JP5388699B2 - α-type sialon phosphor and light-emitting device using the same - Google Patents

α-type sialon phosphor and light-emitting device using the same Download PDF

Info

Publication number
JP5388699B2
JP5388699B2 JP2009129824A JP2009129824A JP5388699B2 JP 5388699 B2 JP5388699 B2 JP 5388699B2 JP 2009129824 A JP2009129824 A JP 2009129824A JP 2009129824 A JP2009129824 A JP 2009129824A JP 5388699 B2 JP5388699 B2 JP 5388699B2
Authority
JP
Japan
Prior art keywords
light
sialon
wavelength
phosphor
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129824A
Other languages
Japanese (ja)
Other versions
JP2010275437A (en
Inventor
秀幸 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009129824A priority Critical patent/JP5388699B2/en
Publication of JP2010275437A publication Critical patent/JP2010275437A/en
Application granted granted Critical
Publication of JP5388699B2 publication Critical patent/JP5388699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、青色〜緑色発光するα型サイアロン蛍光体及びそれを用いた発光素子に関する。 The present invention relates to an α-sialon phosphor that emits blue to green light and a light-emitting device using the same.

特許文献1、2にはCe3+を付活したα型サイアロンは、二価のEuイオン付活の場合に比べ、励起帯、発光帯ともに短波長側にシフトし、励起のピーク波長は約400nmの近紫外域で、蛍光のピーク波長は約500nmでCe特有の非常にブロードな青緑色発光を示すことが記載されている。しかし、この場合は、青色光領域ではほとんど励起されず、青色LEDを励起源とした白色LED用蛍光体としては適用できない。 In Patent Documents 1 and 2, the α-sialon activated with Ce 3+ is shifted to the short wavelength side in both the excitation band and the emission band as compared with the case of bivalent Eu ion activation, and the peak wavelength of excitation is about 400 nm. In the near-ultraviolet region, the peak wavelength of fluorescence is about 500 nm, and it is described that Ce exhibits a very broad blue-green emission characteristic of Ce. However, in this case, it is hardly excited in the blue light region and cannot be applied as a white LED phosphor using a blue LED as an excitation source.

特開2003−203504号公報JP 2003-203504 A 特開2004−238506号公報JP 2004-238506 A

Ce3+を付活したα型サイアロン蛍光体を白色LED等の発光装置に適用するに当たって、更なる発光効率の向上及び励起の長波長化が期待されている。
本発明の目的は、青〜緑色発光を示すCe3+を付活したα型サイアロン蛍光体について、従来よりも長波長での励起が可能であり、しかも発光効率の優れた蛍光体とそれを用いた発光素子を提供するものである。
When the α-sialon phosphor activated with Ce 3+ is applied to a light emitting device such as a white LED, further improvement in light emission efficiency and longer wavelength of excitation are expected.
An object of the present invention is to use a phosphor having excellent emission efficiency and capable of being excited at a longer wavelength than that of an α-type sialon phosphor activated with Ce 3+ exhibiting blue to green emission. The light emitting element is provided.

本発明者は、Ce3+を付活したα型サイアロン蛍光体の組成に着目して検討を行い、従来よりもSi−Nに対するAl−Nの置換量を高くすることにより、発光効率が向上するとともに、励起帯が長波長側にシフトすることを見いだし、本発明に至ったものである。
即ち、本発明は、一般式:(Ma+ ,Ce3+ )Si12−(m+n)Al(m+n)16−n(Mは、Li、Ca、Mg、Y又ランタニド元素(LaとCeを除く)から選ばれる少なくとも1種の元素、Mの原子価をaとすると、m=ax+3y、Ce3+はMサイトを置換)で示されるα型サイアロンであって、1.5≦x+y≦2.25、0.05≦y≦0.5であり、紫外乃至青色光で励起可能なα型サイアロン蛍光体であり、好ましくは0≦n≦0.8であり、かつMはCaである。
The present inventor has studied paying attention to the composition of the α-sialon phosphor activated with Ce 3+ , and the luminous efficiency is improved by increasing the substitution amount of Al—N with respect to Si—N as compared with the prior art. At the same time, it has been found that the excitation band shifts to the long wavelength side, and the present invention has been achieved.
That is, the present invention have the general formula: (M a + x, Ce 3+ y) Si 12- (m + n) Al (m + n) O n N 16-n (M is Li, Ca, Mg, Y also lanthanide elements (La And at least one element selected from (except for Ce and Ce), where a is the valence of M, m = ax + 3y, Ce 3+ is an α-type sialon represented by M), and 1.5 ≦ x + y ≦ 2.25, 0.05 ≦ y ≦ 0.5, an α-type sialon phosphor that can be excited by ultraviolet to blue light, preferably 0 ≦ n ≦ 0.8, and M is Ca is there.

また、本発明のα型サイアロン蛍光体は、前記α型サイアロン蛍光体を主成分とする粉末状の蛍光体であり、α型サイアロンの格子定数aが0.789〜0.796nm、格子定数cが0.571〜0.578nmであり、粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(210)面の回折線強度に対して、いずれも10%以下である。 In addition, the α-sialon phosphor of the present invention is a powdery phosphor mainly composed of the α-sialon phosphor, and the α-sialon has a lattice constant a of 0.789 to 0.796 nm and a lattice constant c. Is 0.571 to 0.578 nm, and when evaluated by the powder X-ray diffraction method, the diffraction intensity of the crystal phase other than the α-type sialon does not exceed the diffraction line intensity of the (210) plane of the α-type sialon. Is 10% or less.

更に、本発明のα型サイアロン蛍光体は、波長450nmの光で励起した時の外部量子効率が20%以上である。
また、本発明は発光光源と前記α型サイアロン蛍光体から構成される発光素子であり、好ましくは、発光波長の最大強度が240〜480nmにあるLEDであることを特徴とする発光素子である。
Furthermore, the α-sialon phosphor of the present invention has an external quantum efficiency of 20% or more when excited with light having a wavelength of 450 nm.
In addition, the present invention is a light emitting device composed of a light emitting light source and the α-sialon phosphor, and is preferably a LED having a maximum emission wavelength intensity of 240 to 480 nm.

本発明のCe3+を付活した高m値のα型サイアロン蛍光体は、紫外線だけでなく、青色光で励起され、青緑〜緑色の可視光を効率良く発することができ、種々の発光素子、特に青色LEDや紫外LEDを光源とする白色LEDに好適である。 The high m-value α-sialon phosphor activated by Ce 3+ of the present invention is excited not only by ultraviolet rays but also by blue light, and can efficiently emit blue-green to green visible light. Particularly, it is suitable for a white LED using a blue LED or an ultraviolet LED as a light source.

実施例1及び比較例1に係る蛍光体の励起・蛍光スペクトルを示す図。The figure which shows the excitation and the fluorescence spectrum of the fluorescent substance which concern on Example 1 and Comparative Example 1. FIG.

α型サイアロンは、一般式:Ma+ Si12−(m+n)Al(m+n)16−nで表される。ここでMは、Li、Ca、Mg、Y又はランタニド元素(LaとCeを除く)から選ばれる少なくとも1種の元素である。これは、4式量の単位胞からなるα型窒化ケイ素において、m個のSi−N結合をAl−N結合に置換し、n個のSi−N結合をAl−O結合に置換している。更に、電荷補償のために、Ma+(aはMの価数であり、x=m/a)がx個α型窒化ケイ素結晶の大きなケージ状の空間に侵入固溶している。 α-sialon has the general formula: represented by M a + x Si 12- (m + n) Al (m + n) O n N 16-n. Here, M is at least one element selected from Li, Ca, Mg, Y or a lanthanide element (excluding La and Ce). In α-type silicon nitride composed of 4 units of unit cells, m Si—N bonds are replaced with Al—N bonds, and n Si—N bonds are replaced with Al—O bonds. . Further, for charge compensation, M a + (a is the valence of M and x = m / a) penetrates and dissolves in a large cage-like space of x α-type silicon nitride crystals.

α型サイアロンに蛍光特性を発現させるためには、Mの一部を固溶可能で発光中心になる元素とする必要がある。Ce3+はイオン半径が大きく、α型サイアロンの結晶を安定化させるのに十分に固溶させることは困難であるが、発光中心としての機能を発現するには十分に固溶可能である。α型サイアロンにおいて、Mサイトの一部をCe3+とすることにより、紫外線で効率良く励起され、青〜緑色発光する蛍光体が得られる。Ce3+の固溶濃度は、一般式:(Ma+ ,Ce3+ )Si12−(m+n)Al(m+n)16−n(m=ax+3y)と表した場合、Ce3+固溶濃度であるy値は0.05〜0.5の範囲であることが好ましい。y値が0.05よりも小さいと発光への寄与が小さく、0.5を越えると、Ce3+間のエネルギー伝達による蛍光の濃度消光が起こるので好ましくない。 In order to make the α-sialon exhibit fluorescence characteristics, it is necessary to use a part of M as an element that can be dissolved in a solid solution and becomes a luminescent center. Ce 3+ has a large ionic radius, and it is difficult to sufficiently dissolve it to stabilize the α-sialon crystal, but it can be sufficiently dissolved to exhibit the function as a luminescent center. In the α-type sialon, by making part of the M site Ce 3+ , a phosphor that is excited efficiently by ultraviolet rays and emits blue to green light can be obtained. Solute concentration of Ce 3+ have the general formula: (M a + x, Ce 3+ y) Si 12- (m + n) when expressed as Al (m + n) O n N 16-n (m = ax + 3y), Ce 3+ solute It is preferable that y value which is a density | concentration is the range of 0.05-0.5. If the y value is less than 0.05, the contribution to light emission is small, and if it exceeds 0.5, fluorescence concentration quenching due to energy transfer between Ce 3+ occurs, which is not preferable.

本発明者は、Ce3+を発光中心としたα型サイアロンの固溶組成(m値、n値)及び電荷補償のために固溶させるMa+に着目し、それらの発光特性との関係を鋭意検討し、特定の固溶組成により、効率良く、Ce3+を固溶させることにより、発光特性が向上し、また固溶組成の変化に対応して、Ce3+近傍の配位環境が変化することにより、励起帯が長波長化し、従来組成では困難であった青色励起が可能であるという知見を得て、本発明に至ったものである。 The inventors have solid solution composition (m value, n value) of α-sialon obtained by an emission center Ce 3+ and focusing on the M a + to solid solution for charge compensation, the relationship between their emission characteristics intensive Evaluate and efficiently dissolve Ce 3+ with a specific solid solution composition to improve the light emission characteristics, and the coordinating environment in the vicinity of Ce 3+ changes in response to changes in the solid solution composition. Thus, the inventors have obtained the knowledge that the excitation band has a longer wavelength and that blue excitation, which was difficult with the conventional composition, is possible, and has led to the present invention.

即ち、本発明のα型サイアロン蛍光体は、前記一般式において、1.5≦x+y≦2.25であることが好ましい。x+yが1.5よりも小さい場合は、青色光での励起効率が低く、また紫外線励起においても十分に高い発光強度が得られず、x+yが2.25を越えるα型サイアロンは単相では得難く、蛍光特性に悪影響を及ぼす第二相の生成を伴うので好ましくない。 That is, the α-sialon phosphor of the present invention preferably satisfies 1.5 ≦ x + y ≦ 2.25 in the general formula. When x + y is smaller than 1.5, the excitation efficiency with blue light is low, and a sufficiently high emission intensity cannot be obtained even with ultraviolet excitation, and α-sialon with x + y exceeding 2.25 cannot be obtained in a single phase. This is not preferred because it is accompanied by the generation of a second phase that adversely affects the fluorescence properties.

α型サイアロンのm値が取り得る範囲は、n値に依存し、n値が低いほど、熱力学的にα型サイアロン結晶を維持するm値範囲が広がる。本発明のα型サイアロンは、従来よりも高m値となることから、n値は極力小さくすることが好ましい。本発明では、n値を0.8以下とすることにより、m値の範囲を広げることができ、前記のx+y値が得られる。 The range that the m value of α-type sialon can take depends on the n value, and the lower the n value, the wider the m value range in which the α-type sialon crystal is maintained thermodynamically. Since the α-sialon of the present invention has a higher m value than before, it is preferable to make the n value as small as possible. In the present invention, by setting the n value to 0.8 or less, the range of the m value can be expanded, and the x + y value is obtained.

また、本発明者の検討によれば、Mとして、Caを使用すると、幅広い組成範囲でα型サイアロンが安定化し、蛍光特性に優れるので好ましい。しかしながら、励起帯や発光波長の微調整のために、Caの一部を他の元素で置換しても、蛍光特性の大幅な低下がない限りは構わない。 According to the study of the present inventor, it is preferable to use Ca as M because α-sialon is stabilized in a wide composition range and excellent in fluorescence characteristics. However, even if a part of Ca is replaced with another element for fine adjustment of the excitation band and emission wavelength, it does not matter as long as there is no significant decrease in fluorescence characteristics.

本発明では、蛍光発光の観点からは、α型サイアロン結晶相を高純度で極力多く含むこと、できれば単相から構成されていることが望ましいが、若干量の不可避的な非晶質相及び他の結晶相を含む混合物であっても、特性が低下しない範囲であれば構わない。本発明者の検討によれば、粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(210)面の回折強度に対して、いずれも10%以下であることが好ましい。10%を越える結晶相が存在すると発光特性が低下するので好ましくない。 In the present invention, from the viewpoint of fluorescence emission, it is desirable that the α-sialon crystal phase contains as much as possible high purity and is preferably composed of a single phase. Even if it is a mixture containing the crystal phase of this, as long as a characteristic is not fallen, it is good. According to the study of the present inventor, when evaluated by the powder X-ray diffraction method, the diffraction intensity of the crystal phase other than the α-type sialon is 10% of the diffraction intensity of the (210) plane of the α-type sialon. The following is preferable. The presence of a crystal phase exceeding 10% is not preferable because the light emission characteristics deteriorate.

また、本発明の蛍光体は、前記の様にα型サイアロン以外の成分が存在するため、蛍光体の全組成は必ずしもα型サイアロンの固溶組成に対応しない。α型サイアロン結晶においては、アルミニウム及び酸素の固溶量が増加するに伴い、結晶格子サイズが増加する。そこで、このα型サイアロンの格子定数に着目し、検討した結果、格子定数aが0.789〜0.796nm、格子定数cが0.571〜0.578nmの範囲にある場合に良好な発光特性が得られることを見いだした。 In addition, since the phosphor of the present invention has components other than α-sialon as described above, the total composition of the phosphor does not necessarily correspond to the solid solution composition of α-sialon. In the α-type sialon crystal, the crystal lattice size increases as the solid solution amount of aluminum and oxygen increases. Therefore, as a result of studying and examining the lattice constant of the α-sialon, good light emission characteristics are obtained when the lattice constant a is in the range of 0.789 to 0.796 nm and the lattice constant c is in the range of 0.571 to 0.578 nm. I found out that

Ce3+を付活したα型サイアロン蛍光体に対して、分光蛍光光度計によって、500〜550nmの波長でモニターした励起スペクトルを測定すると、図1に示す様に300nm近傍と390nm近傍に二つのピークが認められる。300nm近傍のピークはα型サイアロン母体材料の基礎吸収に基づくものであり、390nm近傍のピークはCe3+の直接励起によるものである。前記構成を有する本発明のα型サイアロン蛍光体は、励起スペクトルにおける長波長側のピークが長波長側にシフトするという特徴を有しており、青色光励起が可能となる。具体的には、本発明のα型サイアロン蛍光体は、波長450nmの光で励起した場合の外部量子効率が20%以上である。 When an excitation spectrum monitored at a wavelength of 500 to 550 nm was measured with a spectrofluorophotometer for an α-sialon phosphor activated with Ce 3+ , two peaks were observed near 300 nm and 390 nm as shown in FIG. Is recognized. The peak near 300 nm is based on the fundamental absorption of the α-type sialon base material, and the peak near 390 nm is due to direct excitation of Ce 3+ . The α-sialon phosphor of the present invention having the above-described configuration has a feature that the peak on the long wavelength side in the excitation spectrum is shifted to the long wavelength side, and blue light excitation is possible. Specifically, the α-sialon phosphor of the present invention has an external quantum efficiency of 20% or more when excited with light having a wavelength of 450 nm.

本発明のα型サイアロン蛍光体は、Ce3+を発光中心として用いていることから、蛍光スペクトルは、ブロードであり、その半値幅は100nm以上である。また、蛍光ピーク波長は、励起波長とともに長波長側にシフトする。例えば、波長400nmの近紫外光で励起した場合の蛍光ピーク波長は、500〜530nmであり、波長450nmの青色光で励起した場合は、520〜550nmである。 Since the α-sialon phosphor of the present invention uses Ce 3+ as the emission center, the fluorescence spectrum is broad and its half-value width is 100 nm or more. Moreover, the fluorescence peak wavelength shifts to the long wavelength side together with the excitation wavelength. For example, the fluorescence peak wavelength when excited by near ultraviolet light having a wavelength of 400 nm is 500 to 530 nm, and when excited by blue light having a wavelength of 450 nm, it is 520 to 550 nm.

本発明のα型サイアロン蛍光体は、固相反応法や還元窒化法、金属シリコン又はその合金を窒化する方法、気相反応法、シリコンイミド化合物の熱分解法等の公知のケイ素含有窒化物又は酸窒化物の合成方法により得ることができる。一例として、固相反応法により本発明のCe3+付活Ca−αサイアロン蛍光体を得る方法を例示する。 The α-sialon phosphor of the present invention is a known silicon-containing nitride such as a solid phase reaction method, a reduction nitridation method, a method of nitriding metal silicon or an alloy thereof, a gas phase reaction method, a thermal decomposition method of a silicon imide compound, or the like. It can be obtained by an oxynitride synthesis method. As an example, a method for obtaining the Ce 3+ activated Ca-α sialon phosphor of the present invention by a solid phase reaction method is illustrated.

原料粉末としては、各構成元素(ケイ素、アルミニウム、カルシウム及びセリウム)の窒化物及び/又は酸化物、更には加熱後に窒化物又は酸化物になる化合物を用いる。これらを用いて反応後に所定のα型サイアロン組成になる様に配合する。 As the raw material powder, nitrides and / or oxides of each constituent element (silicon, aluminum, calcium and cerium), and further compounds that become nitrides or oxides after heating are used. These are blended so as to have a predetermined α-sialon composition after the reaction.

前記した各原料を混合する方法については、乾式混合する方法、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法などを採用することができる。尚、混合装置としては、V型混合機、ロッキングミキサー、ボールミル、振動ミル等が好適に利用される。但し、大気中で不安定な窒化カルシウムや窒化セリウムを使用する場合の混合については、それらの加水分解や酸化が合成品特性に影響するため、不活性雰囲気のグローブボックス内で行うことが好ましい。 As a method of mixing the raw materials described above, a method of dry mixing, a method of removing the solvent after wet mixing in an inert solvent that does not substantially react with each component of the raw material, and the like can be employed. In addition, as a mixing apparatus, a V-type mixer, a rocking mixer, a ball mill, a vibration mill, etc. are used suitably. However, mixing in the case of using unstable calcium nitride or cerium nitride in the atmosphere is preferably performed in a glove box in an inert atmosphere because hydrolysis and oxidation thereof affect the properties of the synthesized product.

上記の原料混合粉末を、原料及び合成される蛍光体と反応性の低い材質の容器、例えば窒化ホウ素製容器内に充填し、窒素雰囲気中で加熱処理することにより、原料粉末間の固溶反応を進行させ、α型サイアロンを得る。原料混合粉末の容器内への充填は、固溶反応中の粒子間焼結を抑制する観点から、できるだけ嵩高くすることが好ましい。具体的には、原料粉末の容器への充填する際にかさ密度を0.6g/cm以下とすることが好ましい。 The above raw material mixed powder is filled into a container made of a material having low reactivity with the raw material and the phosphor to be synthesized, for example, a boron nitride container, and heat-treated in a nitrogen atmosphere, whereby a solid solution reaction between the raw material powders is performed. To obtain α-type sialon. The filling of the raw material mixed powder into the container is preferably as bulky as possible from the viewpoint of suppressing interparticle sintering during the solid solution reaction. Specifically, the bulk density is preferably 0.6 g / cm 3 or less when the raw material powder is filled into the container.

前記の加熱温度は組成により異なるので一概に規定できないが、一般的に1700℃以上2000℃以下の温度範囲が好ましい。合成温度が1700℃よりも低いと、α型サイアロン結晶中へのCe3+固溶が不十分となるためであり、2000℃を越えると、原料及びα型サイアロンの分解を抑制するために非常に高い窒素圧力を必要とするため、工業的に好ましくない。 The heating temperature varies depending on the composition and cannot be defined unconditionally, but generally a temperature range of 1700 ° C. or more and 2000 ° C. or less is preferable. If the synthesis temperature is lower than 1700 ° C., Ce 3+ solid solution in the α-type sialon crystal is insufficient, and if it exceeds 2000 ° C., it is extremely difficult to suppress decomposition of the raw material and α-type sialon. Since a high nitrogen pressure is required, it is not industrially preferable.

合成後のα型サイアロンは塊状なので、これを解砕、粉砕及び場合には分級操作を組み合わせて所定のサイズの粉末にすることで、いろいろな用途へ適用される。白色LED用の蛍光体として使用するためには、平均粒径を5〜30μmにすることが好ましい。 Since the α-sialon after synthesis is in the form of a lump, it can be applied to various applications by combining the pulverization, pulverization, and, in some cases, classification operations, into a powder of a predetermined size. In order to use it as a phosphor for white LED, the average particle size is preferably 5 to 30 μm.

本発明のα型サイアロン蛍光体は、発光光源と蛍光体から構成される発光装置に使用され、特に240〜480nmの波長を含有している紫外光や可視光を励起源として照射することにより、波長500〜550nmにピークを有する蛍光発光を示し、紫外LED又は青色LEDと、他色の蛍光体と組み合わせることで、容易に白色光が得られる。特に本発明のα型サイアロン蛍光体は非常にブロードな発光を示すので、高演色性の白色光が得やすい。 The α-sialon phosphor of the present invention is used in a light-emitting device composed of a light-emitting light source and a phosphor, and in particular, by irradiating ultraviolet light or visible light containing a wavelength of 240 to 480 nm as an excitation source, Fluorescence emission having a peak at a wavelength of 500 to 550 nm is shown, and white light can be easily obtained by combining an ultraviolet LED or a blue LED with a phosphor of another color. In particular, the α-sialon phosphor of the present invention exhibits a very broad light emission, so that it is easy to obtain high color rendering white light.

また、本発明のα型サイアロン蛍光体は高温での輝度低下が少ないので、これを用いた発光装置はその輝度低下及び色度ズレが小さく、高温にさらしても劣化せず、更に耐熱性にすぐれており酸化雰囲気及び水分環境下における長期間の安定性にも優れているので、これらを反映して当該発光装置が高輝度で長寿命になるという特徴を有する。 In addition, since the α-sialon phosphor of the present invention has little decrease in luminance at high temperature, a light-emitting device using the α-sialon phosphor has little decrease in luminance and chromaticity deviation, does not deteriorate even when exposed to high temperatures, and further has high heat resistance. Since it is excellent and has excellent long-term stability in an oxidizing atmosphere and moisture environment, the light-emitting device is characterized by high brightness and long life reflecting these.

本発明の発光装置は、少なくとも一つの発光光源と本発明のα型サイアロンを主成分とする蛍光体を用いて構成される。例えば、特開平5−152609号公報、特開平7−99345号公報、特許第2927279号などに記載されている公知の方法を用いてLEDを製造することができる。この場合において、発光光源は240〜480nmの波長の光を発する紫外LED又は青色LED、特に好ましくは390〜460nmの波長の光を発するLEDが好ましく、これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する発光光源となりうる。 The light-emitting device of the present invention is configured using at least one light-emitting light source and a phosphor mainly composed of the α-sialon of the present invention. For example, an LED can be manufactured using a known method described in JP-A-5-152609, JP-A-7-99345, Japanese Patent No. 2927279, and the like. In this case, the light emitting light source is preferably an ultraviolet LED or a blue LED that emits light having a wavelength of 240 to 480 nm, particularly preferably an LED that emits light having a wavelength of 390 to 460 nm. Examples of these light emitting elements include GaN and InGaN. Some are made of a nitride semiconductor, and can be a light-emitting light source that emits light of a predetermined wavelength by adjusting the composition.

発光装置において、本発明の蛍光体を単独で使用する方法以外に、他の蛍光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することができる。 In the light-emitting device, in addition to the method of using the phosphor of the present invention alone, a light-emitting device that emits a desired color can be configured by using in combination with a phosphor having other fluorescence characteristics.

次に、実施例、比較例に基づいて、本発明を更に詳細に説明する。
<実施例1>
原料粉末の配合組成として、宇部興産社製窒化ケイ素粉末(E10グレード)を質量68.1%、トクヤマ社製窒化アルミニウム粉末(Eグレード)を27.0質量%、日本イットリウム社製酸化セリウム粉末を4.9質量%とし、これらをエタノール溶媒中において、窒化ケイ素質ポットとボールによる湿式混合を行い、得られたスラリーを吸引ろ過し、溶媒を除去し、乾燥し、予混合粉末を得た。次に、この予混合粉末を窒素雰囲気下のグローブボックス内に入れ、高純度化学研究所社製の窒化カルシウム粉末と乳鉢混合し、原料混合粉末を得た。尚、混合比は予混合粉末:窒化カルシウム粉末=88.4:11.6質量比とした。以上の配合は、一般式:(Ca2+ Ce3+ )Si12−(m+n)Al(m+n)16−nにおいて、x=1.51、y=0.16、m=3.5、n=0.24である(但し、窒化物原料粉末の不純物酸素は無視して、CeOは焼成工程でCeOに還元されると仮定して算出)。
Next, based on an Example and a comparative example, this invention is demonstrated still in detail.
<Example 1>
The composition of the raw material powder is 68.1% by mass of silicon nitride powder (E10 grade) manufactured by Ube Industries, 27.0% by mass of aluminum nitride powder (E grade) manufactured by Tokuyama, and cerium oxide powder manufactured by Yttrium Japan. The mixture was 4.9% by mass, and these were wet-mixed in a silicon nitride pot and balls in an ethanol solvent, and the resulting slurry was suction filtered to remove the solvent and dried to obtain a premixed powder. Next, this premixed powder was put in a glove box under a nitrogen atmosphere, and mixed with calcium nitride powder manufactured by High Purity Chemical Laboratory Co., Ltd. and a mortar to obtain a raw material mixed powder. The mixing ratio was premixed powder: calcium nitride powder = 88.4: 11.6 mass ratio. Above formulation has the general formula: (Ca 2+ x Ce 3+ y ) Si 12- in (m + n) Al (m + n) O n N 16-n, x = 1.51, y = 0.16, m = 3. 5, n = 0.24 (however, ignoring the impurity oxygen of the nitride raw material powder and calculating that CeO 2 is reduced to CeO in the firing step).

前記原料混合粉末を、同じくグローブボックス内で、目開き250μmの篩いを通過させた後、窒化ホウ素質の坩堝に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、1900℃で12時間の加熱処理を行った。尚、原料混合粉末に含まれる窒化カルシウムは、空気中で容易に加水分解しやすいので、原料混合粉末を充填した坩堝はグローブボックスから取り出した後、速やかに電気炉にセットし、直ちに真空排気し、窒化カルシウムの反応を防いだ。 The raw material mixed powder is passed through a sieve having an opening of 250 μm in the same glove box, and then filled into a boron nitride crucible, and 1900 ° C. in a pressurized nitrogen atmosphere of 0.8 MPa in a carbon heater electric furnace. Then, the heat treatment was performed for 12 hours. Since calcium nitride contained in the raw material mixed powder is easily hydrolyzed in the air, the crucible filled with the raw material mixed powder is taken out of the glove box and immediately set in an electric furnace and immediately evacuated. Prevented the reaction of calcium nitride.

合成物は緑色の塊状物であったが、乳鉢等で容易に解砕可能であった。解砕物のうち、目開き150μmの篩を通過したものを蛍光体粉末として得た。
得られた蛍光体粉末は、X線回折装置(リガク社製、ULTIMA IV)を用い、粉末X線回折測定(XRD)を行った。主成分はα型サイアロンであり、わずかに同定不能の未知相のピークが存在した。未知相の最大回折線強度は、α型サイアロンの(210)面の回折線強度に対して、1.5%であった。次に、得られた粉末X線回折パターンをリガク社製解析プログラムJADEにより、リートベルト解析を行い、α型サイアロン結晶の格子定数を求めた結果、格子定数aは0.7934nm、格子定数cは0.5760nmであった。
The composite was a green lump but could be easily crushed with a mortar or the like. Among the crushed materials, those that passed through a sieve having an opening of 150 μm were obtained as phosphor powder.
The obtained phosphor powder was subjected to powder X-ray diffraction measurement (XRD) using an X-ray diffractometer (manufactured by Rigaku Corporation, ULTIMA IV). The main component was α-sialon, and there was an unknown phase peak that was slightly unidentifiable. The maximum diffraction line intensity of the unknown phase was 1.5% with respect to the diffraction line intensity of the (210) plane of α-sialon. Next, the obtained powder X-ray diffraction pattern was subjected to Rietveld analysis by an analysis program JADE manufactured by Rigaku Corporation. As a result of obtaining the lattice constant of the α-type sialon crystal, the lattice constant a was 0.7934 nm, and the lattice constant c was It was 0.5760 nm.

次に、ローダミンBと副標準光源により補正をおこなった分光蛍光光度計(日立ハイテクノロジーズ社製、F−4500)を用いて、励起・蛍光スペクトルの測定を行った。図1に実施例1の蛍光体の励起・蛍光スペクトルを示す。励起スペクトルは、波長290nm付近と波長390nm付近に二つのピークを有しおり、長波長側のスペクトルから青色光でも十分励起が可能であることが分かった。蛍光スペクトルは、半値幅が100nm以上と非常にブロードで、ピーク波長は励起波長に依存し、400nm励起の場合が514nmで、450nm励起の場合が524nmであった。 Next, excitation and fluorescence spectra were measured using a spectrofluorometer (F-4500, manufactured by Hitachi High-Technologies Corporation) corrected with rhodamine B and a sub-standard light source. FIG. 1 shows the excitation / fluorescence spectrum of the phosphor of Example 1. The excitation spectrum has two peaks near the wavelength of 290 nm and around the wavelength of 390 nm, and it was found from the spectrum on the long wavelength side that sufficient excitation is possible even with blue light. The fluorescence spectrum was very broad with a half-value width of 100 nm or more, and the peak wavelength depended on the excitation wavelength, with 514 nm for 400 nm excitation and 524 nm for 450 nm excitation.

更に、蛍光体の発光特性を以下の方法で評価した。
まず蛍光体粉末を凹型のセルに表面が平滑になる様に充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から所定の波長に分光した単色光を光ファイバーを用いて導入した。この単色光を励起源として、蛍光体試料に照射し、分光光度計(大塚電子社製、MCPD−7000)を用いて、試料の蛍光及び反射光のスペクトル測定を行った。本実施例では、単色光は、波長400nmの近紫外光と波長450nmの青色光を用いた。得られた蛍光スペクトルにおいて、励起波長が400nm及び450nmに対して、それぞれ410〜780nm及び460〜780nm範囲の波長域のデータからJIS Z8724に準じた方法で、JIS Z8701で規定されるXYZ表色系における色度座標CIExとCIEyを算出した。励起波長400nmの場合の色度CIEx、CIEyはそれぞれ0.283、0.509で、励起波長450nmの場合の色度CIEx、CIEyはそれぞれ0.350、0.554であった。
Furthermore, the light emission characteristics of the phosphor were evaluated by the following methods.
First, phosphor powder was filled into a concave cell so that the surface was smooth, and an integrating sphere was attached. Into this integrating sphere, monochromatic light separated at a predetermined wavelength from a light emitting light source (Xe lamp) was introduced using an optical fiber. Using this monochromatic light as an excitation source, the phosphor sample was irradiated, and the spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) was used to measure the spectrum of the fluorescence and reflected light of the sample. In this example, near-ultraviolet light having a wavelength of 400 nm and blue light having a wavelength of 450 nm were used as monochromatic light. In the obtained fluorescence spectrum, the XYZ color system defined by JIS Z8701 is determined in accordance with JIS Z8724 from the data in the wavelength range of 410 to 780 nm and 460 to 780 nm for excitation wavelengths of 400 nm and 450 nm, respectively. Chromaticity coordinates CIEx and CIEy were calculated. The chromaticities CIEx and CIEy at the excitation wavelength of 400 nm were 0.283 and 0.509, respectively, and the chromaticity CIEx and CIEy at the excitation wavelength of 450 nm were 0.350 and 0.554, respectively.

発光効率は次の様にして求めた。まず試料部に反射率が99%の標準反射板(Labsphere社、スペクトラロン)をセットし、励起光のスペクトルを測定し、励起波長が400nmの場合は、395〜410nmの波長範囲で、励起波長が450nmの場合は445〜460nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次いで、試料部に蛍光体をセットし、得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。 Luminous efficiency was determined as follows. First, a standard reflector (Labsphere, Spectralon) having a reflectance of 99% is set on the sample portion, and the spectrum of the excitation light is measured. When the excitation wavelength is 400 nm, the excitation wavelength is in the wavelength range of 395 to 410 nm. Was 450 nm, the excitation light photon number (Q ex ) was calculated from the spectrum in the wavelength range of 445 to 460 nm. Next, a phosphor was set in the sample portion, and the number of excited reflected light photons (Q ref ) and the number of fluorescent photons (Q em ) were calculated from the obtained spectrum data.

尚、励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、励起波長が400nmの場合は、410〜800nmの波長範囲で、励起光が450nmの場合は、455〜800nmの範囲で算出した。得られた三種類のフォトン数から外部量子効率(=Qem/Qex×100)、吸収率(=(Qex−Qref)×100)、内部量子効率(=Qem/(Qex−Qref)×100)を求めた。波長400nmの近紫外光で励起した場合の、吸収率、内部量子効率、外部量子効率はそれぞれ84.6%、65.8%、55.7%であり、波長450nmの青色光で励起した場合は、それぞれ56.7%、51.3%、29.1%であった。 The number of excitation reflected light photons is in the same wavelength range as the number of excitation light photons. The number of fluorescent photons is in the wavelength range of 410 to 800 nm when the excitation wavelength is 400 nm, and 455 when the excitation light is 450 nm. Calculation was performed in the range of 800 nm. From the obtained three types of photons, external quantum efficiency (= Q em / Q ex × 100), absorption rate (= (Q ex −Q ref ) × 100), internal quantum efficiency (= Q em / (Q ex − Q ref ) × 100). When excited by near-ultraviolet light with a wavelength of 400 nm, the absorptance, internal quantum efficiency, and external quantum efficiency are 84.6%, 65.8%, and 55.7%, respectively, and when excited by blue light with a wavelength of 450 nm Were 56.7%, 51.3%, and 29.1%, respectively.

<実施例2〜4、比較例1〜3>
得られるα型サイアロンが表1に示す設計組成となる様に原料配合し、実施例1と同様の手法、手順に基づいてα型サイアロン蛍光体を合成した。XRD測定の結果を表2に、蛍光特性を表3に示す。また、比較例1の励起スペクトルを図1に示す。

Figure 0005388699

Figure 0005388699

Figure 0005388699

上記の通り、Ce3+を付活したα型サイアロンの固溶組成を特定の範囲とすることにより、発光効率に優れ、青色励起でも十分蛍光発光が可能な青緑〜緑色蛍光体が得られる。
<実施例5〜7>
実施例1の配合組成をベースにCa2+の20at%を実施例5ではLi+に、実施例6では、Mg2+に、実施例7では、Y3+に置換する様に原料を配合し、実施例1と同様の方法により蛍光体を作製した。XRD測定の結果及び450nmの光で励起した場合の外部量子効率及び色度を表4に示す。
Figure 0005388699
<Examples 2-4, Comparative Examples 1-3>
Raw materials were blended so that the obtained α-sialon had the design composition shown in Table 1, and an α-sialon phosphor was synthesized based on the same technique and procedure as in Example 1. The results of XRD measurement are shown in Table 2, and the fluorescence characteristics are shown in Table 3. The excitation spectrum of Comparative Example 1 is shown in FIG.
Figure 0005388699

Figure 0005388699

Figure 0005388699

As described above, by setting the solid solution composition of the α-sialon activated with Ce 3+ within a specific range, a blue-green to green phosphor excellent in luminous efficiency and capable of sufficiently emitting fluorescence even with blue excitation can be obtained.
<Examples 5-7>
Based on the blend composition of Example 1, the raw material was blended so that 20 at% of Ca 2+ was replaced with Li + in Example 5, Mg 2+ in Example 6, and Y 3+ in Example 7. A phosphor was prepared by the method described above. Table 4 shows the results of XRD measurement and the external quantum efficiency and chromaticity when excited with 450 nm light.
Figure 0005388699

本発明の蛍光体は、特に、紫外乃至青色光で効率良く励起され、青緑〜緑色の可視光を発するので、紫外、近紫外又は青色LEDを発光光源とする発光装置用の蛍光体として、好適であり、産業上非常に有用である。本発明の発光素子は、耐熱性に優れ、発光特性の温度変化が少ないα型サイアロン蛍光体を用いているので、長期に渡って高輝度な発光素子であり、いろいろな用途に提供でき、産業上有用である。 In particular, the phosphor of the present invention is efficiently excited by ultraviolet to blue light and emits blue-green to green visible light. Therefore, as a phosphor for a light emitting device using an ultraviolet, near ultraviolet, or blue LED as a light source, It is suitable and very useful industrially. The light-emitting device of the present invention uses an α-sialon phosphor that has excellent heat resistance and little temperature change in light-emitting characteristics, and thus is a light-emitting device that has high brightness over a long period of time and can be provided for various applications. It is useful above.

Claims (6)

一般式:(Ma+ ,Ce3+ )Si12−(m+n)Al(m+n)16−nMは少なくともCaであり、Mの原子価をaとすると、m=ax+3y、Ce3+はMサイトを置換)で示されるα型サイアロンであって、1.51≦x+y≦2.25、0.05≦y≦0.5、0≦n≦0.8であり、紫外乃至青色光で励起可能なα型サイアロン蛍光体。 Formula: A (M a + x, Ce 3+ y) Si 12- (m + n) Al (m + n) O n N 16-n (M is at least Ca, when the valence of M and a, m = ax + 3y, Ce 3+ represents an M-site substitution) α-sialon represented by 1.51 ≦ x + y ≦ 2.25, 0.05 ≦ y ≦ 0.5, 0 ≦ n ≦ 0.8, and ultraviolet to blue Α-type sialon phosphor that can be excited by light. 請求項1記載のα型サイアロン蛍光体を主成分とする粉末状のα型サイアロン蛍光体。 A powdery α-sialon phosphor mainly comprising the α-sialon phosphor according to claim 1 . α型サイアロンの格子定数aが0.789〜0.796nm、格子定数cが0.571〜0.578nmであることを特徴とする請求項1又は2のいずれか記載のα型サイアロン蛍光体。 The α-sialon phosphor according to claim 1 or 2, wherein the α-sialon has a lattice constant a of 0.789 to 0.796 nm and a lattice constant c of 0.571 to 0.578 nm. 粉末X線回折法で評価した際に、α型サイアロン以外の結晶相の回折強度がα型サイアロンの(210)面の回折線強度に対して、いずれも10%以下であることを特徴とする請求項1〜3のいずれか一項記載のα型サイアロン蛍光体。 When evaluated by a powder X-ray diffraction method, the diffraction intensity of a crystal phase other than α-sialon is 10% or less of the diffraction intensity of the (210) plane of α-sialon. The α-type sialon phosphor according to any one of claims 1 to 3 . 波長450nmの光で励起した時の外部量子効率が20%以上であることを特徴とする請求項1〜4のいずれか一項記載のα型サイアロン蛍光体。 The α-sialon phosphor according to any one of claims 1 to 4 , wherein the external quantum efficiency when excited with light having a wavelength of 450 nm is 20% or more. 請求項1〜5のいずれか一項に記載されたα型サイアロン蛍光体と、発光波長の最大強度が240〜480nmにあるLEDと、を構成要素として含んでいることを特徴とする発光素子。 A light emitting device comprising the α-sialon phosphor according to any one of claims 1 to 5 and an LED having a maximum emission wavelength in the range of 240 to 480 nm as constituent elements.
JP2009129824A 2009-05-29 2009-05-29 α-type sialon phosphor and light-emitting device using the same Active JP5388699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129824A JP5388699B2 (en) 2009-05-29 2009-05-29 α-type sialon phosphor and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129824A JP5388699B2 (en) 2009-05-29 2009-05-29 α-type sialon phosphor and light-emitting device using the same

Publications (2)

Publication Number Publication Date
JP2010275437A JP2010275437A (en) 2010-12-09
JP5388699B2 true JP5388699B2 (en) 2014-01-15

Family

ID=43422699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129824A Active JP5388699B2 (en) 2009-05-29 2009-05-29 α-type sialon phosphor and light-emitting device using the same

Country Status (1)

Country Link
JP (1) JP5388699B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864872B1 (en) * 2010-11-16 2018-06-07 덴카 주식회사 Phosphor, and light-emitting device and use thereof
TWI456028B (en) * 2011-02-16 2014-10-11 Univ Nat Cheng Kung Method for producing fluorescent material of Mg-α-SiAlON as main crystal lattice and post-processing method of fluorescent material
KR20140006365A (en) * 2012-07-04 2014-01-16 선문대학교 산학협력단 Ceramics for phosphor, phosphor using the same and manufacturing method for the same
KR20160013876A (en) 2013-05-28 2016-02-05 우베 고산 가부시키가이샤 Oxynitride phosphor powder
JP6187342B2 (en) * 2014-03-20 2017-08-30 宇部興産株式会社 Oxynitride phosphor powder and method for producing the same
WO2022102511A1 (en) * 2020-11-13 2022-05-19 デンカ株式会社 Phosphor powder, light-emitting device, image display device, and illumination device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146719A1 (en) * 2001-09-20 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP4066828B2 (en) * 2003-02-06 2008-03-26 宇部興産株式会社 Sialon oxynitride phosphor and method for producing the same
JP4649641B2 (en) * 2004-11-26 2011-03-16 株式会社フジクラ Alpha sialon phosphor and manufacturing method thereof, alpha sialon phosphor raw material powder and light emitting diode lamp
CN101712870A (en) * 2005-02-28 2010-05-26 电气化学工业株式会社 Fluorescent substance and process for producing the same, and luminescent element using the same
JP5124101B2 (en) * 2006-05-10 2013-01-23 電気化学工業株式会社 Alpha-type sialon phosphor, method for producing the same, and lighting apparatus

Also Published As

Publication number Publication date
JP2010275437A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4422653B2 (en) Phosphor, production method thereof, and light source
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP5504178B2 (en) Alpha-type sialon phosphor, method for producing the same, and light emitting device
JP5835469B2 (en) Oxynitride phosphor powder
JP4524368B2 (en) Sialon phosphor and method for producing the same
JP4813577B2 (en) Method for producing β-sialon phosphor
JP5140061B2 (en) Phosphor, production method thereof, and light source
JP5854051B2 (en) Oxynitride phosphor powder and method for producing the same
JP2009096882A (en) Phosphor and method for producing the same
JP6398997B2 (en) Oxynitride phosphor powder and method for producing the same
JP5388699B2 (en) α-type sialon phosphor and light-emitting device using the same
WO2012046288A1 (en) β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME
KR20150086274A (en) Phosphor, light-emitting element and lighting device
TWI808946B (en) Phosphor, light emitting device, lighting device and image display device
JP7577660B2 (en) Method for producing phosphor particles
TW201424050A (en) Wavelength conversion member and light-emitting device employing same
CN113785030B (en) Surface-coated phosphor particle, method for producing surface-coated phosphor particle, and light-emitting device
JP2023166644A (en) Phosphor and luminescence device
JP2023166643A (en) Phosphor and luminescence device
JP2023166642A (en) Phosphor, method for producing phosphor, and luminescence device
JP2013155222A (en) Fluorescent substance, manufacturing method thereof and use thereof
JP7572440B2 (en) Europium-activated β-type sialon phosphor and light-emitting device
JP4899433B2 (en) Phosphor, and light emitting device, image display device, and illumination device using the same
JPWO2019073864A1 (en) Red phosphor and light emitting device
JP5697387B2 (en) Method for producing β-sialon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R151 Written notification of patent or utility model registration

Ref document number: 5388699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250