JP5394942B2 - Waveguide - Google Patents
Waveguide Download PDFInfo
- Publication number
- JP5394942B2 JP5394942B2 JP2010001372A JP2010001372A JP5394942B2 JP 5394942 B2 JP5394942 B2 JP 5394942B2 JP 2010001372 A JP2010001372 A JP 2010001372A JP 2010001372 A JP2010001372 A JP 2010001372A JP 5394942 B2 JP5394942 B2 JP 5394942B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- waveguide
- frequency signal
- diameter
- outer diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Waveguide Connection Structure (AREA)
Description
本発明は,導波管の構造に係り,特に,途中に前後を仕切る隔壁を備えた導波管に関する The present invention relates to a structure of a waveguide, and more particularly, to a waveguide having a partition wall that partitions the front and rear in the middle.
電磁波を導く導波管は,種々の用途に用いられているが,導波管の途中で媒体の種類が異なっていたり,圧力が異なるような場合には,両媒体を分離する隔壁を設ける必要がある。例えば,図2(a)に示すように導波管1の途中に,導波管1とは直径の異なる石英ガラスなどの誘電体で隔壁3を形成することが行われる。この場合,隔壁前後の媒体の流通を阻止するために,ガスケットなどによってシールが行われる。
しかしながら,このような隔壁3を設けることは,その部分で導波管内を伝導する電波の反射が生じ伝播効率を劣化させる問題を生じさせる。
例えば,高周波信号を円形導波管に通す場合,導波管の径が波長に対して半波長程度以下になると伝搬できなくなる性質がある。このような高周波信号を完全に通さなくなる周波数はカットオフ周波数と呼ばれ,高周波信号の実効波長と導波管の径の関係によって特徴づけられる。
カットオフとまでは行かなくても,導波管の伝播モードが途中で変化すると,界面において反射が生じるため,伝播効率が低下する。
このような問題は,導波管1と隔壁3の形状の問題,即ち,導波管1内の媒体と誘電体との界面の形状に基づく不連続性の問題である。かかる問題を解決するための方策として,図3に示すように,隔壁3に円錐形の誘電体4を接続して界面の不連続性を改善し,電波の反射を低減させる方法が従来より知られている。下記特許文献1はその一例である。
このような構成によって,形状面での不連続性についてはかなり解消されたが,図3に示したように,導波管1に直角の隔壁3を導波管1内に単に置いただけでは,隔壁3が導波管1内で固定出来ず,隔壁3が導波管1内で勝手に移動してしまい,取り付け位置が定まらないという実際上の問題が生じる。
このことを改善するためには,図1に示すように隔壁3の外径を導波管1の内径より大きくすることが望ましい。しかし上記のように隔壁3の外径が導波管1の内径より大きいと,その段差の部分で,信号が反射してしまい伝播効率が低下するという問題がある。
Waveguides that guide electromagnetic waves are used in a variety of applications, but if the type of medium is different or the pressure is different in the middle of the waveguide, it is necessary to provide a partition that separates both media There is. For example, as shown in FIG. 2A, the
However, the provision of such a
For example, when a high-frequency signal is passed through a circular waveguide, there is a property that it cannot be propagated if the diameter of the waveguide is about half a wavelength or less. The frequency at which such a high-frequency signal cannot pass completely is called a cut-off frequency, and is characterized by the relationship between the effective wavelength of the high-frequency signal and the diameter of the waveguide.
Even if it does not go to the cut-off, if the propagation mode of the waveguide changes in the middle, reflection occurs at the interface, and the propagation efficiency decreases.
Such a problem is a problem of the shape of the
With such a configuration, the discontinuity in the shape surface is considerably eliminated. However, as shown in FIG. 3, simply by placing the
In order to improve this, it is desirable to make the outer diameter of the
特開平7−50515号公報 Japanese Patent Laid-Open No. 7-50515
上記図1のような構造にすれば,導波管内部に隔壁を取り付ける場合の,導波管軸方向取付強度は向上するが,どうしても隔壁の段差が生じてしまうので,隔壁3や円錐形の誘電体4材質を同じにしたままでは,図1(c)に示すように誘電率の不連続性が生じるために導波管途中で電磁波の反射が生じることについては,解決することができない。
従って本発明は,上記のような事情に鑑みて創作されたものであり,導波管の伝播モードが途中で変化することによる伝播効率の低下の問題を解決することを第1の課題とする。
また,前記のような導波管1内の媒体と誘電体との界面の形状に基づく不連続性の問題についても解決する。これを第2の課題とする。
If the structure as shown in FIG. 1 is used, the installation strength in the axial direction of the waveguide when the partition wall is mounted inside the waveguide is improved, but a partition step is inevitably generated. If the material of the dielectric 4 is kept the same, it cannot be solved that electromagnetic waves are reflected in the middle of the waveguide because of the discontinuity of the dielectric constant as shown in FIG.
Accordingly, the present invention has been created in view of the above circumstances, and a first object is to solve the problem of a decrease in propagation efficiency due to a change in the propagation mode of the waveguide. .
The problem of discontinuity based on the shape of the interface between the medium and the dielectric in the
上記した課題を解決するために本発明は,高周波信号を導波する導波経路が該導波経路の内径よりも大きい外径の第1の誘電体によって仕切られ,前記導波経路内に,導波経路内径とほぼ等しい外径の接触面を介して前記第1の誘電体に接続された第2の誘電体が設けられた導波管において,前記第1の誘電体内における高周波信号の実効波長に対する第1の誘電体の外径の比と,前記第2の誘電体内における高周波信号の実効波長に対する前記接触面の外径の比とを等しくしたことを特徴とする導波管として構成されている。
即ち,
伝播される高周波信号の真空中における波長をλ,
第1の誘電体の誘電率をε1,
第1の誘電体部の外径をL1,
第2の誘電体の誘電率をε2,
第2の誘電体部の接触面の外径をL2とすると,
第1の誘電体内における高周波信号の実効波長は,λ/√(ε1)であり,第2の誘電体内における高周波信号の実効波長は,λ/√(ε2)である。
本発明では,第1の誘電体内における高周波信号の実効波長に対する第1の誘電体の外径の比と,第2の誘電体内における高周波信号の実効波長に対する接触面の外径の比とを等しくしたのであるから,
{λ/√(ε1)}/L1={λ/√(ε2)}/L2である。
ここにλは両辺に共通であるから,
L1・√(ε1)=L2・√(ε2) …(1)
即ち,本発明と(1)式は同義である。
なお,ここでいう波長というのは,円形導波管内に誘電帯を充填した場合には,波長短縮効果(1/√ε倍になる)によって変わり,これを考慮するためにこの発明では,実効波長をパラメータとして用いている。
即ち,本発明は,実効波長と導波管直径との比が,電波の感じる導波管の太さ,ひいては導波管内での電波伝搬の振る舞い(伝搬モード)を特徴づけるため,これが不連続にならないように調整したものである。
前記第2の誘電体は,第1の誘電体の前後両方に設けられていも良いが,或いは第1の誘電体の前または後のいずれかに設けられても良い。
また,本発明においても,「導波管1内の媒体と誘電体との界面の誘電率の不連続性に基づく不連続性の問題」を解決するために,前記第2の誘電体における導波管内の媒体と接する面(第1の誘電体と接する面とは反対側の面)を円錐形に構成することが望ましい。
前記第2の誘電体は,前記接触面と前記円錐形の面との間が導波管の内径に等しい外径の円筒状に構成されていることで,導波管への固定が確実となる。
さらに,前記第2の誘電体は,前記導波管に対して着脱自在であってもよい。
In order to solve the above-described problem, the present invention is characterized in that a waveguide path for guiding a high-frequency signal is partitioned by a first dielectric having an outer diameter larger than the inner diameter of the waveguide path , in the second dielectric waveguide provided which is connected to the first dielectric through the contact surfaces of substantially equal outer diameter waveguide path inside diameter, effective high-frequency signal in the first dielectric The waveguide is characterized in that the ratio of the outer diameter of the first dielectric to the wavelength is equal to the ratio of the outer diameter of the contact surface to the effective wavelength of the high-frequency signal in the second dielectric. ing.
That is,
Λ, the wavelength of the high-frequency signal to be propagated in vacuum
The dielectric constant of the first dielectric is ε1,
The outer diameter of the first dielectric part is L1,
Let the dielectric constant of the second dielectric be ε2,
When the outer diameter of the contact surface of the second dielectric part is L2,
The effective wavelength of the high-frequency signal in the first dielectric is λ / √ (ε1), and the effective wavelength of the high-frequency signal in the second dielectric is λ / √ (ε2).
In the present invention, the ratio of the outer diameter of the first dielectric to the effective wavelength of the high-frequency signal in the first dielectric is equal to the ratio of the outer diameter of the contact surface to the effective wavelength of the high-frequency signal in the second dielectric. Because
{Λ / √ (ε1)} / L1 = {λ / √ (ε2)} / L2.
Here, λ is common to both sides, so
L1 · √ (ε1) = L2 · √ (ε2) (1)
That is, the present invention and the formula (1) are synonymous.
Note that the wavelength referred to here varies depending on the wavelength shortening effect (multiplied by 1 / √ε) when a dielectric band is filled in a circular waveguide. Wavelength is used as a parameter.
That is, in the present invention, the ratio between the effective wavelength and the waveguide diameter characterizes the thickness of the waveguide perceived by the radio waves, and thus the behavior of the radio wave propagation in the waveguide (propagation mode). It was adjusted so as not to become.
The second dielectric may be provided both before and after the first dielectric, or may be provided either before or after the first dielectric.
Also in the present invention, in order to solve the “problem of discontinuity based on the discontinuity of the dielectric constant at the interface between the medium and the dielectric in the
The second dielectric, by being configured in a cylindrical shape having an outer diameter equal to the inner diameter of the waveguide between the contact surface and the conical surface, and securely fixed to the waveguide Become.
Furthermore, the second dielectric may be detachable from the waveguide.
本発明を高周波信号を導波する導波経路が該導波経路の内径よりも大きい外径の第1の誘電体によって仕切られ,前記導波経路内に,導波経路内径とほぼ等しい外径の接触面を介して前記第1の誘電体に接続された第2の誘電体が設けられた導波管において,前記第1の誘電体内における高周波信号の実効波長に対する第1の誘電体の外径の比と,前記第2の誘電体内における高周波信号の実効波長に対する前記接触面の外径の比とを等しくしたことを特徴とする導波管として構成した場合には,前記したような導波管の伝播モードが途中で変化することによる伝播効率の低下の問題が解決される。
また,本発明を,前記第2の誘電体における導波管内の媒体と接する面(第1の誘電体と接する面とは反対側の面)を円錐形に構成することで,導波管1内の媒体と誘電体との界面の形状に基づく不連続性の問題,即ち,このような不連続性によって導波する電波の伝播効率の低下を阻止することが出来る。
Waveguide path for guiding a high frequency signal of the present invention is partitioned by a first dielectric outer diameter larger than the inner diameter of the conductor wave path, the waveguide path, substantially equal to the outer diameter and the waveguide path inside diameter In a waveguide provided with a second dielectric connected to the first dielectric via a contact surface of the first dielectric, the first dielectric is external to the effective wavelength of the high-frequency signal in the first dielectric. When the waveguide is characterized in that the ratio of the diameter is equal to the ratio of the outer diameter of the contact surface to the effective wavelength of the high-frequency signal in the second dielectric, the above-described waveguide is used. The problem of a decrease in propagation efficiency due to a change in the propagation mode of the wave tube is solved.
Further, in the present invention, the surface of the second dielectric in contact with the medium in the waveguide (surface opposite to the surface in contact with the first dielectric) is configured in a conical shape. It is possible to prevent the problem of discontinuity based on the shape of the interface between the medium and the dielectric, that is, the deterioration of the propagation efficiency of the radio wave guided by such discontinuity.
続いて,添付図面を参照しつつ,本発明を具体化した実施の形態について説明する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.
以下,本発明の一実施形態にかかる導波管にかかる図1を参照して説明する。
全ての図において,下方に導波管の内径(直径)/導波管内の実効波長を縦軸に,導波管の長手方向を横軸に表示したグラフを記載する。
この導波管1では,高周波信号を導波する導波経路2が第1の誘電体6によって前後に仕切られている。また,前記導波経路内2には,前記第1の誘電体6の前後に接続される状態で,導波経路2の内径とほぼ等しい外径の第2の誘電体4,5が設けられている。
前記第2の誘電体4,5の導波管1内の媒体と接する面(第1の誘電体と接する面とは反対側の面)4a,5aは,導波管1の軸心に直角でもよいが,導波管1内の媒体と誘電体との界面の形状に基づく不連続性の問題」を解決するために,図示のように円錐形に構成することが望ましい。
この実施形態においては,導波管1の伝播モードが途中へ変化することによる伝播効率の低下の問題を解決するために,前記第1の誘電体6内における高周波信号の実効波長に対する第1の誘電体6における直径L1の比と,前記第2の誘電体(4および5或いは4と5のいずれか)内における高周波信号の実効波長に対する導波路部直径L2の比が等しくなるように第1及び第2の誘電体の材質が設定されている。
Hereinafter, the waveguide according to the embodiment of the present invention will be described with reference to FIG.
In all the figures, the graph is shown below with the inside diameter (diameter) of the waveguide / the effective wavelength in the waveguide on the vertical axis and the longitudinal direction of the waveguide on the horizontal axis.
In this
The surfaces of the
In this embodiment, in order to solve the problem of a decrease in propagation efficiency due to a change in the propagation mode of the
このことを詳しく説明する。
伝播される高周波信号の真空中における波長をλ,
第1の誘電体の誘電率をε1,
第1の誘電体部の直径をL1,
第2の誘電体の誘電率をε2,
第2の誘電体部の直径L2とすると,
第1の誘電体内における高周波信号の実効波長は,λ/√(ε1)であり,第2の誘電体内における高周波信号の実効波長は,λ/√(ε2)である。
この実施形態では,第1の誘電体6内における高周波信号の実効波長に対する第1の誘電体における直径L1の比と,第2の誘電体4及び5或いは4と5のいずれか内における高周波信号の実効波長に対する第2の誘電体の直径L2の比とを等しくする。
即ち,
{λ/√(ε1)}/L1={λ/√(ε2)}/L2である。
ここにλは両辺に共通であるから,
L1・√(ε1)=L2・√(ε2) …(1)
即ち,本発明の構成である「第1の誘電体内における高周波信号の実効波長に対する直径の比と,第2の誘電体内における高周波信号の実効波長に対する第2の誘電体の直径の比とを等しくしたこと」と(1)式は同義である。
これによって,第1の誘電体6内での電波の伝播モードと第2の誘電体4,5内での電波の伝播モードを等しくし,電波の伝播に支障が生じないようにし,伝播効率の低下を抑制している。
This will be described in detail.
Λ, the wavelength of the high-frequency signal to be propagated in vacuum
The dielectric constant of the first dielectric is ε1,
The diameter of the first dielectric part is L1,
Let the dielectric constant of the second dielectric be ε2,
If the diameter L2 of the second dielectric part is
The effective wavelength of the high-frequency signal in the first dielectric is λ / √ (ε1), and the effective wavelength of the high-frequency signal in the second dielectric is λ / √ (ε2).
In this embodiment, the ratio of the diameter L1 of the first dielectric to the effective wavelength of the high frequency signal in the
That is,
{Λ / √ (ε1)} / L1 = {λ / √ (ε2)} / L2.
Here, λ is common to both sides, so
L1 · √ (ε1) = L2 · √ (ε2) (1)
That is, “the ratio of the diameter of the high-frequency signal in the first dielectric to the effective wavelength is equal to the ratio of the diameter of the second dielectric to the effective wavelength of the high-frequency signal in the second dielectric. What has been done and (1) are synonymous.
As a result, the propagation mode of the radio wave in the
なお,ここでいう波長というのは,円形導波管内に誘電帯を充填した場合には,誘電体による波長短縮効果(1/√ε倍になる)によって変わり,これを考慮するためにこの発明では,実効波長をパラメータとして用いている。
即ち,この実施形態は,実効波長と導波管直径との比が,電波の感じる導波管の太さ,ひいては導波管内での電波伝搬の振る舞い(伝搬モード)を特徴づけるため,これが不連続にならないように調整したものである。
Note that the wavelength referred to here varies depending on the wavelength shortening effect (by 1 / √ε times) due to the dielectric when the circular waveguide is filled with a dielectric band. In this case, the effective wavelength is used as a parameter.
In other words, in this embodiment, the ratio between the effective wavelength and the waveguide diameter characterizes the thickness of the waveguide perceived by radio waves, and thus the behavior of radio wave propagation in the waveguide (propagation mode). It is adjusted so as not to be continuous.
前記第2の誘電体4,5は,この実施形態のように第1の誘電体6の前後両方に設けられていることが望ましいが,第1の誘電体の前または後のいずれかに設けられても良い。
The
上記第2の誘電体4,5は,図1,図4のように第1の誘電体6に接続されているが,第1の誘電体6に接着などの方法で取り付けることは,その部分で伝播モードが変化するので避けるか,伝播モードが変化しないような材質の接着剤を用いるべきである。接着剤を用いない場合,第2の誘電体4,5が導波管1の内部でずれることがない様,第2の誘電体4,5と導波管1の内径部との接触面積を大きくすることが望ましい。その1つの方法として,図4に示すように,前記第1の誘電体と第2の誘電体4,5とが接する面と前記円錐形の面との間が導波管の内径に等しい外径の円筒状部7に構成することが考えられる。このような構造が採用されていることで,導波管への固定が確実となる。
なお,上記実施形態では,図1や図4にしめすように,隔壁3の両側に円錐状に誘電体4や,円筒状部7を設けたが,電磁波の若干の反射を許容できるのであれば,図5に示すように,誘電体4や,円筒状部7を隔壁3の片側にのみ設けることも可能であり,このような使い方も本発明の一例である。
The
In the above embodiment, as shown in FIGS. 1 and 4, the
さらに,前記第2の誘電体は,前記導波管に対して着脱自在であってもよい。
例えば,導波管(以下,メイン導波管という)の一部に別の導波管(以下,接続導波管という)を接続し,メイン導波管を伝播する電磁波の一部を接続導波管で取り出すような使い方において,接続導波管をのぞき窓として使うような場合が考えられる。この場合,もちろんのぞき窓として使う時には,電磁波の伝播を停止させる。
このような使い方の場合,接続導波管から電磁波を取り出す時には,電磁波が伝播しやすいように接続導波管の一部にこの実施形態で説明したような第2の誘電体を取り付けておくことが望ましいが,のぞき窓として使う時には,伝播する電磁波がないので,第2の誘電体は不要であるばかりか,第2の誘電体があると,のぞき窓としての視認性を損なう可能性がある。そこで,前記第2の誘電体は接続導波管に対して自由に着脱できるようにしておくことが望ましい。また,図5に示した構成の場合,上記のようなのぞき窓に用いる効果がある。たとえば,通常は観察窓として使用し,必要な場合のみ高周波を伝達する用途では,隔壁部3のみを透過性のある観察窓として使い,高周波を伝達する場合のみ着脱可能な円錐型の誘電体4を装着すると言った使い方をすることで,分解することなく,低損失導波管としての特性を得ることができる。このような使い方もこの発明の一部である。
Furthermore, the second dielectric may be detachable from the waveguide.
For example, another waveguide (hereinafter referred to as connection waveguide) is connected to a part of the waveguide (hereinafter referred to as main waveguide), and a part of the electromagnetic wave propagating through the main waveguide is connected and guided. In the usage such as taking out with a wave tube, it is conceivable to use a connecting waveguide as an observation window. In this case, of course, when it is used as a viewing window, the propagation of electromagnetic waves is stopped.
In such a usage, when the electromagnetic wave is extracted from the connection waveguide, the second dielectric as described in this embodiment is attached to a part of the connection waveguide so that the electromagnetic wave can easily propagate. However, when used as a viewing window, there is no electromagnetic wave to propagate, so the second dielectric is not necessary, and the presence of the second dielectric may impair visibility as a viewing window . Therefore, it is desirable that the second dielectric is freely detachable from the connection waveguide. Further, in the case of the configuration shown in FIG. For example, in an application that is normally used as an observation window and transmits high frequency only when necessary, only the
この発明は,種々の導波管の構造に適用可能である。 The present invention can be applied to various waveguide structures.
1 導波管
3 隔壁
2 導波経路
4,5 第2の誘電体
6 第1の誘電体
7 円筒状部
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001372A JP5394942B2 (en) | 2010-01-06 | 2010-01-06 | Waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001372A JP5394942B2 (en) | 2010-01-06 | 2010-01-06 | Waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011142457A JP2011142457A (en) | 2011-07-21 |
JP5394942B2 true JP5394942B2 (en) | 2014-01-22 |
Family
ID=44458015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010001372A Expired - Fee Related JP5394942B2 (en) | 2010-01-06 | 2010-01-06 | Waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5394942B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10644368B2 (en) | 2018-01-16 | 2020-05-05 | Lyten, Inc. | Pressure barrier comprising a transparent microwave window providing a pressure difference on opposite sides of the window |
CN109950675A (en) * | 2019-04-16 | 2019-06-28 | 电子科技大学 | A kind of waveguide-waveguide interface attachment device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS441019Y1 (en) * | 1966-02-23 | 1969-01-16 | ||
US4688009A (en) * | 1985-05-13 | 1987-08-18 | Varian Associates, Inc. | Triple-pane waveguide window |
DE19542525C2 (en) * | 1995-11-15 | 1997-12-11 | Krohne Messtechnik Kg | Microwave window |
US6965287B2 (en) * | 2004-03-31 | 2005-11-15 | Tokyo Electron Limited | Low reflection microwave window |
JP2009218794A (en) * | 2008-03-10 | 2009-09-24 | Nec Corp | Flange device and choke flange |
-
2010
- 2010-01-06 JP JP2010001372A patent/JP5394942B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011142457A (en) | 2011-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397899B2 (en) | Low mode fiber optic optical link for space division multiplexing. | |
JP5088639B2 (en) | parabolic antenna | |
WO2017102157A1 (en) | Dielectric waveguide | |
WO2013125272A1 (en) | Connection structure for antenna apparatus and wireless communications apparatus | |
JP5394942B2 (en) | Waveguide | |
JP2016111459A (en) | Millimeter wave band transmission path conversion structure | |
JP4111401B1 (en) | Ferrite phase shifter and automatic matching device | |
JP2017011696A (en) | Directional coupler and diplexer | |
JP2010028381A (en) | Polar band-pass filter | |
CN107407645B (en) | System for measuring a characteristic of a fluid flow | |
JP7333518B2 (en) | WAVEGUIDE CONNECTION STRUCTURE, WAVEGUIDE CONNECTOR, AND WAVEGUIDE UNIT | |
JP2016194682A (en) | Noise reduction device | |
US8390199B2 (en) | Mode-selective interactive structure for gyrotrons | |
JP4671905B2 (en) | Combined waveguide filter | |
JP2016092551A (en) | Millimeter wave transmission line conversion structure | |
JP6220705B2 (en) | Millimeter wave band filter | |
US11901602B2 (en) | Dielectric waveguide cable having a tubular core with an inner surface coated by a high permittivity dielectric | |
JP5697797B2 (en) | Planar circuit-waveguide converter | |
JP6161345B2 (en) | Polarization separation circuit | |
US7317854B2 (en) | Waveguide and optical coupling device | |
JP6315451B2 (en) | Millimeter wave band filter | |
WO2019065042A1 (en) | Leaky waveguide and position detection system | |
KR102415416B1 (en) | Metamaterial muffler using fractal structure | |
JP6315458B2 (en) | Millimeter wave band filter | |
JP7387071B2 (en) | Waveguide planar circuit converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110315 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110315 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110324 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5394942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |