装置3により、入口開口部55aを通って筐体55の内部へと搬送される。   As shown in FIGS. 1 and 2, the fruits and vegetables 2 are transported from the rear in the transport direction, that is, from the upstream side to the front, that is, the downstream side, by the transport device 3 while being placed on the single placement unit 10. Is done. As a method of placing the fruits and vegetables 2 on each placement unit 10 on the upstream side in the conveyance direction, there are a method by an operator's manual operation, a method by an automated apparatus, etc., but the method is not limited. Absent. The fruits and vegetables 2 are transported by the transport device 3 into the housing 55 through the entrance opening 55a.

搬送装置3により搬送される青果物2は、撮像用投光手段53の発光部53aと対向する所定位置(撮像用投光手段53の下方位置)に到達した時に、撮像用投光手段53により照明される。この際、照射手段51による赤外線の照射は行わない。   The fruits and vegetables 2 conveyed by the conveying device 3 are illuminated by the imaging light projecting means 53 when they reach a predetermined position (a position below the imaging light projecting means 53) facing the light emitting portion 53a of the imaging light projecting means 53. Is done. At this time, the irradiation unit 51 does not perform infrared irradiation.

撮像用投光手段53により青果物2が照明されると、撮像手段54は当該照明された青果物2を撮像する。撮像手段54により青果物2が撮像されると、空洞判定手段73及びサイズ判定手段74は、撮像手段54から撮像結果(撮像データ)を取得する。   When the fruits and vegetables 2 are illuminated by the imaging light projecting means 53, the imaging means 54 images the illuminated fruits and vegetables 2. When the fruits and vegetables 2 are imaged by the imaging unit 54, the cavity determination unit 73 and the size determination unit 74 acquire an imaging result (imaging data) from the imaging unit 54.

サイズ判定手段74は、撮像手段54から撮像結果(撮像データ)を取得すると、当該撮像結果(撮像データ)と、基準となる規格サイズとを比較して青果物2の規格サイズを判定する。   When the size determination unit 74 acquires the imaging result (imaging data) from the imaging unit 54, the size determination unit 74 compares the imaging result (imaging data) with the standard size as a reference to determine the standard size of the fruits and vegetables 2.

撮像手段54が青果物2を撮像すると、撮像用投光手段53は青果物2の照明を終了する。撮像用投光手段53による青果物2の照明が終了すると、照射手段51は青果物2に対して赤外線を照射する。当該照射された赤外線は、載置部10の貫通孔12を経て青果物2に照射される。   When the imaging unit 54 images the fruits and vegetables 2, the imaging light projecting unit 53 ends the illumination of the fruits and vegetables 2. When the illumination of the fruits and vegetables 2 by the imaging light projecting means 53 is completed, the irradiation means 51 irradiates the fruits and vegetables 2 with infrared rays. The irradiated infrared rays are irradiated to the fruits and vegetables 2 through the through holes 12 of the placement unit 10.

照射手段51により照射されて青果物2を透過した赤外線は、検出手段52により検出される。検出手段52により赤外線が検出されると、分光器60は検出手段52により検出された赤外線を分光し、電気信号に変換する。分光器60が分光した赤外線を電気信号に変換すると、糖度・酸度測定手段72及び空洞判定手段73は、分光器60により変換された電気信号(スペクトル)を取得する。すなわち、糖度・酸度測定手段72及び空洞判定手段73は、分光器60を介して検出手段52による検出結果を取得する。   Infrared rays irradiated by the irradiation means 51 and transmitted through the fruits and vegetables 2 are detected by the detection means 52. When infrared rays are detected by the detection means 52, the spectroscope 60 separates the infrared rays detected by the detection means 52 and converts them into electrical signals. When the infrared rays dispersed by the spectroscope 60 are converted into electric signals, the sugar / acidity measuring means 72 and the cavity determining means 73 acquire the electric signals (spectrum) converted by the spectroscope 60. That is, the sugar content / acidity measurement unit 72 and the cavity determination unit 73 obtain the detection result of the detection unit 52 via the spectroscope 60.

糖度・酸度測定手段72は、分光器60から電気信号(スペクトル)を取得すると、当該電気信号に基づいて青果物2の糖度及び酸度を測定する。また、空洞判定手段73は、分光器60からの電気信号(スペクトル)及び前記撮像手段54による撮像結果(撮像データ)に基づいて、青果物2の内部における空洞の有無を判定する。なお、空洞判定手段73は、分光器60からの電気信号(スペクトル)のみから、青果物2の内部における空洞の有無を判断することもできる。   When the sugar / acidity measuring means 72 acquires an electrical signal (spectrum) from the spectroscope 60, the sugar / acidity measuring means 72 measures the sugar and acidity of the fruits and vegetables 2 based on the electrical signal. The cavity determining means 73 determines the presence or absence of a cavity in the fruit and vegetables 2 based on the electrical signal (spectrum) from the spectroscope 60 and the imaging result (imaging data) by the imaging means 54. The cavity determining means 73 can also determine the presence or absence of a cavity in the fruit 2 from only the electrical signal (spectrum) from the spectroscope 60.

測定部50における測定及び判定を終えた青果物2は、搬送装置3により、出口開口部55bを経て筐体55の外部へと搬送される。搬送装置3の搬送方向下流側では、内部に空洞を有する青果物2が、図示しない選別装置又は人手によって除外される。また一方で、筐体55を出た青果物2は、糖度・酸度測定手段72及びサイズ判定手段74の判定結果に基づいて、選別装置又は人手によって、規格サイズ別、糖度・酸度別に選別される。   The fruits and vegetables 2 that have been measured and determined by the measuring unit 50 are conveyed by the conveying device 3 to the outside of the housing 55 through the outlet opening 55b. On the downstream side in the transport direction of the transport device 3, the fruits and vegetables 2 having cavities therein are excluded by a sorting device or manual operation (not shown). On the other hand, the fruits and vegetables 2 exiting the housing 55 are sorted by standard size and by sugar content / acidity by a sorting device or by hand based on the determination results of the sugar content / acidity measurement means 72 and the size determination means 74.

次に、制御装置70における青果物2の空洞の有無についての判定方法について説明する。   Next, the determination method about the presence or absence of the cavity of the fruits and vegetables 2 in the control apparatus 70 is demonstrated.

まず、青果物2の比重と空洞率との関係について説明する。青果物2の比重と空洞率との関係を調べるにあたり、青果物2としてトマトを用いて実験を行った。多数のサンプルを用意して、トマトの比重を電子比重計を用いた水中置換法により測定した。さらに、当該比重を測定したトマトの最大径部付近を水平切断し、この水平切断面の全面積に対する水平切断面において全面積に対して空洞部分が占める部分の面積の割合をトマトの空洞率として測定した。その結果、図4に示すような相関関係が得られた。つまり、トマト(青果物2)の比重が小さくなるほど、トマト(青果物2)の空洞率が高くなることが判明した。   First, the relationship between the specific gravity of the fruits and vegetables 2 and the void ratio will be described. In examining the relationship between the specific gravity of the fruits and vegetables 2 and the cavity ratio, experiments were performed using tomatoes as the fruits and vegetables 2. A large number of samples were prepared, and the specific gravity of tomato was measured by an underwater substitution method using an electronic hydrometer. Furthermore, the maximum diameter portion of the tomato where the specific gravity was measured is horizontally cut, and the ratio of the area occupied by the cavity portion to the total area in the horizontal cut surface with respect to the total area of the horizontal cut surface is defined as the tomato cavity ratio. It was measured. As a result, a correlation as shown in FIG. 4 was obtained. That is, it was found that the cavity ratio of tomatoes (fruits and vegetables 2) increases as the specific gravity of tomatoes (fruits and vegetables 2) decreases.

また、図5に示すように、電子比重計で測定したトマトの比重(測定値)と、分光器60から取得した電気信号(スペクトル)によって予測したトマトの比重(予測値)との関係についても、一定の相関関係を有することが判明した。   In addition, as shown in FIG. 5, the relationship between the specific gravity (measured value) of tomato measured by an electronic hydrometer and the specific gravity (predicted value) of tomato predicted by an electric signal (spectrum) acquired from the spectroscope 60 It was found to have a certain correlation.

そこで、第1実施形態では、まず分光器60から取得した電気信号(スペクトル)によって青果物2の比重を予測し、つづいて当該比重から青果物2の空洞率を求め、当該空洞率の大きさから青果物2の内部における空洞の有無を判定する。   Therefore, in the first embodiment, first, the specific gravity of the fruits and vegetables 2 is predicted from the electrical signal (spectrum) acquired from the spectroscope 60, and then the cavity ratio of the vegetables and fruits 2 is obtained from the specific gravity, and the fruits and vegetables are calculated from the size of the cavity ratio. The presence or absence of a cavity in 2 is determined.

すなわち、空洞判定手段73は、照射手段51から照射される赤外線中の特定の波長成分の吸収量と、比重マップとを用いて青果物2の比重を予測する。具体的には、当該比重マップに、分光器60から取得した電気信号(スペクトル)に応じて得られる赤外線中の特定の波長成分の吸収量を当てはめることで、青果物2の比重を予測する。ここで、比重マップとは、青果物2の種類や品種毎に予め試験を行うことによって、前記吸収量と青果物2の比重との関係を求め、マップとしたものである。なお、当該比重マップは、制御装置70の記憶部75に記憶される。   That is, the cavity determination unit 73 predicts the specific gravity of the fruits and vegetables 2 using the absorption amount of the specific wavelength component in the infrared rays irradiated from the irradiation unit 51 and the specific gravity map. Specifically, the specific gravity of the fruits and vegetables 2 is predicted by fitting the specific gravity map with an absorption amount of a specific wavelength component in infrared rays obtained according to the electric signal (spectrum) acquired from the spectroscope 60. Here, the specific gravity map is a map obtained by obtaining a relationship between the absorbed amount and the specific gravity of the fruits and vegetables 2 by conducting a test in advance for each type and variety of the fruits and vegetables 2. The specific gravity map is stored in the storage unit 75 of the control device 70.

つづいて、上述のように予測した青果物2の比重と、空洞率マップとを用いて青果物2の空洞率を予測する。具体的には、空洞判定手段73は、当該空洞率マップに、予測した青果物2の比重を当てはめることで、青果物2の空洞率を予測する。ここで、空洞率マップとは、青果物2の種類や品種毎に予め試験を行うことによって、前記青果物2の比重と空洞率との関係を求め、マップとしたものである。なお、当該空洞率マップは制御装置70の記憶部75に記憶される。   Subsequently, the cavity ratio of the fruits and vegetables 2 is predicted using the specific gravity of the vegetables and fruits 2 predicted as described above and the cavity ratio map. Specifically, the cavity determination means 73 predicts the cavity ratio of the fruits and vegetables 2 by applying the predicted specific gravity of the fruits and vegetables 2 to the cavity ratio map. Here, the cavity ratio map is a map obtained by obtaining a relationship between the specific gravity of the fruits and vegetables 2 and the cavity ratio by conducting a test in advance for each kind and variety of the fruits and vegetables 2. The cavity ratio map is stored in the storage unit 75 of the control device 70.

こうして予測した青果物2の空洞率が青果物2の種類や品種毎に予め設定した設定値よりも大きい場合、空洞判定手段73は、青果物2の内部に空洞が有ると判定する。逆に、予測した青果物2の空洞率が前記設定値以下の場合、空洞判定手段73は、青果物2の内部に空洞が無いと判定する。   When the predicted cavity ratio of the fruits and vegetables 2 is larger than a preset value set for each type and variety of the fruits and vegetables 2, the cavity determining means 73 determines that there is a cavity inside the fruits and vegetables 2. On the contrary, when the predicted cavity ratio of the fruits and vegetables 2 is equal to or less than the set value, the cavity determining means 73 determines that there is no cavity inside the fruits and vegetables 2.

また、本実施形態では、空洞判定手段73は、撮像手段54から撮像結果(撮像データ)を取得し、当該撮像結果(撮像データ)に基づいて青果物2の内部における空洞の有無を判定する。一般的に、青果物2の内部に空洞が生じている場合には、青果物2の外観が歪んでいることが多い。そのため、青果物2の外観形状を測定することにより青果物2の内部における空洞の有無を判定することができる。そこで、空洞判定手段73は、撮像手段54から撮像結果(撮像データ)を取得し、当該撮像結果(撮像データ)から青果物2の外観形状を測定する。そして、空洞判定手段73は、当該測定結果から青果物2の内部における空洞の有無を判定する。   Moreover, in this embodiment, the cavity determination means 73 acquires an imaging result (imaging data) from the imaging means 54, and determines the presence or absence of the cavity in the fruit and vegetables 2 based on the said imaging result (imaging data). Generally, when a cavity is generated in the fruit 2, the appearance of the fruit 2 is often distorted. Therefore, the presence or absence of the cavity in the fruit and vegetables 2 can be determined by measuring the external shape of the fruit and vegetables 2. Therefore, the cavity determining unit 73 acquires the imaging result (imaging data) from the imaging unit 54, and measures the appearance shape of the fruit 2 from the imaging result (imaging data). And the cavity determination means 73 determines the presence or absence of the cavity in the fruit and vegetables 2 from the said measurement result.

このように、空洞判定手段73は、検出手段52による検出結果に基づく判定と、撮像手段54による撮像結果(撮像データ)に基づく判定とを同時に行うことにより青果物2の内部における空洞の有無を判定することが可能となる。そして、空洞判定手段73は、検出手段52による検出結果に基づいて青果物2の内部における空洞の有無を判定するとともに、その判定結果に対して撮像手段54による撮像結果(撮像データ)に基づく判定結果を補助的に利用することで、青果物2の内部における空洞の有無をより精度よく判定することが可能となる。   As described above, the cavity determination unit 73 determines the presence or absence of a cavity in the fruit and vegetables 2 by simultaneously performing the determination based on the detection result by the detection unit 52 and the determination based on the imaging result (imaging data) by the imaging unit 54. It becomes possible to do. And the cavity determination means 73 determines the presence or absence of a cavity in the fruit and vegetables 2 based on the detection result by the detection means 52, and the determination result based on the imaging result (imaging data) by the imaging means 54 with respect to the determination result It is possible to more accurately determine the presence or absence of cavities in the fruit and vegetables 2 by using as a supplement.

以上のように、非破壊品質判定装置1は、青果物2に赤外線を照射する照射手段51と、照射手段51により照射されて青果物2を透過又は反射した赤外線を検出する検出手段52と、検出手段52による検出結果を取得し、前記検出結果に基づいて青果物2における糖度及び酸度を測定する糖度・酸度測定手段72と、前記検出結果に基づいて青果物2の内部における空洞の有無を判定する空洞判定手段73と、を具備するものである。   As described above, the nondestructive quality determination apparatus 1 includes the irradiation unit 51 that irradiates the fruits and vegetables 2 with infrared rays, the detection unit 52 that detects the infrared rays that are irradiated by the irradiation unit 51 and transmitted or reflected by the fruits and vegetables 2, and the detection units. 52, the sugar content / acidity measuring means 72 for measuring the sugar content and acidity in the fruits and vegetables 2 based on the detection results, and the cavity determination for determining the presence or absence of cavities in the fruits and vegetables 2 based on the detection results And means 73.

このように非破壊品質判定装置1を構成することで、青果物2の糖度及び酸度と、青果物2の内部における空洞の有無とを赤外分光法を利用して判定することが可能となる。つまり、主に青果物2の糖度及び酸度等を測定する際に使用する、赤外線を用いた既存の非破壊品質判定装置によって、青果物2の糖度及び酸度を測定(判定)するのみならず、青果物2の内部における空洞の有無を判定することができる。従って、青果物2の糖度及び酸度と、青果物2の内部における空洞の有無との判定を一つの装置により非破壊で容易に行うことができる。その結果、例えば、非破壊品質判定装置1による品質判定作業時の作業効率を向上させることができる。   By configuring the nondestructive quality determination apparatus 1 in this way, it is possible to determine the sugar content and acidity of the fruits and vegetables 2 and the presence or absence of cavities in the fruits and vegetables 2 using infrared spectroscopy. That is, not only the sugar content and acidity of the fruits and vegetables 2 are measured (determined) by the existing nondestructive quality determination device using infrared rays, which is mainly used when measuring the sugar content and acidity of the fruits and vegetables 2, but also the fruits and vegetables 2 It is possible to determine the presence or absence of a cavity in the interior. Therefore, the determination of the sugar content and acidity of the fruits and vegetables 2 and the presence or absence of cavities in the fruits and vegetables 2 can be easily performed non-destructively with one apparatus. As a result, for example, work efficiency at the time of quality judgment work by the nondestructive quality judgment device 1 can be improved.

また、非破壊品質判定装置1は、空洞判定手段73は、検出手段52による検出結果に基づいて青果物2の比重を予測し、且つ、予測した青果物2の比重に基づいて青果物2の内部における空洞の有無を判定するものである。   Further, in the nondestructive quality determination device 1, the cavity determination unit 73 predicts the specific gravity of the fruits and vegetables 2 based on the detection result by the detection unit 52, and the cavity inside the fruits and vegetables 2 based on the predicted specific gravity of the fruits and vegetables 2. The presence or absence of is determined.

このように非破壊品質判定装置1を構成することで、青果物2の糖度及び酸度と、青果物2の内部における空洞の有無との判定を非破壊で容易に行うことができる。   By configuring the non-destructive quality determination device 1 in this manner, it is possible to easily determine non-destructively the sugar content and acidity of the fruits and vegetables 2 and the presence or absence of cavities inside the fruits and vegetables 2.

次に、本発明の第2実施形態に係る非破壊品質判定装置1について説明する。なお、以下の説明において、第1実施形態に係る非破壊品質判定装置1と同一の構成については、符号を同一とし、構成の説明は省略する。   Next, the nondestructive quality determination device 1 according to the second embodiment of the present invention will be described. In the following description, the same components as those of the nondestructive quality determination device 1 according to the first embodiment are denoted by the same reference numerals, and the description of the components is omitted.

青果物2の比重と規格サイズとの関係について説明する。図6及び図7に示すように、電子比重計で測定したトマトの比重(測定値)と、分光器60から取得したスペクトルによって予測したトマトの比重(予測値)との関係を、青果物2の規格サイズの所定領域ごとに分類する(例えば、3L−Lと、M−3Sとに分類する)と、さらに高い相関関係を有することが判明した。   The relationship between the specific gravity of the fruits and vegetables 2 and the standard size will be described. As shown in FIG. 6 and FIG. 7, the relationship between the specific gravity (measured value) of tomato measured with an electronic hydrometer and the specific gravity (predicted value) of tomato predicted by the spectrum acquired from the spectroscope 60 is as follows. It has been found that when the classification is performed for each predetermined area of the standard size (for example, classification into 3L-L and M-3S), the correlation is higher.

そこで、第2実施形態では、撮像手段54からの撮像結果(撮像データ)により求められる青果物2の大きさ(実測値)によって青果物2を規格サイズ(L・M・S等)ごとに分類し、その分類した青果物2の比重を予測する。そして、規格サイズごとに分類したうえで予測した青果物2の比重に基づいて、青果物2の内部における空洞の有無を判定する。   Therefore, in the second embodiment, the fruits and vegetables 2 are classified according to the standard size (L, M, S, etc.) according to the size (measured value) of the fruits and vegetables 2 obtained from the imaging results (imaging data) from the imaging means 54, The specific gravity of the classified fruits and vegetables 2 is predicted. And the presence or absence of the cavity in the inside of fruits and vegetables 2 is determined based on the specific gravity of the fruits and vegetables 2 estimated after classifying for every standard size.

具体的には、サイズ判定手段74は、撮像手段54からの撮像結果(撮像データ)に基づいて測定した青果物2の大きさ(実測値)と、予め記憶部75に記憶しておいた青果物2の規格サイズ(L・M・S等)の閾値とを比較する。そして、サイズ判定手段74は、その比較結果から、判定対象となる青果物2が、どの規格サイズ(L・M・S等)の青果物2であるかを判定する。   Specifically, the size determination unit 74 measures the size (measured value) of the fruit 2 measured based on the imaging result (imaging data) from the imaging unit 54 and the fruit 2 stored in the storage unit 75 in advance. Are compared with the threshold values of standard sizes (L, M, S, etc.). Then, the size determination means 74 determines which standard size (L, M, S, etc.) is the fruit 2 from which the fruit 2 to be determined is based on the comparison result.

一方、記憶部75には、青果物2の規格サイズの所定領域ごとに複数の比重マップが記憶されている。例えば、サイズ判定手段74が判定した青果物2の規格サイズがLに入る場合に用いる第1比重マップや、サイズ判定手段74が判定した青果物2の規格サイズがMに入る場合に用いる第2比重マップ等が記憶部75に記憶されている。   On the other hand, the storage unit 75 stores a plurality of specific gravity maps for each predetermined area of the standard size of the fruit 2. For example, the first specific gravity map used when the standard size of the fruits and vegetables 2 determined by the size determination means 74 falls within L, and the second specific gravity map used when the standard size of the fruits and vegetables 2 determined by the size determination means 74 falls within M. Are stored in the storage unit 75.

そして、空洞判定手段73は、サイズ判定手段74の判定結果に基づいて、判定した青果物2の規格サイズに対応する比重マップを選択する。例えば、サイズ判定手段74が判定した青果物2の規格サイズがLであれば、空洞判定手段73は第1比重マップを選択する。空洞判定手段73は、選択した当該比重マップに、分光器60から取得した電気信号(スペクトル)から得られる赤外線中の特定の波長成分の吸収量を当てはめることで、青果物2の比重を予測する。   Then, the cavity determining unit 73 selects a specific gravity map corresponding to the determined standard size of the fruits and vegetables 2 based on the determination result of the size determining unit 74. For example, if the standard size of the fruits and vegetables 2 determined by the size determination unit 74 is L, the cavity determination unit 73 selects the first specific gravity map. The cavity determination unit 73 predicts the specific gravity of the fruits and vegetables 2 by fitting the selected specific gravity map with the absorption amount of the specific wavelength component in the infrared rays obtained from the electric signal (spectrum) acquired from the spectroscope 60.

さらに、空洞判定手段73は、空洞率マップに、予測した青果物2の比重を当てはめることで、青果物2の空洞率を予測する。こうして予測した青果物2の空洞率が青果物2の規格サイズ(L・M・S等)ごとに予め設定した設定値よりも大きい場合、空洞判定手段73は、青果物2の内部に空洞が有ると判定する。逆に、予測した青果物2の空洞率が前記設定値以下の場合、空洞判定手段73は、青果物2の内部に空洞が無いと判定する。このように、青果物2の規格サイズ(L・M・S等)別に分類して青果物2の内部における空洞の有無を判定することで、青果物2のサイズ間で、青果物2の内部における空洞の有無の判定結果にばらつきが生じることがなく、より精度よく当該空洞の有無を判定することが可能となる。   Furthermore, the cavity determination means 73 predicts the cavity ratio of the fruits and vegetables 2 by applying the predicted specific gravity of the fruits and vegetables 2 to the cavity ratio map. When the predicted cavity ratio of the fruits and vegetables 2 is larger than a preset value for each standard size (L, M, S, etc.) of the fruits and vegetables 2, the cavity determining means 73 determines that there is a cavity inside the fruits and vegetables 2. To do. On the contrary, when the predicted cavity ratio of the fruits and vegetables 2 is equal to or less than the set value, the cavity determining means 73 determines that there is no cavity inside the fruits and vegetables 2. In this way, the presence or absence of cavities in the fruits and vegetables 2 between the sizes of the fruits and vegetables 2 by determining the presence or absence of cavities in the fruits and vegetables 2 by classifying according to the standard size (L, M, S, etc.) of the fruits and vegetables 2 This determination result does not vary, and the presence / absence of the cavity can be determined with higher accuracy.

以上のように、非破壊品質判定装置1は、青果物2のサイズを判定するサイズ判定手段74を有し、空洞判定手段73は、サイズ判定手段74の判定結果に基づいて青果物2のサイズ別に青果物2の空洞の有無を判定するものである。   As described above, the nondestructive quality determination device 1 includes the size determination unit 74 that determines the size of the fruits and vegetables 2, and the cavity determination unit 73 determines the size of the fruits and vegetables 2 based on the determination result of the size determination unit 74. The presence or absence of two cavities is determined.

このように非破壊品質判定装置1を構成することで、青果物2のサイズ間で、青果物2の内部における空洞の有無の判定結果にばらつきが生じにくくなる。従って、青果物2の内部における空洞の有無を精度よく判定することができる。   By configuring the non-destructive quality determination device 1 in this way, variations in the determination result of the presence or absence of cavities in the fruits and vegetables 2 between the sizes of the fruits and vegetables 2 are less likely to occur. Therefore, the presence or absence of a cavity in the fruit and vegetables 2 can be accurately determined.

1 非破壊品質判定装置
2 青果物
51 照射手段
52 検出手段
72 糖度・酸度測定手段
73 空洞判定手段
74 サイズ判定手段
DESCRIPTION OF SYMBOLS 1 Nondestructive quality determination apparatus 2 Fruits and vegetables 51 Irradiation means 52 Detection means 72 Sugar | sugar degree / acidity measurement means 73 Cavity determination means 74 Size determination means

Claims (1)

青果物(2)に、赤外線を照射する照射手段(51)と、前記照射手段(51)により照射されて、前記青果物(2)を透過又は反射した前記赤外線を検出する検出手段(52)と、該検出手段(52)が検出した赤外線を、特定波長の光を分光する回折格子又はプリズムにより分光し、分光された光を電気信号に変換する検出器を具備し、該変換した電気信号を制御装置(70)へ送信する分光器(60)と、
前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の糖度及び酸度を測定する糖度・酸度測定手段(72)と、
同じく、前記検出手段(52)による検出結果を取得し、前記検出結果に基づいて前記青果物(2)の内部における空洞の有無を判定する空洞判定手段(73)とを具備し、
該空洞判定手段(73)は、前記糖度・酸度測定手段(72)を構成する分光器(60)から取得した、同じ電気信号において、前記照射手段(51)から照射される赤外線中の特定の波長成分の吸収量を検出し、
該吸収量を、該青果物(2)の種類又は品種毎に予め試験を行うことによって、前記吸収量と青果物(2)の比重との関係を求めて作成し、前記制御装置(70)の記憶部(75)に記憶した比重マップに当てはめて、該青果物(2)の比重を予測し、
予測した青果物(2)の比重に基づいて、当該比重から青果物(2)の空洞率を求め、当該空洞率の大きさから青果物(2)の内部における空洞の有無を、糖度及び酸度の測定と同時に判定し、
前記青果物(2)のサイズを判定するサイズ判定手段(74)を、撮像用投光手段(53)と撮像手段(54)により構成して具備させ、前記記憶部(75)には、青果物(2)の規格サイズの所定領域ごとに複数の比重マップを記憶させ、
前記サイズ判定手段(74)が判定した青果物(2)の規格サイズに応じて、該記憶部(75)に記憶させた異なる比重マップを選択し、選択した当該比重マップに、前記分光器(60)から取得した電気信号に基づいて得られる赤外線中の特定の波長成分の吸収量を当てはめ、
前記空洞判定手段(73)は、前記青果物(2)の内部における空洞の有無を、当該青果物(2)のサイズ別に異なる比重マップから判定する
ことを特徴とする非破壊品質判定装置。
The fruits or vegetables (2), an irradiation means for irradiating the infrared (51), said irradiated by the irradiation means (51), detecting means for detecting the infrared rays transmitted through or reflected by the fruit or vegetable (2) and (52), An infrared ray detected by the detection means (52) is dispersed by a diffraction grating or a prism that separates light of a specific wavelength, and a detector that converts the dispersed light into an electric signal is provided, and the converted electric signal is controlled. A spectroscope (60) transmitting to the device (70);
A sugar content / acidity measuring means (72) for obtaining a detection result by the detection means (52) and measuring the sugar content and acidity of the fruits and vegetables (2) based on the detection result;
Similarly, a detection result by the detection means (52) is obtained, and a cavity determination means (73) for determining the presence or absence of a cavity in the fruit and vegetables (2) based on the detection result,
The cavity determination means (73) is a specific electric signal acquired from the spectroscope (60) that constitutes the sugar / acidity measurement means (72), and the specific determination in the infrared rays irradiated from the irradiation means (51) is the same. Detect the amount of absorption of wavelength components,
The absorption amount is created by obtaining a relationship between the absorption amount and the specific gravity of the fruits and vegetables (2) by conducting a test in advance for each kind or variety of the fruits and vegetables (2), and storing it in the control device (70). Applying the specific gravity map stored in the part (75) to predict the specific gravity of the fruits and vegetables (2);
Based on the predicted specific gravity of the fruits and vegetables (2), the void ratio of the fruits and vegetables (2) is obtained from the specific gravity, and the presence or absence of cavities in the fruits and vegetables (2) is determined from the size of the void ratio. Judge at the same time,
The size determination means (74) for determining the size of the fruits and vegetables (2) is constituted by an imaging light projecting means (53) and an imaging means (54), and the storage unit (75) includes fruits and vegetables ( 2) storing a plurality of specific gravity maps for each predetermined area of the standard size;
In accordance with the standard size of the fruits and vegetables (2) determined by the size determination means (74), a different specific gravity map stored in the storage unit (75) is selected, and the spectroscope (60 is added to the selected specific gravity map. ) Is applied to the absorption amount of a specific wavelength component in the infrared obtained based on the electrical signal obtained from
The non-destructive quality judging device, wherein the cavity judging means (73) judges the presence / absence of a cavity in the fruit (2) from different specific gravity maps according to the size of the fruit (2) .
JP2009270770A 2009-11-27 2009-11-27 Non-destructive quality judgment device Active JP5502437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270770A JP5502437B2 (en) 2009-11-27 2009-11-27 Non-destructive quality judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270770A JP5502437B2 (en) 2009-11-27 2009-11-27 Non-destructive quality judgment device

Publications (2)

Publication Number Publication Date
JP2011112575A JP2011112575A (en) 2011-06-09
JP5502437B2 true JP5502437B2 (en) 2014-05-28

Family

ID=44235009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270770A Active JP5502437B2 (en) 2009-11-27 2009-11-27 Non-destructive quality judgment device

Country Status (1)

Country Link
JP (1) JP5502437B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004547A (en) * 2013-06-19 2015-01-08 ヤンマー株式会社 Non-destructive quality determination device
JP6473075B2 (en) * 2015-12-22 2019-02-20 ヤンマー株式会社 Internal quality judgment system
JP6749686B2 (en) * 2016-06-09 2020-09-02 近江度量衡株式会社 Internal quality judgment device, selection system, and density measurement device
CN115078270B (en) * 2022-08-19 2022-11-29 北京市农林科学院智能装备技术研究中心 Fruit and vegetable surface global spectrum detection system and detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111473A (en) * 1998-10-02 2000-04-21 Nippon Electro Sensari Device Kk Inspection system for vegetables and fruits

Also Published As

Publication number Publication date
JP2011112575A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP7091388B2 (en) Methods and devices for detecting substances
JP2003527594A (en) Apparatus and method for measuring and correlating fruit properties with visible / near infrared spectra
JP2006170669A (en) Quality inspection device of vegetables and fruits
JP5502437B2 (en) Non-destructive quality judgment device
KR20110081668A (en) Nondestructive sorting apparatus for fruit
JP5325434B2 (en) Fruit and vegetable sorting device
KR101400649B1 (en) Blooded egg detection method using vis/nir transmitted light
JP2013164338A (en) Method for detecting foreign matter of plant or plant product
WO2004059300A1 (en) Fruit-vegetable quality evaluation device
KR20190010589A (en) Bulk re-inspecting device and method
JP4589897B2 (en) Internal quality judgment device
KR101096790B1 (en) Apparatus of measuring volume of agricultural products using multi-channel cameras
JP2009270973A (en) Device for determining quality of vegetable and fruit
JP5386114B2 (en) Fruit and vegetable quality judgment device
KR101002656B1 (en) Nondestructive evaluation apparatus of sugar content for grape
JP2006267037A (en) Internal quality evaluating apparatus and internal quality evaluation method of fresh product
JP2009281823A (en) Quality determination device of vegetables and fruits
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
JP2014174030A (en) Spectrometry apparatus and spectrometry method
JP6166110B2 (en) Non-destructive quality judgment device
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP4591064B2 (en) Nondestructive detection method for blood eggs
JP2006098108A (en) Internal quality evaluation device for produce
KR20240105765A (en) Measurement device and measurement method for measuring internal quality of fruit
JP2004226102A (en) Quality evaluation device of fruits and vegetables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350