JP5441982B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP5441982B2
JP5441982B2 JP2011238605A JP2011238605A JP5441982B2 JP 5441982 B2 JP5441982 B2 JP 5441982B2 JP 2011238605 A JP2011238605 A JP 2011238605A JP 2011238605 A JP2011238605 A JP 2011238605A JP 5441982 B2 JP5441982 B2 JP 5441982B2
Authority
JP
Japan
Prior art keywords
piston
eccentric portion
shaft
main shaft
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011238605A
Other languages
Japanese (ja)
Other versions
JP2013096280A5 (en
JP2013096280A (en
Inventor
聡経 新井
谷  真男
幸一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011238605A priority Critical patent/JP5441982B2/en
Priority to CZ2012-577A priority patent/CZ305798B6/en
Priority to KR1020120099130A priority patent/KR101375979B1/en
Priority to CN201210347125.2A priority patent/CN103089631B/en
Publication of JP2013096280A publication Critical patent/JP2013096280A/en
Publication of JP2013096280A5 publication Critical patent/JP2013096280A5/ja
Application granted granted Critical
Publication of JP5441982B2 publication Critical patent/JP5441982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、空気調和機や冷蔵庫等の冷凍空調装置の冷凍サイクルに用いられる、冷媒ガスの圧縮を行う回転圧縮機に関するものである。   The present invention relates to a rotary compressor for compressing refrigerant gas used in a refrigeration cycle of a refrigerating and air-conditioning apparatus such as an air conditioner or a refrigerator.

2つの圧縮室のそれぞれによって低圧の冷媒ガスを高圧の冷媒ガスに圧縮する2気筒回転圧縮機や、低段側の圧縮室で低圧の冷媒ガスを中圧の冷媒ガスに圧縮し、高段側の圧縮室で中圧の冷媒ガスを高圧の冷媒ガスに圧縮する2段回転圧縮機においては、クランク軸に、シリンダ内に配置される2つの偏芯部と、これらの偏芯部の間に設けられた中間軸を備えている。そして、従来より、中間軸の剛性の向上を図った2気筒回転圧縮機や2段回転圧縮機が提案されている。このような中間軸の剛性の向上を図った従来の2気筒回転圧縮機としては、例えば、中間軸の外周面を2つの偏芯部の反偏芯側外周面に沿って当該偏芯側外周面よりも軸中心側に形成し、軸方向と直角な断面における中間軸の形状を略ラグビーボール状(偏芯部の偏芯方向と直角な方向に凸状となった形状)としたものが提案されている(例えば、特許文献1参照)。   A two-cylinder rotary compressor that compresses low-pressure refrigerant gas into high-pressure refrigerant gas in each of the two compression chambers, or compresses low-pressure refrigerant gas into medium-pressure refrigerant gas in the low-stage compression chamber, In a two-stage rotary compressor that compresses medium-pressure refrigerant gas into high-pressure refrigerant gas in the compression chamber, the crankshaft includes two eccentric portions disposed in the cylinder, and between these eccentric portions. An intermediate shaft is provided. Conventionally, a two-cylinder rotary compressor and a two-stage rotary compressor that improve the rigidity of the intermediate shaft have been proposed. As a conventional two-cylinder rotary compressor that improves the rigidity of the intermediate shaft as described above, for example, the outer peripheral surface of the intermediate shaft extends along the anti-eccentric outer peripheral surface of the two eccentric portions. The shape of the intermediate shaft in the cross section perpendicular to the axial direction, which is formed on the axial center side of the surface, is a rugby ball shape (a shape that is convex in the direction perpendicular to the eccentric direction of the eccentric portion). It has been proposed (see, for example, Patent Document 1).

国際公開2009/028633号(図2A、図2B)International Publication No. 2009/028633 (FIG. 2A, FIG. 2B)

2気筒回転圧縮機や2段回転圧縮機は、各偏芯部に対応して形成される2つの圧縮室を仕切るため、各圧縮室の間には仕切板が設けられている。このため、仕切板には、内部に中間軸が配置される円筒状の貫通孔が形成されている。したがって、上記特許文献1記載の2気筒回転圧縮機は、中間軸が断面略ラグビーボール状に形成されているので、内部に中間軸が配置される仕切板の貫通孔の内径(以下、単に仕切板の内径ともいう)を、中間軸の略ラグビーボール状断面の最大長さ(尖端部間の長さ)よりも大きくする必要がある。しかしながら、仕切板の内径を大きくすると、クランク軸の偏芯部に嵌合されて圧縮室の低圧側空間と内径側の高圧空間をシールするピストンのシール長さが不足してしまう。このため、上記特許文献1記載の2気筒回転圧縮機は、ピストン内周側の高圧となった冷媒ガスが圧縮室内の低圧空間側に漏れて、圧縮室に吸入する冷媒ガスの重量流量が低下し、冷凍能力の低下や圧縮効率の悪化を招いてしまう等の課題があった。ここで、このような課題を解消するためには、中間軸を細い円柱状に形成するという構成も考えられる。しかしながら、中間軸を細い円柱状に形成した場合、クランク軸の剛性が低下してしまうので、圧縮中の冷媒ガスからの荷重によってクランク軸がたわみ、クランク軸を回転自在に支持する軸受け内での油膜発生に支障を来たし、潤滑不足による軸受けの損傷を招くという課題が発生してしまう。   In the two-cylinder rotary compressor and the two-stage rotary compressor, a partition plate is provided between the compression chambers in order to partition the two compression chambers formed corresponding to the eccentric portions. For this reason, the partition plate is formed with a cylindrical through hole in which an intermediate shaft is disposed. Therefore, in the two-cylinder rotary compressor described in Patent Document 1, since the intermediate shaft is formed in a substantially rugby ball cross section, the inner diameter of the through hole of the partition plate in which the intermediate shaft is disposed (hereinafter simply referred to as a partition). (Also referred to as the inner diameter of the plate) needs to be larger than the maximum length (the length between the pointed ends) of the substantially rugby ball-shaped cross section of the intermediate shaft. However, when the inner diameter of the partition plate is increased, the seal length of the piston that is fitted to the eccentric portion of the crankshaft and seals the low pressure side space of the compression chamber and the high pressure space on the inner diameter side becomes insufficient. For this reason, in the two-cylinder rotary compressor described in Patent Document 1, the refrigerant gas having a high pressure on the inner peripheral side of the piston leaks to the low pressure space side in the compression chamber, and the weight flow rate of the refrigerant gas sucked into the compression chamber decreases. However, there are problems such as a decrease in refrigeration capacity and a decrease in compression efficiency. Here, in order to solve such a problem, a configuration in which the intermediate shaft is formed in a thin cylindrical shape is also conceivable. However, if the intermediate shaft is formed into a thin cylindrical shape, the rigidity of the crankshaft will be reduced, so the crankshaft will bend due to the load from the refrigerant gas being compressed, and in the bearing that supports the crankshaft rotatably. There is a problem in that oil film generation is hindered and bearings are damaged due to insufficient lubrication.

ところで、仕切板を一体部品で構成した場合、仕切板の貫通孔にクランク軸を一方の端部側から通して、仕切板を中間軸の位置に配置する必要がある。つまり、仕切板を一体部品で構成した場合、仕切板の貫通孔に偏芯部の1つを通す必要があり、仕切板の内径を当該偏芯部の外径よりも大きく形成する必要がある。このため、仕切板を一体部品で構成した場合、偏芯部の偏芯量を大きくすると仕切板の内径も大きくなってしまい、ピストンのシール長さが不足してしまう。このため、偏芯部の偏芯量を大きくとることができない。そこで、仕切板を分割形成することによって、中間軸を挟み込むようにして仕切板を組み付け、仕切板の内径を偏芯部よりも小さく形成した回転圧縮機も、従来より提案されている。このように、仕切板を分割することにより、ピストンのシール長さ不足を解消して、偏芯部の偏芯量を大きくとることができる。このため、圧縮室の容積を拡大することができ、圧縮機の冷凍能力の向上を図ることができる。また、圧縮室の容積を変更しない場合には、圧縮室の軸方向高さが扁平となる分だけ、シリンダ内径(偏芯部及びピストンが配置されるシリンダの貫通孔の内径)及びピストン外径を大きくできるので、シリンダ内径とピストンの近接箇所であるシール部を長く確保でき、圧縮効率を改善することができる。   By the way, when a partition plate is comprised with an integral component, it is necessary to let a crankshaft pass from the one edge part side through the through-hole of a partition plate, and to arrange a partition plate in the position of an intermediate shaft. That is, when the partition plate is configured as an integral part, it is necessary to pass one of the eccentric portions through the through hole of the partition plate, and the inner diameter of the partition plate needs to be larger than the outer diameter of the eccentric portion. . For this reason, when the partition plate is configured as an integral part, when the eccentric amount of the eccentric portion is increased, the inner diameter of the partition plate is also increased, and the seal length of the piston is insufficient. For this reason, the eccentric amount of the eccentric portion cannot be increased. Therefore, a rotary compressor in which the partition plate is assembled by dividing the partition plate so as to sandwich the intermediate shaft and the inner diameter of the partition plate is smaller than the eccentric portion has been proposed. In this way, by dividing the partition plate, it is possible to eliminate the insufficient seal length of the piston and to increase the eccentric amount of the eccentric portion. For this reason, the volume of a compression chamber can be expanded and the improvement of the refrigerating capacity of a compressor can be aimed at. When the compression chamber volume is not changed, the cylinder inner diameter (the inner diameter of the eccentric hole and the through hole of the cylinder in which the piston is disposed) and the piston outer diameter are equivalent to the flatness of the axial height of the compression chamber. Therefore, it is possible to secure a long seal portion, which is a location near the cylinder inner diameter and the piston, and to improve the compression efficiency.

しかしながら、特許文献1のように断面ラグビーボール状に中間軸を形成した場合、仕切板を分割形成しても、仕切板の内径を、中間軸の略ラグビーボール状断面の最大長さ(尖端部間の長さ)よりも小さくできない。このため、特許文献1のように断面ラグビーボール状に中間軸を形成した場合、仕切板を分割形成しても、ピストンのシール長さが不足し、ピストン内周側の高圧となった冷媒ガスが圧縮室内の低圧空間側に漏れてしまうという課題を解消できない。   However, when the intermediate shaft is formed in a cross-sectional rugby ball shape as in Patent Document 1, even if the partition plate is divided, the inner diameter of the partition plate is set to the maximum length of the substantially rugby ball-shaped cross section of the intermediate shaft (the tip portion). The length between) cannot be smaller. For this reason, when the intermediate shaft is formed in a cross-sectional rugby ball shape as in Patent Document 1, even if the partition plate is divided and formed, the piston seal length is insufficient and the refrigerant gas becomes a high pressure on the inner peripheral side of the piston. However, the problem of leakage to the low pressure space side in the compression chamber cannot be solved.

この発明は、上記のような課題を解決するためになされたもので、クランク軸の信頼性(剛性)を確保しつつも、高出力化や高効率化を可能とする回転圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a rotary compressor that can achieve high output and high efficiency while ensuring the reliability (rigidity) of the crankshaft. For the purpose.

この発明に係る回転圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸、前記主軸の軸方向に設けられた副軸、前記主軸と前記副軸との間に設けられた主軸側偏芯部及び副軸側偏芯部、並びに前記主軸側偏芯部と前記副軸側偏芯部との間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、前記主軸側偏芯部に嵌合する第1のピストンと、前記副軸側偏芯部に嵌合する第2のピストンと、円筒状の貫通孔が形成され、該貫通孔に前記主軸側偏芯部及び前記第1のピストンが配置されて圧縮室が形成される第1のシリンダと、円筒状の貫通孔が形成され、該貫通孔に前記副軸側偏芯部及び前記第2のピストンが配置されて圧縮室が形成される第2のシリンダと、内部に前記中間軸が配置される円筒状の貫通孔が形成され、前記第1のシリンダの圧縮室と前記第2のシリンダの圧縮室とを仕切る仕切板と、を備え、
前記中間軸は、前記主軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第1の面(A1)と、前記副軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第2の面(A2)と、を有し、軸方向と直角な断面が前記主軸側偏芯部及び前記副軸側偏芯部の偏芯方向と直角の方向に凸状に形成され、前記凸状の先端部が、軸方向と直角な断面における前記第1の面(A1)及び前記第2の面(A2)の仮想延長線が交わる交点Cよりも軸中心側に配置され、曲面及び平坦面のうちの少なくとも1つによって構成された第3の面(B)により形成されているものである。
Rotary compressor according to the present invention, between a motor having a stator and a rotor, the main shaft fixed to the rotor, countershaft provided on the shaft Direction of the main shaft, and the main shaft the the auxiliary shaft A main shaft side eccentric portion and a sub shaft side eccentric portion provided on the main shaft side, and an intermediate shaft provided between the main shaft side eccentric portion and the sub shaft side eccentric portion, and driven by the electric motor. A crankshaft, a first piston fitted to the main shaft side eccentric portion, a second piston fitted to the sub shaft side eccentric portion, and a cylindrical through hole are formed. A first cylinder in which the main shaft side eccentric part and the first piston are arranged to form a compression chamber, and a cylindrical through hole, and the sub shaft side eccentric part and A second cylinder in which the second piston is disposed to form a compression chamber; and a cylinder in which the intermediate shaft is disposed. Through hole of are formed, Bei example and a partition plate that partitions the compression chamber and the compression chamber of the first cylinder and the second cylinder,
The intermediate shaft, the same position and the outer peripheral surface of the counter-eccentric side of the main shaft side eccentric part, or the first surface has been made form the axial center side than the outer peripheral surface (A1), the auxiliary shaft side same position as the outer peripheral surface of the counter-eccentric side of the eccentric portion, or the second surface (A2) was made form the axial center side than the outer peripheral surface has a axial section perpendicular to said The first surface (A1) is formed in a convex shape in a direction perpendicular to the eccentric direction of the main shaft side eccentric portion and the auxiliary shaft side eccentric portion, and the convex tip portion is in a cross section perpendicular to the axial direction. ) And the third surface (B) formed by at least one of a curved surface and a flat surface, which is arranged on the axial center side from the intersection C where the virtual extension lines of the second surface (A2) intersect. It is what has been.

この発明に係る回転圧縮機においては、中間軸は、主軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第1の面(A1)と、副軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第2の面(A2)と、を有し、軸方向と直角な断面が主軸側偏芯部及び副軸側偏芯部の偏芯方向と直角の方向に凸状に形成されている。また、凸状の先端部が、軸方向と直角な断面における第1の面(A1)及び第2の面(A2)の仮想延長線が交わる交点Cよりも軸中心側に配置され、曲面及び平坦面のうちの少なくとも1つによって構成された第3の面(B)により形成されている。このため、この発明に係る回転圧縮機は、中間軸の強度の向上を図りつつ、仕切板の内径を小さくすることができるので、クランク軸の信頼性を確保しつつ、且つ高出力化や高効率化が可能となる。 In rotary compressor according to the present invention, the intermediate shaft, the same position and the outer peripheral surface of the counter-eccentric side of the main shaft side eccentric part, or the first surface has been made form the axial center side than the outer peripheral surface ( includes a A1), the same position and the outer peripheral surface of the counter-eccentric side of the auxiliary shaft side eccentric part, or the second surface has been made form the axial center side than the outer peripheral surface (A2), a shaft A cross section perpendicular to the direction is formed in a convex shape in a direction perpendicular to the eccentric direction of the main shaft side eccentric portion and the sub shaft side eccentric portion. Further, the convex tip portion is disposed on the axial center side from the intersection C where the virtual extension lines of the first surface (A1) and the second surface (A2) in the cross section perpendicular to the axial direction intersect, and the curved surface and The third surface (B) is formed by at least one of the flat surfaces. For this reason, the rotary compressor according to the present invention can reduce the inner diameter of the partition plate while improving the strength of the intermediate shaft, so that the reliability of the crankshaft can be ensured and the output can be increased or increased. Efficiency can be improved.

この発明の実施の形態1を示す図で、2気筒回転圧縮機100の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and a longitudinal cross-sectional view of the 2-cylinder rotary compressor 100. この発明の実施の形態1を示す図で、クランク軸4の中間軸4eの断面図((a)はクランク軸4の一部を省いた平面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図)。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, Sectional drawing of the intermediate shaft 4e of the crankshaft 4 ((a) is a top view which excluded a part of crankshaft 4, (b) is AA of (a). Sectional drawing and (c) are BB sectional views of (a). この発明の実施の形態1を示す図で、第1のシリンダ8と主軸受6とをボルト締結にて固定した状態を示す図。FIG. 5 is a diagram illustrating the first embodiment of the present invention, and is a diagram illustrating a state in which a first cylinder 8 and a main bearing 6 are fixed by bolt fastening. この発明の実施の形態1を示す図で、主軸受6にクランク軸4を挿入し、第1のピストン11aを副軸4b、副軸側偏芯部4d、中間軸4eとくぐらせ主軸側偏芯部4cに組み付ける状態を示す図。1 is a diagram showing Embodiment 1 of the present invention, in which a crankshaft 4 is inserted into a main bearing 6, and a first piston 11a is passed through a countershaft 4b, a countershaft side eccentric portion 4d, and an intermediate shaft 4e so that the main shaft side deviation is reduced. The figure which shows the state assembled | attached to the core part 4c. この発明の実施の形態1を示す図で、仕切板10を中間軸4eに仮組み付けした状態を示す図。The figure which shows Embodiment 1 of this invention, and is a figure which shows the state which temporarily attached the partition plate 10 to the intermediate shaft 4e. この発明の実施の形態1を示す図で、仕切板10を中間軸4eに組み付けた状態を示す図。The figure which shows Embodiment 1 of this invention, and is a figure which shows the state which assembled | attached the partition plate 10 to the intermediate shaft 4e. この発明の実施の形態1を示す図で、第2のピストン11bを副軸側偏芯部4dに挿入し、第2のシリンダ9と副軸受7とを固定してクランク軸4の副軸4bに挿入した状態を示す図。In the figure showing Embodiment 1 of the present invention, the second piston 11b is inserted into the countershaft side eccentric portion 4d, the second cylinder 9 and the subbearing 7 are fixed, and the subshaft 4b of the crankshaft 4 is fixed. The figure which shows the state inserted in. この発明の実施の形態1を示す図で、第2のシリンダ9を副軸受7の外側から仕切板10を間に挟んで第1のシリンダ8に固定し、併行して第1のシリンダ8を主軸受6の外側から仕切板10を間に挟んで第2のシリンダ9に固定した状態を示す図。In the figure which shows Embodiment 1 of this invention, the 2nd cylinder 9 is fixed to the 1st cylinder 8 on both sides of the partition plate 10 from the outer side of the subbearing 7, and the 1st cylinder 8 is mounted in parallel. The figure which shows the state fixed to the 2nd cylinder 9 on both sides of the partition plate 10 from the outer side of the main bearing 6. FIG. この発明の実施の形態1を示す図で、第1のピストン11aの内径の軸方向両端に逃がし形状11a−1を設けた場合の、第1のピストン11aのクランク軸4への組み付け手順を示す図。FIG. 5 is a diagram showing the first embodiment of the present invention, and shows a procedure for assembling the first piston 11a to the crankshaft 4 when relief shapes 11a-1 are provided at both axial ends of the inner diameter of the first piston 11a. Figure. この発明の実施の形態1を示す図で、図9と図11とを比較した図(図10(a)が比較例、図10(b)が本実施の形態)。FIG. 10 shows the first embodiment of the present invention, and is a comparison of FIG. 9 and FIG. 11 (FIG. 10 (a) is a comparative example, and FIG. 10 (b) is the present embodiment). 比較例を示す図で、第1のピストン11aのクランク軸4への組み付け手順を示す図。It is a figure which shows a comparative example, and is a figure which shows the assembly | attachment procedure to the crankshaft 4 of the 1st piston 11a. 比較例を示す図で、中間軸4eに段差部を設けたクランク軸4を示す図((a)はクランク軸4の一部を省いた平面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図)。It is a figure which shows the comparative example, and the figure which shows the crankshaft 4 which provided the level | step-difference part in the intermediate shaft 4e ((a) is a top view which excluded a part of crankshaft 4, (b) is AA of (a). Sectional drawing and (c) are BB sectional views of (a). 比較例を示す図で、図12のクランク軸4に第1のピストン11aを組み付ける手順を示す図。It is a figure which shows a comparative example, and is a figure which shows the procedure in which the 1st piston 11a is assembled | attached to the crankshaft 4 of FIG.

実施の形態1.
図1乃至図2はこの発明の実施の形態1を示す図で、図1は2気筒回転圧縮機100の縦断面図、図2はクランク軸4の中間軸4eの断面図((a)はクランク軸4の一部を省いた平面図、(b)は(a)のA−A断面図、(c)は(a)のB−B断面図)、図3は第1のシリンダ8と主軸受6とをボルト締結にて固定した状態を示す図、図4は主軸受6にクランク軸4を挿入し、第1のピストン11aを副軸4b、副軸側偏芯部4d、中間軸4eとくぐらせ主軸側偏芯部4cに組み付ける状態を示す図、図5は仕切板10を中間軸4eに仮組み付けした状態を示す図、図6は仕切板10を中間軸4eに組み付けた状態を示す図、図7は第2のピストン11bを副軸側偏芯部4dに挿入し、第2のシリンダ9と副軸受7とを固定してクランク軸4の副軸4bに挿入した状態を示す図、図8は第2のシリンダ9を副軸受7の外側から仕切板10を間に挟んで第1のシリンダ8に固定し、併行して第1のシリンダ8を主軸受6の外側から仕切板10を間に挟んで第2のシリンダ9に固定した状態を示す図、図9は第1のピストン11aの内径の軸方向両端に逃がし形状11a−1を設けた場合の、第1のピストン11aのクランク軸4への組み付け手順を示す図、図10は図9と図11とを比較した図(図10(a)が比較例、図10(b)が本実施の形態)である。
以下、図1乃至図10を用いて、本実施の形態1に係る2気筒回転圧縮機100について説明する。
Embodiment 1 FIG.
1 and 2 are views showing Embodiment 1 of the present invention. FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor 100. FIG. 2 is a sectional view of an intermediate shaft 4e of a crankshaft 4. FIG. 3B is a cross-sectional view taken along the line AA of FIG. 5A, FIG. 3C is a cross-sectional view taken along the line BB of FIG. 3A, and FIG. FIG. 4 is a diagram showing a state in which the main bearing 6 is fixed with bolts. FIG. 4 shows that the crankshaft 4 is inserted into the main bearing 6, and the first piston 11a is the subshaft 4b, the subshaft side eccentric portion 4d, and the intermediate shaft. 4e is a view showing a state of being assembled to the main shaft side eccentric portion 4c, FIG. 5 is a view showing a state where the partition plate 10 is temporarily assembled to the intermediate shaft 4e, and FIG. 6 is a state of attaching the partition plate 10 to the intermediate shaft 4e. FIG. 7 is a diagram showing the crankcase in which the second piston 11b is inserted into the countershaft side eccentric portion 4d and the second cylinder 9 and the subbearing 7 are fixed. FIG. 8 shows a state in which the second cylinder 9 is inserted into the sub-shaft 4b of FIG. 4, and the second cylinder 9 is fixed to the first cylinder 8 from the outside of the sub-bearing 7 with the partition plate 10 interposed therebetween, and the first FIG. 9 is a view showing a state in which the cylinder 8 is fixed to the second cylinder 9 from the outside of the main bearing 6 with the partition plate 10 interposed therebetween, and FIG. 9 is a relief shape 11a− at both axial ends of the inner diameter of the first piston 11a. FIG. 10 is a diagram showing a procedure for assembling the first piston 11a to the crankshaft 4 when 1 is provided, FIG. 10 is a diagram comparing FIG. 9 and FIG. 11 (FIG. 10 (a) is a comparative example, FIG. b) is this embodiment).
Hereinafter, the two-cylinder rotary compressor 100 according to the first embodiment will be described with reference to FIGS. 1 to 10.

図1により、2気筒回転圧縮機100の構成を説明する。2気筒回転圧縮機100は、高圧雰囲気の密閉容器1内に、固定子2aと回転子2bとからなる電動機2と、電動機2により駆動される圧縮機構部3とを収納している。   The configuration of the two-cylinder rotary compressor 100 will be described with reference to FIG. The two-cylinder rotary compressor 100 houses an electric motor 2 composed of a stator 2 a and a rotor 2 b and a compression mechanism unit 3 driven by the electric motor 2 in a sealed container 1 in a high-pressure atmosphere.

電動機2の回転力は、クランク軸4を介して圧縮機構部3に伝達される。   The rotational force of the electric motor 2 is transmitted to the compression mechanism unit 3 via the crankshaft 4.

クランク軸4は、電動機2の回転子2bに固定される主軸4aと、主軸4aの反対側に設けられる副軸4bと、主軸4aと副軸4bとの間に所定の位相差(例えば、180°)を設けて形成される主軸側偏芯部4c及び副軸側偏芯部4dと、これらの主軸側偏芯部4cと副軸側偏芯部4dとの間に設けられる中間軸4eとを有する。   The crankshaft 4 has a predetermined phase difference (for example, 180) between the main shaft 4a fixed to the rotor 2b of the electric motor 2, the sub shaft 4b provided on the opposite side of the main shaft 4a, and the main shaft 4a and the sub shaft 4b. And the intermediate shaft 4e provided between the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. Have

主軸受6は、クランク軸4の主軸4aに摺動のためのクリアランスを持って嵌合され、回転自在に主軸4aを軸支する。   The main bearing 6 is fitted to the main shaft 4a of the crankshaft 4 with a clearance for sliding, and rotatably supports the main shaft 4a.

また、副軸受7は、クランク軸4の副軸4bに摺動のためのクリアランスを持って嵌合され、回転自在に副軸4bを軸支する。   The auxiliary bearing 7 is fitted to the auxiliary shaft 4b of the crankshaft 4 with a clearance for sliding, and rotatably supports the auxiliary shaft 4b.

圧縮機構部3は、主軸4a側の第1のシリンダ8と、副軸4b側の第2のシリンダ9とを備える。   The compression mechanism unit 3 includes a first cylinder 8 on the main shaft 4a side and a second cylinder 9 on the sub shaft 4b side.

第1のシリンダ8は、円筒状の貫通孔を有し、この貫通孔に、クランク軸4の主軸側偏芯部4cに回転自在に嵌合する第1のピストン11aが設けられる。さらに、主軸側偏芯部4cの回転に従って往復運動する第1のベーン(図示せず)が設けられる。   The first cylinder 8 has a cylindrical through hole, and a first piston 11 a that is rotatably fitted to the main shaft side eccentric portion 4 c of the crankshaft 4 is provided in the through hole. Further, a first vane (not shown) that reciprocates according to the rotation of the main shaft side eccentric portion 4c is provided.

クランク軸4の主軸側偏芯部4cに回転自在に嵌合する第1のピストン11a、第1のベーンを収納した第1のシリンダ8の貫通孔の軸方向両端面を、主軸受6と仕切板10とで閉塞して圧縮室を形成する。   A first piston 11 a that is rotatably fitted to the main shaft side eccentric portion 4 c of the crankshaft 4, and both axial end surfaces of the through hole of the first cylinder 8 that houses the first vane are partitioned from the main bearing 6. A compression chamber is formed by closing with the plate 10.

第1のシリンダ8は、密閉容器1の内周部に固定される。   The first cylinder 8 is fixed to the inner periphery of the sealed container 1.

第2のシリンダ9も、円筒状の貫通孔を有し、この貫通孔に、クランク軸4の副軸側偏芯部4dに回転自在に嵌合する第2のピストン11bが設けられる。さらに、副軸側偏芯部4dの回転に従って往復運動する第2のベーン(図示せず)が設けられる。   The second cylinder 9 also has a cylindrical through-hole, and a second piston 11 b that is rotatably fitted to the countershaft side eccentric portion 4 d of the crankshaft 4 is provided in the through-hole. Further, a second vane (not shown) that reciprocates according to the rotation of the countershaft side eccentric portion 4d is provided.

クランク軸4の副軸側偏芯部4dに回転自在に嵌合する第2のピストン11b、第2のベーンを収納した第2のシリンダ9の貫通孔の軸方向両端面を、副軸受7と仕切板10とで閉塞して圧縮室を形成する。   A second piston 11b that is rotatably fitted to the sub-shaft side eccentric portion 4d of the crankshaft 4 and both axial end surfaces of the through hole of the second cylinder 9 that houses the second vane are connected to the sub-bearing 7 A compression chamber is formed by closing with the partition plate 10.

圧縮機構部3は、第1のシリンダ8と主軸受6とをボルト締結し、また第2のシリンダ9と副軸受7とをボルト締結した後、仕切板10をそれらの間に挟んで、主軸受6の外側から第2のシリンダ9、及び副軸受7の外側から第1のシリンダ8まで軸方向にボルト締結し固定する。   The compression mechanism unit 3 is bolted to the first cylinder 8 and the main bearing 6, and is bolted to the second cylinder 9 and the auxiliary bearing 7, and then the partition plate 10 is sandwiched between them, The bolts are fastened and fixed in the axial direction from the outside of the bearing 6 to the second cylinder 9 and from the outside of the auxiliary bearing 7 to the first cylinder 8.

図1で図示しているボルト12は、主軸受6の外側から第2のシリンダ9まで軸方向に締結し固定するボルトの一部である。   The bolt 12 illustrated in FIG. 1 is a part of a bolt that is fastened and fixed in the axial direction from the outside of the main bearing 6 to the second cylinder 9.

また、図1で図示しているボルト13は、第2のシリンダ9と副軸受7とを締結するボルトの一部である。   Further, the bolt 13 illustrated in FIG. 1 is a part of a bolt that fastens the second cylinder 9 and the auxiliary bearing 7.

密閉容器1に隣接してアキュムレータ40が設けられる。吸入連結管21、吸入連結管22は夫々第1のシリンダ8、第2のシリンダ9とアキュムレータ40とを連結する。   An accumulator 40 is provided adjacent to the sealed container 1. The suction connection pipe 21 and the suction connection pipe 22 connect the first cylinder 8 and the second cylinder 9 to the accumulator 40, respectively.

第1のシリンダ8、第2のシリンダ9で圧縮された冷媒ガスは、密閉容器1に吐出され、吐出管23から冷凍空調装置の冷凍サイクルへ送り出される。   The refrigerant gas compressed in the first cylinder 8 and the second cylinder 9 is discharged into the sealed container 1 and sent out from the discharge pipe 23 to the refrigeration cycle of the refrigeration air conditioner.

また、電動機2へは、ガラス端子24からリード線25を経由して電力が供給される。   Electric power is supplied to the electric motor 2 from the glass terminal 24 via the lead wire 25.

図示はしないが、密閉容器1内の底部には、圧縮機構部3の各摺動部を潤滑する潤滑油(冷凍機油)が貯留されている。   Although not shown, lubricating oil (refrigeration machine oil) that lubricates each sliding portion of the compression mechanism unit 3 is stored at the bottom of the sealed container 1.

圧縮機構部3の各摺動部への潤滑油の供給は、密閉容器1底部に溜められた潤滑油をクランク軸4の回転による遠心力によりクランク軸4の内径4fに沿って上昇させ、クランク軸4に設けられた給油孔20より行なう。図1の例は、給油孔20が4箇所に形成されている。夫々の給油孔20から、主軸4aと主軸受6、主軸側偏芯部4cと第1のピストン11a、副軸側偏芯部4dと第2のピストン11b及び副軸4bと副軸受7の間の摺動部に潤滑油が供給される。   The supply of the lubricating oil to each sliding portion of the compression mechanism unit 3 is performed by raising the lubricating oil stored in the bottom of the sealed container 1 along the inner diameter 4f of the crankshaft 4 by the centrifugal force generated by the rotation of the crankshaft 4. It is carried out from an oil supply hole 20 provided in the shaft 4. In the example of FIG. 1, the oil supply holes 20 are formed at four locations. From the respective oil supply holes 20, the main shaft 4 a and the main bearing 6, the main shaft side eccentric portion 4 c and the first piston 11 a, the sub shaft side eccentric portion 4 d and the second piston 11 b, the sub shaft 4 b and the sub bearing 7 are provided. Lubricating oil is supplied to the sliding portion.

クランク軸4は、運転中の圧縮ガス負荷による撓みを抑えるよう、ヤング率150GPa以上の素材を使用する。さらに、運転時の振動を抑えるために、主軸側偏芯部4cと副軸側偏芯部4dは、略同一形状(同一直径、同一軸方向長さ)、略同一偏芯量とし、回転時の遠心力のバランスを保っている。   The crankshaft 4 uses a material having a Young's modulus of 150 GPa or more so as to suppress bending due to a compressed gas load during operation. Furthermore, in order to suppress vibration during operation, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d have substantially the same shape (same diameter, same length in the same axial direction) and substantially the same amount of eccentricity. The balance of centrifugal force is maintained.

ここで、本実施の形態1では、仕切板10を一体部品で形成している。このため、以下の理由により、主軸側偏芯部4cの反偏芯側外周面を、主軸4aの外周面よりも軸中心側になるように形成している。そして、副軸4bの外径を主軸4aの外径よりも細く形成し、副軸側偏芯部4dの反偏芯側外周面を、副軸4bの外周面よりも反軸中心側になるように形成している。   Here, in Embodiment 1, the partition plate 10 is formed as an integral part. For this reason, the anti-eccentric side outer peripheral surface of the main shaft side eccentric portion 4c is formed to be closer to the shaft center side than the outer peripheral surface of the main shaft 4a for the following reason. Then, the outer diameter of the auxiliary shaft 4b is formed to be thinner than the outer diameter of the main shaft 4a, and the counter eccentric side outer peripheral surface of the auxiliary shaft side eccentric portion 4d is on the side opposite to the axial center than the outer peripheral surface of the auxiliary shaft 4b. It is formed as follows.

上述のように、副軸側偏芯部4dは主軸側偏芯部4cと同一形状、同一偏芯量となっている。このため、副軸4bの外径が主軸4aの外径と同一の場合、主軸側偏芯部4cの反偏芯側外周面を主軸4aの外周面よりも軸中心側になるように形成すると、副軸側偏芯部4dの反偏芯側外周面も副軸4bの外周面よりも軸中心側になる。すると、後述のように副軸4b側から第1のピストン11a及び第2のピストン11bを取り付けようとした場合、第1のピストン11a及び第2のピストン11bに副軸側偏芯部4dを挿入することができなくなる。つまり、第1のピストン11a及び第2のピストン11bを主軸側偏芯部4c及び副軸側偏芯部4dに取り付けることができなくなる。そのため、本実施の形態1では副軸側偏芯部4dの反偏芯側外周面を副軸4bの外周面よりも反軸中心側に形成し、第1のピストン11a及び第2のピストン11bの取り付けを可能にしている。また、第1のピストン11a及び第2のピストン11bの取り付けに影響しない主軸4aは、クランク軸4の強度を確保するため、その外径を副軸4bの外径よりも大きくしている。   As described above, the countershaft side eccentric portion 4d has the same shape and the same amount of eccentricity as the main shaft side eccentric portion 4c. For this reason, when the outer diameter of the sub-shaft 4b is the same as the outer diameter of the main shaft 4a, the anti-eccentric outer peripheral surface of the main shaft-side eccentric portion 4c is formed so as to be closer to the axial center than the outer peripheral surface of the main shaft 4a. The counter eccentric side outer peripheral surface of the sub shaft side eccentric portion 4d is also closer to the shaft center side than the outer peripheral surface of the sub shaft 4b. Then, when it is going to attach the 1st piston 11a and the 2nd piston 11b from the subshaft 4b side as mentioned later, the subshaft side eccentric part 4d is inserted in the 1st piston 11a and the 2nd piston 11b. Can not do. That is, the first piston 11a and the second piston 11b cannot be attached to the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. Therefore, in the first embodiment, the anti-eccentric side outer peripheral surface of the sub-shaft side eccentric portion 4d is formed closer to the counter-axis center side than the outer peripheral surface of the sub-shaft 4b, and the first piston 11a and the second piston 11b. It is possible to install. Further, the main shaft 4a that does not affect the attachment of the first piston 11a and the second piston 11b has an outer diameter larger than that of the auxiliary shaft 4b in order to ensure the strength of the crankshaft 4.

また、本実施の形態1では、中間軸4eの強度を確保しつつ主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量を大きくとるため、図2に示す形状としている。なお、図2(a)は、主軸4aが紙面下側となり、副軸4bが紙面上側となるように、クランク軸4を記載している。   Further, in the first embodiment, the shape shown in FIG. 2 is used in order to increase the eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d while ensuring the strength of the intermediate shaft 4e. FIG. 2A shows the crankshaft 4 so that the main shaft 4a is on the lower side of the paper and the auxiliary shaft 4b is on the upper side of the paper.

図2に示すように、中間軸4eは、本発明の第1の面に相当するA1面、本発明の第2の面に相当するA2面、及び、本発明の第3の面に相当するB面によって形成されている。そして、クランク軸4(より詳しくは中間軸4e)の軸と垂直な断面において、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯方向と直角の方向に凸状の形状になっている。   As shown in FIG. 2, the intermediate shaft 4e corresponds to the A1 surface corresponding to the first surface of the present invention, the A2 surface corresponding to the second surface of the present invention, and the third surface of the present invention. It is formed by the B surface. Then, in a cross section perpendicular to the axis of the crankshaft 4 (more specifically, the intermediate shaft 4e), a convex shape is formed in a direction perpendicular to the eccentric direction of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. ing.

詳しくは、A1面は、主軸側偏芯部4cの反偏芯側の外周面よりも軸中心側に形成され、主軸側偏芯部4cの反偏芯側の外周面に沿った形状となっている。同様に、A2面は、副軸側偏芯部4dの反偏芯側の外周面よりも軸中心側に形成され、副軸側偏芯部4dの反偏芯側の外周面に沿った形状となっている。このようにA1面及びA2面で中間軸4eを構成することにより、中間軸4eは、クランク軸4(より詳しくは中間軸4e)の軸と垂直な断面において、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯方向と直角の方向に凸状の形状になる。このため、中間軸4eの断面積が増大し、中間軸4eの強度を向上させることができる。   Specifically, the A1 surface is formed closer to the shaft center side than the outer peripheral surface on the anti-eccentric side of the main shaft side eccentric portion 4c, and has a shape along the outer peripheral surface on the anti eccentric side of the main shaft side eccentric portion 4c. ing. Similarly, the A2 surface is formed closer to the shaft center side than the outer peripheral surface on the anti-eccentric side of the sub-shaft side eccentric portion 4d, and is shaped along the outer peripheral surface on the anti-eccentric side of the sub-shaft side eccentric portion 4d. It has become. By configuring the intermediate shaft 4e with the A1 surface and the A2 surface in this way, the intermediate shaft 4e has a main shaft side eccentric portion 4c and a sub shaft in a cross section perpendicular to the axis of the crank shaft 4 (more specifically, the intermediate shaft 4e). It becomes a convex shape in a direction perpendicular to the eccentric direction of the shaft-side eccentric portion 4d. For this reason, the cross-sectional area of the intermediate shaft 4e is increased, and the strength of the intermediate shaft 4e can be improved.

ここで、中間軸4eは、図1に示すように、仕切板10に形成された貫通孔の内部に配置される。このため、仕切板10の貫通孔の内径10aは、中間軸4eの軸方向と直角な断面における最大長さよりも大きく形成する必要がある。このとき、上述した特許文献1に記載の中間軸においては、主軸側偏芯部及び副軸側偏芯部の偏芯方向と直角の方向の端部は、A1面の仮想延長線とA2面の仮想延長線との交点Cの位置(図2参照)となっていた。このため、仕切板10の内径10aが大きくなってしまっていた。したがって、偏芯部(本実施の形態1の主軸側偏芯部4c及び副軸側偏芯部4dに相当)の偏芯量を大きくとろうとした場合、ピストンのシール長さ(例えば図2(c)に示す、第1のピストン11aと仕切板10の内径10aとの間の距離に相当)が不足してしまい、ピストン内周側の高圧となった冷媒ガスが圧縮室内の低圧空間側に漏れて圧縮室に吸入する冷媒ガスの重量流量が低下し、冷凍能力の低下や圧縮効率の悪化を招いてしまっていた。   Here, the intermediate shaft 4e is disposed inside a through hole formed in the partition plate 10, as shown in FIG. For this reason, it is necessary to form the inner diameter 10a of the through hole of the partition plate 10 to be larger than the maximum length in a cross section perpendicular to the axial direction of the intermediate shaft 4e. At this time, in the intermediate shaft described in Patent Document 1 described above, the ends of the main shaft side eccentric portion and the sub shaft side eccentric portion in the direction perpendicular to the eccentric direction are the virtual extension line of the A1 surface and the A2 surface. The position of the intersection C with the virtual extension line (see FIG. 2). For this reason, the inner diameter 10a of the partition plate 10 has become large. Therefore, when trying to increase the eccentric amount of the eccentric portion (corresponding to the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d of the first embodiment), the seal length of the piston (for example, FIG. c), which corresponds to the distance between the first piston 11a and the inner diameter 10a of the partition plate 10) is insufficient, and the refrigerant gas having a high pressure on the inner peripheral side of the piston enters the low-pressure space side in the compression chamber. The weight flow rate of the refrigerant gas leaked and sucked into the compression chamber decreased, leading to a decrease in refrigeration capacity and a decrease in compression efficiency.

一方、本実施の形態1に係る中間軸4eは、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯方向と直角の方向の端部がB面で構成されている。そして、B面は、A1面の仮想延長線とA2面の仮想延長線との交点Cの位置よりも軸中心側に形成されている。このため、仕切板10の内径10aを小さくできる。したがって、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量を大きくとっても、ピストンのシール長さ(つまり、図2(c)に示す第1のピストン11aと仕切板10の内径10aとの間の距離、及び、図2(b)に示す第2のピストン11bと仕切板10の内径10aとの間の距離)を十分に確保することができる。このため、本実施の形態1のように中間軸4eを形成することにより、ピストン内周側の高圧となった冷媒ガスが圧縮室内の低圧空間側に漏れて圧縮室に吸入する冷媒ガスの重量流量が低下することを防止できる。   On the other hand, in the intermediate shaft 4e according to the first embodiment, the end portions in the direction perpendicular to the eccentric direction of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d are configured as B surfaces. The B surface is formed closer to the axial center than the position of the intersection C between the virtual extension line of the A1 surface and the virtual extension line of the A2 surface. For this reason, the inner diameter 10a of the partition plate 10 can be reduced. Therefore, even if the eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is increased, the seal length of the piston (that is, the inner diameter of the first piston 11a and the partition plate 10 shown in FIG. 2C). 10a and the distance between the second piston 11b and the inner diameter 10a of the partition plate 10 shown in FIG. 2B) can be sufficiently secured. Therefore, by forming the intermediate shaft 4e as in the first embodiment, the refrigerant gas having a high pressure on the inner peripheral side of the piston leaks to the low-pressure space side in the compression chamber and is sucked into the compression chamber. It is possible to prevent the flow rate from decreasing.

したがって、本実施の形態1のように構成されたクランク軸4は、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量を大きくとることができ、圧縮室の排除容積を拡大し、2気筒回転圧縮機100の高出力化が可能となる。   Therefore, the crankshaft 4 configured as in the first embodiment can increase the eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d, and expand the excluded volume of the compression chamber. Thus, the output of the two-cylinder rotary compressor 100 can be increased.

また、言い換えれば、同じ出力を得るのに圧縮室の容積を小さくでき、2気筒回転圧縮機100の小型軽量化が可能となる。   In other words, the volume of the compression chamber can be reduced to obtain the same output, and the two-cylinder rotary compressor 100 can be reduced in size and weight.

さらに言い換えれば、圧縮室の容積を変更しない場合には、圧縮室の軸方向高さが扁平となる分だけ、つまり第1のシリンダ8及び第2のシリンダ9の厚みが薄くなる分だけ、これら第1のシリンダ8及び第2のシリンダ9のシリンダ内径と第1のピストン11a及び第2のピストン11bの外径を大きくできる。このため、第1のシリンダ8及び第2のシリンダ9のシリンダ内径と第1のピストン11a及び第2のピストン11bとのシール部を長く確保でき、圧縮効率を改善することができる。   In other words, when the volume of the compression chamber is not changed, the axial height of the compression chamber is flattened, that is, the thickness of the first cylinder 8 and the second cylinder 9 is thinned. The cylinder inner diameters of the first cylinder 8 and the second cylinder 9 and the outer diameters of the first piston 11a and the second piston 11b can be increased. For this reason, the cylinder inner diameters of the first cylinder 8 and the second cylinder 9 and the seal portion between the first piston 11a and the second piston 11b can be secured long, and the compression efficiency can be improved.

なお、中間軸4eの形状は上述した形状に限らず、例えば次のようにしてもよい。例えば、中間軸4eのA1面及びA2面は、主軸側偏芯部4c及び副軸側偏芯部4dの反偏芯側外周面と同位置に形成してもよい。後述のように、第1のピストン11aは、副軸側偏芯部4d及び中間軸4eを通過した後、主軸側偏芯部4cに嵌合される。このとき、中間軸4eのA1面及びA2面が主軸側偏芯部4c及び副軸側偏芯部4dの反偏芯側外周面からはみ出していなければ、第1のピストン11aを主軸側偏芯部4cに嵌合させることができる。また例えば、B面の一部又は前部を平坦面としてもよい。B面がA1面の仮想延長線とA2面の仮想延長線との交点Cの位置よりも軸中心側に形成されていれば、仕切板10の内径10aを小さく形成することができ、上記の効果を得ることができる。   The shape of the intermediate shaft 4e is not limited to the shape described above, and may be as follows, for example. For example, the A1 surface and the A2 surface of the intermediate shaft 4e may be formed at the same position as the anti-eccentric outer peripheral surface of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. As will be described later, the first piston 11a is fitted into the main shaft side eccentric portion 4c after passing through the sub shaft side eccentric portion 4d and the intermediate shaft 4e. At this time, if the A1 surface and the A2 surface of the intermediate shaft 4e do not protrude from the outer peripheral surface on the opposite eccentric side of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d, the first piston 11a is eccentric on the main shaft side. It can be fitted to the part 4c. For example, a part or front part of the B surface may be a flat surface. If the B surface is formed closer to the axial center side than the position of the intersection C between the virtual extension line of the A1 surface and the virtual extension line of the A2 surface, the inner diameter 10a of the partition plate 10 can be formed small. An effect can be obtained.

続いて、図3〜図8により、圧縮機構部3の組立手順を説明する。
(1)図3に示すように、先ず第1のシリンダ8と主軸受6とをボルト14で締結して固定する。ボルト14は、複数本使用する。
(2)図4に示すように、クランク軸4の主軸4aを主軸受6に第1のシリンダ8側から挿入する。次に、第1のピストン11aを副軸4b、副軸側偏芯部4d、中間軸4eの順にくぐらせ、主軸側偏芯部4cに組み付ける。
(3)図5に示すように、仕切板10を、副軸4b、副軸側偏芯部4dをくぐらせ、中間軸4eに組み付ける。この状態では、矢印で示すように、仕切板10を軸方向にくぐらせただけなので、仕切板10の中心と第1のシリンダ8の中心が一致していない。
(4)図6に示すように、仕切板10を軸直角方向に移動させて、第1のシリンダ8と中心が合うようにセットする。仕切板10に設けられたボルト通し穴10b、第1のシリンダ8のボルト通し穴8a、主軸受6のボルト通し穴6aの位置を合わせ、後述のボルトを通せるようにするためである。
(5)図7に示すように、第2のピストン11bを副軸4bをくぐらせた後、副軸側偏芯部4dに挿入する。
(6)また、第2のシリンダ9と副軸受7とをボルト13(複数本)で固定する。それをクランク軸4の副軸4bに挿入する。
(7)図8に示すように、第2のシリンダ9を副軸受7の外側から仕切板10を間に挟んで、ボルト15(複数本)により第1のシリンダ8に固定する。また、併行して第1のシリンダ8を主軸受6の外側から仕切板10を間に挟んで、ボルト12(複数本)により第2のシリンダ9に固定する。
Next, the assembly procedure of the compression mechanism unit 3 will be described with reference to FIGS.
(1) As shown in FIG. 3, first, the first cylinder 8 and the main bearing 6 are fastened and fixed with bolts 14. A plurality of bolts 14 are used.
(2) As shown in FIG. 4, the main shaft 4a of the crankshaft 4 is inserted into the main bearing 6 from the first cylinder 8 side. Next, the first piston 11a is passed through the sub shaft 4b, the sub shaft side eccentric portion 4d, and the intermediate shaft 4e in this order, and is assembled to the main shaft side eccentric portion 4c.
(3) As shown in FIG. 5, the partition plate 10 is assembled to the intermediate shaft 4e by passing through the sub shaft 4b and the sub shaft side eccentric portion 4d. In this state, as indicated by the arrow, the partition plate 10 is merely passed through in the axial direction, so the center of the partition plate 10 and the center of the first cylinder 8 do not coincide.
(4) As shown in FIG. 6, the partition plate 10 is moved in the direction perpendicular to the axis, and is set so that the center is aligned with the first cylinder 8. This is because the bolt through holes 10b provided in the partition plate 10, the bolt through holes 8a of the first cylinder 8, and the bolt through holes 6a of the main bearing 6 are aligned so that the bolts described later can be passed therethrough.
(5) As shown in FIG. 7, the second piston 11b is inserted into the sub-shaft side eccentric portion 4d after passing through the sub-shaft 4b.
(6) Further, the second cylinder 9 and the auxiliary bearing 7 are fixed with bolts 13 (plural pieces). It is inserted into the countershaft 4b of the crankshaft 4.
(7) As shown in FIG. 8, the second cylinder 9 is fixed to the first cylinder 8 with bolts 15 (plural) with the partition plate 10 sandwiched from the outside of the auxiliary bearing 7. At the same time, the first cylinder 8 is fixed to the second cylinder 9 with bolts 12 (plural) with the partition plate 10 sandwiched from the outside of the main bearing 6.

ここで、上述した特許文献1に記載の従来の2気筒回転圧縮機は、圧縮機構部を図3〜図8で示したように組み立てる際、次のような課題も有していた。つまり、上述したように、特許文献1に記載の従来の2気筒回転圧縮機は、仕切板の内径を大きくする必要があったので、ピストンのシール長さが不足してしまい、冷凍能力の低下や圧縮効率の悪化を招いてしまっていた。これを防止するには、仕切板の内径が中間軸の外周部に極力近づくように、仕切板の内径を小さく形成すればよいと思われる。しかしながら、このように仕切板の内径を小さくした場合、仕切板の内径中心軸とシリンダの中心軸を合わせてセットする際(本実施の形態1の図6の工程に相当)、圧縮機構部の構成部品の加工誤差等によって仕切板の内径と中間軸が干渉することがあり、互いの中心軸を合わせられないことがある。このため、本実施の形態1の図8に相当する工程において、仕切板のボルト通し穴に挿入するボルト(ボルト12,15に相当)が仕切板を通過できず、圧縮機構の組み直しが必要となり、組立作業効率を低下させてしまう。   Here, the conventional two-cylinder rotary compressor described in Patent Document 1 described above also has the following problems when the compression mechanism is assembled as shown in FIGS. That is, as described above, the conventional two-cylinder rotary compressor described in Patent Document 1 needs to increase the inner diameter of the partition plate, so that the piston seal length is insufficient and the refrigeration capacity decreases. And the compression efficiency deteriorated. In order to prevent this, it seems that the inner diameter of the partition plate should be made small so that the inner diameter of the partition plate is as close as possible to the outer peripheral portion of the intermediate shaft. However, when the inner diameter of the partition plate is reduced in this way, when the inner diameter central axis of the partition plate and the center axis of the cylinder are set together (corresponding to the process of FIG. 6 of the first embodiment), the compression mechanism section The inner diameter of the partition plate and the intermediate shaft may interfere with each other due to processing errors of the component parts, and the central axes may not be aligned. For this reason, in the process corresponding to FIG. 8 of the first embodiment, the bolts (corresponding to the bolts 12 and 15) inserted into the bolt through holes of the partition plate cannot pass through the partition plate, and it is necessary to reassemble the compression mechanism. As a result, the assembly work efficiency is lowered.

一方、本実施の形態1に係る2気筒回転圧縮機100においては、ピストンのシール長さ(つまり、図2(c)に示す第1のピストン11aと仕切板10の内径10aとの間の距離、及び、図2(b)に示す第2のピストン11bと仕切板10の内径10aとの間の距離)を十分に確保しても、仕切板10の内径10aと中間軸4eの外周面との間に十分な空隙を形成することができる。このため、図6に示す工程において仕切板10の内径10aと中間軸4eが干渉することがないので、図8に示す工程においてボルト12,15を確実に仕切板10のボルト通し穴10bに通すことができる。このため、圧縮機構部3を組み直す必要も生じず、圧縮機構部3の組立作業効率を向上させることができる。   On the other hand, in the two-cylinder rotary compressor 100 according to the first embodiment, the seal length of the piston (that is, the distance between the first piston 11a shown in FIG. 2C and the inner diameter 10a of the partition plate 10). 2 and the distance between the second piston 11b and the inner diameter 10a of the partition plate 10 shown in FIG. 2B), the inner diameter 10a of the partition plate 10 and the outer peripheral surface of the intermediate shaft 4e A sufficient space can be formed between the two. For this reason, since the inner diameter 10a of the partition plate 10 and the intermediate shaft 4e do not interfere in the step shown in FIG. 6, the bolts 12 and 15 are securely passed through the bolt through holes 10b of the partition plate 10 in the step shown in FIG. be able to. For this reason, it is not necessary to reassemble the compression mechanism section 3, and the assembly work efficiency of the compression mechanism section 3 can be improved.

なお、中間軸の強度向上を図ったクランク軸は、特許文献1で示したクランク軸の他にも提案されている。このような従来のクランク軸においても、本実施の形態1に係る2気筒回転圧縮機100が解決した課題を解決できないことを、以下、図12及び図13に示す比較例(中間軸の強度向上を図った従来のクランク軸の一例)に基づいて説明する。   In addition to the crankshaft disclosed in Patent Document 1, a crankshaft that has improved the strength of the intermediate shaft has been proposed. Even in such a conventional crankshaft, the problem solved by the two-cylinder rotary compressor 100 according to the first embodiment cannot be solved. The comparative example shown in FIGS. This will be described based on an example of a conventional crankshaft aiming for the above.

図12、図13の比較例に示すように、従来、圧縮負荷によるクランク軸4の撓みを抑制するため、中間軸4eを主軸側偏芯部4c側の第1の中間軸4e−1と、副軸側偏芯部4d側の第2の中間軸4e−2とに分けるものがある。   As shown in the comparative examples of FIGS. 12 and 13, conventionally, in order to suppress the bending of the crankshaft 4 due to the compression load, the intermediate shaft 4 e is connected to the first intermediate shaft 4 e-1 on the main shaft side eccentric portion 4 c side, Some are divided into the second intermediate shaft 4e-2 on the subshaft side eccentric portion 4d side.

図12(a)に示すように、第1の中間軸4e−1と、第2の中間軸4e−2とは、径方向にずれて形成される。第1の中間軸4e−1は、主軸側偏芯部4cの偏芯方向に偏芯(突出)している。また、第2の中間軸4e−2は、副軸側偏芯部4dの偏芯方向に偏芯(突出)している。   As shown in FIG. 12A, the first intermediate shaft 4e-1 and the second intermediate shaft 4e-2 are formed so as to be shifted in the radial direction. The first intermediate shaft 4e-1 is eccentric (projects) in the eccentric direction of the main shaft side eccentric portion 4c. The second intermediate shaft 4e-2 is eccentric (protruded) in the eccentric direction of the sub-shaft side eccentric portion 4d.

図12(a)のB−B断面である図12(c)に示すように、第1の中間軸4e−1と仕切板10の内径10aとの間隔が、特に第1の中間軸4e−1の偏芯側の外周面において狭い。   As shown in FIG. 12C, which is a BB cross-section of FIG. 12A, the distance between the first intermediate shaft 4e-1 and the inner diameter 10a of the partition plate 10 is particularly set to the first intermediate shaft 4e-. 1 is narrow on the outer peripheral surface on the eccentric side.

また、図12(a)のA−A断面である図12(b)に示すように、第2の中間軸4e−2と仕切板10の内径10aとの間隔が、特に第2の中間軸4e−2の偏芯側の外周面において狭い。   Further, as shown in FIG. 12B, which is a cross section taken along the line AA of FIG. 12A, the distance between the second intermediate shaft 4e-2 and the inner diameter 10a of the partition plate 10 is particularly set to the second intermediate shaft. It is narrow on the outer peripheral surface on the eccentric side of 4e-2.

図12に示す比較例は、仕切板10を中間軸4eにセットするのに、図13(a)〜(d)に示す工程が必要である。即ち、仕切板10を中間軸4eにセットする際、第2の中間軸4e−2と第1の中間軸4e−1との境界にて仕切板10を傾け、主軸側偏芯部4c方向に移動させ、再度仕切板10の傾きを修正する必要があった。   The comparative example shown in FIG. 12 requires the steps shown in FIGS. 13A to 13D in order to set the partition plate 10 to the intermediate shaft 4e. That is, when the partition plate 10 is set on the intermediate shaft 4e, the partition plate 10 is inclined at the boundary between the second intermediate shaft 4e-2 and the first intermediate shaft 4e-1 so as to move toward the main shaft side eccentric portion 4c. It was necessary to move and correct the inclination of the partition plate 10 again.

さらに、第1の中間軸4e−1と第2の中間軸4e−2とが偏芯方向に突出しており、仕切板10の内径10aとの間隔が狭い。そのため、第1の中間軸4e−1及び第2の中間軸4e−2の偏芯側の外周部と仕切板10の内径10aとが接触しやすく、仕切板10を第1のシリンダ8と中心軸を合わせてセットする際、中心軸を合わせづらいという弊害があった。中心軸の合わないワークが後工程に流出した場合、図8に示すボルト12,15が仕切板10を通過できず再度組み直しを必要とするため、組立作業効率を低下させていた。   Further, the first intermediate shaft 4e-1 and the second intermediate shaft 4e-2 protrude in the eccentric direction, and the distance from the inner diameter 10a of the partition plate 10 is narrow. Therefore, the outer peripheral portion on the eccentric side of the first intermediate shaft 4e-1 and the second intermediate shaft 4e-2 and the inner diameter 10a of the partition plate 10 are easy to contact, and the partition plate 10 is centered on the first cylinder 8. When setting the axes together, there was an adverse effect that it was difficult to align the central axes. When a workpiece whose center axis is not aligned flows out to the subsequent process, the bolts 12 and 15 shown in FIG. 8 cannot pass through the partition plate 10 and need to be reassembled, which lowers the assembly work efficiency.

一方、本実施の形態1に係るクランク軸4においては、図12、図13に示す比較例と異なり、中間軸4eは、主軸側偏芯部4c及び副軸側偏芯部4dより突出しておらず、境界も持たない。中間軸4eは、主軸側偏芯部4cと副軸側偏芯部4dとが重なる領域内にある。   On the other hand, in the crankshaft 4 according to the first embodiment, unlike the comparative examples shown in FIGS. 12 and 13, the intermediate shaft 4e protrudes from the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. And no boundaries. The intermediate shaft 4e is in a region where the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d overlap.

これにより、図5、図6に示す通り、中間軸4eに仕切板10を挿入する際、仕切板10をスムーズに移動させることができる。   Thereby, as shown in FIGS. 5 and 6, when the partition plate 10 is inserted into the intermediate shaft 4e, the partition plate 10 can be moved smoothly.

また、図2を用いて上述したように、中間軸4eと仕切板10の内径10aとの間隔を広くとることができ、接触することはない。仕切板10を第1のシリンダ8と中心軸を合わせてセットする際に障害となるものがなく、組立作業効率が向上する。   Further, as described above with reference to FIG. 2, the interval between the intermediate shaft 4e and the inner diameter 10a of the partition plate 10 can be widened, and there is no contact. When the partition plate 10 is set with the first cylinder 8 aligned with the central axis, there is no obstacle and assembly work efficiency is improved.

また、図12、図13に示す比較例は、本実施の形態1に係るクランク軸4と比較すると、次のような課題もある。
2気筒回転圧縮機100は、電動機2の回転トルクが回転子2bと焼嵌め固定されたクランク軸4に伝達され、クランク軸4の主軸側偏芯部4c及び副軸側偏芯部4dに嵌合される第1のピストン11a及び第2のピストン11bを、第1のシリンダ8及び第2のシリンダ9の気室、第1のピストン11a及び第2のピストン11b、並びに第1のベーン及び第2のベーンにより構成される各圧縮室内で偏芯回転させることにより冷媒を圧縮する。
Further, the comparative example shown in FIGS. 12 and 13 has the following problems as compared with the crankshaft 4 according to the first embodiment.
In the two-cylinder rotary compressor 100, the rotational torque of the electric motor 2 is transmitted to the crankshaft 4 that is shrink-fitted and fixed to the rotor 2b, and is fitted to the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. The first piston 11a and the second piston 11b to be joined together are the air chambers of the first cylinder 8 and the second cylinder 9, the first piston 11a and the second piston 11b, and the first vane and the second piston 11b. The refrigerant is compressed by rotating eccentrically in each compression chamber constituted by two vanes.

圧縮機構部3の各摺動部への給油は、密閉容器1の底部に溜められた潤滑油をクランク軸4の回転による遠心力によりクランク軸4の内径4fに沿って上昇させ、クランク軸に設けられた給油孔20より行なう。   The oil supply to each sliding part of the compression mechanism part 3 raises the lubricating oil stored in the bottom part of the airtight container 1 along the inner diameter 4f of the crankshaft 4 by the centrifugal force generated by the rotation of the crankshaft 4, It is performed from the provided oil supply hole 20.

ここで、給油孔20より排出された潤滑油は、圧縮機構部3の各摺動部へ供給されるとともに、中間軸4eと仕切板10の内径10aに囲まれる高圧空間30(図1参照)に溜まる。高圧空間30内を中間軸4eが高速回転し、潤滑油を攪拌することで、クランク軸4の駆動力のロスになることが知られているが、比較例(図12、図13)のように、中間軸4eの第1の中間軸4e−1が主軸側偏芯部4cの偏芯方向に偏芯(突出)し、第2の中間軸4e−2が副軸側偏芯部4dの偏芯方向に偏芯(突出)している場合には、中間軸4eの回転半径が大きくなり、上記攪拌ロスを増加させていた。   Here, the lubricating oil discharged from the oil supply hole 20 is supplied to each sliding portion of the compression mechanism portion 3, and is also surrounded by the intermediate shaft 4e and the inner diameter 10a of the partition plate 10 (see FIG. 1). Accumulate. It is known that the intermediate shaft 4e rotates at a high speed in the high-pressure space 30 and the lubricating oil is stirred, resulting in a loss of driving force of the crankshaft 4. However, as in the comparative examples (FIGS. 12 and 13) In addition, the first intermediate shaft 4e-1 of the intermediate shaft 4e is eccentric (projected) in the eccentric direction of the main shaft side eccentric portion 4c, and the second intermediate shaft 4e-2 is of the sub shaft side eccentric portion 4d. In the case of eccentricity (protrusion) in the eccentric direction, the rotation radius of the intermediate shaft 4e is increased, and the agitation loss is increased.

本実施の形態1におけるクランク軸4は、図2に示すように、中間軸4eの回転半径が小さく、仕切板10の内径10aとの間隔も広く設計できるため、潤滑油を攪拌するロスを大幅に低減できる。攪拌ロス低減のみを追及すれば、中間軸4eを副軸4bと同一径以下の円形状とすることも当然考えられるが、クランク軸4の撓みの抑制を考えれば、組立作業性を阻害しない範囲で中間軸4eの断面積が最大となる、本実施の形態1の形状が最適となる。   As shown in FIG. 2, the crankshaft 4 according to the first embodiment has a small rotation radius of the intermediate shaft 4e and a wide space between the partition plate 10 and the inner diameter 10a. Can be reduced. If only the reduction of stirring loss is pursued, the intermediate shaft 4e may naturally have a circular shape with the same diameter or less as the sub shaft 4b. However, considering the suppression of the bending of the crankshaft 4, the assembly workability is not hindered. Thus, the shape of the first embodiment in which the cross-sectional area of the intermediate shaft 4e is maximized is optimal.

ところで、本実施の形態1に係る2気筒回転圧縮機100は、圧縮機構部3の軸方向長さを短くする工夫も行っている。このとき、第1のピストン11a及び第2のピストン11bの軸方向長さを変更しない場合、つまり、圧縮室の軸方向高さを変更しない場合、第1のピストン11aが中間軸4eを通過できなくなることが懸念される。この懸念事項を解消するには、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを短くする下記の方法や、中間軸4eの軸方向長さを短くする下記の方法が考えられる。   Incidentally, the two-cylinder rotary compressor 100 according to the first embodiment is also devised to shorten the axial length of the compression mechanism section 3. At this time, when the axial lengths of the first piston 11a and the second piston 11b are not changed, that is, when the axial height of the compression chamber is not changed, the first piston 11a can pass through the intermediate shaft 4e. There is concern about disappearing. In order to eliminate this concern, the following method of shortening the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d, or the axial length of the intermediate shaft 4e can be reduced. The following method of shortening can be considered.

図示はしないが、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを短くする方法とは、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法である。この場合、軸方向長さを短くする偏芯部は、中間軸4e側を削って軸方向の長さを短くする。   Although not shown, the method of shortening the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. In this method, the axial length of at least one of the pistons is made shorter than the lengths of the pistons (the first piston 11a and the second piston 11b) attached to the eccentric part. In this case, the eccentric portion that shortens the axial length shortens the axial length by scraping the intermediate shaft 4e side.

第1のピストン11aの軸方向長さよりも、中間軸4eの軸方向長さが長ければ、第1のピストン11aを主軸側偏芯部4cに組み付けることができる。   If the axial length of the intermediate shaft 4e is longer than the axial length of the first piston 11a, the first piston 11a can be assembled to the main shaft side eccentric portion 4c.

つまり、中間軸4eの軸方向長さが、第1のピストン11aを主軸側偏芯部4cに組み付けることができる略最小寸法となるように、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする。それにより、第1のピストン11a及び第2のピストン11bの軸方向長さを変更せずに圧縮機構部3の軸方向長さを短くできる。   That is, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion are such that the axial length of the intermediate shaft 4e is substantially the minimum dimension that allows the first piston 11a to be assembled to the main shaft side eccentric portion 4c. The axial length of at least one of 4d is made shorter than the lengths of the pistons (first piston 11a and second piston 11b) attached to the eccentric portion. Thereby, the axial direction length of the compression mechanism part 3 can be shortened, without changing the axial direction length of the 1st piston 11a and the 2nd piston 11b.

圧縮機構部3の軸方向長さを短くする他の方法は、図9に示すように、第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法である。逃がし形状11a−1は、傾斜、段差等で形成する。   As shown in FIG. 9, another method for shortening the axial length of the compression mechanism section 3 is to shorten the axial length of the intermediate shaft 4e from the axial length of the first piston 11a, In order to allow the piston 11a to be assembled to the main shaft side eccentric portion 4c, a relief shape 11a-1 is provided on both axial end surfaces of the inner diameter of the first piston 11a. The relief shape 11a-1 is formed with an inclination, a step or the like.

図9により、第1のピストン11aを主軸側偏芯部4cに組み付ける手順を説明する。
(1)図9(a)に示すように、第1のピストン11aを、副軸4b、副軸側偏芯部4dをくぐらせて、第1のピストン11aの軸方向の一端を主軸側偏芯部4cに当接させる。
(2)次に、図9(b)に示すように、第1のピストン11aを傾ける(図9(b)では反時計方向)。
(3)そして、図9(c)に示すように、主軸側偏芯部4cの偏芯方向に、傾いた状態のまま移動させる。第1のピストン11aの内径が、主軸側偏芯部4cの反偏芯方向の外周面に当接するまで傾いた状態のまま移動させる。
(4)最後に、第1のピストン11aを主軸側偏芯部4cに挿入する。
The procedure for assembling the first piston 11a to the main shaft side eccentric portion 4c will be described with reference to FIG.
(1) As shown in FIG. 9A, the first piston 11a is passed through the sub shaft 4b and the sub shaft side eccentric portion 4d, and one end of the first piston 11a in the axial direction is displaced from the main shaft side. It is made to contact | abut to the core part 4c.
(2) Next, as shown in FIG. 9B, the first piston 11a is tilted (counterclockwise in FIG. 9B).
(3) Then, as shown in FIG. 9C, the main shaft side eccentric portion 4c is moved in an inclined state while being inclined. The first piston 11a is moved while being inclined until the inner diameter of the first piston 11a abuts on the outer circumferential surface of the main shaft side eccentric portion 4c in the anti-eccentric direction.
(4) Finally, the first piston 11a is inserted into the main shaft side eccentric portion 4c.

第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けることによる効果を説明する前に、図11により、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さ、又は中間軸4eの軸方向長さを短くしない比較例について説明する。   Before explaining the effect of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d are shown in FIG. A comparative example in which at least one axial length or the axial length of the intermediate shaft 4e is not shortened will be described.

図11に示す比較例の組み立て手順は、以下に示すとおりである。
(1)図11(a)に示すように、第1のピストン11aを、副軸4b、副軸側偏芯部4dをくぐらせて、第1のピストン11aの軸方向の一端を主軸側偏芯部4cに当接させる。
(2)図11(b)に示すように、第1のピストン11aを、中間軸4eにおいて主軸側偏芯部4c側に移動する。
(3)図11(c)に示すように、第1のピストン11aを、主軸側偏芯部4cに挿入する。
The assembly procedure of the comparative example shown in FIG. 11 is as follows.
(1) As shown in FIG. 11 (a), the first piston 11a is passed through the countershaft 4b and the countershaft side eccentric portion 4d so that one end of the first piston 11a in the axial direction is offset from the main shaft side. It is made to contact | abut to the core part 4c.
(2) As shown in FIG. 11B, the first piston 11a is moved to the main shaft side eccentric portion 4c side in the intermediate shaft 4e.
(3) As shown in FIG. 11C, the first piston 11a is inserted into the main shaft side eccentric portion 4c.

図10は、図9に示した第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けた本実施の形態と、図11に示す比較例とを比較した図である。図10(a)が図11(c)相当図で、図10(b)が図9(d)相当図である。   FIG. 10 is a diagram comparing the present embodiment in which the relief shape 11a-1 is provided on both end surfaces in the axial direction of the inner diameter of the first piston 11a shown in FIG. 9 and the comparative example shown in FIG. FIG. 10 (a) is a view corresponding to FIG. 11 (c), and FIG. 10 (b) is a view corresponding to FIG. 9 (d).

図9に示した第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けたクランク軸4は、中間軸4eの軸方向の長さが、比較例の中間軸4eの軸方向の長さよりも、寸法dだけ短い。そのため、圧縮機構部3の軸方向の長さを、寸法dだけ短縮できる。   The crankshaft 4 provided with the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a shown in FIG. 9 has an axial length of the intermediate shaft 4e that is the axis of the intermediate shaft 4e of the comparative example. The dimension d is shorter than the length in the direction. Therefore, the axial length of the compression mechanism unit 3 can be shortened by the dimension d.

主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法、又は第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法によれば、上記のように、圧縮機構部をコンパクトに設計できるという利点がある。   The axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is determined from the lengths of the pistons (the first piston 11a and the second piston 11b) attached to the eccentric portion. In order to shorten the axial length of the intermediate shaft 4e to be shorter than the axial length of the first piston 11a so that the first piston 11a can be assembled to the main shaft side eccentric portion 4c. According to the method of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of one piston 11a, there is an advantage that the compression mechanism can be designed compactly as described above.

さらに、圧縮ガス負荷の作用点であるクランク軸4の主軸側偏芯部4c又は副軸側偏芯部4dと、支持点となる主軸受6又は副軸受7までの間隔を小さくできるため、同一ガス負荷においてもクランク軸4の撓みを抑制できる。クランク軸4の撓みが大きくなると、主軸受6又は副軸受7に対するクランク軸4の傾きが大きくなり、片当たりが生じる。しかし、クランク軸4の撓みの抑制により片当たりを抑制し、主軸受6又は副軸受7の信頼性を向上することができる。   Furthermore, the distance between the main shaft side eccentric portion 4c or the sub shaft side eccentric portion 4d of the crankshaft 4 which is the operating point of the compressed gas load and the main bearing 6 or the sub bearing 7 serving as a support point can be reduced. The bending of the crankshaft 4 can be suppressed even under a gas load. When the bending of the crankshaft 4 is increased, the inclination of the crankshaft 4 with respect to the main bearing 6 or the sub-bearing 7 is increased, and one-sided contact occurs. However, by suppressing the bending of the crankshaft 4, it is possible to suppress the contact with each other and improve the reliability of the main bearing 6 or the sub-bearing 7.

なお、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法と、第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法とを組み合わせて実施してもよい。これにより、第1のピストン11aの主軸側偏芯部4cへの組み付けを、さらに容易に行うことができる。   It should be noted that the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is set to the piston (first piston 11a and second piston 11b) attached to the eccentric portion. To shorten the axial length of the intermediate shaft 4e from the axial length of the first piston 11a and to make the first piston 11a assembled to the main shaft side eccentric portion 4c. A method of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a may be combined. Thereby, the assembly | attachment to the main axis | shaft side eccentric part 4c of the 1st piston 11a can be performed still more easily.

以上、本実施の形態1のように構成された2気筒回転圧縮機100においては、A1面及びA2面により、中間軸4eは、クランク軸4(より詳しくは中間軸4e)の軸と垂直な断面において、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯方向と直角の方向に凸状の形状になっている。また、当該凸状の端部となるB面は、A1面の仮想延長線とA2面の仮想延長線との交点Cの位置よりも軸中心側に形成されている。このため、本実施の形態1に係る2気筒回転圧縮機100は、中間軸の強度の向上を図りつつ、仕切板の内径を小さくすることができるので、クランク軸4の信頼性を確保しつつ、且つ高出力化や高効率化が可能となる。   As described above, in the two-cylinder rotary compressor 100 configured as in the first embodiment, the intermediate shaft 4e is perpendicular to the axis of the crankshaft 4 (more specifically, the intermediate shaft 4e) by the A1 surface and the A2 surface. In the cross section, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d are convex in a direction perpendicular to the eccentric direction. Further, the B surface serving as the convex end is formed on the axial center side from the position of the intersection C between the virtual extension line of the A1 surface and the virtual extension line of the A2 surface. For this reason, the two-cylinder rotary compressor 100 according to the first embodiment can reduce the inner diameter of the partition plate while improving the strength of the intermediate shaft, while ensuring the reliability of the crankshaft 4. In addition, higher output and higher efficiency can be achieved.

なお、本実施の形態1では、一体部品の仕切板10を例に説明したが、内径10aを通る断面によって複数に分割された仕切板10を用いても勿論よい。この場合、中間軸4eを挟み込むようにして仕切板10を組み付けることができ、仕切板10の内径aを主軸側偏芯部4c及び副軸側偏芯部4dの外径よりも小さく形成することができる。このため、一体部品の仕切板10を用いた場合と比べ、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量をさらに大きくとることができる。このため、圧縮室の容積をさらに拡大することができ、圧縮機の冷凍能力をさらに向上させることができる。言い換えれば、同じ出力を得るのに圧縮室の容積を小さくでき、2気筒回転圧縮機100のさらなる小型軽量化が可能となる。また、圧縮室の容積を変更しない場合には、第1のシリンダ8及び第2のシリンダ9のシリンダ内径と第1のピストン11a及び第2のピストン11bとのシール部をさらに長く確保でき、圧縮効率をさらに改善することができる。   In the first embodiment, the partition plate 10 that is an integral part has been described as an example. However, the partition plate 10 that is divided into a plurality of sections through the inner diameter 10a may be used. In this case, the partition plate 10 can be assembled so as to sandwich the intermediate shaft 4e, and the inner diameter a of the partition plate 10 is formed smaller than the outer diameters of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. Can do. For this reason, compared with the case where the partition plate 10 of an integral part is used, the eccentric amount of the main shaft side eccentric part 4c and the sub shaft side eccentric part 4d can be made still larger. For this reason, the volume of a compression chamber can be expanded further and the refrigerating capacity of a compressor can be improved further. In other words, the volume of the compression chamber can be reduced to obtain the same output, and the two-cylinder rotary compressor 100 can be further reduced in size and weight. Further, when the volume of the compression chamber is not changed, the cylinder inner diameters of the first cylinder 8 and the second cylinder 9 and the seal portion between the first piston 11a and the second piston 11b can be secured longer, and the compression Efficiency can be further improved.

また、分割形成された仕切板10を用いる場合には、圧縮機構部3を組み立てる際に仕切板10の内径10aに副軸4bを通す必要がなくなる。このため、副軸側偏芯部4dの反偏芯側外周面が副軸4bの外周面よりも軸中心側となるように、副軸4bの外径を主軸4aと同様に大きく形成し、クランク軸4の強度をさらに向上させてもよい。このとき、中間軸4eのB面を副軸4bの外周面よりも軸中心側に形成してもよいし、さらに、仕切板10の内径10aも副軸4bの外周面より軸中心側に形成してもよい。主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量をさらに大きくとることができる。   Further, when the partition plate 10 formed in a divided manner is used, it is not necessary to pass the auxiliary shaft 4b through the inner diameter 10a of the partition plate 10 when the compression mechanism portion 3 is assembled. For this reason, the outer diameter of the sub-shaft 4b is formed to be larger than that of the main shaft 4a so that the anti-eccentric side outer peripheral surface of the sub-shaft side eccentric portion 4d is closer to the shaft center side than the outer peripheral surface of the sub shaft 4b The strength of the crankshaft 4 may be further improved. At this time, the B surface of the intermediate shaft 4e may be formed closer to the shaft center side than the outer peripheral surface of the sub shaft 4b, and the inner diameter 10a of the partition plate 10 is also formed closer to the shaft center side than the outer peripheral surface of the sub shaft 4b. May be. The eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d can be further increased.

また、本実施の形態1では、圧縮機構部3を組み立てる際、第1のピストン11a、第2のピストン11b及び仕切板10等を副軸4b側から取り付けたが、これらを主軸4a側から取り付けてもよい。一体部品の仕切板10を用いる場合には、主軸側偏芯部4cの反偏芯側外周面を主軸4aの外周面よりも反軸中心側に形成すれば、第1のピストン11a、第2のピストン11b及び仕切板10等を取り付けることができる。この際、第1のピストン11a、第2のピストン11b及び仕切板10等の取り付けに影響しない副軸4bの外径を大きくすることにより、クランク軸4の強度を向上させても勿論よい。   In the first embodiment, when the compression mechanism unit 3 is assembled, the first piston 11a, the second piston 11b, the partition plate 10 and the like are attached from the auxiliary shaft 4b side, but these are attached from the main shaft 4a side. May be. When the partition plate 10 of an integral part is used, the first piston 11a, the second piston 11a, the second piston 11a, and the second piston 11a are formed by forming the anti-eccentric side outer peripheral surface of the main shaft-side eccentric portion 4c on the side opposite to the central axis. The piston 11b and the partition plate 10 can be attached. At this time, it is of course possible to increase the strength of the crankshaft 4 by increasing the outer diameter of the countershaft 4b that does not affect the attachment of the first piston 11a, the second piston 11b, the partition plate 10, and the like.

また、本実施の形態1では、各圧縮室の吸入冷媒の圧力及び吐出冷媒の圧力が同じ2気筒回転圧縮機を例に説明したが、低段側の圧縮室で低圧の冷媒ガスを中圧の冷媒ガスに圧縮し、高段側の圧縮室で中圧の冷媒ガスを高圧の冷媒ガスに圧縮する2段回転圧縮機に本発明を実施することも勿論可能である。   In the first embodiment, the description has been given by taking the two-cylinder rotary compressor in which the pressure of the suction refrigerant and the pressure of the discharge refrigerant in each compression chamber are the same as an example. It is of course possible to implement the present invention in a two-stage rotary compressor that compresses the refrigerant gas into a high-pressure refrigerant gas and compresses the medium-pressure refrigerant gas into the high-pressure refrigerant gas in the high-stage compression chamber.

1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランク軸、4a 主軸、4b 副軸、4c 主軸側偏芯部、4d 副軸側偏芯部、4e 中間軸、4e−1 第1の中間軸、4e−2 第2の中間軸、4f 内径、6 主軸受、6a ボルト通し穴、7 副軸受、8 第1のシリンダ、8a ボルト通し穴、9 第2のシリンダ、10 仕切板、10a 内径、10b ボルト通し穴、11a 第1のピストン、11a−1 逃がし形状、11b 第2のピストン、12 ボルト、13 ボルト、14 ボルト、20 給油孔、21 吸入連結管、22 吸入連結管、23 吐出管、24 ガラス端子、25 リード線、30 高圧空間、40 アキュムレータ、100 2気筒回転圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor, 2a Stator, 2b Rotor, 3 Compression mechanism part, 4 Crankshaft, 4a Main shaft, 4b Secondary shaft, 4c Main shaft side eccentric part, 4d Subshaft side eccentric part, 4e Intermediate shaft, 4e-1 first intermediate shaft, 4e-2 second intermediate shaft, 4f inner diameter, 6 main bearing, 6a bolt through hole, 7 auxiliary bearing, 8 first cylinder, 8a bolt through hole, 9 second cylinder 10 partition plate, 10a inner diameter, 10b bolt through hole, 11a first piston, 11a-1 relief shape, 11b second piston, 12 bolt, 13 bolt, 14 bolt, 20 oil supply hole, 21 suction connection pipe, 22 Suction connection pipe, 23 discharge pipe, 24 glass terminal, 25 lead wire, 30 high-pressure space, 40 accumulator, 100 2-cylinder rotary compressor.

Claims (5)

固定子及び回転子を有する電動機と、
前記回転子に固定された主軸、前記主軸の軸方向に設けられた副軸、前記主軸と前記副軸との間に設けられた主軸側偏芯部及び副軸側偏芯部、並びに前記主軸側偏芯部と前記副軸側偏芯部との間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、
前記主軸側偏芯部に嵌合する第1のピストンと、
前記副軸側偏芯部に嵌合する第2のピストンと、
円筒状の貫通孔が形成され、該貫通孔に前記主軸側偏芯部及び前記第1のピストンが配置されて圧縮室が形成される第1のシリンダと、
円筒状の貫通孔が形成され、該貫通孔に前記副軸側偏芯部及び前記第2のピストンが配置されて圧縮室が形成される第2のシリンダと、
内部に前記中間軸が配置される円筒状の貫通孔が形成され、前記第1のシリンダの圧縮室と前記第2のシリンダの圧縮室とを仕切る仕切板と、
を備え、
前記中間軸は、前記主軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第1の面(A1)と、前記副軸側偏芯部の反偏芯側の外周面と同一の位置、あるいは当該外周面より軸中心側に形成された第2の面(A2)と、を有し、軸方向と直角な断面が前記主軸側偏芯部及び前記副軸側偏芯部の偏芯方向と直角の方向に凸状に形成され
前記凸状の先端部が、軸方向と直角な断面における前記第1の面(A1)及び前記第2の面(A2)の仮想延長線が交わる交点Cよりも軸中心側に配置され、曲面及び平坦面のうちの少なくとも1つによって構成された第3の面(B)により形成されていることを特徴とする回転圧縮機。
An electric motor having a stator and a rotor;
Spindle fixed to the rotor, axial direction countershaft provided direction of the main shaft, the main shaft side eccentric part and the countershaft side eccentric portion provided between said main shaft auxiliary shaft, as well as the A crankshaft having an intermediate shaft provided between a main shaft side eccentric portion and the sub shaft side eccentric portion, and driven by the electric motor;
A first piston fitted into the main shaft side eccentric portion;
A second piston fitted to the countershaft side eccentric portion;
A first cylinder in which a cylindrical through hole is formed, the main shaft side eccentric portion and the first piston are arranged in the through hole, and a compression chamber is formed;
A second cylinder in which a cylindrical through-hole is formed, and the sub-shaft side eccentric portion and the second piston are arranged in the through-hole to form a compression chamber;
A cylindrical through hole in which the intermediate shaft is disposed is formed, and a partition plate that partitions the compression chamber of the first cylinder and the compression chamber of the second cylinder;
Bei to give a,
The intermediate shaft, the same position and the outer peripheral surface of the counter-eccentric side of the main shaft side eccentric part, or the first surface has been made form the axial center side than the outer peripheral surface (A1), the auxiliary shaft side same position as the outer peripheral surface of the counter-eccentric side of the eccentric portion, or the second surface (A2) was made form the axial center side than the outer peripheral surface has a axial section perpendicular to said Formed in a direction perpendicular to the eccentric direction of the main shaft side eccentric portion and the sub shaft side eccentric portion,
The convex tip is disposed on the axial center side from the intersection C where the virtual extension lines of the first surface (A1) and the second surface (A2) in a cross section perpendicular to the axial direction intersect. And a third surface (B) constituted by at least one of the flat surfaces.
前記仕切板は、該仕切板に形成された貫通孔を通る断面によって、複数に分割されていることを特徴とする請求項1に記載の回転圧縮機。   The rotary compressor according to claim 1, wherein the partition plate is divided into a plurality of sections by a cross section passing through a through hole formed in the partition plate. 記第1のピストン及び前記第2のピストンは、前記副軸側から嵌合されるものであり、
前記副軸側偏芯部の反偏芯側前記副軸の外周面は、前記副軸側偏芯部の反偏芯側の外周面よりも軸中心側に形成され、
前記副軸の外径は、前記主軸の外径よりも細く形成されていることを特徴とする請求項1に記載の回転圧縮機。
Before SL first piston and the second piston, which is fitted from the counter shaft side,
The outer peripheral surface of the auxiliary shaft of the counter-eccentric side of the auxiliary shaft side eccentric part than said outer circumferential surface of the counter-eccentric side of the auxiliary shaft side eccentric part is formed at the axial center side,
The rotary compressor according to claim 1, wherein an outer diameter of the sub shaft is formed to be thinner than an outer diameter of the main shaft.
記第1のピストン及び前記第2のピストンは、前記主軸側から嵌合されるものであり、
前記主軸側偏芯部の反偏芯側前記主軸の外周面は、前記主軸側偏芯部の反偏芯側の外周面よりも軸中心側に形成され、
前記主軸の外径は、前記副軸の外径よりも細く形成されていることを特徴とする請求項1に記載の回転圧縮機。
Before SL first piston and the second piston, which is fitted from the spindle side,
The outer peripheral surface of the main shaft of the counter-eccentric side of the spindle side eccentric portion is formed in the axial center side than the outer peripheral surface of the counter-eccentric side of the main shaft side eccentric part,
The rotary compressor according to claim 1, wherein an outer diameter of the main shaft is formed thinner than an outer diameter of the sub shaft.
前記クランク軸は、ヤング率が150GPa以上の材料で形成されていることを特徴とする請求項1〜請求項4のいずれか一項に記載の回転圧縮機。   The rotary compressor according to any one of claims 1 to 4, wherein the crankshaft is made of a material having a Young's modulus of 150 GPa or more.
JP2011238605A 2011-10-31 2011-10-31 Rotary compressor Active JP5441982B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011238605A JP5441982B2 (en) 2011-10-31 2011-10-31 Rotary compressor
CZ2012-577A CZ305798B6 (en) 2011-10-31 2012-08-28 Rotary compressor
KR1020120099130A KR101375979B1 (en) 2011-10-31 2012-09-07 Rotary compressor
CN201210347125.2A CN103089631B (en) 2011-10-31 2012-09-18 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238605A JP5441982B2 (en) 2011-10-31 2011-10-31 Rotary compressor

Publications (3)

Publication Number Publication Date
JP2013096280A JP2013096280A (en) 2013-05-20
JP2013096280A5 JP2013096280A5 (en) 2013-09-26
JP5441982B2 true JP5441982B2 (en) 2014-03-12

Family

ID=48202618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238605A Active JP5441982B2 (en) 2011-10-31 2011-10-31 Rotary compressor

Country Status (4)

Country Link
JP (1) JP5441982B2 (en)
KR (1) KR101375979B1 (en)
CN (1) CN103089631B (en)
CZ (1) CZ305798B6 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466687B2 (en) 2018-03-27 2022-10-11 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868193B1 (en) * 2014-01-03 2018-06-15 엘지전자 주식회사 A rotary compressor
WO2016017281A1 (en) * 2014-08-01 2016-02-04 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
JP6020628B2 (en) * 2015-03-13 2016-11-02 株式会社富士通ゼネラル Rotary compressor
EP3249230B1 (en) * 2015-01-13 2019-08-21 Fujitsu General Limited Rotary compressor
JP2016133000A (en) * 2015-01-15 2016-07-25 株式会社富士通ゼネラル Rotary compressor
JP2016160856A (en) * 2015-03-03 2016-09-05 三菱電機株式会社 Rotary compressor
JP6913502B2 (en) * 2017-04-25 2021-08-04 日立ジョンソンコントロールズ空調株式会社 Electric compressor
JP6350843B1 (en) * 2017-10-18 2018-07-04 三菱重工サーマルシステムズ株式会社 Rotary shaft of rotary compressor and rotary compressor
JP2018059515A (en) * 2017-12-08 2018-04-12 三菱電機株式会社 Rotary compressor
CN113068990B (en) * 2021-04-13 2022-07-29 冯晔 Hammer mill

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136595A (en) * 1983-01-26 1984-08-06 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPS611687U (en) * 1984-06-11 1986-01-08 三菱電機株式会社 Multi-cylinder rotary compressor
JPS62195689U (en) * 1986-06-03 1987-12-12
JP3123125B2 (en) * 1991-07-05 2001-01-09 松下電器産業株式会社 2-cylinder rotary compressor
JP3723408B2 (en) * 1999-08-31 2005-12-07 三洋電機株式会社 2-cylinder two-stage compression rotary compressor
CN2447567Y (en) * 2000-10-24 2001-09-12 上海日立电器有限公司 Crankshaft with high-rigid connecting shaft for double-cylinder rotary compressor
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof
JP4045154B2 (en) 2002-09-11 2008-02-13 日立アプライアンス株式会社 Compressor
KR100802015B1 (en) * 2004-08-10 2008-02-12 삼성전자주식회사 Variable capacity rotary compressor
JP5117503B2 (en) * 2007-08-28 2013-01-16 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2009180203A (en) * 2008-02-01 2009-08-13 Hitachi Appliances Inc Double cylinder rotary compressor
JP5084692B2 (en) * 2008-10-21 2012-11-28 三菱電機株式会社 2-cylinder rotary compressor
JP5284210B2 (en) * 2009-07-23 2013-09-11 三菱電機株式会社 Rotary compressor, manufacturing method thereof, and manufacturing apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466687B2 (en) 2018-03-27 2022-10-11 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus

Also Published As

Publication number Publication date
CZ305798B6 (en) 2016-03-16
CZ2012577A3 (en) 2013-06-05
CN103089631B (en) 2015-09-30
KR101375979B1 (en) 2014-03-18
JP2013096280A (en) 2013-05-20
KR20130047569A (en) 2013-05-08
CN103089631A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5441982B2 (en) Rotary compressor
JP5084692B2 (en) 2-cylinder rotary compressor
JP6628957B2 (en) Scroll compressor
JP5781019B2 (en) Rotary compressor
WO2012147239A1 (en) Scroll compressor
EP2613053B1 (en) Rotary compressor with dual eccentric portion
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
KR20020034883A (en) Plural cylinder rotary compressor
WO2016139873A1 (en) Compressor
JP5606422B2 (en) Rotary compressor
JP5766166B2 (en) Rotary compressor
JP6057535B2 (en) Refrigerant compressor
JP2004270654A (en) Rotary compressor
JP5766165B2 (en) Rotary compressor
EP1947292B1 (en) Fluid machine with crankshaft
EP2735742B1 (en) Fluid machine
JP2009074464A (en) Compressor
JP2020020291A (en) Compressor
JP2014020209A (en) Two-stage compressor and two-stage compression system
JP4792947B2 (en) Compressor
JP2008082267A (en) Compressor
JP2016113923A (en) Compressor
JP6008478B2 (en) Fluid machinery
JP6430429B2 (en) Fluid machinery
JP2017008819A (en) Rotary compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5441982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250