JP5500354B2 - Membrane structure measuring method and surface shape measuring apparatus - Google Patents

Membrane structure measuring method and surface shape measuring apparatus Download PDF

Info

Publication number
JP5500354B2
JP5500354B2 JP2010076773A JP2010076773A JP5500354B2 JP 5500354 B2 JP5500354 B2 JP 5500354B2 JP 2010076773 A JP2010076773 A JP 2010076773A JP 2010076773 A JP2010076773 A JP 2010076773A JP 5500354 B2 JP5500354 B2 JP 5500354B2
Authority
JP
Japan
Prior art keywords
shape data
interface
film
surface shape
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010076773A
Other languages
Japanese (ja)
Other versions
JP2011209098A (en
Inventor
西川  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010076773A priority Critical patent/JP5500354B2/en
Publication of JP2011209098A publication Critical patent/JP2011209098A/en
Application granted granted Critical
Publication of JP5500354B2 publication Critical patent/JP5500354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、膜構造測定方法及び表面形状測定装置に関する。   The present invention relates to a film structure measuring method and a surface shape measuring apparatus.

プリント基板の表面には、例えば絶縁することを目的に透明な膜(透明膜)が形成されている。このような透明膜に対しては、例えば、白色干渉法を用いた表面形状測定装置を用いることにより、透明膜の表面で反射した測定光から透明膜の表面の形状データを得ることができ、また、透明膜を透過させて、透明膜とプリント基板表面との界面で反射した測定光からこの界面の形状データ(界面形状データ)を得ることができる(例えば、特許文献1参照)。   A transparent film (transparent film) is formed on the surface of the printed board for the purpose of insulation, for example. For such a transparent film, for example, by using a surface shape measuring device using a white interference method, the shape data of the surface of the transparent film can be obtained from the measurement light reflected on the surface of the transparent film, Moreover, the shape data (interface shape data) of this interface can be obtained from the measurement light that is transmitted through the transparent film and reflected at the interface between the transparent film and the printed circuit board surface (see, for example, Patent Document 1).

特公平6−54217号公報Japanese Examined Patent Publication No. 6-54217

しかしながら、透明膜を透過した光により測定された界面形状のデータは、表面形状の影響を受けている。すなわち、この透明膜の屈折率により実際の界面形状からずれて観測されてしまう。透明膜の屈折率が正確に分かっている場合には演算により正確な界面形状を求めることができるが、透明膜が形成されたときの条件(透明膜の材料の製造工程や塗布工程等)やその後の経年変化等により屈折率は変化する可能性があるため、正確な界面形状を求めることができないという課題があった。このような膜厚測定としてはエリプソメータが使用されるが、基本的に点の測定であるため、例えば透明膜の不良解析を行う場合のようにその不良部分を探査しなければならない場合には、効率的な解析を行うことができない。   However, the interface shape data measured by the light transmitted through the transparent film is affected by the surface shape. In other words, the crystal is observed with a deviation from the actual interface shape due to the refractive index of the transparent film. When the refractive index of the transparent film is accurately known, an accurate interface shape can be obtained by calculation. However, the conditions when the transparent film is formed (such as the manufacturing process and coating process of the transparent film material) Since the refractive index may change due to subsequent secular change or the like, there is a problem that an accurate interface shape cannot be obtained. An ellipsometer is used as such a film thickness measurement, but basically it is a point measurement. For example, when a defective portion of a transparent film needs to be investigated, such as when performing a failure analysis, An efficient analysis cannot be performed.

本発明はこのような課題に鑑みてなされたものであり、測定対象膜に光を照射して測定される表面形状データ及び界面形状データから、この測定対象膜の屈折率を得ることができる膜構造測定方法、及び、この膜構造測定方法により測定対象膜の膜構造を測定する表面形状測定装置を提供することを目的とする。   The present invention has been made in view of such problems, and a film capable of obtaining the refractive index of the measurement target film from the surface shape data and the interface shape data measured by irradiating the measurement target film with light. It is an object of the present invention to provide a structure measuring method and a surface shape measuring apparatus for measuring the film structure of a measurement target film by the film structure measuring method.

前記課題を解決するために、本発明に係る膜構造測定方法は、物体に形成された測定対象膜に光を照射してこの測定対象膜の膜構造を測定する膜構造測定方法であって、前記光から測定対象膜の表面の形状である表面形状データ及び測定対象膜と物体との界面の形状である界面形状データを測定するステップと、表面形状データに対して当該表面形状データとの差分の平均値がほぼ0となる第1の基準面を算出してこの差分を補正された表面形状データとして算出するとともに、界面形状データに対して当該界面形状データとの差分の平均値がほぼ0となる第2の基準面を算出してこの差分を補正された界面形状データとして算出するステップと、補正された表面形状データ及び補正された界面形状データの相関係数を算出しこの相関係数の絶対値が最小となる条件から、測定対象膜の屈折率を算出するステップと、を有する。 In order to solve the above problems, a film structure measuring method according to the present invention is a film structure measuring method for irradiating light to a measurement target film formed on an object and measuring the film structure of the measurement target film, Measuring surface shape data which is the shape of the surface of the measurement target film from the light and interface shape data which is the shape of the interface between the measurement target film and the object, and a difference between the surface shape data and the surface shape data The first reference surface having an average value of approximately zero is calculated and this difference is calculated as corrected surface shape data. The average value of the difference between the interface shape data and the interface shape data is approximately zero. Calculating a second reference plane and calculating the difference as corrected interface shape data, calculating a correlation coefficient between the corrected surface shape data and the corrected interface shape data , and calculating the correlation coefficient of The condition that pair value is minimized, and a step of calculating a refractive index of the measurement target film.

このような膜構造測定方法において、基準面は直平面であることが好ましい。   In such a film structure measuring method, it is preferable that the reference plane is a straight plane.

また、このような膜構造測定方法において、補正された表面形状データをSCとし、補正された界面形状をKC′としたとき、屈折率nは、次式

Figure 0005500354
により算出することができる。 Further, in such a film structure measuring method, when the corrected surface shape data is S C and the corrected interface shape is K C ′, the refractive index n is given by
Figure 0005500354
Can be calculated.

また、このような膜構造測定方法は、前記表面形状データ、前記界面形状データ及び前記屈折率から、前記測定対象膜の膜厚分布を算出するステップをさらに有することが好ましい。   Moreover, it is preferable that such a film | membrane structure measuring method further has the step which calculates the film thickness distribution of the said measuring object film | membrane from the said surface shape data, the said interface shape data, and the said refractive index.

また、本発明に係る表面形状測定装置は、物体及び当該物体の表面に形成された測定対象膜に光を照射して測定対象膜の表面の形状である表面形状データ及び測定対象膜と物体との界面の形状である界面形状データを取得する撮像装置と、上述の膜構造測定方法のいずれかにより測定対象膜の膜構造を算出する制御用プロセッサと、を有する。   Further, the surface shape measuring apparatus according to the present invention irradiates light to the object and the measurement target film formed on the surface of the object, and the surface shape data which is the shape of the surface of the measurement target film and the measurement target film and the object An imaging device that acquires interface shape data that is the shape of the interface of the film, and a control processor that calculates the film structure of the measurement target film by any of the above-described film structure measurement methods.

本発明に係る膜構造測定方法及びこの方法を用いた表面形状測定装置によれば、測定対象膜に光を照射して測定される表面形状データ及び界面形状データから、この測定対象膜の屈折率を得ることができ、さらにこの屈折率を用いて、真の界面形状データや膜厚分布を得ることができる。   According to the film structure measuring method and the surface shape measuring apparatus using this method according to the present invention, from the surface shape data and the interface shape data measured by irradiating light to the film to be measured, the refractive index of the film to be measured Further, using this refractive index, true interface shape data and film thickness distribution can be obtained.

表面形状測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a surface shape measuring apparatus. 上記表面形状測定装置の光学系を示す説明図である。It is explanatory drawing which shows the optical system of the said surface shape measuring apparatus. 試料と測定結果との関係を示す説明図であって、(a)はプリント基板上に透明膜が形成された試料の断面図を示し、(b)はその測定結果を示す。It is explanatory drawing which shows the relationship between a sample and a measurement result, (a) shows sectional drawing of the sample in which the transparent film was formed on the printed circuit board, (b) shows the measurement result. 膜構造測定方法を示すフローチャートである。It is a flowchart which shows a film | membrane structure measuring method. 直平面補正を示す説明図であって、(a)は表面データ及び界面データと直平面との関係を示し、(b)は直平面補正された結果を示す。It is explanatory drawing which shows perpendicular | vertical plane correction | amendment, Comprising: (a) shows the relationship between surface data and interface data, and an orthogonal plane, (b) shows the result of an orthogonal plane correction. 透明膜の屈折率と表面形状データ及び界面形状データとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the refractive index of a transparent film, surface shape data, and interface shape data.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1及び図2を用いて、物体に形成された測定対象膜の表面形状及び界面形状を測定する表面形状測定装置の一例として、白色干渉法を用いた表面形状測定装置の構成について説明する。この表面形状測定装置100は、試料105を走査してこの試料105の画像を取得する撮像装置109と、この撮像装置109の作動の制御及び取得された画像から試料の膜構造(透明膜の屈折率や表面及び界面形状等)を算出する制御用プロセッサ110と、この制御用プロセッサ110による処理結果を表示するディスプレイ装置111と、を有して構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, using FIG. 1 and FIG. 2, the configuration of a surface shape measuring apparatus using a white light interferometry will be described as an example of a surface shape measuring apparatus that measures the surface shape and interface shape of a measurement target film formed on an object. To do. The surface shape measuring device 100 scans a sample 105 to acquire an image of the sample 105, controls the operation of the imaging device 109, and samples the film structure (refractive of transparent film) from the acquired image. A control processor 110 that calculates a rate, a surface, an interface shape, and the like) and a display device 111 that displays a processing result by the control processor 110.

撮像装置109は、撮像素子14が内蔵された撮像カメラ101と、光学系が格納された顕微鏡鏡筒装置102と、ピエゾ素子16を有し対物レンズユニット15を駆動して試料105を垂直走査するピエゾ駆動装置103と、対物レンズユニット15が格納された顕微鏡対物レンズ104と、試料105が載置される顕微鏡用試料台106と、白色光を放射して試料105を照明する光源1が格納された顕微鏡用照明装置107と、顕微鏡鏡筒装置102や顕微鏡照明装置107を支持する顕微鏡ベース108と、を有して構成される。なお、ピエゾ素子16の駆動制御及び撮像素子14から出力される信号の処理は上述の制御用プロセッサ110により行われる。   The imaging device 109 has an imaging camera 101 in which an imaging device 14 is built, a microscope barrel device 102 in which an optical system is stored, a piezo element 16, and drives the objective lens unit 15 to vertically scan the sample 105. A piezoelectric drive device 103, a microscope objective lens 104 in which an objective lens unit 15 is stored, a microscope sample stage 106 on which a sample 105 is placed, and a light source 1 that emits white light to illuminate the sample 105 are stored. The microscope illumination device 107 and the microscope base device 102 and the microscope base 108 that supports the microscope illumination device 107 are configured. The drive control of the piezo element 16 and the processing of the signal output from the image sensor 14 are performed by the control processor 110 described above.

また、この表面形状測定装置100の光学系は、光源1から放射された光を集光して試料105に照射する照明光学系2と、試料105からの光を集光してこの試料105の像を撮像素子14の撮像面上に結像する結像光学系3と、を有して構成される。   Further, the optical system of the surface shape measuring apparatus 100 includes an illumination optical system 2 that collects the light emitted from the light source 1 and irradiates the sample 105, and the light from the sample 105 that collects the light from the sample 105. And an imaging optical system 3 that forms an image on the imaging surface of the imaging device 14.

照明光学系2は、光源1側から順に、この光源1から放射された光を略平行光に変換する集光レンズ4と、この略平行光を一旦結像してさらに略平行光としてリレーする第1リレーレンズ6及び第2リレーレンズ8と、第2リレーレンズ8から出射した略平行光の一部を試料105の方向へ反射するハーフミラー(若しくはハーフプリズム)9と、このハーフミラー9で反射された光を試料105上に集光して照射する対物レンズユニット15と、から構成されている。なお、第1リレーレンズ6と第2リレーレンズ8との間に開口絞り7が設けられており、また、第2リレーレンズ8とハーフミラー9との間に視野絞り5が設けられている。   The illumination optical system 2 in order from the light source 1 side, a condenser lens 4 that converts light emitted from the light source 1 into substantially parallel light, and forms an image of the substantially parallel light once, and further relays it as substantially parallel light. The first relay lens 6 and the second relay lens 8, a half mirror (or half prism) 9 that reflects a part of the substantially parallel light emitted from the second relay lens 8 toward the sample 105, and the half mirror 9 The objective lens unit 15 is configured to collect and irradiate the reflected light on the sample 105. An aperture stop 7 is provided between the first relay lens 6 and the second relay lens 8, and a field stop 5 is provided between the second relay lens 8 and the half mirror 9.

一方、結像光学系3は、試料105側から順に、この試料105で反射した光を集光する対物レンズユニット15と、対物レンズユニット15からの光の一部を透過するハーフミラー9と、ハーフミラー9を透過した光を集光して撮像素子14の撮像面上に結像する結像レンズ13と、から構成されている。   On the other hand, the imaging optical system 3 includes, in order from the sample 105 side, an objective lens unit 15 that collects the light reflected by the sample 105, a half mirror 9 that transmits part of the light from the objective lens unit 15, The imaging lens 13 is configured to collect the light transmitted through the half mirror 9 and form an image on the imaging surface of the imaging device 14.

ここで、対物レンズユニット15は、対物レンズ10と、対物レンズ10から出射した光の一部を透過して試料105に導き、残りの光を反射するハーフミラー(若しくはハーフプリズム)11と、対物レンズ10の試料105側の焦点と共役な位置に配置され、ハーフミラー11で反射した光を反射する参照ミラー12とが一体に構成されている。なお、この対物レンズユニット15は、ピエゾ素子16により対物レンズ10の光軸に沿って振動される。   Here, the objective lens unit 15 includes an objective lens 10, a half mirror (or half prism) 11 that transmits a part of the light emitted from the objective lens 10 and guides it to the sample 105, and reflects the remaining light. A reference mirror 12 that is disposed at a position conjugate with the focal point on the sample 105 side of the lens 10 and reflects light reflected by the half mirror 11 is integrally formed. The objective lens unit 15 is vibrated along the optical axis of the objective lens 10 by the piezo element 16.

このような構成の表面形状測定装置100によると、光源1から放射された光は照明光学系2により対物レンズユニット15に導かれ対物レンズ10で集光される。この対物レンズ10で集光された光はハーフミラー11に入射し、一部の光は透過して試料105上に集光され、残りの光は反射して参照ミラー12上に集光される。そして、試料105で反射した光(この光を「測定光」と呼ぶ)はハーフミラー11に再度入射してその一部が透過し、また、参照ミラー12で反射した光(この光を「参照光」と呼ぶ)もハーフミラー11に再度入射してその一部が撮像素子14側に反射するため、これらの測定光及び参照光が重畳されて対物レンズ10に入射し、結像光学系3により撮像素子14の撮像面上に試料105の像として結像される。   According to the surface shape measuring apparatus 100 having such a configuration, the light emitted from the light source 1 is guided to the objective lens unit 15 by the illumination optical system 2 and condensed by the objective lens 10. The light collected by the objective lens 10 enters the half mirror 11, a part of the light is transmitted and collected on the sample 105, and the remaining light is reflected and collected on the reference mirror 12. . Then, the light reflected by the sample 105 (this light is referred to as “measurement light”) is incident again on the half mirror 11 and part of it is transmitted, and the light reflected by the reference mirror 12 (this light is referred to as “reference light”). The light is again incident on the half mirror 11 and part of the light is reflected to the image sensor 14 side, so that these measurement light and reference light are superimposed and incident on the objective lens 10, and the imaging optical system 3. As a result, an image of the sample 105 is formed on the imaging surface of the imaging device 14.

対物レンズユニット15において、対物レンズ10の焦点面と参照ミラー12の反射面とは上述したように共役であるので、ハーフミラー11で重畳された測定光と参照光とは干渉する。そのため、この対物レンズユニット15をピエゾ素子16で光軸方向に振動させると、対物レンズ10の焦点面にある試料105から出射した測定光は強められ、それ以外から出射した測定光は弱められるため、撮像素子14で得られる試料105の像は、対物レンズ10の焦点面にある部分が明るくなり、それ以外の部分が暗くなる(干渉縞を形成する)。そのため、この像から試料105の高さ情報を算出してその形状を測定することができる。なお、本実施形態に係る表面形状測定装置100の対物レンズユニット15においては、測定光と参照光との干渉をマイケルソン型としているが、ミラウ型やリンニク型の構成とすることも可能である。   In the objective lens unit 15, since the focal plane of the objective lens 10 and the reflection surface of the reference mirror 12 are conjugate as described above, the measurement light and the reference light superimposed by the half mirror 11 interfere with each other. For this reason, when the objective lens unit 15 is vibrated in the optical axis direction by the piezo element 16, the measurement light emitted from the sample 105 at the focal plane of the objective lens 10 is strengthened, and the measurement light emitted from the other is weakened. In the image of the sample 105 obtained by the image sensor 14, the portion in the focal plane of the objective lens 10 becomes bright and the other portion becomes dark (forms an interference fringe). Therefore, the height information of the sample 105 can be calculated from this image and its shape can be measured. In the objective lens unit 15 of the surface shape measuring apparatus 100 according to the present embodiment, the interference between the measurement light and the reference light is a Michelson type, but a Mirau type or a Linnic type configuration may be used. .

ここで、試料105が、図3(a)に示すように、プリント基板(物体)105aの表面に透明膜(測定対象膜)105bが形成されている場合であって、この透明膜105bの表面105c、及び、プリント基板105aの表面、すなわち、プリント基板105aと透明膜105bとの界面105dの形状を測定する場合について説明する。なお、説明を簡単にするために、界面105dは、直平面であって、対物レンズ10の光軸と直交するように配置されているものとする。   Here, as shown in FIG. 3A, the sample 105 has a transparent film (measurement target film) 105b formed on the surface of the printed circuit board (object) 105a, and the surface of the transparent film 105b. 105c and the surface of the printed circuit board 105a, that is, the case where the shape of the interface 105d between the printed circuit board 105a and the transparent film 105b is measured will be described. For simplicity of explanation, it is assumed that the interface 105d is a flat plane and is disposed so as to be orthogonal to the optical axis of the objective lens 10.

表面形状測定装置100の撮像素子14から出力される試料105の画像を用いて算出される透明膜105bの表面105cの形状の測定値(以下、「表面形状データ」と呼ぶ)をS(i,j)とし、界面105dの形状の測定値(以下、「界面形状データ」と呼ぶ)をK′(i,j)とすると、測定で得られる界面形状データK′(i,j)は透明膜105bの屈折率nの影響を受けているため、真の界面形状データK(i,j)は次式(1)で求められる。なお、(i,j)は撮像素子14の撮像面(若しくは、この撮像素子14で撮像される試料105の像)の座標である。ここで、撮像素子14の撮像面は、対物レンズ10の光軸に直交するように配置されているものとする。また、図3(b)に示すように、表面形状データS(i,j)、界面形状データK(i,j),K′(i,j)は、対物レンズ10の光軸方向で、試料105に対して照射される光の進む方向を正として表すものとする。   A measured value (hereinafter referred to as “surface shape data”) of the shape of the surface 105c of the transparent film 105b calculated using the image of the sample 105 output from the imaging device 14 of the surface shape measuring apparatus 100 is S (i, j) and the measured value of the shape of the interface 105d (hereinafter referred to as “interface shape data”) is K ′ (i, j), the interface shape data K ′ (i, j) obtained by the measurement is the transparent film. Since it is influenced by the refractive index n of 105b, the true interface shape data K (i, j) is obtained by the following equation (1). Note that (i, j) is the coordinates of the imaging surface of the image sensor 14 (or the image of the sample 105 imaged by the image sensor 14). Here, it is assumed that the imaging surface of the imaging element 14 is arranged so as to be orthogonal to the optical axis of the objective lens 10. Further, as shown in FIG. 3B, the surface shape data S (i, j), the interface shape data K (i, j), K ′ (i, j) are in the optical axis direction of the objective lens 10, The traveling direction of the light irradiated on the sample 105 is represented as positive.

Figure 0005500354
Figure 0005500354

この式(1)において、第2項の(K′(i,j)−S(i,j))は、試料105において、座標(i,j)に相当する場所の表面105cと界面105dとの光学距離を表している。この式(1)より、座標(i,j)における真の界面形状データK及び透明膜105bの厚さを計算するためには、透明膜105bの屈折率nの正確な値が必要となる。透明膜105bの屈折率nの正確な値を測定するためには、上述のように、例えば、エリプソメトリの原理に基づく専用の装置で計測する方法があるが、表面形状の測定箇所毎に、別の装置により屈折率を測定することは煩雑であり、測定作業の効率が低下する。そこで、表面形状測定装置100により得られる表面形状データS(i,j)及び測定された界面形状データK′(i,j)からその箇所の透明膜105bの屈折率nを求める膜構造測定方法について図4に示すフローチャートに基づいて以下に説明する。なお、以降の説明では座標(i,j)は省略する。また、以下の処理は、本実施形態の場合、制御用プロセッサ110で実行される。   In this equation (1), the second term (K ′ (i, j) −S (i, j)) is expressed by the surface 105c and the interface 105d corresponding to the coordinates (i, j) in the sample 105. Represents the optical distance. From this equation (1), in order to calculate the true interface shape data K at the coordinates (i, j) and the thickness of the transparent film 105b, an accurate value of the refractive index n of the transparent film 105b is required. In order to measure the accurate value of the refractive index n of the transparent film 105b, as described above, for example, there is a method of measuring with a dedicated device based on the principle of ellipsometry, but for each measurement point of the surface shape, It is complicated to measure the refractive index with another apparatus, and the efficiency of the measurement work is reduced. Therefore, a film structure measuring method for obtaining the refractive index n of the transparent film 105b at the location from the surface shape data S (i, j) obtained by the surface shape measuring apparatus 100 and the measured interface shape data K ′ (i, j). Is described below based on the flowchart shown in FIG. In the following description, the coordinates (i, j) are omitted. The following processing is executed by the control processor 110 in the present embodiment.

まず、制御用プロセッサ110は、ピエゾ素子16を作動させて試料105の表面を光軸方向に走査(ピエゾ走査)して撮像素子14により試料105の画像を取得する(ステップS200)。そして、この画像から表面形状データSを算出し(ステップS210)、さらに界面形状データK′を算出する(ステップS220)。   First, the control processor 110 operates the piezo element 16 to scan the surface of the sample 105 in the optical axis direction (piezo scan), and obtains an image of the sample 105 by the image sensor 14 (step S200). Then, surface shape data S is calculated from this image (step S210), and interface shape data K ′ is further calculated (step S220).

次に、測定で得られた表面形状データS及び界面形状データK′の各々を基準となる面により補正して補正された表面形状データSC及び界面形状データKC′を算出する(ステップS230)。具体的には、図5(a)に示すように、基準面として補正された結果の平均値がほぼ0となるような直平面S0,K0′を最小二乗法などで求め、図5(b)に示すように、表面形状データS及び界面形状データK′と直平面S0,K0′との差分から、補正された表面形状データSC及び界面形状データKC′を求める。なお、図5(b)は、直平面Oに対する補正された表面形状データSC及び界面形状データKC′との関係を示している。 Next, the corrected surface shape data S C and interface shape data K C ′ are calculated by correcting each of the surface shape data S and interface shape data K ′ obtained by measurement with a reference surface (step S230). ). Specifically, as shown in FIG. 5A, straight planes S 0 and K 0 ′ whose average value corrected as a reference plane is almost 0 are obtained by the least square method or the like, and FIG. As shown in (b), the corrected surface shape data S C and interface shape data K C ′ are obtained from the difference between the surface shape data S and interface shape data K ′ and the plane planes S 0 and K 0 ′. FIG. 5B shows the relationship between the corrected surface shape data S C and interface shape data K C ′ with respect to the plane O.

ここで、補正された表面形状データSCと同様の方法で補正された真の界面形状データKCとの相関係数Cを求めると、次式(2)のように表される。なお、この式(2)において、バー付のSC及びバー付のKCはそれぞれ、補正された表面形状データSC及び真の界面形状データKCの平均値である。また、Σは、座標(i,j)で表されるデータの総和を示している。 Here, when the correlation coefficient C between the corrected surface shape data S C and the true interface shape data K C corrected by the same method is obtained, it is expressed by the following equation (2). In Equation (2), S C with a bar and K C with a bar are average values of the corrected surface shape data S C and true interface shape data K C , respectively. Further, Σ indicates the total sum of data represented by coordinates (i, j).

Figure 0005500354
Figure 0005500354

この式(2)において、真の界面形状データKを上述の式(1)で置き換えてK′で表すと相関係数Cは、次式(3)のように表される。なお、この式(3)において、補正された表面形状データSC及び界面形状データKC,KC′の平均値は、上述のように0である。 In this equation (2), when the true interface shape data K is replaced by the above equation (1) and represented by K ′, the correlation coefficient C is represented by the following equation (3). In this equation (3), the average value of the corrected surface shape data S C and interface shape data K C , K C ′ is 0 as described above.

Figure 0005500354
Figure 0005500354

ここで、図6に示すように,透明膜105bの表面105cが、対物レンズ10側に向かって凸であるとすると、透明膜の屈折率nと表面形状データS及び測定された界面形状データK′とから式(1)により算出される界面形状データは、屈折率nが真の値の場合に真の界面形状データKと一致するが、屈折率nが真の値より大きい場合には表面105c側に凸となり(図6におけるK+)、反対に屈折率nが真の値より小さい場合には表面105cと反対側に凸となって算出される(図6におけるK−)。これにより、補正された表面形状SCと補正された真の界面形状KCとの相関係数Cの絶対値は、透明膜105bの屈折率nが真の値のときに最小となることが判る。したがって、式(3)で示される相関係数Cの二乗が最小になる屈折率nの値を求めれば、透明膜105bの真の屈折率を求めることができる。具体的には、次式(4)に示すように、相関係数Cの二乗を屈折率nで偏微分した値が0となるときである。 Here, as shown in FIG. 6, assuming that the surface 105c of the transparent film 105b is convex toward the objective lens 10, the refractive index n of the transparent film, the surface shape data S, and the measured interface shape data K. ′ And the interface shape data calculated by the expression (1) coincides with the true interface shape data K when the refractive index n is a true value, but the surface when the refractive index n is larger than the true value. Convex to the 105c side (K + in FIG. 6), conversely, when the refractive index n is smaller than the true value, it is convex to the opposite side to the surface 105c (K− in FIG. 6). As a result, the absolute value of the correlation coefficient C between the corrected surface shape S C and the corrected true interface shape K C may be minimized when the refractive index n of the transparent film 105b is a true value. I understand. Therefore, the true refractive index of the transparent film 105b can be obtained by obtaining the value of the refractive index n that minimizes the square of the correlation coefficient C represented by the expression (3). Specifically, as shown in the following equation (4), the value obtained by partial differentiation of the square of the correlation coefficient C with the refractive index n is 0.

Figure 0005500354
Figure 0005500354

上述のように、屈折率nを真の値を挟んで変化させると相関係数Cは変化するため、この相関係数Cの屈折率nによる偏微分の値(∂C/∂n)は0ではない。よって、式(4)において、相関係数Cが0になる屈折率nが真の値ということになる。すなわち、式(3)の相関係数Cを0として、次式(5)のように表される。   As described above, since the correlation coefficient C changes when the refractive index n is changed across the true value, the partial differential value (∂C / ∂n) of the correlation coefficient C by the refractive index n is 0. is not. Therefore, in formula (4), the refractive index n at which the correlation coefficient C is 0 is a true value. That is, it is expressed as the following equation (5) with the correlation coefficient C of equation (3) set to 0.

Figure 0005500354
Figure 0005500354

そして、この式(5)から屈折率nを求めると、次式(6)のように表される。   And if refractive index n is calculated | required from this Formula (5), it will represent like following Formula (6).

Figure 0005500354
Figure 0005500354

以上より、直平面補正された表面形状データSC及び界面形状データKC′を式(6)に代入することにより、撮像素子14で撮像された領域の透明膜105bの屈折率nを求めることができる(ステップS240)。そして、このようにして求められた屈折率nから、透明膜105bの膜厚分布や、真の界面形状Kを算出し(ステップS250)、その結果が、例えば制御用プロセッサ110によりディスプレイ装置111に表示される(ステップS260)。 As described above, the refractive index n of the transparent film 105b in the region imaged by the image sensor 14 is obtained by substituting the surface shape data S C and the interface shape data K C ′ corrected by the straight plane into the equation (6). (Step S240). Then, the film thickness distribution of the transparent film 105b and the true interface shape K are calculated from the refractive index n thus obtained (step S250), and the result is given to the display device 111 by the control processor 110, for example. It is displayed (step S260).

図3(b)に示すように、表面形状データSが対物レンズ10側に凸形状を有すると、直平面の界面105dに対して測定される界面形状データK′は対物レンズ10と反対側に凸になる。すなわち、表面形状データの補正値SCが負になるときは測定された界面形状データの補正値KC′は正になり、反対に、表面形状データの補正値SCが正になるときは測定された界面形状データの補正値KC′は負になるため、式(6)における第2項の分子は負になる。そのため、この式(6)の第2項全体も負となるので、式(6)から求められる屈折率nは1よりも大きくなる。すなわち、物質の屈折率は1より大きいため、この式(6)はこの特性に合致していると言える。 As shown in FIG. 3B, when the surface shape data S has a convex shape on the objective lens 10 side, the interface shape data K ′ measured with respect to the interface 105 d on the plane is opposite to the objective lens 10. It becomes convex. That is, when the correction value S C of the surface shape data becomes negative, the measured correction value K C ′ of the interface shape data becomes positive, and conversely, when the correction value S C of the surface shape data becomes positive. Since the correction value K C ′ of the measured interface shape data is negative, the numerator of the second term in Equation (6) is negative. For this reason, the entire second term of the equation (6) is also negative, and the refractive index n obtained from the equation (6) is larger than 1. That is, since the refractive index of the substance is larger than 1, it can be said that this equation (6) matches this characteristic.

なお、以上の説明では白色干渉を用いて表面形状及び界面形状を測定する場合について説明したが、本発明がこの構成の表面形状測定装置に限定されることはなく、例えば、コンフォーカル顕微鏡等にも適用することができる。また、膜構造測定方法において、測定で得られた表面形状データS及び界面形状データK′を直平面で補正する場合について説明したが、4次曲面で補正することも可能である。   In the above description, the case where the surface shape and the interface shape are measured using white interference has been described. However, the present invention is not limited to the surface shape measuring apparatus having this configuration. For example, the present invention is applied to a confocal microscope or the like. Can also be applied. Further, in the film structure measuring method, the case where the surface shape data S and the interface shape data K ′ obtained by the measurement are corrected with a straight plane has been described. However, it is also possible to correct with a quartic curved surface.

105a プリント基板(物体) 105b 透明膜(測定対象膜)
109 撮像装置 110 制御用プロセッサ
105a Printed circuit board (object) 105b Transparent film (measuring film)
109 Imaging device 110 Control processor

Claims (5)

物体に形成された測定対象膜に光を照射して前記測定対象膜の膜構造を測定する膜構造測定方法であって、
前記光から前記測定対象膜の表面の形状である表面形状データ及び前記測定対象膜と前記物体との界面の形状である界面形状データを測定するステップと、
前記表面形状データに対して当該表面形状データとの差分の平均値がほぼ0となる第1の基準面を算出して前記差分を補正された表面形状データとして算出するとともに、前記界面形状データに対して当該界面形状データとの差分の平均値がほぼ0となる第2の基準面を算出して前記差分を補正された界面形状データとして算出するステップと、
前記補正された表面形状データ及び前記補正された界面形状データの相関係数を算出し前記相関係数の絶対値が最小となる条件から、前記測定対象膜の屈折率を算出するステップと、を有する膜構造測定方法。
A film structure measuring method for measuring the film structure of the measurement target film by irradiating light to the measurement target film formed on the object,
Measuring surface shape data that is the shape of the surface of the measurement target film from the light and interface shape data that is the shape of the interface between the measurement target film and the object;
A first reference surface with an average difference between the surface shape data and the surface shape data of approximately zero is calculated to calculate the difference as corrected surface shape data, and to the interface shape data On the other hand, calculating a second reference surface in which the average value of the difference with the interface shape data is approximately 0 and calculating the difference as corrected interface shape data ;
Calculating a correlation coefficient between the corrected surface shape data and the corrected interface shape data , and calculating a refractive index of the measurement target film from a condition in which an absolute value of the correlation coefficient is minimized. A method for measuring a film structure.
前記基準面は直平面である請求項1に記載の膜構造測定方法。   The film structure measuring method according to claim 1, wherein the reference plane is a plane. 前記補正された表面形状データをSCとし、前記補正された界面形状をKC′としたとき、前記屈折率nは、次式
Figure 0005500354
により算出される請求項1または2に記載の膜構造測定方法。
When the corrected surface shape data is S C and the corrected interface shape is K C ′, the refractive index n is given by
Figure 0005500354
The film structure measuring method according to claim 1 or 2, calculated by:
前記表面形状データ、前記界面形状データ及び前記屈折率から、前記測定対象膜の膜厚分布を算出するステップをさらに有する請求項1〜3のいずれか一項に記載の膜構造測定方法。   The film structure measuring method according to any one of claims 1 to 3, further comprising a step of calculating a film thickness distribution of the measurement target film from the surface shape data, the interface shape data, and the refractive index. 物体及び当該物体の表面に形成された測定対象膜に光を照射して前記測定対象膜の表面の形状である表面形状データ及び前記測定対象膜と前記物体との界面の形状である界面形状データを取得する撮像装置と、
請求項1〜4のいずれか一項に記載の膜構造測定方法により前記測定対象膜の膜構造を算出する制御用プロセッサと、を有する表面形状測定装置。
Irradiating light to an object and a measurement target film formed on the surface of the object, surface shape data that is a shape of the surface of the measurement target film and interface shape data that is a shape of an interface between the measurement target film and the object An imaging device for acquiring
A surface shape measurement apparatus comprising: a control processor that calculates a film structure of the measurement target film by the film structure measurement method according to claim 1.
JP2010076773A 2010-03-30 2010-03-30 Membrane structure measuring method and surface shape measuring apparatus Active JP5500354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076773A JP5500354B2 (en) 2010-03-30 2010-03-30 Membrane structure measuring method and surface shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076773A JP5500354B2 (en) 2010-03-30 2010-03-30 Membrane structure measuring method and surface shape measuring apparatus

Publications (2)

Publication Number Publication Date
JP2011209098A JP2011209098A (en) 2011-10-20
JP5500354B2 true JP5500354B2 (en) 2014-05-21

Family

ID=44940322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076773A Active JP5500354B2 (en) 2010-03-30 2010-03-30 Membrane structure measuring method and surface shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP5500354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955478B1 (en) * 2014-06-13 2019-08-21 Mitutoyo Corporation Calculating a height map of a body of transparent material with an inclined or curved surface
JP2018125769A (en) * 2017-02-02 2018-08-09 パイオニア株式会社 Imaging apparatus, imaging method, program, and recording medium
JP2019152570A (en) * 2018-03-05 2019-09-12 東芝メモリ株式会社 measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459327B2 (en) * 1996-06-17 2003-10-20 理化学研究所 Method and apparatus for measuring layer thickness and refractive index of laminated structure
JP3582311B2 (en) * 1996-08-04 2004-10-27 松下電器産業株式会社 Medium measuring method and measuring device
JP5057848B2 (en) * 2007-05-17 2012-10-24 東レエンジニアリング株式会社 Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film

Also Published As

Publication number Publication date
JP2011209098A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5168168B2 (en) Refractive index measuring device
US9869852B2 (en) Microscopy system with auto-focus adjustment by low-coherence interferometry
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP2017530341A (en) Optical evaluation of lenses and lens molds
WO2013084557A1 (en) Shape-measuring device
KR102341678B1 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP5459944B2 (en) Surface shape measuring device, stress measuring device, surface shape measuring method and stress measuring method
JP5871242B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP5500354B2 (en) Membrane structure measuring method and surface shape measuring apparatus
JP5057848B2 (en) Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film
JP2016109670A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
WO2022145391A1 (en) Scanning confocal microscope and adjustment method for scanning confocal microscope
JP4192038B2 (en) Surface shape and / or film thickness measuring method and apparatus
JP4810693B2 (en) Lightwave interference measurement device
JP4100663B2 (en) Absolute thickness measuring device
KR100942236B1 (en) Measurement error correcting method for the thick of glass panel
JP5983881B2 (en) V-block type refractive index measuring apparatus, refractive index calculating apparatus and refractive index calculating method used therefor
JP2002005631A (en) Method and apparatus for measuring characteristics of plate
JPH01145504A (en) Optically measuring apparatus
KR100942235B1 (en) Thickness measuring method for a plate glass
JP2008256504A (en) Shape measuring apparatus
JP5430473B2 (en) Surface shape measuring device
JP4639808B2 (en) Measuring apparatus and adjustment method thereof
CZ2006350A3 (en) Method of measuring non-stationary thin layers and optical thickness gauge
JP6407000B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5500354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250