JP5397578B2 - Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof - Google Patents

Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof Download PDF

Info

Publication number
JP5397578B2
JP5397578B2 JP2007217103A JP2007217103A JP5397578B2 JP 5397578 B2 JP5397578 B2 JP 5397578B2 JP 2007217103 A JP2007217103 A JP 2007217103A JP 2007217103 A JP2007217103 A JP 2007217103A JP 5397578 B2 JP5397578 B2 JP 5397578B2
Authority
JP
Japan
Prior art keywords
general formula
heat
novolak resin
liquid phenol
phenol novolak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007217103A
Other languages
Japanese (ja)
Other versions
JP2009051874A (en
Inventor
紀幸 三谷
伸太郎 横沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007217103A priority Critical patent/JP5397578B2/en
Publication of JP2009051874A publication Critical patent/JP2009051874A/en
Application granted granted Critical
Publication of JP5397578B2 publication Critical patent/JP5397578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、低吸湿性、耐熱性に優れた硬化物が得られる液状タイプのフェノールノボラック樹脂組成物、その製造方法およびそれを用いたエポキシ樹脂硬化物に関し、さらに詳細には半導体(IC)封止材に適し、特にフリップチップ実装やチップサイズパッケージなどの半導体封止材料に適する半導体封止用硬化剤に関する。
また、本発明の耐熱性液状フェノールノボラック樹脂は各種バインダー、コンパウンド、コーティング材、積層材、成形材料等のエポキシ樹脂用硬化剤として使用される他、エポキシ化ノボラック樹脂の原料としても使用することができる。
TECHNICAL FIELD The present invention relates to a liquid type phenol novolac resin composition capable of obtaining a cured product excellent in low hygroscopicity and heat resistance, a method for producing the same, and a cured epoxy resin product using the same. The present invention relates to a curing agent for semiconductor sealing that is suitable for a fixing material, and particularly suitable for semiconductor sealing materials such as flip chip mounting and chip size packages.
The heat-resistant liquid phenol novolac resin of the present invention can be used as a raw material for epoxidized novolac resin, in addition to being used as a curing agent for epoxy resins in various binders, compounds, coating materials, laminates, molding materials, and the like. it can.

従来から、電子材料用、特に半導体(IC)封止の分野では生産性、コスト等の面より樹脂封止が主流であり、作業性、成形性、電気特性、耐湿性、機械特性等に優れることから現状ではエポキシ樹脂組成物が主として用いられている。この硬化剤としては、フェノールノボラック樹脂、各種アミン類、酸無水物が挙げられるが、特に半導体(IC)封止用としては、耐熱性、信頼性の面からフェノールノボラック樹脂が主として用いられている。
近年、電子機器の更なる軽薄短小化、多機能化、半導体(IC)の高集積化が著しく加速しており、パッケージをプリント配線板(PCB)に取り付ける際の実装方式も、従来のピン挿入方式(DIP)から表面実装方式(BGA,SOP,SiP,CSP)が主流となってきている。更にはフリップチップ実装方式が高密度実装に有効な実装技術として適用され始めており、これらの封止材料としても使用されつつある。
これらは、液状のエポキシ樹脂と液状の酸無水物、アミン、アミド等の硬化剤が用いられ、フェノールノボラック硬化剤としては半固形〜固形フェノールノボラック樹脂又は溶剤に溶解したフェノールノボラック樹脂として用いられている。このような半固形〜固形フェノールノボラック樹脂を用いた封止材は、当然のことながら流動性が悪く、溶剤を用いたものは、溶剤が硬化後封止材中に含まれて性能に悪影響を及ぼす。
又、酸無水物を用いて、無溶媒の封止材を構成することも試みられているが、硬化後の封止材が熱水の存在、たとえばプレッシャークッカー試験の条件で加水分解を起こして、生成した酸がアルミニウム等の金属基板や配線を腐食させるために、耐湿寿命の低下を招いている。又、アミン、アミド基は強い活性を有することから信頼性の面からも好ましくない。
さらには、液状フェノールノボラック樹脂にイミド化合物を含有させた耐熱性液状フェノールノボラック樹脂が開示されている(特許文献1)が、流動性において十分であるとは言えない。
Conventionally, in the field of electronic materials, especially semiconductor (IC) sealing, resin sealing has been the mainstream in terms of productivity, cost, etc., and it has excellent workability, moldability, electrical properties, moisture resistance, mechanical properties, etc. Therefore, at present, epoxy resin compositions are mainly used. Examples of the curing agent include phenol novolac resins, various amines, and acid anhydrides. In particular, phenol novolac resins are mainly used for semiconductor (IC) sealing in terms of heat resistance and reliability. .
In recent years, further downsizing, multi-functionalization of electronic devices, and high integration of semiconductors (ICs) have been remarkably accelerated, and the conventional mounting method for mounting a package on a printed wiring board (PCB) is also the conventional pin insertion. From the method (DIP) to the surface mounting method (BGA, SOP, SiP, CSP) has become mainstream. Further, the flip chip mounting method has begun to be applied as an effective mounting technique for high-density mounting, and is also being used as a sealing material for these.
These are liquid epoxy resins and curing agents such as liquid acid anhydrides, amines, amides, etc., and phenol novolac curing agents are used as semi-solid to solid phenol novolac resins or phenol novolac resins dissolved in solvents. Yes. Sealants using such semi-solid to solid phenol novolac resins are naturally poor in fluidity, and those using solvents have a negative effect on performance because the solvent is included in the sealant after curing. Effect.
It has also been attempted to construct a solvent-free encapsulant using acid anhydride, but the cured encapsulant undergoes hydrolysis in the presence of hot water, for example, pressure cooker test conditions. Since the generated acid corrodes metal substrates such as aluminum and wiring, the moisture resistance life is reduced. Also, amine and amide groups are not preferable from the viewpoint of reliability because they have strong activity.
Furthermore, a heat-resistant liquid phenol novolac resin in which an imide compound is contained in a liquid phenol novolak resin is disclosed (Patent Document 1), but it cannot be said that the fluidity is sufficient.

特開2001−214028号公報Japanese Patent Laid-Open No. 2001-214028

本発明の目的は、上記従来の問題点を解決し、無溶剤ないしは少量の溶剤の存在下で封止に適した流動性と吸湿性、耐熱性を発揮する液状タイプのフェノールノボラック樹脂組成物を提供することにある。   An object of the present invention is to provide a liquid type phenol novolac resin composition that solves the above conventional problems and exhibits fluidity, hygroscopicity, and heat resistance suitable for sealing in the presence of no solvent or a small amount of solvent. It is to provide.

本発明者は、上記目的を達成するために鋭意検討した結果、液状フェノールノボラック樹脂に特定の固形フェノールノボラック樹脂を溶解させることにより、流動性、低吸湿性を有し、耐熱性、機械特性、エポキシ樹脂との硬化特性に優れた液状フェノールノボラック樹脂を見出し、本発明に至った。   As a result of intensive studies to achieve the above object, the present inventor has a fluidity, low hygroscopicity, heat resistance, mechanical properties, by dissolving a specific solid phenol novolac resin in a liquid phenol novolac resin. The present inventors have found a liquid phenol novolac resin excellent in curing characteristics with an epoxy resin and have reached the present invention.

即ち、本発明の課題は、一般式(1)で示される液状フェノールノボラック樹脂に、下記一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶解させた耐熱性液状フェノールノボラック樹脂により解決される。
That is, an object of the present invention is to provide a heat-resistant liquid in which a solid phenol novolac resin represented by the following general formula (2) and / or general formula (3) is dissolved in a liquid phenol novolac resin represented by the general formula (1). Solved by phenol novolac resin.

Figure 0005397578

(式中nは、平均重合度0〜5で、R1、R2、R3、R4、R5は同一でも異なっていてもよく、水素又は炭素原子数1〜4の直鎖又は分岐状のアルキル基、又はアリール基を示す。)
Figure 0005397578

(In the formula, n is an average degree of polymerization of 0 to 5, and R1, R2, R3, R4, and R5 may be the same or different, and are hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, Or an aryl group.)

Figure 0005397578

(式中nは、平均重合度0〜5を示す。)
Figure 0005397578

(In the formula, n represents an average degree of polymerization of 0 to 5.)

Figure 0005397578

(式中nは、平均重合度0〜5を示す。)
Figure 0005397578

(In the formula, n represents an average degree of polymerization of 0 to 5.)

また、本発明は、上記一般式(1)で示される液状フェノールノボラック樹脂に、上記一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶融混合することを特徴とする耐熱性液状フェノールノボラック樹脂の製造方法である。   Further, the present invention is characterized in that the liquid phenol novolac resin represented by the general formula (1) is melt-mixed with the solid phenol novolac resin represented by the general formula (2) and / or the general formula (3). This is a method for producing a heat-resistant liquid phenol novolac resin.

本発明で得られた耐熱性液状フェノールノボラック樹脂は、流動性、低吸湿性、耐熱性、機械特性、エポキシ樹脂との硬化特性に優れているだけでなく、エポキシ化ノボラック樹脂の原料としても利用できる。   The heat-resistant liquid phenol novolac resin obtained in the present invention is not only excellent in fluidity, low moisture absorption, heat resistance, mechanical properties, and curing properties with epoxy resins, but also used as a raw material for epoxidized novolac resins. it can.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において用いられる上記一般式(1)で示される液状フェノールノボラック樹脂は、R1〜R5が水素又は炭素数1〜4のアルキル基又はアリール基であり、同一でも異なっていてもよいが、R1又R5のオルソ位がアリール基で、R2〜R4が水素原子である液状フェノールノボラック樹脂が好適に用いられる。
平均重合度を示すnは、25℃で液体状態を呈し、且つ低粘度化の観点から、0〜5であり、0〜3が好ましく、0〜2がより好ましい。また、同様の観点から上記一般式(1)で示される液状フェノールノボラック樹脂の重量平均分子量は、800以下が好ましく、600未満がより好ましい。
上記一般式(2)で示される固形フェノールノボラック樹脂としては、低粘度化の観点から平均重合度nは、0〜5であり、0〜3が好ましく、0〜2がより好ましい。また、同様の観点から上記一般式(2)で示される固形フェノールノボラック樹脂の重量平均分子量は800以下が好ましく、600未満がより好ましい。
更に、上記一般式(3)で示される固形フェノールノボラック樹脂としては、低粘度化の観点から平均重合度nは、0〜5であり、0〜3が好ましく、0〜2がより好ましい。また、同様の観点から上記一般式(3)で示される固形フェノールノボラック樹脂の重量平均分子量は900以下が好ましく、800未満がより好ましい。
ここで、重量平均分子量とはGPC分析によるポリスチレン換算の重量平均分子量のことを示す。
In the liquid phenol novolak resin represented by the general formula (1) used in the present invention, R1 to R5 are hydrogen, an alkyl group having 1 to 4 carbon atoms or an aryl group, and may be the same or different. A liquid phenol novolak resin in which the ortho position of R5 is an aryl group and R2 to R4 are hydrogen atoms is preferably used.
N which shows an average degree of polymerization exhibits a liquid state at 25 degreeC, and is 0-5 from a viewpoint of viscosity reduction, 0-3 are preferable and 0-2 are more preferable. Further, from the same viewpoint, the weight average molecular weight of the liquid phenol novolak resin represented by the general formula (1) is preferably 800 or less, and more preferably less than 600.
As solid phenol novolak resin shown by the said General formula (2), the average polymerization degree n is 0-5 from a viewpoint of low viscosity, 0-3 are preferable, and 0-2 are more preferable. Further, from the same viewpoint, the weight average molecular weight of the solid phenol novolak resin represented by the general formula (2) is preferably 800 or less, and more preferably less than 600.
Furthermore, as solid phenol novolak resin shown by the said General formula (3), the average degree of polymerization n is 0-5 from a viewpoint of low viscosity, 0-3 are preferable, and 0-2 are more preferable. From the same viewpoint, the weight average molecular weight of the solid phenol novolac resin represented by the general formula (3) is preferably 900 or less, and more preferably less than 800.
Here, the weight average molecular weight means a weight average molecular weight in terms of polystyrene by GPC analysis.

本発明の耐熱性液状フェノールノボラック樹脂の形態にするには、上記一般式(1)で示される液状フェノールノボラック樹脂中に一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶解して製造する。
溶解する方法としては、特に制限はないが、上記一般式(1)で示される液状フェノールノボラック樹脂中に一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶融混合する方法が簡便で好ましい。
一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を有機溶媒に溶解させて一般式(1)で示される液状フェノールノボラック樹脂と混合させる方法も考えられるが、有機溶媒を除去する点を考慮する必要がある。
To form the heat-resistant liquid phenol novolak resin of the present invention, the solid phenol novolak represented by the general formula (2) and / or the general formula (3) in the liquid phenol novolak resin represented by the general formula (1). It is manufactured by dissolving the resin.
Although there is no restriction | limiting in particular as a method to melt | dissolve, the solid phenol novolak resin shown by General formula (2) and / or General formula (3) is melt-mixed in the liquid phenol novolak resin shown by the said General formula (1) This method is simple and preferable.
A method of dissolving the solid phenol novolak resin represented by the general formula (2) and / or the general formula (3) in an organic solvent and mixing with the liquid phenol novolak resin represented by the general formula (1) is also conceivable. It is necessary to consider the point to remove.

本発明の製造方法における溶融混合温度は、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂の融点にもよるが、通常、40〜250℃であり、50℃〜200℃が好ましく、70℃〜170℃がより好ましい。   Although the melt mixing temperature in the production method of the present invention depends on the melting point of the solid phenol novolac resin represented by the general formula (2) and / or the general formula (3), it is usually 40 to 250 ° C., 50 to 200 degreeC is preferable and 70 to 170 degreeC is more preferable.

また、本発明の製造方法における溶融混合時間は、その温度にもよるが、通常は10時間以内で行う。   Moreover, although the melt mixing time in the manufacturing method of this invention is based also on the temperature, it is normally performed within 10 hours.

本発明で使用する一般式(1)の液状フェノールノボラック樹脂および得られる耐熱性液状フェノールノボラック樹脂は、25℃において液体状態を呈するものであり、試料約1.2mlをE型粘度計(東機産業(株)製)を使用し25℃で測定した回転粘度の値が200Pa・s以下、好ましくは100Pa・s以下、より好ましくは80Pa・s以下、さらに好ましくは60Pa・s以下、最も好ましくは40Pa・s以下である。   The liquid phenol novolak resin of the general formula (1) and the resulting heat-resistant liquid phenol novolak resin used in the present invention are in a liquid state at 25 ° C., and about 1.2 ml of a sample is subjected to an E-type viscometer (Toki The value of the rotational viscosity measured at 25 ° C. using an industrial) is 200 Pa · s or less, preferably 100 Pa · s or less, more preferably 80 Pa · s or less, still more preferably 60 Pa · s or less, most preferably 40 Pa · s or less.

本発明で得られる耐熱性液状フェノールノボラック樹脂は、25℃で液状あるいは200Pa・s以下の粘度を有すれば何ら問題はなく、一般式(1)で示される液状フェノール樹脂と、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂との使用割合については、特に制限はない。
しかし、個々のフェノール樹脂の性質を考慮すると、上記一般式(1)で示される液状フェノール樹脂100重量部に対し、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を1〜40重量部使用するのが好ましい。
特に流動性特性および耐熱性を考慮すれば、上記一般式(1)で示される液状フェノール樹脂100重量部に対し、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を1〜35重量部がより好ましく、2〜30重量部がさらに好ましく、4〜30重量部が最も好ましい。
また、本発明において用いられる一般式(2)及び一般式(3)で示される固形フェノールノボラック樹脂は、許される使用量の範囲内であれば、単独若しくは2種以上を配合して用いても何ら問題はない。
The heat-resistant liquid phenol novolak resin obtained in the present invention has no problem as long as it is liquid at 25 ° C. or has a viscosity of 200 Pa · s or less. The liquid phenol resin represented by the general formula (1) and the general formula (2 ) And / or the ratio of use with the solid phenol novolac resin represented by the general formula (3) is not particularly limited.
However, in consideration of the properties of the individual phenol resins, the solid phenol novolac resin represented by the general formula (2) and / or the general formula (3) with respect to 100 parts by weight of the liquid phenol resin represented by the general formula (1). Is preferably used in an amount of 1 to 40 parts by weight.
In particular, in consideration of fluidity characteristics and heat resistance, the solid phenol novolac resin represented by the general formula (2) and / or the general formula (3) with respect to 100 parts by weight of the liquid phenol resin represented by the general formula (1). Is preferably 1 to 35 parts by weight, more preferably 2 to 30 parts by weight, and most preferably 4 to 30 parts by weight.
In addition, the solid phenol novolac resins represented by the general formula (2) and the general formula (3) used in the present invention may be used alone or in combination of two or more, as long as they are within the allowable usage range. There is no problem.

本発明で得られる耐熱性液状フェノールノボラック樹脂は、そのままエポキシ樹脂の硬化剤としてバインダー、コーティング材、積層材、成形材料等の用途に使用することもできるし、エピクロルヒドリンと反応させることによりエポキシ樹脂とすることもできる。さらにはこれらを用いた硬化物とすることもできる。   The heat-resistant liquid phenol novolak resin obtained in the present invention can be used as it is as a curing agent for epoxy resins in binders, coating materials, laminates, molding materials, etc., and by reacting with epichlorohydrin and epoxy resin. You can also Furthermore, it can also be set as the hardened | cured material using these.

本発明の耐熱性液状フェノールノボラック樹脂をエポキシ樹脂用硬化剤として使用する場合には、該フェノールノボラック樹脂とエポキシ樹脂及び硬化促進剤をそれぞれ所定量混合し、100℃〜250℃温度範囲で硬化させる。   When the heat-resistant liquid phenol novolac resin of the present invention is used as a curing agent for epoxy resins, the phenol novolac resin, the epoxy resin and the curing accelerator are mixed in a predetermined amount and cured in a temperature range of 100 ° C to 250 ° C. .

使用するエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など分子中にエポキシ基を2個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独もしくは2種以上を混合して使用しても何ら問題ない。
好ましいエポキシ樹脂としては、低粘度化の観点より25℃において液状状態のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が挙げられる。
Examples of the epoxy resin used include glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, and biphenyl type epoxy resin. And epoxy resins having two or more epoxy groups in the molecule, such as glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, and halogenated epoxy resins. These epoxy resins may be used alone or in combination of two or more.
Preferred epoxy resins include bisphenol A type epoxy resins and bisphenol F type epoxy resins in a liquid state at 25 ° C. from the viewpoint of lowering the viscosity.

硬化促進剤としては、エポキシ樹脂をフェノールノボラック樹脂で硬化させる為の公知の硬化促進剤を用いることができる。例えば、有機ホスフィン化合物及びそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びのテトラフェニルボロン塩などを挙げることができるが、この中でも硬化性の面や低粘度化の観点より25℃において液状状態の2−エチル−4−メチルイミダゾールが好ましい。   As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin with a phenol novolak resin can be used. Examples thereof include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and tetraphenylboron salts thereof, among which 25 ° C. from the viewpoint of curability and low viscosity. In liquid, 2-ethyl-4-methylimidazole in a liquid state is preferable.

本発明の耐熱性液状フェノールノボラック樹脂をエピクロルヒドリンと反応させてエポキシ樹脂とする方法については、例えば、該フェノールノボラック樹脂に過剰のエピクロルヒドリンを加え、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物の存在下に50〜150℃、好ましくは60〜120℃の範囲で1〜10時間程度反応させる方法が挙げられる。この場合、エピクロルヒドリンの使用量は、該フェノールノボラック樹脂の水酸基当量に対して2〜15倍モル、好ましくは2〜10倍モルである。また、使用するアルカリ金属水酸化物の使用量は、該フェノールノボラック樹脂の水酸基当量に対して0.8〜1.2倍モル、好ましくは0.9〜1.1倍モルである。
反応後の後処理については、反応終了後、過剰のエピクロルヒドリンを蒸留除去し、残留物をメチルイソブチルケトン等の有機溶剤に溶解し、ろ過し水洗して無機塩を除去し、次いで有機溶剤を留去することにより、目的とするエポキシ樹脂を得ることができる。
Regarding the method of reacting the heat-resistant liquid phenol novolak resin of the present invention with epichlorohydrin to form an epoxy resin, for example, an excess of epichlorohydrin is added to the phenol novolac resin and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added. In the presence of, a method of reacting in the range of 50 to 150 ° C., preferably 60 to 120 ° C. for about 1 to 10 hours can be mentioned. In this case, the usage-amount of epichlorohydrin is 2-15 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 2-10 times mole. Moreover, the usage-amount of the alkali metal hydroxide to be used is 0.8-1.2 times mole with respect to the hydroxyl equivalent of this phenol novolak resin, Preferably it is 0.9-1.1 times mole.
Regarding post-treatment after the reaction, excess epichlorohydrin is distilled off after completion of the reaction, the residue is dissolved in an organic solvent such as methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the organic solvent is distilled off. By leaving, the target epoxy resin can be obtained.

このようにして得られたエポキシ樹脂と該フェノールノボラック樹脂を硬化剤として新たなエポキシ樹脂組成物とすることもできる。   The epoxy resin thus obtained and the phenol novolac resin can be used as a curing agent to form a new epoxy resin composition.

得られたエポキシ樹脂組成物には、必要に応じて、無機充填材、離型剤、着色剤、カップリング剤、難燃剤等を添加または予め反応して用いることができる。特に半導体封止用途に使用する場合、無機充填材の添加は必須となる。このような無機充填材の例として、非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどをあげることができるが、特に非晶性シリカ、結晶性シリカなどが好ましい。また、これら添加剤の配合割合は公知の半導体封止用エポキシ樹脂組成物における割合と同様でよい。   The obtained epoxy resin composition can be used by adding or reacting in advance with an inorganic filler, a release agent, a colorant, a coupling agent, a flame retardant, or the like, if necessary. In particular, when used for semiconductor sealing applications, the addition of an inorganic filler is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate, etc., and particularly amorphous silica and crystalline silica. Etc. are preferable. Moreover, the mixture ratio of these additives may be the same as the ratio in the well-known epoxy resin composition for semiconductor sealing.

本発明で得られる耐熱性液状フェノールノボラック樹脂は、半導体装置を封止する場合の硬化剤として使用することもでき、該フェノール樹脂をエポキシ樹脂化して半導体装置の封止材に用いることも可能であり、さらには該フェノール樹脂と得られたエポキシ樹脂とを含有するエポキシ樹脂組成物として半導体装置の封止材として使用することもできる。
利用できる半導体装置としては、リードフレーム、配線板、ガラス、シリコンウエバ等の基盤に半導体チップ、トランジスター、ダイオード、発光ダイオード、サイリスター等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などを搭載した電子部品が挙げられる。
The heat-resistant liquid phenol novolak resin obtained in the present invention can be used as a curing agent for sealing a semiconductor device, and can be used as a sealing material for a semiconductor device by converting the phenol resin into an epoxy resin. Furthermore, it can also be used as a sealing material for semiconductor devices as an epoxy resin composition containing the phenol resin and the obtained epoxy resin.
Available semiconductor devices include lead frames, wiring boards, glass, silicon webs, and other active elements such as semiconductor chips, transistors, diodes, light emitting diodes, thyristors, capacitors, resistors, resistor arrays, coils, switches, etc. Examples include electronic components equipped with passive elements.

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。しかし、本発明はこれらの実施例に限定されるものではない。また、本文中「部」は重量部を示す。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples. In the text, “parts” indicates parts by weight.

参考例1
<一般式(1)で示される液状フェノールノボラック樹脂Aの合成>
温度計、仕込・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにo−アリルフェノール536部(4.0モル)、42%ホルマリン57.1部(0.8モル)、及び蓚酸5.4部を4つ口フラスコに入れ、100℃で5h反応させた後160℃まで昇温して脱水し、後減圧40torrで未反応成分を除去した。得られた液状フェノールノボラック樹脂の回転粘度は1.7Pa・s(25℃)であった。ゲル浸透クロマトグラフ分析(以下GPCと略記することもある。)によるポリスチレン換算数平均分子量(Mn)は496で、重量平均分子量(Mw)は541であった。
Reference example 1
<Synthesis of liquid phenol novolac resin A represented by the general formula (1)>
In a glass flask having a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 536 parts (4.0 mol) of o-allylphenol, 57.1 parts (0.8 mol) of 42% formalin , And 5.4 parts of oxalic acid were placed in a four-necked flask, reacted at 100 ° C. for 5 hours, dehydrated by raising the temperature to 160 ° C., and then unreacted components were removed at a reduced pressure of 40 torr. The rotational viscosity of the obtained liquid phenol novolac resin was 1.7 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatographic analysis (hereinafter sometimes abbreviated as GPC) was 496, and the weight average molecular weight (Mw) was 541.

参考例2
<一般式(2)で示される固形フェノールノボラック樹脂の合成>
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール400部(4.26モル)、サリチルアルデヒド46.84部(0.38モル)、及びパラトルエンスルホン酸1部を4つ口フラスコに入れ、窒素気流下にて130℃で反応させ、95℃まで冷却した。25%水酸化ナトリウム水溶液にて中和を行った後、90℃以上の純水400部を投入し、水洗した。その後、内温を150℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂は25℃では固形であり、該樹脂の150℃の溶融粘度は、0.9Pa・sであった。GPC分析によるポリスチレン換算数平均分子量(Mn)は554で、重量平均分子量(Mw)は616であった。
Reference example 2
<Synthesis of solid phenol novolac resin represented by the general formula (2)>
400 parts phenol (4.26 mole), 46.84 parts salicylaldehyde (0.38 mole), and paratoluene in a 1000-volume glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer 1 part of sulfonic acid was placed in a four-necked flask, reacted at 130 ° C. under a nitrogen stream, and cooled to 95 ° C. After neutralization with a 25% aqueous sodium hydroxide solution, 400 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 150 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The obtained resin was solid at 25 ° C., and the melt viscosity at 150 ° C. of the resin was 0.9 Pa · s. The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 554, and the weight average molecular weight (Mw) was 616.

実施例1
<耐熱性液状フェノールノボラック樹脂の合成>
容量500容量部のガラス製フラスコに、上記参考例1で合成した一般式(1)の液状フェノールノボラック樹脂Aを100部、上記参考例2で合成した一般式(2)の固形フェノールノボラック樹脂を4.2部添加し、窒素気流下、120℃で2h攪拌し、耐熱性液状フェノールノボラック樹脂を得た。得られた耐熱性液状フェノールノボラック樹脂の回転粘度は3.0Pa・s(25℃)であった。GPC分析によるポリスチレン換算数平均分子量(Mn)は498で、重量平均分子量(Mw)は546であった。
Example 1
<Synthesis of heat-resistant liquid phenol novolac resin>
In a glass flask having a capacity of 500 parts by volume, 100 parts of the liquid phenol novolac resin A of the general formula (1) synthesized in Reference Example 1 and the solid phenol novolac resin of the general formula (2) synthesized in Reference Example 2 above. 4.2 parts was added, and the mixture was stirred at 120 ° C. for 2 hours under a nitrogen stream to obtain a heat-resistant liquid phenol novolac resin. The rotational viscosity of the obtained heat-resistant liquid phenol novolac resin was 3.0 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 498, and the weight average molecular weight (Mw) was 546.

実施例2〜4、比較例1
表1および表2に示す組成割合にて、実施例1と同様に行った。
得られた樹脂の物性値を表1および表2に示した。
Examples 2-4, Comparative Example 1
It carried out similarly to Example 1 in the composition ratio shown in Table 1 and Table 2.
The physical property values of the obtained resin are shown in Tables 1 and 2.

参考例3
<一般式(3)で示される固形フェノールノボラック樹脂の合成>
温度計、仕込み・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにフェノール400部(4.26モル)、40%グリオキザール86.9部(0.60モル)、及びパラトルエンスルホン酸1部を4つ口フラスコに入れ、窒素気流下にて120℃で反応させ、80℃まで冷却した。25%水酸化ナトリウム水溶液にて中和を行った後、90℃以上の純水400部を投入し、水洗した。その後、内温を180℃まで昇温し、減圧−スチーミング処理にて未反応成分を除去した。得られた樹脂は25℃では固形であり、該樹脂の200℃の溶融粘度は、20Pa・sであった。GPC分析によるポリスチレン換算数平均分子量(Mn)は580で、重量平均分子量(Mw)は746であった。
Reference example 3
<Synthesis of solid phenol novolac resin represented by the general formula (3)>
400 parts phenol (4.26 mol), 406.9 glyoxal 86.9 parts (0.60 mol), and paraffin in a 1000-volume glass flask equipped with a thermometer, charging / distilling outlet, condenser and stirrer One part of toluenesulfonic acid was put into a four-necked flask, reacted at 120 ° C. under a nitrogen stream, and cooled to 80 ° C. After neutralization with a 25% aqueous sodium hydroxide solution, 400 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 180 ° C., and unreacted components were removed by a reduced pressure-steaming treatment. The obtained resin was solid at 25 ° C., and the melt viscosity at 200 ° C. of the resin was 20 Pa · s. The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 580, and the weight average molecular weight (Mw) was 746.

実施例5
<耐熱性液状フェノールノボラック樹脂の合成>
容量500容量部のガラス製フラスコに、上記参考例1で合成した液状フェノールノボラック樹脂A100部、参考例3で合成した固形フェノールノボラック樹脂を4.2部添加し、窒素気流下、170℃で2h攪拌し、耐熱性液状フェノールノボラック樹脂を得た。得られた耐熱性液状フェノールノボラック樹脂の回転粘度は2.9Pa・s(25℃)であった。GPC分析によるポリスチレン換算数平均分子量(Mn)は509で、重量平均分子量(Mw)は589であった。
Example 5
<Synthesis of heat-resistant liquid phenol novolac resin>
100 parts of the liquid phenol novolac resin A synthesized in Reference Example 1 and 4.2 parts of the solid phenol novolac resin synthesized in Reference Example 3 were added to a glass flask having a capacity of 500 parts by volume, and the mixture was added at 170 ° C. for 2 hours under a nitrogen stream. The mixture was stirred to obtain a heat-resistant liquid phenol novolac resin. The rotational viscosity of the obtained heat-resistant liquid phenol novolac resin was 2.9 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 509, and the weight average molecular weight (Mw) was 589.

実施例6〜7、比較例2〜3
表1および表2に示す組成割合にて、実施例5と同様に行った。
得られた樹脂の物性値を表1および表2に示した。
Examples 6-7, Comparative Examples 2-3
It carried out similarly to Example 5 in the composition ratio shown in Table 1 and Table 2.
The physical property values of the obtained resin are shown in Tables 1 and 2.

実施例8
<耐熱性液状フェノールノボラック樹脂の合成>
容量500容量部のガラス製フラスコに、上記参考例1で合成した液状フェノールノボラック樹脂A100部、上記参考例2で合成した固形フェノールノボラック樹脂を11.4部、上記参考例3で合成した固形フェノールノボラック樹脂を11.4部添加し、窒素気流下、170℃で2h攪拌し、耐熱性液状フェノールノボラック樹脂を得た。得られた耐熱性液状フェノールノボラック樹脂の回転粘度は45.9Pa・s(25℃)であった。GPC分析によるポリスチレン換算数平均分子量(Mn)は523で、重量平均分子量(Mw)は634であった。
Example 8
<Synthesis of heat-resistant liquid phenol novolac resin>
In a glass flask having a capacity of 500 parts by volume, 100 parts of the liquid phenol novolac resin A synthesized in Reference Example 1 above, 11.4 parts of the solid phenol novolac resin synthesized in Reference Example 2 above, and solid phenol synthesized in Reference Example 3 above 11.4 parts of novolak resin was added and stirred at 170 ° C. for 2 hours under a nitrogen stream to obtain a heat-resistant liquid phenol novolak resin. The rotational viscosity of the obtained heat-resistant liquid phenol novolac resin was 45.9 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 523, and the weight average molecular weight (Mw) was 634.

参考例4
<一般式(1)で示される液状フェノールノボラック樹脂Bの合成>
温度計、仕込・留出口、冷却器および攪拌機を備えた容量1000容量部のガラス製フラスコにo−アリルフェノール536部(4.0モル)、42%ホルマリン22.9部(0.32モル)、及び蓚酸5.1部を4つ口フラスコに入れ、100℃で5h反応させた後160℃まで昇温して脱水し、後減圧40torrで未反応成分を除去した。得られた液状フェノールノボラック樹脂の回転粘度は0.9Pa・s(25℃)であった。ゲル浸透クロマトグラフ分析(以下GPCと略記することもある。)によるポリスチレン換算数平均分子量(Mn)は465で、重量平均分子量(Mw)は495であり、繰り返し単位nの平均値は0.2であった。
Reference example 4
<Synthesis of liquid phenol novolac resin B represented by the general formula (1)>
In a glass flask with a capacity of 1000 parts by volume equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 536 parts of o-allylphenol (4.0 moles), 22.9 parts of 42% formalin (0.32 moles) And 5.1 parts of oxalic acid were placed in a four-necked flask, reacted at 100 ° C. for 5 hours, dehydrated by raising the temperature to 160 ° C., and then unreacted components were removed at a reduced pressure of 40 torr. The rotational viscosity of the obtained liquid phenol novolac resin was 0.9 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by gel permeation chromatographic analysis (hereinafter sometimes abbreviated as GPC) is 465, the weight average molecular weight (Mw) is 495, and the average value of the repeating unit n is 0.2. Met.

実施例9
<耐熱性液状フェノールノボラック樹脂の合成>
容量500容量部のガラス製フラスコに、上記参考例4で製造した液状フェノールノボラック樹脂Bを100部、参考例2で合成した固形フェノールノボラック樹脂Aを22.7部添加し、窒素気流下、120℃で2h攪拌し、耐熱性液状フェノールノボラック樹脂を得た。得られた耐熱性液状フェノールノボラック樹脂の回転粘度は16.6Pa・s(25℃)であった。GPC分析によるポリスチレン換算数平均分子量(Mn)は483で、重量平均分子量(Mw)は526であった。
Example 9
<Synthesis of heat-resistant liquid phenol novolac resin>
100 parts of the liquid phenol novolac resin B produced in Reference Example 4 and 22.7 parts of the solid phenol novolac resin A synthesized in Reference Example 2 were added to a glass flask having a capacity of 500 parts by volume under a nitrogen stream. The mixture was stirred at 0 ° C. for 2 hours to obtain a heat-resistant liquid phenol novolac resin. The rotational viscosity of the obtained heat-resistant liquid phenol novolac resin was 16.6 Pa · s (25 ° C.). The number average molecular weight (Mn) in terms of polystyrene by GPC analysis was 483, and the weight average molecular weight (Mw) was 526.

実施例10〜11、比較例4
表1および表2に示す組成割合にて、実施例9と同様に行った。
得られた樹脂の物性値を表1および表2に示した。
Examples 10-11, Comparative Example 4
It carried out similarly to Example 9 in the composition ratio shown in Table 1 and Table 2.
The physical property values of the obtained resin are shown in Tables 1 and 2.

なお、本発明で得られた樹脂および硬化剤の分析方法は以下のとおりである。
フェノールノボラック樹脂
(1)、ゲル浸透クロマトグラフ分析:GPC測定方法
・型式:HLC−8220 東ソー(株)製
・カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
・測定条件:カラム圧力 13.5MPa
・溶解液:テトラヒドロフラン(THF)
・フローレート:1ml/min.
・測定温度:40℃
・検出器:スペクトロフォトメーター(UV−8020)
・RANGE:2.56 WAVE LENGTH 254nm & RI
(2)、ICI粘度
・ICIコーンプレート粘度計のプレート温度を150℃に設定する。
・使用コーンを試料粘度に応じ、選択する。
・150℃のホットプレート中心に試料を乗せ、更にコーンをその上に接触させる。
・90sec.後モータースイッチを入れ、指示値が安定した点で数値を読み取る。
・ n=2の平均値を粘度値とする。
(3)、回転粘度(E型粘度)
・試料約1.2mlをカップに入れ、E型粘度計(東機産業(株)製)を使用し測定する。
・指示値が安定した点で数値を読み取る。
(4)、OH当量
(概要;塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解しアルカリで滴定する方法)
・試料1gを精秤し、1,4−ジオキサン;10mlを加え溶解する。
・溶解を確認後、1.5mol/L塩化アセチル/無水トルエン溶液;10mlを加え、0℃まで冷却する。
・ピリジン;2mlを加え、60±1℃のウォーターバス中で1Hr.反応させる。
・反応後、冷却し純水;25mlを加え、よく混合させることで塩化アセチルを分解させる。
・アセトン;25ml、フェノールフタレインを加える。
・1mol/L−水酸化カリウムを用いて、試料溶液が赤紫色に呈色するまで滴定を行う。
・ブランク(試料なし)について上記操作にて同時に測定を行う。
次式により計算し、求める。
OH当量[g/eq.]=(1000×W)/(f×(B−A))
ここで
W:試料重量[g]
f:1mol/L−水酸化カリウムのファクター=1.000
B:ブランク測定に要した1mol/L−水酸化カリウム量[ml]
A:試料測定に要した1mol/L−水酸化カリウム量[ml]
In addition, the analysis method of resin obtained by this invention and a hardening | curing agent is as follows.
Phenol novolac resin (1), gel permeation chromatographic analysis: GPC measurement method ・ Model: HLC-8220, manufactured by Tosoh Corporation ・ Column: TSK-GEL H type
G2000H × L 4
1 G3000H x L
G4000H × L 1 ・ Measurement condition: Column pressure 13.5 MPa
-Solution: Tetrahydrofuran (THF)
-Flow rate: 1 ml / min.
・ Measurement temperature: 40 ℃
・ Detector: Spectrophotometer (UV-8020)
・ RANGE: 2.56 WAVE LENGTH 254nm & RI
(2), ICI viscosity • Set the plate temperature of the ICI cone plate viscometer to 150 ° C.
・ Select the cone to be used according to the sample viscosity.
Place the sample on the center of the hot plate at 150 ° C., and further contact the cone on it.
・ 90 sec. Turn on the motor switch and read the value when the indicated value is stable.
-The average value of n = 2 is taken as the viscosity value.
(3), rotational viscosity (E-type viscosity)
-About 1.2 ml of sample is put in a cup and measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.).
・ Read the value when the indicated value is stable.
(4), OH equivalent (Outline: Method of acetylating with acetyl chloride, decomposing excess acetyl chloride with water and titrating with alkali)
-Weigh accurately 1 g of sample, add 1,4-dioxane; 10 ml and dissolve.
-After confirming dissolution, add 1.5 ml / L acetyl chloride / anhydrous toluene solution; 10 ml, and cool to 0 ° C.
・ Pyridine; 2 ml was added and 1 Hr. In a water bath at 60 ± 1 ° C. React.
-After the reaction, cool and add pure water; 25 ml, and mix well to decompose acetyl chloride.
Add acetone; 25 ml, phenolphthalein.
-Titration is performed using 1 mol / L-potassium hydroxide until the sample solution turns reddish purple.
・ Measure the blank (no sample) at the same time by the above operation.
Calculate by the following formula.
OH equivalent [g / eq. ] = (1000 × W) / (f × (BA))
Where W: sample weight [g]
f: Factor of 1 mol / L-potassium hydroxide = 1.000
B: 1 mol / L-potassium hydroxide amount [ml] required for blank measurement
A: 1 mol / L-potassium hydroxide amount [ml] required for sample measurement

硬化剤
(5)、吸水率測定
・150℃×5Hr.+180℃×8Hr.にて注型し、下記サイズに硬化させる。
サイズ;(φ50±1)×(3±0.2)(径×厚;mm)
・表面を良く拭き取り、試料重量を測定する。
・100mlサンプル瓶に入れ、純水を80mlを加える。
・熱風循環式乾燥器中にて、95℃×24Hr.吸水させる。
・24Hr.後、乾燥器より取り出し、低温恒温水槽に浸けて25℃に冷却する。
・冷却後、表面に付着した水分を良く拭き取り重量を測定する。
・次式により計算し、吸水率を求める。
吸水率[%]=((B−A)/A)×100
A:吸水前重量[g]
B:吸水後重量[g]
(6)、ガラス転位温度(Tg)測定
・150℃×5Hr.+180℃×8Hr.にて注型、硬化させた試料を下記サイズにカットする。
サイズ;(50±1)×(40±1)×(100±1)(縦×横×高;mm)
・測定装置;TMA−60(SHIMADZU製)に試料をセットし、N雰囲気にて測定。
・昇温速度;3℃/min.で350℃まで測定し、変曲点の温度を求めガラス転位温度(Tg)とする。
(7)、硬化物機械特性(弾性率・変位・応力・歪み)測定
・150℃×5Hr.+180℃×8Hr.にて注型、硬化させた試料を下記サイズにカットする。
・サイズ;(75±1)×(6±1)×(4±1)(縦×横×厚;mm)
・測定装置;オートグラフ (型式;AG−5000D SHIMADZU製)
ヘッドスピード;2mm/min. 2点間距離;50mm 室温下にて
圧縮曲げ試験を行う。
Hardener (5), water absorption measurement 150 ° C. × 5 Hr. + 180 ° C. × 8 Hr. And cast to the following size.
Size: (φ50 ± 1) × (3 ± 0.2) (diameter × thickness: mm)
・ Wipe the surface well and measure the sample weight.
• Place in a 100 ml sample bottle and add 80 ml of pure water.
・ 95 ° C. × 24 Hr. In a hot air circulation dryer. Absorb water.
-24Hr. After that, it is taken out from the dryer, immersed in a low temperature constant temperature water bath and cooled to 25 ° C.
・ After cooling, wipe off the water adhering to the surface and measure the weight.
・ Calculate the water absorption rate by the following formula.
Water absorption [%] = ((B−A) / A) × 100
A: Weight before water absorption [g]
B: Weight after water absorption [g]
(6) Measurement of glass transition temperature (Tg) 150 ° C. × 5 Hr. + 180 ° C. × 8 Hr. The sample cast and cured with is cut into the following sizes.
Size: (50 ± 1) × (40 ± 1) × (100 ± 1) (length × width × height; mm)
Measurement device; the sample was set in TMA-60 (manufactured by SHIMADZU), measured in an N 2 atmosphere.
-Temperature rising rate: 3 ° C / min. Measured to 350 ° C., the temperature of the inflection point is obtained and set as the glass transition temperature (Tg).
(7), cured product mechanical properties (elastic modulus / displacement / stress / strain) measurement / 150 ° C. × 5 Hr. + 180 ° C. × 8 Hr. The sample cast and cured with is cut into the following sizes.
・ Size: (75 ± 1) × (6 ± 1) × (4 ± 1) (length × width × thickness: mm)
・ Measuring device: Autograph (Model: AG-5000D manufactured by SHIMADZU)
Head speed: 2 mm / min. Distance between two points: 50 mm A compression bending test is performed at room temperature.

参考例1〜4で合成したフェノールノボラック樹脂の物性特性を表2に示した。   The physical properties of the phenol novolak resins synthesized in Reference Examples 1 to 4 are shown in Table 2.

表1および表2で合成した各フェノールノボラック樹脂を硬化剤として、エポキシ樹脂としてはジャパンエポキシレジン株式会社製エピコート828EL(ビスフェノールA型液状エポキシ樹脂、エポキシ当量186g/eq)を、硬化促進剤として四国化成株式会社製2E4MZ(2−エチル−4−メチルイミダゾール)を使用した。上記エポキシ樹脂と同当量比で配合し、150℃に加熱、溶融混合し、真空脱泡後150℃に加熱された金型に注形し、150℃にて5h、180℃にて8h硬化し、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物の配合と物性特性を表3および表4に併せて示した。
本発明では、予め合成した液状フェノールノボラック樹脂と、特定の固形フェノールノボラック樹脂とを特定の割合で溶融混合することにより、耐熱性および流動性を兼ね備えたフェノールノボラック樹脂を簡便な方法で製造することができる。
Each phenol novolak resin synthesized in Table 1 and Table 2 is used as a curing agent, and as an epoxy resin, Epicoat 828EL (bisphenol A type liquid epoxy resin, epoxy equivalent 186 g / eq) manufactured by Japan Epoxy Resin Co., Ltd. is used as a curing accelerator. 2E4MZ (2-ethyl-4-methylimidazole) manufactured by Kasei Corporation was used. Blended at the same equivalent ratio as the above epoxy resin, heated to 150 ° C, melted and mixed, cast into a mold heated to 150 ° C after vacuum defoaming, and cured at 150 ° C for 5h and at 180 ° C for 8h. An epoxy resin cured product was obtained. Table 3 and Table 4 show the blending and physical properties of the obtained cured epoxy resin.
In the present invention, a phenol novolak resin having both heat resistance and fluidity is produced by a simple method by melt-mixing a liquid phenol novolak resin synthesized in advance and a specific solid phenol novolak resin at a specific ratio. Can do.

Figure 0005397578
Figure 0005397578

Figure 0005397578
Figure 0005397578

Figure 0005397578
Figure 0005397578



Figure 0005397578
Figure 0005397578

Claims (8)

下記一般式(1)で示される液状フェノールノボラック樹脂に、
Figure 0005397578
(式中nは、平均重合度0〜5で、Rはアリル基を示し、R、R、R、Rは水素又は結合基CH を示す。)
下記一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶解し、
Figure 0005397578
(式中nは、平均重合度0〜5を示す。)
Figure 0005397578
(式中nは、平均重合度0〜5を示す。)
上記一般式(1)で示される液状フェノールノボラック樹脂100重量部に対し、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂が1〜40重量部からなる、25℃での回転粘度が200Pa・s以下であることを特徴とする耐熱性液状フェノールノボラック樹脂。
In the liquid phenol novolac resin represented by the following general formula (1),
Figure 0005397578
(In the formula, n represents an average degree of polymerization of 0 to 5, R 1 represents an allyl group, and R 2 , R 3 , R 4 , and R 5 represent hydrogen or a linking group CH 2. )
The solid phenol novolak resin represented by the following general formula (2) and / or general formula (3) is dissolved,
Figure 0005397578
(In the formula, n represents an average degree of polymerization of 0 to 5.)
Figure 0005397578
(In the formula, n represents an average degree of polymerization of 0 to 5.)
The solid phenol novolac resin represented by the general formula (2) and / or the general formula (3) is composed of 1 to 40 parts by weight with respect to 100 parts by weight of the liquid phenol novolak resin represented by the general formula (1). A heat-resistant liquid phenol novolak resin characterized by having a rotational viscosity at 200 Pa · s or less.
上記一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶融混合して溶解させることを特徴とする請求項1に記載の耐熱性液状フェノールノボラック樹脂。   The heat-resistant liquid phenol novolak resin according to claim 1, wherein the solid phenol novolak resin represented by the general formula (2) and / or the general formula (3) is melt-mixed and dissolved. 上記一般式(1)で示される液状フェノールノボラック樹脂に、一般式(2)及び/または一般式(3)で示される固形フェノールノボラック樹脂を溶融混合することを特徴とする請求項1〜2のいずれか1項に記載の耐熱性液状フェノールノボラック樹脂の製造方法。   The solid phenol novolac resin represented by the general formula (2) and / or the general formula (3) is melt-mixed with the liquid phenol novolak resin represented by the general formula (1). The manufacturing method of the heat-resistant liquid phenol novolak resin of any one. 請求項1〜2のいずれか1項に記載の耐熱性液状フェノールノボラック樹脂または請求項3に記載の製造方法により得られた耐熱性液状フェノールノボラック樹脂を含むエポキシ樹脂用硬化剤。   The hardening | curing agent for epoxy resins containing the heat-resistant liquid phenol novolak resin of any one of Claims 1-2, or the heat-resistant liquid phenol novolak resin obtained by the manufacturing method of Claim 3. 請求項1〜2のいずれか1項に記載の耐熱性液状フェノールノボラック樹脂または請求項3に記載の製造方法により得られた耐熱性液状フェノールノボラック樹脂をエポキシ化したエポキシ化ノボラック樹脂。   An epoxidized novolak resin obtained by epoxidizing the heat-resistant liquid phenol novolak resin according to any one of claims 1 to 2 or the heat-resistant liquid phenol novolak resin obtained by the production method according to claim 3. 請求項1〜2のいずれか1項に記載の耐熱性液状フェノールノボラック樹脂または請求項3に記載の製造方法により得られた耐熱性液状フェノールノボラック樹脂と請求項1〜2のいずれか1項に記載の耐熱性液状フェノールノボラック樹脂または請求項3に記載の製造方法により得られた耐熱性液状フェノールノボラック樹脂をエポキシ化したエポキシ化ノボラック樹脂とを含有配合してなるエポキシ樹脂組成物。   The heat-resistant liquid phenol novolak resin according to any one of claims 1 to 2 or the heat-resistant liquid phenol novolak resin obtained by the production method according to claim 3 and any one of claims 1 to 2. An epoxy resin composition comprising the heat-resistant liquid phenol novolak resin according to claim 3 or an epoxidized novolac resin obtained by epoxidizing the heat-resistant liquid phenol novolak resin obtained by the production method according to claim 3. 請求項6に記載のエポキシ樹脂組成物を用いた硬化物。   Hardened | cured material using the epoxy resin composition of Claim 6. 請求項7に記載の硬化物を含む半導体装置。   A semiconductor device comprising the cured product according to claim 7.
JP2007217103A 2007-08-23 2007-08-23 Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof Active JP5397578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217103A JP5397578B2 (en) 2007-08-23 2007-08-23 Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217103A JP5397578B2 (en) 2007-08-23 2007-08-23 Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof

Publications (2)

Publication Number Publication Date
JP2009051874A JP2009051874A (en) 2009-03-12
JP5397578B2 true JP5397578B2 (en) 2014-01-22

Family

ID=40503240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217103A Active JP5397578B2 (en) 2007-08-23 2007-08-23 Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof

Country Status (1)

Country Link
JP (1) JP5397578B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476762B2 (en) * 2009-03-27 2014-04-23 宇部興産株式会社 Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
JP2011190440A (en) * 2010-02-18 2011-09-29 Hitachi Chem Co Ltd Liquid resin composition for electronic part, and electronic part device
WO2014010559A1 (en) * 2012-07-09 2014-01-16 新日鉄住金化学株式会社 Epoxy resin, epoxy resin composition, method for curing same, and cured product thereof
KR101664948B1 (en) * 2014-01-09 2016-10-13 한국생산기술연구원 New novolac curing agent having alkoxysilyl group, preparing method thereof, composition comprising thereof, cured product thereof, and uses thereof
JP2017105898A (en) * 2015-12-08 2017-06-15 Dic株式会社 Epoxy resin, manufacturing method of epoxy resin, curable resin composition and cured article thereof
JP6645865B2 (en) * 2016-02-24 2020-02-14 株式会社パイロットコーポレーション Oil-based ink composition for writing implement and writing implement containing the same
JP6693766B2 (en) * 2016-02-26 2020-05-13 デンカ株式会社 Epoxy resin composition and metal base plate circuit board using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149846A (en) * 1997-08-01 1999-02-23 Nippon Kayaku Co Ltd Triphenylmethane type phenol resin, epoxy resin composition and cured products of the same
JPH11302503A (en) * 1998-04-17 1999-11-02 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
JP2000169538A (en) * 1998-12-04 2000-06-20 Meiwa Kasei Kk Production of liquid phenol novolac resin
JP2001048959A (en) * 1999-08-09 2001-02-20 Sumitomo Durez Co Ltd Epoxy resin curing agent
JP2001106873A (en) * 1999-10-07 2001-04-17 Sumitomo Bakelite Co Ltd Resin paste for semiconductor and semiconductor device using the same
JP2002294026A (en) * 2001-03-28 2002-10-09 Dainippon Ink & Chem Inc Liquid phenol novolak resin composition

Also Published As

Publication number Publication date
JP2009051874A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5397578B2 (en) Heat-resistant liquid phenol novolac resin, production method thereof and cured product thereof
TWI439480B (en) A crystalline modified epoxy resin, an epoxy resin composition, and a crystalline hardened product
JP2012193217A (en) Phenolic compound, and process for producing the same
JP6476527B2 (en) Liquid polyvalent hydroxy resin, production method thereof, curing agent for epoxy resin, epoxy resin composition, cured product thereof and epoxy resin
JP4451129B2 (en) Epoxy resin composition
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
KR101202028B1 (en) Novel Epoxy Resin and Epoxy Resin Composite for Semiconductor Encapsulant
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
TWI801541B (en) Phenolic resin and method for producing same, epoxy resin composition and hardened product thereof
KR100699191B1 (en) Epoxy resin composition for encapsulating semiconductor device and the semiconductor device using thereof
JP3451104B2 (en) Epoxy resin composition
JP5040404B2 (en) Epoxy resin composition for sealing material, cured product thereof and semiconductor device
JP4200896B2 (en) Heat-resistant liquid phenol novolac resin
JP3875775B2 (en) Epoxy resin composition and electronic component
JP2823455B2 (en) New epoxy resin and method for producing the same
JP2011017018A (en) Epoxy resin composition and semiconductor device
JP2779297B2 (en) Epoxy resin composition for sealing electronic parts
JP4565489B2 (en) Curing agent for epoxy resin, epoxy resin composition, and cured product thereof
JPH05304001A (en) Electronic part sealing epoxy resin composition
JP2018070682A (en) Epoxy resin composition and epoxy resin cured product using the same, and electronic component device
JP4631165B2 (en) Liquid sealing epoxy resin composition and electronic component device
JP4483463B2 (en) Epoxy resin, method for producing the same, epoxy resin composition, and semiconductor device
JP5272963B2 (en) Epoxy resin and method for producing the same
JP2003041118A (en) Resin composition for semiconductor-sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5397578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250