JP5479180B2 - Mounting table - Google Patents

Mounting table Download PDF

Info

Publication number
JP5479180B2
JP5479180B2 JP2010072665A JP2010072665A JP5479180B2 JP 5479180 B2 JP5479180 B2 JP 5479180B2 JP 2010072665 A JP2010072665 A JP 2010072665A JP 2010072665 A JP2010072665 A JP 2010072665A JP 5479180 B2 JP5479180 B2 JP 5479180B2
Authority
JP
Japan
Prior art keywords
medium
susceptor
flow path
temperature
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010072665A
Other languages
Japanese (ja)
Other versions
JP2011205000A (en
Inventor
龍 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010072665A priority Critical patent/JP5479180B2/en
Publication of JP2011205000A publication Critical patent/JP2011205000A/en
Application granted granted Critical
Publication of JP5479180B2 publication Critical patent/JP5479180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、基板処理装置が備える基板の載置台に関する。   The present invention relates to a substrate mounting table provided in a substrate processing apparatus.

基板としてのウエハにプラズマを用いて所定の処理、例えば、エッチング処理や成膜処理を施す基板処理装置は、ウエハを収容し且つ内部にプラズマが発生する処理室と、該処理室内に配置されてウエハを載置する載置台とを備える。この基板処理装置では、プラズマによって加熱されるウエハを所望の温度に維持するために、載置台が温調機構を備えて載置されたウエハの温度を調整する。この温調機構は、例えば、載置台内に配設された媒体流路を有し、該媒体流路は内部を流れる低温媒体によって載置されたウエハの熱を吸収する(例えば、特許文献1参照。)。   A substrate processing apparatus that performs a predetermined process using plasma on a wafer as a substrate, for example, an etching process or a film forming process, includes a processing chamber that contains a wafer and generates plasma therein, and is disposed in the processing chamber. And a mounting table on which the wafer is mounted. In this substrate processing apparatus, in order to maintain a wafer heated by plasma at a desired temperature, the mounting table is provided with a temperature control mechanism to adjust the temperature of the mounted wafer. This temperature control mechanism has, for example, a medium flow path disposed in a mounting table, and the medium flow path absorbs heat of a wafer mounted by a low-temperature medium flowing inside (for example, Patent Document 1). reference.).

ところで、近年、表面に複数の層が形成されたウエハにおいて、処理効率化の観点から1つのエッチング処理によって該複数の層をエッチングすることが検討されている。この1つのエッチング処理では、処理室内に供給する処理ガスや処理室内の圧力を変更することなく、各エッチング対象層に応じてウエハの温度を変化させることにより、各エッチング対象層をエッチングする。   By the way, in recent years, it has been studied to etch a plurality of layers by one etching process from the viewpoint of improving processing efficiency in a wafer having a plurality of layers formed on the surface. In this one etching process, each etching target layer is etched by changing the temperature of the wafer according to each etching target layer without changing the processing gas supplied into the processing chamber or the pressure in the processing chamber.

特開平9−213781号公報Japanese Patent Laid-Open No. 9-213781

しかしながら、従来の載置台は剛性確保の観点から各部の肉厚が大きく形成されており、質量が大きい。したがって、媒体流路へ高温の媒体を供給しても該媒体から載置台へ吸収される熱量が大きいため、ウエハの温度上昇が遅れる。また、媒体流路へ低温の媒体を供給しても載置台から媒体へ吸収される熱量が大きいため、ウエハの温度降下が遅れる。   However, in the conventional mounting table, the thickness of each part is formed large from the viewpoint of securing rigidity, and the mass is large. Therefore, even if a high-temperature medium is supplied to the medium flow path, the amount of heat absorbed from the medium to the mounting table is large, so that the temperature rise of the wafer is delayed. Further, even if a low temperature medium is supplied to the medium flow path, the amount of heat absorbed from the mounting table to the medium is large, so that the temperature drop of the wafer is delayed.

ここで、各部の肉厚を変化させないまま、ウエハの温度変化を促進するために、例えば、載置台におけるウエハに接触する側を熱伝導性が高い材料で構成し、且つウエハに接触しない側を熱伝導性が低い材料で構成した場合、載置台の構成が複雑化し、さらには熱膨張率の違いに起因して載置台の内部応力が高まり、載置台の耐久性が低下する虞がある。   Here, in order to promote the temperature change of the wafer without changing the thickness of each part, for example, the side of the mounting table that contacts the wafer is made of a material having high thermal conductivity, and the side that does not contact the wafer is If the material is made of a material having low thermal conductivity, the structure of the mounting table becomes complicated, and further, the internal stress of the mounting table increases due to the difference in the coefficient of thermal expansion, which may reduce the durability of the mounting table.

本発明の目的は、構成を複雑化させることなく基板の温度変化を促進することができる基板の載置台を提供することにある。   An object of the present invention is to provide a substrate mounting table capable of promoting a temperature change of a substrate without complicating the configuration.

上記目的を達成するために、請求項1記載の載置台は、内部に所定温度の媒体が流れる媒体流路を有し、基板を載置する載置台であって、前記媒体の流れに対して垂直な前記媒体流路の断面は矩形であり、前記媒体流路の内面のうち前記載置された基板から遠方の面と、前記最遠方の面に隣接する2つの面のそれぞれにおける前記最遠方の面側の略半分とが、前記媒体流路を流れる媒体と直接接触する熱伝導阻害部材により覆われることを特徴とする。 In order to achieve the above object, the mounting table according to claim 1 is a mounting table having a medium flow path through which a medium having a predetermined temperature flows and on which a substrate is mounted . section perpendicular the medium channel is rectangular, of the inner surface of the medium flow path, the farthest side from the placement to substrates, wherein in each of the two surfaces adjacent to the farthest side Approximately half of the farthest surface side is covered with a heat conduction inhibiting member that is in direct contact with the medium flowing through the medium flow path .

請求項記載の載置台は、請求項記載の載置台において、前記媒体流路の内面のうち前記載置された基板からの最近の面から前記媒体流路内に向けて突出する突起状物を有することを特徴とする。 The mounting table according to claim 2 is the mounting table according to claim 1 , wherein a protruding shape that protrudes into the medium flow path from a recent surface from the previously placed substrate among the inner surfaces of the medium flow path. It is characterized by having a thing.

請求項記載の載置台は、請求項2記載の載置台において、前記突起状物は前記媒体流路における前記媒体の流れに沿って延在するフィンからなることを特徴とする。 Mounting table according to claim 3, wherein, in the table of claim 2 Symbol placement, the protruding objects is characterized by comprising a fin extending along the flow of the medium in the medium flow path.

請求項記載の載置台は、請求項1乃至のいずれか1項に記載の載置台において、前記熱伝導阻害部材の厚さは1mm乃至2mmであることを特徴とする。 The mounting table according to claim 4 is the mounting table according to any one of claims 1 to 3 , wherein the thickness of the heat conduction inhibiting member is 1 mm to 2 mm.

請求項記載の載置台は、請求項1乃至のいずれか1項に記載の載置台において、前記熱伝導阻害部材は低熱伝導材からなることを特徴とする。 The mounting table according to claim 5 is the mounting table according to any one of claims 1 to 4 , wherein the heat conduction-inhibiting member is made of a low heat conductive material.

請求項記載の載置台は、請求項記載の載置台において、前記低熱伝導材は樹脂であることを特徴とする。 The mounting table according to claim 6 is the mounting table according to claim 5 , wherein the low thermal conductive material is a resin.

請求項記載の載置台は、請求項1乃至のいずれか1項に記載の載置台において、前記熱伝導阻害部材は断熱材からなることを特徴とする。 Mounting table of claim 7, wherein, in the mounting table according to any one of claims 1 to 4, wherein the heat conduction inhibiting member is characterized by comprising a heat insulating material.

請求項記載の載置台は、請求項記載の載置台において、前記断熱材は多孔性セラミックスであることを特徴とする。 The mounting table according to claim 8 is the mounting table according to claim 7 , wherein the heat insulating material is porous ceramics.

本発明によれば、載置台の内部における媒体流路の内面のうち載置された基板からの遠方の面が熱伝導阻害部材で覆われるので、載置台における載置された基板からの遠方部分(以下、単に「遠方部分」という。)を熱伝導性が低い材料で構成することなく、媒体の熱が遠方部分に吸収されるのを防止できるとともに、遠方部分の熱が媒体へ吸収されるのを防止でき、もって、載置台における載置された基板からの近辺部分(以下、単に「近辺部分」という。)が媒体の熱を積極的に吸収できると共に、媒体が近辺部分の熱を積極的に吸収できる。その結果、載置台の構成を複雑化させることなく基板の温度変化を促進することができる。     According to the present invention, since the surface far from the placed substrate among the inner surfaces of the medium flow path inside the placing table is covered with the heat conduction inhibiting member, the portion far from the placed substrate in the placing table. (Hereinafter, simply referred to as “the far portion”) can be prevented from being absorbed in the far portion without being composed of a material having low thermal conductivity, and the heat in the far portion can be absorbed into the medium. Therefore, a portion near the substrate on the mounting table (hereinafter simply referred to as “near portion”) can actively absorb the heat of the medium, and the medium actively absorbs the heat of the vicinity. Can be absorbed. As a result, the temperature change of the substrate can be promoted without complicating the configuration of the mounting table.

本発明の第1の実施の形態に係る載置台を備える基板処理装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the substrate processing apparatus provided with the mounting base which concerns on the 1st Embodiment of this invention. 図1におけるサセプタに設けられる媒体流路の拡大断面図である。It is an expanded sectional view of the medium flow path provided in the susceptor in FIG. 図2の媒体流路へ高温の温度調整用媒体を供給した場合におけるサセプタの温度変化を模式的に示すグラフである。3 is a graph schematically showing a temperature change of a susceptor when a high-temperature temperature adjusting medium is supplied to the medium flow path of FIG. 2. 図2の媒体流路の変形例を示す拡大断面図であり、図4(A)は第1の変形例を示し、図4(B)は第2の変形例を示す。FIG. 4 is an enlarged cross-sectional view showing a modification of the medium flow path of FIG. 2, FIG. 4 (A) shows a first modification, and FIG. 4 (B) shows a second modification. 本発明の第2の実施の形態に係る載置台としてのサセプタに設けられる媒体流路の拡大断面図である。It is an expanded sectional view of a medium channel provided in a susceptor as a mounting table according to a second embodiment of the present invention. 図5の媒体流路へ高温の温度調整用媒体を供給した場合におけるサセプタの温度変化を模式的に示すグラフである。6 is a graph schematically showing a temperature change of a susceptor when a high-temperature temperature adjusting medium is supplied to the medium flow path of FIG. 5.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の第1の実施の形態に係る載置台について説明する。   First, the mounting table according to the first embodiment of the present invention will be described.

図1は、本実施の形態に係る載置台を備える基板処理装置の構成を概略的に示す図である。本基板処理装置は、基板としての半導体デバイス用のウエハ(以下、単に「ウエハ」という。)にプラズマエッチング処理を施す。   FIG. 1 is a diagram schematically showing a configuration of a substrate processing apparatus including a mounting table according to the present embodiment. This substrate processing apparatus performs a plasma etching process on a semiconductor device wafer (hereinafter simply referred to as “wafer”) as a substrate.

図1において、基板処理装置10は、例えば、直径が300mのウエハWを収容するチャンバ11を有し、該チャンバ11内部には半導体デバイス用のウエハWを載置する金属、例えば、アルミニウムからなる台状のサセプタ12(載置台)が配置されている。基板処理装置10では、チャンバ11の内部側壁とサセプタ12の側面とによって側方排気路13が形成される。この側方排気路13の途中には排気プレート14が配置される。   In FIG. 1, a substrate processing apparatus 10 has, for example, a chamber 11 for accommodating a wafer W having a diameter of 300 m, and the chamber 11 is made of a metal on which a wafer W for semiconductor devices is placed, for example, aluminum. A trapezoidal susceptor 12 (mounting table) is disposed. In the substrate processing apparatus 10, a side exhaust path 13 is formed by the inner side wall of the chamber 11 and the side surface of the susceptor 12. An exhaust plate 14 is disposed in the middle of the side exhaust path 13.

排気プレート14は多数の貫通孔を有する板状部材であり、チャンバ11内部を上部と下部に仕切る仕切り板として機能する。排気プレート14によって仕切られたチャンバ11内部の上部(以下、「処理室」という。)15には後述するようにプラズマが発生する。また、チャンバ11内部の下部(以下、「排気室(マニホールド)」という。)16にはチャンバ11内部のガスを排出する排気管17が接続される。排気プレート14は処理室15に発生するプラズマを捕捉又は反射してマニホールド16への漏洩を防止する。   The exhaust plate 14 is a plate-like member having a large number of through holes, and functions as a partition plate that partitions the interior of the chamber 11 into an upper part and a lower part. Plasma is generated in an upper part (hereinafter referred to as “processing chamber”) 15 inside the chamber 11 partitioned by the exhaust plate 14 as will be described later. Further, an exhaust pipe 17 that exhausts gas inside the chamber 11 is connected to a lower portion 16 (hereinafter referred to as “exhaust chamber (manifold)”) inside the chamber 11. The exhaust plate 14 captures or reflects the plasma generated in the processing chamber 15 to prevent leakage to the manifold 16.

排気管17にはTMP(Turbo Molecular Pump)及びDP(Dry Pump)(ともに図示しない)が接続され、これらのポンプはチャンバ11内部を真空引きして減圧する。なお、チャンバ11内部の圧力はAPCバルブ(図示しない)によって制御される。   TMP (Turbo Molecular Pump) and DP (Dry Pump) (both not shown) are connected to the exhaust pipe 17, and these pumps evacuate the chamber 11 to reduce the pressure. The pressure inside the chamber 11 is controlled by an APC valve (not shown).

チャンバ11内部のサセプタ12には第1の高周波電源18が第1の整合器19を介して接続され、且つ第2の高周波電源20が第2の整合器21を介して接続されており、第1の高周波電源18は比較的高い周波数、例えば、40MHzのプラズマ生成用の高周波電力をサセプタ12に印加し、第2の高周波電源20は比較的低い周波数、例えば、2MHzのイオン引き込み用の高周波電力をサセプタ12に印加する。これにより、サセプタ12は電極として機能する。また、第1の整合器19及び第2の整合器21は、サセプタ12からの高周波電力の反射を低減して高周波電力のサセプタ12への印加効率を最大にする。   A first high-frequency power source 18 is connected to the susceptor 12 inside the chamber 11 via a first matching device 19, and a second high-frequency power source 20 is connected via a second matching device 21. One high frequency power supply 18 applies a relatively high frequency, for example, 40 MHz plasma generating high frequency power to the susceptor 12, and the second high frequency power supply 20 has a relatively low frequency, for example, 2 MHz high frequency power for ion attraction. Is applied to the susceptor 12. Thereby, the susceptor 12 functions as an electrode. Further, the first matching unit 19 and the second matching unit 21 reduce the reflection of the high frequency power from the susceptor 12 to maximize the application efficiency of the high frequency power to the susceptor 12.

サセプタ12の上部は、大径の円柱の先端から小径の円柱が同心軸に沿って突出している形状を呈し、該上部には小径の円柱を囲うように段差が形成される。小径の円柱の先端には静電電極板22を内部に有するセラミックスからなる静電チャック23が配置されている。静電電極板22には第1の直流電源24が接続されており、静電電極板22に正の電位の直流電力が印加されると、ウエハWにおける静電チャック23側の面(以下、「裏面」という。)には負電位が発生して静電電極板22及びウエハWの裏面の間に電界が生じ、該電界に起因するクーロン力又はジョンソン・ラーベック力により、ウエハWは静電チャック23に吸着保持される。   The upper part of the susceptor 12 has a shape in which a small-diameter cylinder protrudes from the tip of a large-diameter cylinder along a concentric axis, and a step is formed in the upper part so as to surround the small-diameter cylinder. An electrostatic chuck 23 made of ceramics having an electrostatic electrode plate 22 therein is disposed at the tip of a small diameter cylinder. A first direct current power source 24 is connected to the electrostatic electrode plate 22, and when a positive potential direct current power is applied to the electrostatic electrode plate 22, the surface of the wafer W on the electrostatic chuck 23 side (hereinafter, referred to as the “electrostatic electrode plate 22”). A negative potential is generated in the “back surface”), and an electric field is generated between the electrostatic electrode plate 22 and the back surface of the wafer W, and the wafer W is electrostatically charged by the Coulomb force or the Johnson-Rahbek force caused by the electric field. It is sucked and held by the chuck 23.

サセプタ12の上部には、静電チャック23に吸着保持されたウエハWを囲うように、フォーカスリング25がサセプタ12の上部における段差へ載置される。フォーカスリング25は半導電体からなり、プラズマの分布域をウエハW上だけでなく該フォーカスリング25上まで拡大してウエハWの周縁部上におけるプラズマの密度を該ウエハWの中央部上におけるプラズマの密度と同程度に維持する。これにより、ウエハWの全面に施されるプラズマエッチング処理の均一性を確保する。   On the upper part of the susceptor 12, a focus ring 25 is placed on a step in the upper part of the susceptor 12 so as to surround the wafer W attracted and held by the electrostatic chuck 23. The focus ring 25 is made of a semi-conductor, and the plasma distribution area is expanded not only on the wafer W but also on the focus ring 25, so that the plasma density on the peripheral portion of the wafer W is increased on the central portion of the wafer W. Maintain the same density as. This ensures the uniformity of the plasma etching process performed on the entire surface of the wafer W.

また、サセプタ12の内部には、媒体流路26が該サセプタ12に対して同心円状に何重にも設けられる。この媒体流路26には、媒体供給装置(図示しない)から所定の温度の温度調整用媒体、例えば、冷却水やガルデン(登録商標)が供給される。媒体流路26へ高温の温度調整用媒体を供給した場合、該温度調整用媒体の熱がサセプタ12へ載置されて静電吸着されたウエハW(以下、「載置ウエハW」という。)へ伝導されて該ウエハWの温度が上昇し、媒体流路26へ低温の温度調整用媒体を供給した場合、載置ウエハWの熱が温度調整用媒体へ伝導されて該ウエハWの温度が降下する。したがって、媒体流路26へ供給される温度調整用媒体の温度を変化させることにより、ウエハWの温度を変化させることができる。   Further, inside the susceptor 12, medium flow paths 26 are provided in multiple layers concentrically with respect to the susceptor 12. A temperature adjusting medium having a predetermined temperature, for example, cooling water or Galden (registered trademark) is supplied to the medium flow path 26 from a medium supply device (not shown). When a high-temperature temperature adjusting medium is supplied to the medium flow path 26, the heat of the temperature adjusting medium is placed on the susceptor 12 and electrostatically attracted to the wafer W (hereinafter referred to as “mounted wafer W”). When the temperature of the wafer W rises and a low temperature adjusting medium is supplied to the medium flow path 26, the heat of the mounting wafer W is transferred to the temperature adjusting medium, and the temperature of the wafer W is reduced. Descent. Therefore, the temperature of the wafer W can be changed by changing the temperature of the temperature adjusting medium supplied to the medium flow path 26.

チャンバ11の天井部には、サセプタ12と対向するようにシャワーヘッド27が配置される。シャワーヘッド27は、上部電極板28と、該上部電極板28を着脱可能に釣支するクーリングプレート29と、該クーリングプレート29を覆う蓋体30とを有する。上部電極板28は厚み方向に貫通する多数のガス孔31を有する円板状部材からなり、半導電体であるシリコンによって構成される。また、クーリングプレート29の内部にはバッファ室32が設けられ、このバッファ室32には処理ガス導入管33が接続されており、処理ガス導入管33は処理ガス供給装置(図示しない)に接続されている。   A shower head 27 is disposed on the ceiling of the chamber 11 so as to face the susceptor 12. The shower head 27 includes an upper electrode plate 28, a cooling plate 29 that detachably supports the upper electrode plate 28, and a lid body 30 that covers the cooling plate 29. The upper electrode plate 28 is made of a disk-like member having a large number of gas holes 31 penetrating in the thickness direction, and is made of silicon which is a semiconductor. A buffer chamber 32 is provided inside the cooling plate 29, and a processing gas introduction pipe 33 is connected to the buffer chamber 32. The processing gas introduction pipe 33 is connected to a processing gas supply device (not shown). ing.

処理ガス供給装置は、例えば、各種ガスの流量比を適切に調整して混合ガスを生成し、該混合ガスを処理ガス導入管33、バッファ室32及びガス孔31を介して処理室15内部へ導入する。   For example, the processing gas supply device appropriately adjusts the flow ratio of various gases to generate a mixed gas, and the mixed gas is supplied into the processing chamber 15 through the processing gas introduction pipe 33, the buffer chamber 32, and the gas hole 31. Introduce.

また、シャワーヘッド27の上部電極板28には第2の直流電源34が接続され、上部電極板28へ負の電位の直流電力が印加される。このとき、上部電極板28には陽イオンが打ち込まれ、これに伴い、上部電極板28は(二次)電子を放出して処理室15内部のプラズマにおける電子密度分布を改善する。   A second DC power supply 34 is connected to the upper electrode plate 28 of the shower head 27, and DC power having a negative potential is applied to the upper electrode plate 28. At this time, positive ions are implanted into the upper electrode plate 28, and accordingly, the upper electrode plate 28 emits (secondary) electrons to improve the electron density distribution in the plasma inside the processing chamber 15.

基板処理装置10では、処理室15内部へ導入された処理ガスが第1の高周波電源18からサセプタ12を介して処理室15内部へ印加されたプラズマ生成用の高周波電力によって励起されてプラズマとなる。該プラズマ中の陽イオンは、第2の高周波電源20がサセプタ12に印加するイオン引き込み用の高周波電力によってウエハWに向けて引きこまれ、該ウエハWにプラズマエッチング処理を施す。   In the substrate processing apparatus 10, the processing gas introduced into the processing chamber 15 is excited by high-frequency power for plasma generation applied to the processing chamber 15 from the first high-frequency power source 18 through the susceptor 12 to become plasma. . The positive ions in the plasma are attracted toward the wafer W by the high-frequency power for ion attraction applied by the second high-frequency power source 20 to the susceptor 12, and the wafer W is subjected to plasma etching.

図2は、図1におけるサセプタに設けられる媒体流路の拡大断面図である。   FIG. 2 is an enlarged cross-sectional view of a medium flow path provided in the susceptor in FIG.

図2において、媒体流路26における温度調整用媒体の流れに対して垂直な断面は矩形であり、図中横方向に関する長さ(幅)は約10mmであり、図中縦方向に関する長さ(高さ)は約20mmである。媒体流路26の4つの内面のうち、載置ウエハWから遠方の内面である底面26aの全部、並びに、該底面26aに隣接する2つの内面である側面26b,26cのそれぞれにおける略下半分が少なくともアルミニウムよりも熱伝導性が低い低熱伝導材、例えば、樹脂からなる低熱伝導層35(熱伝導阻害部材)で覆われる。低熱伝導層35の厚さは、例えば、1mm乃至2mmであり、低熱伝導層35は低熱伝導性の樹脂を底面26aや側面26b,26cに塗布することによって形成してもよく、若しくは低熱伝導性の樹脂からなる板状体を底面26aや側面26b,26cに貼り付けることによって形成してもよい。 In FIG. 2, the cross section perpendicular to the flow of the temperature adjusting medium in the medium flow path 26 is rectangular, the length (width) in the horizontal direction in the figure is about 10 mm, and the length in the vertical direction in the figure ( The height is about 20 mm. Of the four inner surfaces of the medium flow path 26, substantially the lower half of each of the bottom surface 26a that is the innermost surface farthest from the mounting wafer W, and the side surfaces 26b and 26c that are two inner surfaces adjacent to the bottom surface 26a. Is covered with a low thermal conductive material having a thermal conductivity lower than that of at least aluminum, for example, a low thermal conductive layer 35 (thermal conductivity inhibiting member) made of resin. The thickness of the low thermal conductive layer 35 is, for example, 1 mm to 2 mm, and the low thermal conductive layer 35 may be formed by applying a low thermal conductive resin to the bottom surface 26a, the side surfaces 26b, and 26c, or the low thermal conductive layer 35. Alternatively, a plate-like body made of the above resin may be attached to the bottom surface 26a and the side surfaces 26b and 26c.

低熱伝導層35は、温度調整用媒体と、サセプタ12における媒体流路26の底面26aや側面26b,26cの略下半分に接する部分、すなわち、サセプタ12における載置ウエハWからの遠方部分(以下、単に「サセプタ12の遠方部分」という。)との間の熱伝導を抑制するため、例えば、媒体流路26へ高温の温度調整用媒体を供給した場合、該高温の温度調整用媒体の熱がサセプタ12の遠方部分に吸収されるのを防止できる。また、例えば、媒体流路26へ低温の温度調整用媒体を供給した場合、サセプタ12の遠方部分の熱が該低温の温度調整用媒体に吸収されるのを防止できる。   The low thermal conductive layer 35 is a temperature adjusting medium and a portion of the susceptor 12 that is in contact with the bottom surface 26a of the medium flow path 26 and the substantially lower half of the side surfaces 26b and 26c, that is, a portion of the susceptor 12 far from the mounting wafer W In order to suppress heat conduction between the medium flow path 26 and the medium flow path 26, for example, when a high temperature adjustment medium is supplied to the medium flow path 26, the heat of the high temperature adjustment medium is suppressed. Can be prevented from being absorbed by the remote portion of the susceptor 12. Further, for example, when a low-temperature temperature adjusting medium is supplied to the medium flow path 26, it is possible to prevent the heat of the distant portion of the susceptor 12 from being absorbed by the low-temperature temperature adjusting medium.

また、媒体流路26の4つの内面のうち、載置ウエハWから最近の内面である頂面26dから、例えば、アルミニウムからなる2つのフィン36が媒体流路26内に向けて突出する。各フィン36は頂面26dにおいてサセプタ12における載置ウエハWからの近辺部分(以下、単に「サセプタ12の近辺部分」という。)に接続され、さらに、媒体流路26における温度調整用媒体の流れに沿って延在する。したがって、各フィン36を介してサセプタ12の近辺部分と媒体流路26内の温度調整用媒体との接触面積が実質的に増加し、その結果、媒体流路26内の温度調整用媒体の熱をサセプタ12の近辺部分に効率良く伝導できるとともに、サセプタ12の近辺部分の熱を媒体流路26内の温度調整用媒体に効率良く伝達できる。   Of the four inner surfaces of the medium flow path 26, two fins 36 made of, for example, aluminum protrude from the top surface 26 d which is the latest inner surface from the mounting wafer W into the medium flow path 26. Each fin 36 is connected to the vicinity of the susceptor 12 from the mounting wafer W (hereinafter simply referred to as “the vicinity of the susceptor 12”) on the top surface 26 d, and further the flow of the temperature adjusting medium in the medium flow path 26. Extending along. Therefore, the contact area between the vicinity of the susceptor 12 and the temperature adjusting medium in the medium flow path 26 is substantially increased via each fin 36, and as a result, the heat of the temperature adjusting medium in the medium flow path 26 is increased. Can be efficiently conducted to the vicinity of the susceptor 12, and heat in the vicinity of the susceptor 12 can be efficiently transmitted to the temperature adjusting medium in the medium flow path 26.

ところで、通常、温度調整用媒体の流れが阻害されて乱流になる場合、温度調整用媒体と、該温度調整用媒体と接触する部材との熱交換が促進され、温度調整用媒体が円滑に流れて層流を形成する場合、温度調整用媒体と、該温度調整用媒体と接触する部材との熱交換が抑制される。   By the way, normally, when the flow of the temperature adjustment medium is disturbed and becomes a turbulent flow, heat exchange between the temperature adjustment medium and a member in contact with the temperature adjustment medium is promoted, and the temperature adjustment medium becomes smooth. When flowing to form a laminar flow, heat exchange between the temperature adjusting medium and a member in contact with the temperature adjusting medium is suppressed.

本実施の形態では、媒体流路26の断面における幅は約10mmであり、且つ高さは約20mmである一方、低熱伝導層35の厚さは1mm乃至2mmであり、媒体流路26の断面において低熱伝導層35の断面が占める面積は小さいため、該低熱伝導層35は温度調整用媒体の流れを阻害しない。また、低熱伝導層35が樹脂からなるため、該低熱伝導層35は媒体流路26の底面26aや側面26b,26cの略下半分の摩擦抵抗を低減する。その結果、サセプタ12の遠方部分の近傍を流れる温度調整用媒体は円滑に流れて層流を形成し、温度調整用媒体とサセプタ12の遠方部分との熱交換が抑制される。   In the present embodiment, the width of the cross section of the medium flow path 26 is about 10 mm and the height is about 20 mm, while the thickness of the low thermal conductive layer 35 is 1 mm to 2 mm. Since the area occupied by the cross section of the low thermal conductive layer 35 is small, the low thermal conductive layer 35 does not hinder the flow of the temperature adjusting medium. In addition, since the low thermal conductive layer 35 is made of resin, the low thermal conductive layer 35 reduces the frictional resistance of the substantially lower half of the bottom surface 26a and the side surfaces 26b and 26c of the medium flow path 26. As a result, the temperature adjustment medium flowing in the vicinity of the distant portion of the susceptor 12 smoothly flows to form a laminar flow, and heat exchange between the temperature adjustment medium and the distant portion of the susceptor 12 is suppressed.

また、本実施の形態では、頂面26aから2つのフィン36が媒体流路26内に向けて突出し、各フィン36は温度調整用媒体の流れを阻害する。その結果、サセプタ12の近辺部分と接する温度調整用媒体の流れは阻害されて乱流になり、温度調整用媒体とサセプタ12の近辺部分との熱交換が促進される。   In the present embodiment, two fins 36 protrude from the top surface 26a into the medium flow path 26, and each fin 36 inhibits the flow of the temperature adjusting medium. As a result, the flow of the temperature adjustment medium in contact with the vicinity of the susceptor 12 is disturbed and becomes turbulent, and heat exchange between the temperature adjustment medium and the vicinity of the susceptor 12 is promoted.

図3は、図2の媒体流路へ高温の温度調整用媒体を供給した場合におけるサセプタの温度変化を模式的に示すグラフである。本グラフにおいて実線はサセプタ12の近辺部分の温度を示し、破線はサセプタ12の遠方部分の温度を示す。   FIG. 3 is a graph schematically showing a temperature change of the susceptor when a high-temperature temperature adjusting medium is supplied to the medium flow path of FIG. In this graph, the solid line indicates the temperature in the vicinity of the susceptor 12, and the broken line indicates the temperature in the far part of the susceptor 12.

媒体流路26において、低熱伝導層35は温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を抑制するため、温度調整用媒体の熱がサセプタ12の遠方部分の温度上昇に積極的に利用されない。一方、2つのフィン36が温度調整用媒体とサセプタ12の近辺部分との熱交換を促進するとともに、頂面26dが低熱伝導層35で覆われず、温度調整用媒体とサセプタ12の近辺部分との間の熱伝導が抑制されないので、温度調整用媒体の熱はサセプタ12の近辺部分の温度上昇に積極的に利用される。   In the medium flow path 26, the low heat conductive layer 35 suppresses heat conduction between the temperature adjusting medium and the distant portion of the susceptor 12, so that the heat of the temperature adjusting medium positively increases the temperature of the distant portion of the susceptor 12. Not used for. On the other hand, the two fins 36 promote heat exchange between the temperature adjusting medium and the vicinity of the susceptor 12, and the top surface 26 d is not covered with the low thermal conductive layer 35, so that the temperature adjusting medium and the vicinity of the susceptor 12 Therefore, the heat of the temperature adjusting medium is positively used for increasing the temperature in the vicinity of the susceptor 12.

したがって、図3のグラフに示すように、サセプタ12の遠方部分の温度上昇はサセプタ12の近辺部分の温度上昇よりも遅延する反面、サセプタ12の近辺部分の温度上昇は素早く行われる。その結果、サセプタ12の近辺部分に接する載置ウエハWの温度上昇が促進される。   Therefore, as shown in the graph of FIG. 3, the temperature increase in the distant portion of the susceptor 12 is delayed more than the temperature increase in the vicinity portion of the susceptor 12, but the temperature increase in the vicinity portion of the susceptor 12 is performed quickly. As a result, the temperature rise of the mounting wafer W in contact with the vicinity of the susceptor 12 is promoted.

また、媒体流路26へ低温の温度調整用媒体を供給した場合、低熱伝導層35は温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を抑制するため、温度調整用媒体はサセプタ12の遠方部分の熱を積極的に吸収しない。一方、2つのフィン36が温度調整用媒体とサセプタ12の近辺部分との熱交換を促進するとともに、頂面26dが低熱伝導層35で覆われず、温度調整用媒体とサセプタ12の近辺部分との間の熱伝導が抑制されないので、温度調整用媒体はサセプタ12の近辺部分の熱を積極的に吸収する。   In addition, when a low-temperature temperature adjusting medium is supplied to the medium flow path 26, the low heat conductive layer 35 suppresses heat conduction between the temperature adjusting medium and a distant portion of the susceptor 12, so that the temperature adjusting medium is a susceptor. It does not actively absorb the heat of 12 distant parts. On the other hand, the two fins 36 promote heat exchange between the temperature adjusting medium and the vicinity of the susceptor 12, and the top surface 26 d is not covered with the low thermal conductive layer 35, so that the temperature adjusting medium and the vicinity of the susceptor 12 Therefore, the temperature adjusting medium positively absorbs the heat in the vicinity of the susceptor 12.

したがって、サセプタ12の遠方部分の温度降下はサセプタ12の近辺部分の温度降下よりも遅延する反面、サセプタ12の近辺部分の温度降下は素早く行われる。その結果、サセプタ12の近辺部分に接する載置ウエハWの温度降下が促進される。   Accordingly, the temperature drop in the distant part of the susceptor 12 is delayed more than the temperature drop in the vicinity of the susceptor 12, but the temperature drop in the vicinity of the susceptor 12 is performed quickly. As a result, the temperature drop of the mounting wafer W in contact with the vicinity of the susceptor 12 is promoted.

以上説明したように、本実施の形態に係る載置台としてのサセプタ12によれば、媒体流路26の底面26aの全部、及び2つの側面26b,26cのそれぞれにおける略下半分が低熱伝導層35で覆われるので、サセプタ12の遠方部分を熱導電性が低い材料で構成することなく、媒体流路26内の温度調整用媒体の熱がサセプタ12の遠方部分に吸収されるのを防止できるとともに、サセプタ12の遠方部分の熱が温度調整用媒体へ吸収されるのを防止でき、もって、サセプタ12の近辺部分が温度調整用媒体の熱を積極的に吸収できると共に、温度調整用媒体がサセプタ12の近辺部分の熱を積極的に吸収できる。その結果、サセプタ12の構成を複雑化させることなくサセプタ12の近辺部分に接する載置ウエハWの温度変化を促進することができる。   As described above, according to the susceptor 12 as the mounting table according to the present embodiment, the entire bottom surface 26a of the medium flow path 26 and the substantially lower half of each of the two side surfaces 26b and 26c are the low thermal conductive layer 35. Therefore, the distant portion of the susceptor 12 can be prevented from being absorbed by the distant portion of the susceptor 12 without constituting the distant portion of the susceptor 12 with a material having low thermal conductivity. The heat of the distant portion of the susceptor 12 can be prevented from being absorbed by the temperature adjusting medium, and the vicinity of the susceptor 12 can actively absorb the heat of the temperature adjusting medium, and the temperature adjusting medium can be used as the susceptor. The heat in the vicinity of 12 can be actively absorbed. As a result, the temperature change of the mounting wafer W in contact with the vicinity of the susceptor 12 can be promoted without complicating the configuration of the susceptor 12.

上述した媒体流路26では、2つのフィン36が頂面26dから媒体流路26内に向けて突出するが、図4(A)に示すように、該2つのフィン36を設けなくてもよい。この場合においても、媒体流路26の底面26aの全部、及び2つの側面26b,26cのそれぞれにおける略下半分を覆う低熱伝導層35が温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を抑制し、その結果、サセプタ12の近辺部分に接する載置ウエハWの温度変化を促進することができる。   In the medium flow path 26 described above, the two fins 36 protrude from the top surface 26d toward the medium flow path 26. However, as shown in FIG. 4A, the two fins 36 may not be provided. . Also in this case, the low thermal conductive layer 35 covering the entire bottom surface 26a of the medium flow path 26 and the substantially lower half of each of the two side surfaces 26b and 26c is heat generated between the temperature adjusting medium and the distant portion of the susceptor 12. As a result, the temperature change of the mounting wafer W in contact with the vicinity of the susceptor 12 can be promoted.

また、上述した媒体流路26では、底面26aの全部、及び2つの側面26b,26cのそれぞれにおける略下半分を低熱伝導層35で覆うが、図4(B)に示すように、底面26aの全部のみを低熱伝導層35で覆い、2つの側面26b,26cを低熱伝導層35で全く覆わなくてもよい。この場合においても、底面26aにおける低熱伝導層35のみで温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を或る程度抑制することができる。   Further, in the medium flow path 26 described above, the entire bottom surface 26a and the substantially lower half of each of the two side surfaces 26b and 26c are covered with the low thermal conductive layer 35. As shown in FIG. Only the entire surface may be covered with the low thermal conductive layer 35, and the two side surfaces 26b and 26c may not be covered with the low thermal conductive layer 35 at all. Even in this case, heat conduction between the temperature adjusting medium and the distant portion of the susceptor 12 can be suppressed to some extent by only the low heat conductive layer 35 on the bottom surface 26a.

さらに、2つのフィン36の代わりに、頂面26dから媒体流路26内に向けて突出するアルミニウムからなる複数のピラー(図示しない)を設けてもよい。この場合においても、サセプタ12の近辺部分と媒体流路26内の温度調整用媒体との接触面積が実質的に増加し、温度調整用媒体とサセプタ12の近辺部分との熱交換が促進される。   Further, instead of the two fins 36, a plurality of pillars (not shown) made of aluminum protruding from the top surface 26 d toward the medium flow path 26 may be provided. Even in this case, the contact area between the vicinity of the susceptor 12 and the temperature adjustment medium in the medium flow path 26 is substantially increased, and heat exchange between the temperature adjustment medium and the vicinity of the susceptor 12 is promoted. .

次に、本発明の第2の実施の形態に係る載置台について説明する。   Next, a mounting table according to the second embodiment of the present invention will be described.

本実施の形態は、その構成、作用が上述した第1の実施の形態と基本的に同じであるので、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。   Since the configuration and operation of this embodiment are basically the same as those of the first embodiment described above, the description of the overlapping configuration and operation will be omitted, and the description of the different configuration and operation will be described below. Do.

図5は、本実施の形態に係る載置台としてのサセプタに設けられる媒体流路の拡大断面図である。   FIG. 5 is an enlarged cross-sectional view of a medium flow path provided in a susceptor as a mounting table according to the present embodiment.

図5において、媒体流路37における温度調整用媒体の流れに対して垂直な断面形状は媒体流路26の断面形状と同じである。媒体流路37では、底面37aの全部及び2つの側面37b,37cのそれぞれにおける略下半分が断熱材、例えば、多孔性セラミックスからなる断熱層38(熱伝導阻害部材)で覆われる。断熱層38の厚さは、例えば、1mm乃至2mmであり、断熱層38はセラミックスを底面37aや側面37b,37cに溶射することによって形成してもよく、若しくは多孔性セラミックスからなる板状体を底面37aや側面37b,37cに貼り付けることによって形成してもよい。この断熱層38は、温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を遮断する。   In FIG. 5, the cross-sectional shape perpendicular to the flow of the temperature adjusting medium in the medium flow path 37 is the same as the cross-sectional shape of the medium flow path 26. In the medium flow path 37, the entire bottom surface 37a and the substantially lower half of each of the two side surfaces 37b and 37c are covered with a heat insulating material, for example, a heat insulating layer 38 (heat conduction inhibiting member) made of porous ceramics. The thickness of the heat insulating layer 38 is, for example, 1 mm to 2 mm, and the heat insulating layer 38 may be formed by spraying ceramics on the bottom surface 37a and the side surfaces 37b and 37c, or a plate-like body made of porous ceramics. You may form by affixing on the bottom face 37a and the side surfaces 37b and 37c. The heat insulating layer 38 blocks heat conduction between the temperature adjusting medium and the remote portion of the susceptor 12.

また、媒体流路37の頂面37dから、フィン36と同様の形状を呈する2つのフィン39が媒体流路37内に向けて突出する。   Further, two fins 39 having the same shape as the fins 36 protrude from the top surface 37 d of the medium flow path 37 into the medium flow path 37.

図6は、図5の媒体流路へ高温の温度調整用媒体を供給した場合におけるサセプタの温度変化を模式的に示すグラフである。本グラフにおいて実線はサセプタ12の近辺部分の温度を示し、破線はサセプタ12の遠方部分の温度を示す。   FIG. 6 is a graph schematically showing changes in the temperature of the susceptor when a high-temperature temperature adjusting medium is supplied to the medium flow path of FIG. In this graph, the solid line indicates the temperature in the vicinity of the susceptor 12, and the broken line indicates the temperature in the far part of the susceptor 12.

媒体流路37において、断熱層38は温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を遮断するため、温度調整用媒体の熱がサセプタ12の遠方部分の温度上昇に利用されず、サセプタ12の遠方部分には、サセプタ12の近辺部分の熱のみが伝導される。一方、2つのフィン39が温度調整用媒体とサセプタ12の近辺部分との熱交換を促進するとともに、頂面37dが断熱層38で覆われず、温度調整用媒体とサセプタ12の近辺部分との間の熱伝導が遮断されないので、温度調整用媒体の熱の殆どがサセプタ12の近辺部分の温度上昇に利用される。   In the medium flow path 37, the heat insulating layer 38 blocks heat conduction between the temperature adjusting medium and the distant portion of the susceptor 12, so that the heat of the temperature adjusting medium is not used for increasing the temperature of the distant portion of the susceptor 12. Only the heat in the vicinity of the susceptor 12 is conducted to the distant portion of the susceptor 12. On the other hand, the two fins 39 facilitate heat exchange between the temperature adjustment medium and the vicinity of the susceptor 12, and the top surface 37 d is not covered with the heat insulating layer 38, so that the temperature adjustment medium and the vicinity of the susceptor 12 Therefore, most of the heat of the temperature adjusting medium is used to increase the temperature in the vicinity of the susceptor 12.

したがって、図6のグラフに示すように、サセプタ12の遠方部分の温度上昇は非常に緩慢に行われる反面、サセプタ12の近辺部分の温度上昇は素早く行われる。その結果、サセプタ12の近辺部分に接する載置ウエハWの温度上昇が促進される。   Therefore, as shown in the graph of FIG. 6, the temperature rise in the distant portion of the susceptor 12 is performed very slowly, while the temperature rise in the vicinity of the susceptor 12 is performed quickly. As a result, the temperature rise of the mounting wafer W in contact with the vicinity of the susceptor 12 is promoted.

また、サセプタ12の遠方部分に伝導される熱はサセプタ12の近辺部分の熱のみであるため、サセプタ12の遠方部分の温度が大きく上昇しないうちに、サセプタ12の遠方部分に伝導される熱量とサセプタ12の遠方部分から放出される熱量とが釣り合う。したがって、サセプタ12の遠方部分の温度はサセプタ12の近辺部分の温度まで上昇せず、サセプタ12の近辺部分の温度よりも低い温度のまま維持される。   Further, since the heat conducted to the distant portion of the susceptor 12 is only the heat in the vicinity of the susceptor 12, the amount of heat conducted to the distant portion of the susceptor 12 before the temperature of the distant portion of the susceptor 12 rises greatly. The amount of heat released from the distant part of the susceptor 12 is balanced. Therefore, the temperature of the distant part of the susceptor 12 does not rise to the temperature of the vicinity of the susceptor 12 and is maintained at a temperature lower than the temperature of the vicinity of the susceptor 12.

媒体流路37へ低温の温度調整用媒体を供給した場合、断熱層38は温度調整用媒体とサセプタ12の遠方部分との間の熱伝導を遮断するため、温度調整用媒体はサセプタ12の遠方部分の熱を吸収しない。一方、2つのフィン39が温度調整用媒体とサセプタ12の近辺部分との熱交換を促進するとともに、頂面37dが断熱層38で覆われず、温度調整用媒体とサセプタ12の近辺部分との間の熱伝導が遮断されないので、温度調整用媒体は主としてサセプタ12の近辺部分の熱を吸収する。   When a low-temperature temperature adjusting medium is supplied to the medium flow path 37, the heat insulating layer 38 blocks heat conduction between the temperature adjusting medium and the distant portion of the susceptor 12, so that the temperature adjusting medium is distant from the susceptor 12. Does not absorb the heat of the part. On the other hand, the two fins 39 facilitate heat exchange between the temperature adjustment medium and the vicinity of the susceptor 12, and the top surface 37 d is not covered with the heat insulating layer 38, so that the temperature adjustment medium and the vicinity of the susceptor 12 Since the heat conduction between them is not interrupted, the temperature adjusting medium mainly absorbs the heat in the vicinity of the susceptor 12.

したがって、サセプタ12の遠方部分の温度降下は非常に緩慢に行われる反面、サセプタ12の近辺部分の温度降下は素早く行われる。その結果、サセプタ12の近辺部分に接する載置ウエハWの温度降下が促進される。   Accordingly, the temperature drop in the distant part of the susceptor 12 is performed very slowly, while the temperature drop in the vicinity of the susceptor 12 is performed quickly. As a result, the temperature drop of the mounting wafer W in contact with the vicinity of the susceptor 12 is promoted.

なお、2つのフィン39を設けなくてもよいこと、底面37aの全部のみを断熱層38で覆うだけでもよいこと、並びに、2つのフィン39の代わりに複数のピラーを設けてもよいことは、第1の実施の形態と同じである。   In addition, it is not necessary to provide the two fins 39, that only the entire bottom surface 37a may be covered with the heat insulating layer 38, and that a plurality of pillars may be provided instead of the two fins 39. This is the same as in the first embodiment.

上述した各実施の形態では、低熱伝導層35を塗布された樹脂や樹脂の板状体で構成し、断熱層38を溶射された多孔性セラミックスや多孔性セラミックスからなる板状体で構成したが、耐熱性の観点から多孔性セラミックスからなる板状体を用いて断熱層38を構成するのが好ましい。複数の板状体を積層してサセプタ12を形成する場合、各板状体を互いに蝋付けするために、サセプタ12の温度は約500℃まで上昇するが、多孔性セラミックスからなる板状体は、サセプタ12の温度が約500℃まで上昇しても、溶融することがなく、また、焼失することもない。   In each of the embodiments described above, the low thermal conductive layer 35 is formed of a coated resin or a resin plate, and the heat insulating layer 38 is formed of a thermally sprayed porous ceramic or a plate of porous ceramic. From the viewpoint of heat resistance, it is preferable to form the heat insulating layer 38 using a plate-like body made of porous ceramics. When the susceptor 12 is formed by laminating a plurality of plate-like bodies, the temperature of the susceptor 12 rises to about 500 ° C. in order to braze the plate-like bodies to each other. Even if the temperature of the susceptor 12 rises to about 500 ° C., it does not melt or burn out.

上述した各実施の形態に係る載置台を備える基板処理装置がプラズマエッチング処理を施す基板は、半導体デバイス用のウエハに限られず、LCD(Liquid Crystal Display)等を含むFPD(Flat Panel Display)等に用いる各種基板や、フォトマスク、CD基板、プリント基板等であってもよい。   The substrate on which the substrate processing apparatus including the mounting table according to each of the embodiments described above performs plasma etching processing is not limited to a wafer for semiconductor devices, but may be an FPD (Flat Panel Display) including an LCD (Liquid Crystal Display) or the like. Various substrates to be used, a photomask, a CD substrate, a printed substrate, and the like may be used.

なお、本発明について、上記各実施の形態を用いて説明したが、本発明は上記各実施の形態に限定されるものではない。   Although the present invention has been described using the above embodiments, the present invention is not limited to the above embodiments.

W ウエハ
10 基板処理装置
12 サセプタ
26,37 媒体流路
26a,37a 底面
26b,26c,37b,37c 側面
26d,37d 頂面
35,38 低熱伝導層
36,39 フィン
W wafer 10 substrate processing apparatus 12 susceptor 26, 37 medium flow path 26a, 37a bottom surface 26b, 26c, 37b, 37c side surface 26d, 37d top surface 35, 38 low heat conductive layer 36, 39 fin

Claims (8)

内部に所定温度の媒体が流れる媒体流路を有し、基板を載置する載置台であって、
前記媒体の流れに対して垂直な前記媒体流路の断面は矩形であり、前記媒体流路の内面のうち前記載置された基板から遠方の面と、前記最遠方の面に隣接する2つの面のそれぞれにおける前記最遠方の面側の略半分とが、前記媒体流路を流れる媒体と直接接触する熱伝導阻害部材により覆われることを特徴とする載置台。
It has a medium flow path through which a medium at a predetermined temperature flows, and is a mounting table for mounting a substrate,
Section perpendicular the medium flow path to the flow of the medium is rectangular, of the inner surface of the medium flow path, and the placement has been farthest side from the substrate, adjacent to the farthest surface The mounting table characterized in that substantially half of the farthest surface side of each of the two surfaces is covered with a heat conduction inhibiting member that is in direct contact with the medium flowing through the medium flow path .
前記媒体流路の内面のうち前記載置された基板からの最近の面から前記媒体流路内に向けて突出する突起状物を有することを特徴とする請求項記載の載置台。 Mounting table according to claim 1, wherein a protruding objects protruding toward the medium flow path from the recent face from the placement to the substrate of an inner surface of the medium flow path. 前記突起状物は前記媒体流路における前記媒体の流れに沿って延在するフィンからなることを特徴とする請求項2記載の載置台。 The protruding objects the mounting according to claim 2 Symbol mounting characterized by comprising the fins extending along the flow of the medium in the medium channel table. 前記熱伝導阻害部材の厚さは1mm乃至2mmであることを特徴とする請求項1乃至のいずれか1項に記載の載置台。 Mounting table according to any one of claims 1 to 3 the thickness of the thermally conductive inhibiting member is characterized by a 1mm to 2 mm. 前記熱伝導阻害部材は低熱伝導材からなることを特徴とする請求項1乃至のいずれか1項に記載の載置台。 The mounting table according to any one of claims 1 to 4 , wherein the heat conduction-inhibiting member is made of a low heat conductive material. 前記低熱伝導材は樹脂であることを特徴とする請求項記載の載置台。 6. The mounting table according to claim 5, wherein the low thermal conductive material is a resin. 前記熱伝導阻害部材は断熱材からなることを特徴とする請求項1乃至のいずれか1項に記載の載置台。 Mounting table according to any one of claims 1 to 4 wherein the heat conduction inhibiting member is characterized by comprising a heat insulating material. 前記断熱材は多孔性セラミックスであることを特徴とする請求項記載の載置台。 The mounting table according to claim 7, wherein the heat insulating material is porous ceramics.
JP2010072665A 2010-03-26 2010-03-26 Mounting table Expired - Fee Related JP5479180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072665A JP5479180B2 (en) 2010-03-26 2010-03-26 Mounting table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072665A JP5479180B2 (en) 2010-03-26 2010-03-26 Mounting table

Publications (2)

Publication Number Publication Date
JP2011205000A JP2011205000A (en) 2011-10-13
JP5479180B2 true JP5479180B2 (en) 2014-04-23

Family

ID=44881322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072665A Expired - Fee Related JP5479180B2 (en) 2010-03-26 2010-03-26 Mounting table

Country Status (1)

Country Link
JP (1) JP5479180B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101750409B1 (en) * 2016-11-17 2017-06-23 (주)디이에스 Cooling chuck of a semiconductor wafer
JP2019003893A (en) * 2017-06-19 2019-01-10 日産自動車株式会社 Terminal board, and electric motor
JP6993835B2 (en) * 2017-10-12 2022-01-14 日本特殊陶業株式会社 Holding device and manufacturing method of holding device
JP7262194B2 (en) * 2018-09-18 2023-04-21 東京エレクトロン株式会社 Mounting table and substrate processing device
KR102646904B1 (en) 2018-12-04 2024-03-12 삼성전자주식회사 Plasma processing apparatus
JP7244329B2 (en) * 2019-03-28 2023-03-22 京セラ株式会社 sample holder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107140A (en) * 1994-10-03 1996-04-23 Souzou Kagaku:Kk Electrostatic chuck
JP4493360B2 (en) * 2004-02-10 2010-06-30 三菱樹脂株式会社 Mold structure for injection molding
JP4935143B2 (en) * 2006-03-29 2012-05-23 東京エレクトロン株式会社 Mounting table and vacuum processing apparatus
US7838800B2 (en) * 2006-09-25 2010-11-23 Tokyo Electron Limited Temperature controlled substrate holder having erosion resistant insulating layer for a substrate processing system
JP2011040528A (en) * 2009-08-10 2011-02-24 Hitachi High-Technologies Corp Plasma processing apparatus

Also Published As

Publication number Publication date
JP2011205000A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5395633B2 (en) Substrate mounting table for substrate processing apparatus
JP5762798B2 (en) Ceiling electrode plate and substrate processing placement
US9484232B2 (en) Zone temperature control structure
JP5479180B2 (en) Mounting table
KR101060774B1 (en) Temperature control method of an electrode unit, a substrate processing apparatus, and an electrode unit
TWI358785B (en)
JP4935143B2 (en) Mounting table and vacuum processing apparatus
JP5150217B2 (en) Shower plate and substrate processing apparatus
JP5702968B2 (en) Plasma processing apparatus and plasma control method
JP5348919B2 (en) Electrode structure and substrate processing apparatus
JP2009158664A (en) Electrostatic chuck and substrate temperature adjusting and fixing device
JP2011009351A (en) Plasma processing apparatus and plasma processing method
KR102604063B1 (en) Electrostatic chuck assembly and substrate treating apparatus including the assembly
JP2010118551A (en) Electrostatic chuck and substrate processing apparatus
JP2011181677A (en) Focus ring and substrate mounting system
JP2008251742A (en) Substrate treating apparatus, and substrate mounting base on which focus ring is mounted
KR100861261B1 (en) Heat transfer structure and substrate processing apparatus
TW202011512A (en) Electrostatic chuck
TW202240757A (en) Electrostatic chuck and substrate fixing device
JP7145625B2 (en) Substrate mounting structure and plasma processing apparatus
JP2013110440A (en) Electrode unit and substrate processing apparatus
JP2012222119A (en) Electrode plate for plasma processing apparatus
JP2012222272A (en) Electrode plate for plasma processing apparatus
JP2011204754A (en) Electrode plate for plasma processing apparatus and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees