JP5330749B2 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP5330749B2
JP5330749B2 JP2008172321A JP2008172321A JP5330749B2 JP 5330749 B2 JP5330749 B2 JP 5330749B2 JP 2008172321 A JP2008172321 A JP 2008172321A JP 2008172321 A JP2008172321 A JP 2008172321A JP 5330749 B2 JP5330749 B2 JP 5330749B2
Authority
JP
Japan
Prior art keywords
optical path
light
sample
waveform
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008172321A
Other languages
Japanese (ja)
Other versions
JP2010014426A (en
Inventor
文夫 大友
和夫 布川
久 磯崎
一宏 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2008172321A priority Critical patent/JP5330749B2/en
Publication of JP2010014426A publication Critical patent/JP2010014426A/en
Application granted granted Critical
Publication of JP5330749B2 publication Critical patent/JP5330749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、干渉計、例えばマイケルソン型あるいはリンニク型に代表される干渉顕微鏡を用いて、ウェハなどの試料(被測定物)の表面又は内部の凹凸を観察検査する測定装置に関する。   The present invention relates to a measuring apparatus for observing and inspecting the surface or internal irregularities of a sample (object to be measured) such as a wafer using an interferometer, for example, an interference microscope typified by a Michelson type or a Linnik type.

従来から、入射された光を2つの光路に分割し、一方の光を試料(被測定物)に照射し、他方の光を参照ミラーに照射し、試料から反射した反射光と参照光を干渉させ、干渉縞を形成し、試料の表面内部を観察検査する、干渉計を用いた測定装置が知られている。   Conventionally, the incident light is divided into two optical paths, one light is irradiated to the sample (object to be measured), the other light is irradiated to the reference mirror, and the reflected light reflected from the sample interferes with the reference light. A measuring apparatus using an interferometer is known that forms interference fringes and observes and inspects the inside of the surface of a sample.

特許文献1では、干渉縞を形成する際に、参照ミラーをピエゾ素子PZTで光軸方向に移動可能とし、参照光の位相を変化させる位相シフト手段を用いることで、利用できる計測レンジを広げる(非特許文献1も同様)。   In Patent Document 1, when forming interference fringes, the reference mirror can be moved in the optical axis direction by the piezo element PZT, and the usable measurement range is expanded by using phase shift means for changing the phase of the reference light ( The same applies to Non-Patent Document 1.)

特許文献2では、合焦状態にある検査表面の一部を比較して、量δzだけ変位させ、基準ミラーがδzだけ変位し、光学測定面が検査表面の適切な部分に確実に接触することになる。   In Patent Document 2, a part of the inspected inspection surface is compared and displaced by an amount δz, the reference mirror is displaced by δz, and the optical measurement surface reliably contacts an appropriate part of the inspection surface. become.

また、特許文献3では、移動鏡は、光の入射方向への移動が自在になるように配設されており、干渉光を生成する際に、周知のピエゾ駆動装置で等速動制御がされている。   In Patent Document 3, the movable mirror is arranged so that it can freely move in the incident direction of light. When generating interference light, constant speed movement control is performed by a known piezo drive device. ing.

また、特許文献4では、参照ミラーを、光の照射方向に対して略垂直(干渉縞が数本できる程度にわずかに傾ける場合も含む)に固定配置することもでき、しかも光の照射方向に対して傾動可能に設けられる旨記載されている。   Further, in Patent Document 4, the reference mirror can be fixedly arranged substantially perpendicular to the light irradiation direction (including a case where the reference mirror is slightly tilted so that several interference fringes can be formed), and in the light irradiation direction. On the other hand, it is described that it can be tilted.

また、非特許文献2では、2次元撮像素子により非走査で位相シフトを行い、参照鏡を傾けることにより、CCDに入射する物体光と参照光に異なる入射角を与えて、CCDの空間軸に対し線形に位相の異なる干渉縞を展開し、これをワンショットで撮影し、計測を行っている。そして、この手法により検出に要する時間の増加を抑えて位相シフトを行う計測が可能になっている。
特開2006−116028号公報、行番号0067、図4 特表2005−530147号公報、行番号0044、図1、図3 特開2006−300792号公報、行番号0023、図1 特開平11−83457号公報、行番号0032、図1 筑波大学物理工学系、筑波大学ナノサイエンス特別プロジェクト研究組織 巻田修一、安野嘉晃、遠藤隆史、伊藤雅英、谷田貝豊彦「参照波面傾斜法による位相シフトスペクトル干渉光コヒーレンストモグラフィー」第64回応用物理学会学術講演会講演予稿集、2003年秋、福岡大学 One−shot−phase−shifting Fourier domain optical coherence tomography by reference wavefront tilting,Yoshiaki Yasuno,Shuichi Makita,Takashi Endo,Gouki Aoki,Hiroshi Sumimura,Masahide Itoh and Toyohiko Yatagai,2004,Optical Sociaty of America
Further, in Non-Patent Document 2, a phase shift is performed in a non-scanning manner by a two-dimensional image sensor, and the reference mirror is tilted to give different incident angles to the object light and the reference light incident on the CCD, and the CCD spatial axis On the other hand, the interference fringes with different phases are developed linearly, and this is taken and measured. In addition, this method makes it possible to perform a phase shift while suppressing an increase in detection time.
Japanese Patent Laid-Open No. 2006-116028, line number 0067, FIG. JP 2005-530147 A, line number 0044, FIG. 1, FIG. Japanese Patent Laying-Open No. 2006-300792, line number 0023, FIG. Japanese Patent Laid-Open No. 11-83457, line number 0032, FIG. University of Tsukuba, Department of Physical Engineering, University of Tsukuba, Nanoscience Special Project Research Organization Shuichi Makida, Yoshiaki Anno, Takashi Endo, Masahide Ito, Toyohiko Yadagai, “Phase-Shift Spectrum Interferometric Coherence Tomography by Reference Wavefront Gradient Method”, 64th JSAP Conference Proceedings, Autumn 2003, Fukuoka University One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting, Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Hiroshi Sumimura, Masahide Itoh and Toyohiko Yatagai, 2004, Optical Sociaty of America

しかしながら、上述した従来の干渉計を用いた測定装置では、被測定物側の光学的光路と、参照ミラーの配置された参照光路の光学的光路が一致した構成になっているため、部品点数が多くなり、簡易な構成を実現できない。   However, in the measurement apparatus using the above-described conventional interferometer, the optical path on the measurement object side and the optical path of the reference optical path on which the reference mirror is arranged coincide with each other. It becomes so large that a simple configuration cannot be realized.

特許文献3では、透過制限装置を配置して、参照光路からの光路長の補正をおこなわなければならず、複雑な構成にすることを要する。   In Patent Document 3, it is necessary to arrange a transmission limiting device to correct the optical path length from the reference optical path, which requires a complicated configuration.

また、特許文献4では、光路長を変えるために、電圧制御可変波長フィルタを設けなければならず、特許文献3と同様、複雑な構成にすることを要し、装置全体を小型化にすることができない。   In Patent Document 4, a voltage-controlled variable wavelength filter must be provided to change the optical path length. Similar to Patent Document 3, a complicated configuration is required, and the entire apparatus is downsized. I can't.

そこで、本発明は、簡易な構成により、参照ミラーをごく僅かに傾斜させるだけで、ウェハなどの試料(被測定物)の表面形状を計測することができる測定装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a measuring apparatus capable of measuring the surface shape of a sample (measurement object) such as a wafer by simply tilting a reference mirror with a simple configuration. .

上記課題を解決するため、本発明は、特許請求の範囲の各請求項に記載された事項を特徴とする。   In order to solve the above-mentioned problems, the present invention is characterized by matters described in the claims.

本発明によれば、簡易な構成により、参照ミラーを僅かに傾斜させるだけで、ウェハなどの被測定物(試料)の表面形状を計測できる。さらに、ごみやポールピースなどの正確な座標位置を特定し、電子顕微鏡、描画装置などの荷電粒子ビーム装置にその正確なデータを送受信して、作業効率の向上に一層貢献することができる。   According to the present invention, the surface shape of an object to be measured (sample) such as a wafer can be measured with a simple configuration by slightly tilting the reference mirror. Furthermore, it is possible to identify the exact coordinate position such as dust and pole piece and transmit / receive the accurate data to / from a charged particle beam device such as an electron microscope or a drawing device, thereby further contributing to the improvement of work efficiency.

本発明に係る測定装置は、種々の干渉計を用いる。   The measurement apparatus according to the present invention uses various interferometers.

本発明に係る最良の実施形態では、マイケルソン型干渉計を用いる。ただし、本発明の効果を奏するものであれば、リンニク型(位相シフト型)干渉計を用いてもよい。   In the best mode of the present invention, a Michelson interferometer is used. However, a Linnik type (phase shift type) interferometer may be used as long as the effect of the present invention is achieved.

参考までに述べると、干渉計としてTime domain Refractometryの干渉計を用いて、例えば、以下に示す参照ミラー(Ref)の微傾動(微動量Δλ)を行うことも考えられる。   For reference, it is also conceivable to perform a fine tilt (amount of fine movement Δλ) of the reference mirror (Ref) described below, for example, by using a Time domain Refractometry interferometer as the interferometer.

λ=800nm
Δλ=30nm
分解能: ΔZ=2lm/π ・ λ/Δλ
= 9.4μ
横分解能: ΔX=4λ/π・f/d
光軸方向の走査領域は、2Z=ΔXπ/2λである。
λ = 800nm
Δλ = 30nm
Resolution: ΔZ = 2lm / π · λ 2 / Δλ
= 9.4μ
Lateral resolution: ΔX = 4λ / π · f / d
The scanning area in the optical axis direction is 2Z 0 = ΔX 2 π / 2λ.

しかし、この場合は、分解能に限界があり、ウェハなどの被測定物(試料)上のごみ、ポールピースなどの超微小な領域の形状を検査することが容易ではない。   In this case, however, the resolution is limited, and it is not easy to inspect the shape of dust and pole pieces such as dust on a measurement object (sample) such as a wafer.

また、Fourier domain Refractometryの干渉計を用いることも考えられる。この場合、分光、波長走査に限界があり、ウェハなどの被測定物上のごみ、ポールピースなどの超微小な領域の形状を検査することが容易ではない。   It is also conceivable to use a Fourier domain Refractometry interferometer. In this case, there is a limit to spectroscopy and wavelength scanning, and it is not easy to inspect the shape of ultrafine regions such as dust and pole pieces on a measurement object such as a wafer.

本発明では、好ましくは、Reference Mirror(参照ミラー)を微小量固定式又は傾動式(とくに振動式)に傾けて、干渉端の位置を計測する。例えば、参照ミラーを微小量(最良の形態では15分の角度)緩やかに傾けた状態に固定しておき、あるいは、必要に応じて傾動式(とくに振動式)に傾けることによって、ラインセンサー上に干渉縞を形成する。こうすれば、レーザ光を走査させることなく、1ショットで高さ方向の干渉像を得ることができる。しかも、低コヒーレントで、マイケルソン型等の干渉計を用いて、干渉端の位置を計測することができる。   In the present invention, the position of the interference end is preferably measured by tilting the Reference Mirror (reference mirror) in a minute amount fixed type or tilting type (particularly vibration type). For example, if the reference mirror is fixed in a slight amount (15 minutes in the best mode) in a gently tilted state, or tilted in a tilting manner (especially a vibration type) as necessary, it is placed on the line sensor. Interference fringes are formed. In this way, an interference image in the height direction can be obtained with one shot without scanning with laser light. In addition, the position of the interference end can be measured using a Michelson-type interferometer with low coherence.

また、本発明の他の最良の実施形態においては、ウェハなどの試料にレーザ光、好ましくは2つの波長のレーザ光、とくに半導体レーザ(LD)、発光ダイオード(LED)及び超発光ダイオード(SLD)からの2つのレーザ光を照射し、干渉計を用いて、試料の表面内部を観察検査する。半導体レーザ(LD)を用いる場合、電流に対する強度(パワー)の関係において、所定の閾値(Ith)を超えると、レーザ光の強度(パワー)は電流に対して比例関係(リニアな関係)になるが、所定の閾値(Lth)までは、いわばLED発光あるいはSLD的な発光となるので、微量な電流値に設定し、一定の光量でボーっと発光するような半導体レーザ(LD)の使用によって、一つの光源(例えば半導体レーザ(LD))で干渉計を通し、試料の表面内部を観察検査することもできる。   In another preferred embodiment of the present invention, a laser beam is applied to a sample such as a wafer, preferably two wavelengths of laser light, particularly a semiconductor laser (LD), a light emitting diode (LED) and a super light emitting diode (SLD). Are irradiated with two laser beams, and the inside of the surface of the sample is observed and inspected using an interferometer. When a semiconductor laser (LD) is used, the intensity (power) of the laser beam is proportional to the current (linear relation) when the intensity (power) with respect to the current exceeds a predetermined threshold value (Ith). However, up to a predetermined threshold (Lth), LED emission or SLD-like emission occurs, so by setting a very small current value and using a semiconductor laser (LD) that emits light with a constant light amount, In addition, the inside of the surface of the sample can be observed and inspected through a single light source (for example, a semiconductor laser (LD)) through an interferometer.


好ましくは、参照ミラーに光を導光するための参照光路を参照ミラーと、ビームスプリッターとの間に設ける。そして、被測定物(試料)に光を導光するための測定光路と、その参照光路との間で、光学的光路差を設ける。

Preferably, a reference optical path for guiding light to the reference mirror is provided between the reference mirror and the beam splitter. Then, an optical optical path difference is provided between the measurement optical path for guiding light to the object to be measured (sample) and the reference optical path.

好ましくは、測定光を導光するための測定光路には光学系(レンズ系)を設ける一方、参照光を導光するための参照光路には光学系(レンズ系)を設けないことによって、光路差に変化を持たせることができる。   Preferably, an optical system (lens system) is provided in the measurement optical path for guiding the measurement light, while an optical system (lens system) is not provided in the reference optical path for guiding the reference light. The difference can be changed.

本発明による、干渉計を用いる測定装置においては、参照光を導光する参照ミラー自体を微小量傾斜させると、レーザ光を走査させることなく、1ショットで試料の高さ方向の干渉像を得ることができる。   In the measurement apparatus using the interferometer according to the present invention, when the reference mirror itself for guiding the reference light is tilted by a small amount, an interference image in the height direction of the sample is obtained in one shot without scanning the laser light. be able to.

本発明の他の最良の実施形態においては、ビームスプリッターを中心として、入射光路、測定光路、参照光路及び検出光路を十字状に沿って設け、参照光路と測定光路において光学的光路差を設ける。しかも、参照ミラーを微小量(固定式又は傾動式に)傾けて、検出手段に干渉縞を形成する。それにより、レーザ光を走査させることなく、1ショットで試料の高さ方向の干渉像を得ることを可能とする。   In another preferred embodiment of the present invention, an incident optical path, a measurement optical path, a reference optical path, and a detection optical path are provided along a cross shape around the beam splitter, and an optical optical path difference is provided between the reference optical path and the measurement optical path. In addition, the reference mirror is tilted by a minute amount (fixed or tilted) to form interference fringes on the detection means. Thereby, it is possible to obtain an interference image in the height direction of the sample in one shot without scanning the laser beam.

ビームスプリッターを偏光手段として設け、そのビームスプリッターにより光の一部を導光し光を反射させる。   A beam splitter is provided as a polarizing means, and part of the light is guided by the beam splitter to reflect the light.

検出光路に設けた検出手段は、ビームスプリッター(偏光手段)により被測定物からの反射光と、参照ミラーからの反射光を受光する。そして、検出手段に干渉縞を形成する。   The detection means provided in the detection optical path receives reflected light from the object to be measured and reflected light from the reference mirror by a beam splitter (polarization means). Then, interference fringes are formed on the detection means.

2つの波長のレーザ光を用いることを可能とするために、レーザ光の入射光路の2つの分岐光路に、それぞれ、半導体レーザ(LD)あるいは発光ダイオード(LED)及び超発光ダイオード(SLD)を設ける。   In order to make it possible to use laser light of two wavelengths, a semiconductor laser (LD) or a light emitting diode (LED) and a super light emitting diode (SLD) are provided in two branched light paths of the incident light path of the laser light, respectively. .

本発明の好ましい他の実施形態の一つにおいては、測定光路側にレンズを配置し、参照光路側にはレンズを配置しない。そうすることにより、光学的光路差を与える。さらに、参照ミラーを(固定式又は傾動式に)僅かに傾斜させて、ウェハなどの被測定物の表面形状を測定することができる。   In another preferred embodiment of the present invention, a lens is arranged on the measurement optical path side, and no lens is arranged on the reference optical path side. Doing so gives an optical path difference. Furthermore, the surface shape of the object to be measured such as a wafer can be measured by slightly tilting the reference mirror (fixed type or tilting type).

変形例として、光学的光路差を与えるために、被測定物(試料)に光を導光する測定光路側にレンズを配置せず、参照ミラーに光を導光する参照光路側にレンズを配置することも可能である。   As a modification, in order to give an optical optical path difference, a lens is not arranged on the measurement optical path side that guides light to the object to be measured (sample), but a lens is arranged on the reference optical path side that guides light to the reference mirror. It is also possible to do.

本発明の最良の実施形態によれば、ウェハなどの試料(被測定物)の表面形状や、その表面のごみ(異物)やポールピースなどの正確な座標位置を特定し、電子顕微鏡、描画装置などの荷電粒子ビーム装置にその正確なデータを送受信して、さらに表面形状、ごみなどの異物検査、ポールピース等の検査作業を迅速に行い、半導体検査などの作業効率の向上に一層貢献することができる。   According to the best mode of the present invention, the surface shape of a sample (object to be measured) such as a wafer and the accurate coordinate position of dust (foreign matter) or pole piece on the surface are specified, and an electron microscope and a drawing apparatus are specified. Send and receive accurate data to and from charged particle beam equipment, etc., and further quickly inspect the surface shape, foreign matter such as dust, and inspection of pole pieces, etc., to further contribute to the improvement of work efficiency such as semiconductor inspection Can do.

図1は、本発明の好ましい実施例に係る測定装置の概略を示す。   FIG. 1 schematically shows a measuring apparatus according to a preferred embodiment of the present invention.

図1の(A)に示すように、半導体レーザ(LD)あるいは発光ダイオード(LD)10、超発光ダイオード(SLD)12のいずれか2つの光源を2波長のレーザ光の光源として、とくに低コヒーレンス光源として、入射側に設ける。好ましくは、波長λ=650nmの発光ダイオード(LED)や、波長λ=800nmの超発光ダイオード(SLD)、波長λ=800nm〜900nm程度の半導体レーザ(LD)などを用いる。   As shown in FIG. 1A, any two light sources of the semiconductor laser (LD) or the light emitting diode (LD) 10 and the super light emitting diode (SLD) 12 are used as the light sources of the two-wavelength laser light, and particularly low coherence. Provided on the incident side as a light source. Preferably, a light emitting diode (LED) having a wavelength λ = 650 nm, a super light emitting diode (SLD) having a wavelength λ = 800 nm, a semiconductor laser (LD) having a wavelength λ = 800 nm to 900 nm, or the like is used.

ただし、本発明においては、その他の低コヒーレンス光源の2波長のレーザ光を用いることも可能である。   However, in the present invention, it is also possible to use two-wavelength laser light from other low-coherence light sources.

ビームスプリッター2を中心として、少なくとも4つの光路、すなわち入射光路4、測定光路6、参照光路8および検出光路9が十字の形に沿うように配置されている。   Centering on the beam splitter 2, at least four optical paths, that is, an incident optical path 4, a measurement optical path 6, a reference optical path 8, and a detection optical path 9 are arranged along a cross shape.

入射光路4は入射ビームスプリッター13のところで2つの分岐光路4a,4bに分岐されていて、一方の分岐光路4aにレンズ11と発光ダイオード10が配置され、他方の分岐光路4bにレンズ15と超発光ダイオード12が配置されている。   The incident optical path 4 is branched into two branched optical paths 4a and 4b at the incident beam splitter 13. The lens 11 and the light emitting diode 10 are arranged in one branched optical path 4a, and the lens 15 and the super light emitting element are arranged in the other branched optical path 4b. A diode 12 is arranged.

検出光路9も、入射ビームスプリッター17のところで2つの分岐光路9a,9bに分岐されていて、一方の分岐光路9aに検出手段16の一方のCCDa18が配置されており、他方の分岐光路9bに検出手段16の他方のCCDb20が配置されている。   The detection optical path 9 is also branched into two branch optical paths 9a and 9b at the incident beam splitter 17, and one CCD a18 of the detecting means 16 is arranged in one branch optical path 9a, and detected in the other branch optical path 9b. The other CCDb 20 of the means 16 is arranged.

図示例では、測定光路6にレンズ21が配置されている。レーザ光は、その測定光路6を通って試料23に照射される。   In the illustrated example, a lens 21 is disposed in the measurement optical path 6. The laser beam is irradiated onto the sample 23 through the measurement optical path 6.

参照光路8には、レンズが配置されていない。そのため、レーザ光は、その参照光路8を通って直接参照ミラー30に導光される。   No lens is disposed in the reference optical path 8. Therefore, the laser light is guided directly to the reference mirror 30 through the reference light path 8.

この参照ミラー30は、図1(A)に一点鎖線29で示されているように、参照光路8の光軸に対して微小量傾けて固定されている。例えば、その傾斜角度は、約15分(つまり15/60度)にするのが好ましい。   The reference mirror 30 is fixed by being tilted by a small amount with respect to the optical axis of the reference optical path 8 as indicated by a one-dot chain line 29 in FIG. For example, the inclination angle is preferably about 15 minutes (that is, 15/60 degrees).

なお、参照ミラー30は、前述のような固定方式とせず、変形例として、所望の傾斜角度内で傾動する形(とくに数秒(例えば4、5秒)から数十秒(20、30秒)の周期で振動する方式)で傾斜させてもよい。   The reference mirror 30 does not have the above-described fixing method, and as a modification, the reference mirror 30 tilts within a desired tilt angle (particularly, from several seconds (for example, 4, 5 seconds) to several tens of seconds (20, 30 seconds)). You may make it incline by the system which vibrates with a period).

図示例においては、測定光路6にレンズ21を設け、参照光路8にレンズを設けないことで、参照光路8と測定光路6との間で光学的光路差を設けているが、変形例として、参照光路8にレンズ(図示せず)を設ける形で、参照光路8と測定光路6との間で光学的光路差を設けてもよい。   In the illustrated example, the optical path difference is provided between the reference optical path 8 and the measurement optical path 6 by providing the lens 21 in the measurement optical path 6 and not providing the lens in the reference optical path 8, but as a modification, An optical optical path difference may be provided between the reference optical path 8 and the measurement optical path 6 by providing a lens (not shown) in the reference optical path 8.

また、別の変形例として、測定光を導光するための測定光路6中のレンズ21と同じレンズを、参照光を導光するための参照光路8中に挿脱可能に設けることができる。参照光を導光するための参照光路8から、そのレンズを取り出し、測定光路6と異なる光路長(光学的光路長)を参照光路8に持たせるようにしても良い。   As another modification, the same lens as the lens 21 in the measurement optical path 6 for guiding the measurement light can be provided in the reference optical path 8 for guiding the reference light in a detachable manner. The lens may be taken out from the reference optical path 8 for guiding the reference light, and the reference optical path 8 may have an optical path length (optical optical path length) different from that of the measurement optical path 6.

このように、どのような形態であっても、参照光路8と測定光路6の間で光学的光路差を持たせ、かつ、参照ミラー30を僅かに傾斜させる。例えば約15分(つまり15/60度)の角度だけ参照ミラー30を僅かに傾ける。このような参照ミラー30の傾斜により、試料23の表面を走査することなく、試料23からの反射光と参照ミラー30からの参照光とが干渉し、検出手段16に干渉縞が生じる。   Thus, in any form, an optical optical path difference is provided between the reference optical path 8 and the measurement optical path 6, and the reference mirror 30 is slightly tilted. For example, the reference mirror 30 is slightly tilted by an angle of about 15 minutes (that is, 15/60 degrees). Due to the inclination of the reference mirror 30, the reflected light from the sample 23 interferes with the reference light from the reference mirror 30 without scanning the surface of the sample 23, and interference fringes are generated in the detection means 16.

検出手段16は、集束波(波形)を検出するCCDa18と、定常波(波形)を検出するCCDb20からなる。一方のCCDa18は、複数の検出器を有し、それらの検出器によって光強度に応じて周波数の異なる複数の集束波(波形)を検出する。   The detection means 16 includes a CCD a 18 that detects a focused wave (waveform) and a CCD b 20 that detects a standing wave (waveform). One CCDa 18 has a plurality of detectors, and these detectors detect a plurality of focused waves (waveforms) having different frequencies according to the light intensity.

図1の(B)は、3つの検出器18a,18b,18cの例を示している。図1の(B)において、下から順に、3つの検出器18a,18b,18cが配置されている。それらに対応して3つのハーフミラー18d,18e,18fが設けられていて、それぞれ右側に示すような集束波(9/10,9/100,1/100)を検出する。   FIG. 1B shows an example of three detectors 18a, 18b, and 18c. In FIG. 1B, three detectors 18a, 18b, and 18c are arranged in order from the bottom. Corresponding to these, three half mirrors 18d, 18e, and 18f are provided to detect a focused wave (9/10, 9/100, 1/100) as shown on the right side.

図1の(C)に示すように、波形(集束波)の最大値(ピーク)を求める際には、CCDa18により取得した波形(集束波)に、CCDb20の定常波をかけて、波形(集束波)の最大値(ピーク)を浮き出させ、検出を容易にすることが好ましい。   As shown in FIG. 1C, when obtaining the maximum value (peak) of the waveform (focused wave), the waveform (focused wave) acquired by the CCDa 18 is multiplied by the stationary wave of the CCDb 20 to obtain the waveform (focused wave). It is preferable that the maximum value (peak) of the above is raised to facilitate detection.

好ましくは、CCDb20の1ビット(例えば256)をスケールの基準として校正する。例えば、1/256で細分化し、1ビット(例えば256)を掛ける。   Preferably, calibration is performed using one bit (for example, 256) of the CCDb 20 as a reference of the scale. For example, it subdivides by 1/256 and multiplies by 1 bit (for example, 256).

集束波(波形)について、必ずしも収束端から信号を検出する必要はない。例えば、図2の横軸(x軸、空間軸)の所定位置からの信号を検出してもよい。CCDb20の1ビットを用いることで、自由に信号の検出範囲を決めることができる。   For a focused wave (waveform), it is not always necessary to detect a signal from the convergence end. For example, a signal from a predetermined position on the horizontal axis (x axis, space axis) in FIG. 2 may be detected. By using one bit of the CCDb 20, the signal detection range can be freely determined.

本発明の最良の実施形態においては、図2の(a)に示されているように、処理工程1で、CCDa18のエンベロープ波形を検出して、次の関係式から、xを求める。   In the preferred embodiment of the present invention, as shown in FIG. 2A, the envelope waveform of the CCDa 18 is detected in the processing step 1, and x is obtained from the following relational expression.

Te<ex
ただし、xはDC(電流)成分、Tは一周期を表す。
Te <ex
However, x represents a DC (current) component, and T represents one cycle.

図2の(a)に示されているエンベロープ波形の最大値の位置を基準位置として検出する。   The position of the maximum value of the envelope waveform shown in FIG. 2A is detected as a reference position.

図2の(b)に矢印で示す位置を利用して、CCDa18のエンベロープ波形の最大値を示す位置を基準位置として求めるのが好ましい。   It is preferable to obtain the position indicating the maximum value of the envelope waveform of the CCDa 18 as the reference position using the position indicated by the arrow in FIG.

図2の(c)に示されているのは、1つの周期波形である。このように、精密測定として、図2(b)に示すCCDb20の波形の位相測定を求めるのが好ましい。   FIG. 2C shows one periodic waveform. Thus, it is preferable to obtain the phase measurement of the waveform of the CCDb 20 shown in FIG.

また、精密フーリエ変換で位相を求めることもできる。すなわち、ビット長微小変動したフーリエで、空間周波数の検出を行い、位相を測定する。この場合、一周期で求める精度のN周期倍の精度が得られる空間周波数は測定装置で決まる。それゆえ、温度などの条件に変化がない限り、一定であるので、空間周波数の検出は時々行えばよい。   Also, the phase can be obtained by precision Fourier transform. That is, the spatial frequency is detected and the phase is measured by Fourier with a slight bit length variation. In this case, the spatial frequency at which the accuracy of N times the accuracy obtained in one cycle is obtained is determined by the measuring device. Therefore, as long as there is no change in conditions such as temperature, it is constant, so that the spatial frequency may be detected from time to time.

図3は、本発明の好ましい第2の実施例に係る測定装置の概略を示す。   FIG. 3 shows an outline of a measuring apparatus according to the second preferred embodiment of the present invention.

図3において、測定装置は、パルスレーザ66、コリメートレンズ68、ビームスプリッタ69、長作動対物レンズ74、ガラス板75、被検面77、参照ミラー70、シリンダーレンズ72、長作動対物レンズ74、シリンダーレンズ76、エリアセンサ78等を有する。参照ミラー70は、破線71で示すように僅かに傾斜されて配置される。   In FIG. 3, the measuring apparatus includes a pulse laser 66, a collimating lens 68, a beam splitter 69, a long working objective lens 74, a glass plate 75, a test surface 77, a reference mirror 70, a cylinder lens 72, a long working objective lens 74, and a cylinder. A lens 76, an area sensor 78, and the like are included. The reference mirror 70 is arranged slightly tilted as indicated by a broken line 71.

第2の実施例の場合も、半導体レーザ(LD)、発光ダイオード(LD)または超発光ダイオード(SLD)のレーザ光源を用いるが、発光ダイオード(LD)および超発光ダイオード(SLD)を2波長のレーザ光の光源として、とくに低コヒーレンス光源として、入射側に設ける。好ましくは、波長λ=650nmの発光ダイオード(LED)や、波長λ=800nmの超発光ダイオード(SLD)などを用いる。半導体レーザ(LD)を用いる場合、800nm〜900nm(中心波長850nm〜890nm)程度のパルスレーザを用いてもよい。半導体レーザの場合、電流(I)に対する強度(パワー、P)の関係において、所定の閾値(Ith)を超えると、レーザ光の強度(パワー)は電流に対して比例関係(リニアな関係)になるが、所定の閾値(Lth)までは、いわばLED発光あるいはSLD的な発光となるので、微量な電流値に設定し、一定の光量でボーっと発光するような半導体レーザ(LD)の使用によって、一つの光源(例えば半導体レーザ(LD))で干渉計を通し、試料の表面内部を観察検査することもできる。また、発光ダイオード(LED)を光源として用いる場合、コリメータレンズ等によって集光させた後、数ナノあるいは数マイクロ程度の幅の極めて狭いスリットを設けることで、線幅数μm(例えば2〜3μm)、長さ略250〜300μm程度の線状光束にして試料に照射してもよい。   Also in the case of the second embodiment, a laser light source of a semiconductor laser (LD), a light emitting diode (LD), or a super light emitting diode (SLD) is used, but the light emitting diode (LD) and the super light emitting diode (SLD) have two wavelengths. As a laser light source, particularly as a low coherence light source, it is provided on the incident side. Preferably, a light emitting diode (LED) having a wavelength λ = 650 nm, a super light emitting diode (SLD) having a wavelength λ = 800 nm, or the like is used. When a semiconductor laser (LD) is used, a pulse laser with a wavelength of about 800 nm to 900 nm (center wavelength: 850 nm to 890 nm) may be used. In the case of a semiconductor laser, when the intensity (power, P) in relation to the current (I) exceeds a predetermined threshold value (Ith), the intensity (power) of the laser light is proportional to the current (linear relation). However, up to a predetermined threshold (Lth), LED light emission or SLD light emission is used, so a semiconductor laser (LD) that emits light with a constant amount of light is set to a very small current value. Thus, the inside of the surface of the sample can be observed and inspected by passing the interferometer with one light source (for example, a semiconductor laser (LD)). When a light-emitting diode (LED) is used as a light source, the light is condensed by a collimator lens or the like and then provided with a very narrow slit having a width of several nanometers or several micrometers, thereby providing a line width of several μm (for example, 2 to 3 μm). The sample may be irradiated with a linear light beam having a length of about 250 to 300 μm.

本発明では、半導体レーザ(LD)であるパルスレーザ66を上記のようにLED発光させ、パルスレーザ66直後のコリメータレンズの像側に数ナノあるいは数マイクロ程度の幅の極めて狭いスリット80を配置することで、線幅数μm(例えば2〜3μm)、長さ略250〜300μm程度の線状光束にして試料に照射する。また、参照ミラー70(Reference Mirror)を符号71で示すように微小量固定式又は傾動式(とくに振動式)に傾けて、干渉端の位置を計測する。例えば、参照ミラー70を微小量(最良の形態では15分(つまり15/60度)の角度)緩やかに傾けた状態に固定しておき、あるいは、必要に応じて傾動式(とくに振動式)に傾けることによって、エリアセンサ78上に干渉縞を形成する。こうすれば、レーザ光を走査させることなく、1ショットで高さ方向の干渉像を得ることができる。しかも、低コヒーレントで、マイケルソン型等の干渉計を用いて、干渉端の位置を計測することができる。   In the present invention, the pulse laser 66, which is a semiconductor laser (LD), emits LEDs as described above, and an extremely narrow slit 80 having a width of several nanometers or several micrometers is disposed on the image side of the collimator lens immediately after the pulse laser 66. Thus, the sample is irradiated with a linear light beam having a line width of several μm (for example, 2 to 3 μm) and a length of about 250 to 300 μm. Further, the reference mirror 70 (Reference Mirror) is tilted to a minute amount fixed type or tilted type (particularly vibration type) as indicated by reference numeral 71, and the position of the interference end is measured. For example, the reference mirror 70 is fixed to a minute amount (in the best form, an angle of 15 minutes (that is, 15/60 degrees)) or is tilted (especially vibration) as necessary. By tilting, an interference fringe is formed on the area sensor 78. In this way, an interference image in the height direction can be obtained with one shot without scanning with laser light. In addition, the position of the interference end can be measured using a Michelson-type interferometer with low coherence.

(A)は、本発明の好ましい第1の実施例による測定装置の概略を示す説明図。(B)は、CCDaの3つの検出器の波形を並べて示す。(C)は、CCDaとCCDbの波形を並べて示す。(A) is explanatory drawing which shows the outline of the measuring apparatus by the preferable 1st Example of this invention. (B) shows the waveforms of the three detectors of CCDa side by side. (C) shows the waveforms of CCDa and CCDb side by side. (a)はCCDaのエンベロール波形を検出する場合の説明図。(b)は矢印で示す基準位置を検出する場合の説明図。(c)は、精密測定でCCDb波形の位相を測定する場合の説明図。(A) is explanatory drawing in the case of detecting the envelope roll waveform of CCDa. (B) is explanatory drawing in the case of detecting the reference position shown with an arrow. (C) is explanatory drawing in the case of measuring the phase of a CCDb waveform by precise measurement. 本発明の好ましい第2の実施例による測定装置の概略を示す説明図。Explanatory drawing which shows the outline of the measuring apparatus by the preferable 2nd Example of this invention.

符号の説明Explanation of symbols

10 発光ダイオード
12 超発光ダイオード
16 検出手段
18 CCDa
20 CCDb
DESCRIPTION OF SYMBOLS 10 Light emitting diode 12 Super light emitting diode 16 Detection means 18 CCDa
20 CCDb

Claims (2)

有限な可干渉距離を持つ光束を二分割して試料、及び参照ミラーに照射する二光束干渉計を用いて、試料表面の微細な凹凸、及び内部の高さ情報を観察検査する干渉顕微鏡において、
線光束を整形し分割する手段を有し、参照ミラーに光束を導光、照射する参照光路と、試料に光束を点に集光して照射する集光手段、及び試料からの微細な反射、散乱光を集光し光束に変換、導光する測定光路を設け、参照光路に微小量の傾斜した光路差を設けることにより、参照ミラー、及び試料からの光束が重なり合う位置に、試料面の線方向の高さ分布情報を持った干渉縞分布を形成させ、試料の垂直方向の移動、又は干渉縞の移動を行うことなく、高さ分布情報得られ、しかも、干渉縞が生じる検出手段を設け、その検出手段は、集束波(波形)を検出するCCDaと、定常波(波形)を検出するCCDbからなり、CCDaは、複数の検出器を有し、それらの検出器によって光強度に応じて周波数の異なる複数の集束波(波形)を検出するものであり、波形(集束波)の最大値(ピーク)を求める際に、CCDaにより取得した波形(集束波)に、CCDbの定常波をかけて、波形(集束波)の最大値(ピーク)を浮き出させ、かつ、CCDbの1ビットをスケールの基準として校正することを特徴とする測定装置。
In an interference microscope that observes and inspects fine irregularities on the sample surface and internal height information using a two-beam interferometer that divides a light beam having a finite coherence distance into two parts and irradiates the sample and a reference mirror.
A means for shaping and dividing a linear light beam, a reference optical path for guiding and irradiating the light beam to the reference mirror, a condensing means for condensing and irradiating the sample with the light beam at a point, and a fine reflection from the sample, By providing a measurement optical path that condenses scattered light, converts it into a light beam, and guides it, and by providing a small amount of inclined optical path difference in the reference light path, the reference mirror and the line on the sample surface are positioned where the light flux from the sample overlaps. An interference fringe distribution having the height distribution information in the direction is formed, and the height distribution information can be obtained without moving the sample in the vertical direction or moving the interference fringes , and the detection means for generating the interference fringes is provided. The detection means includes a CCDa for detecting a focused wave (waveform) and a CCDb for detecting a standing wave (waveform). The CCDa has a plurality of detectors, and the detectors according to the light intensity. Multiple focused waves (waveforms) with different frequencies When detecting the maximum value (peak) of the waveform (focused wave), the waveform (focused wave) acquired by the CCDa is multiplied by the CCDb stationary wave to obtain the maximum value (peak) of the waveform (focused wave). ), And a calibration is performed using one bit of CCDb as a scale reference .
有限な可干渉距離を持つ点光源から整形した光束を二分割して試料、及び参照ミラーに照射する二光束干渉計を用いて、試料表面の微細な凹凸、及び内部の高さ情報を観察検査する干渉顕微鏡において、
参照ミラーに光束を導光、照射する参照光路と、試料に光束を点に集光して照射する集光手段、及び試料からの微細な反射、散乱光を集光し光束に変換、導光する測定光路を設け、参照光路に微小量の傾斜した光路差を設けることにより、参照ミラー、及び試料からの光束が重なり合う位置に高さ情報を持った干渉縞を形成させ、試料の垂直移動、または干渉縞の移動を行うことなく、高さ情報の取得が可能であり、しかも、干渉縞が生じる検出手段を設け、その検出手段は、集束波(波形)を検出するCCDaと、定常波(波形)を検出するCCDbからなり、CCDaは、複数の検出器を有し、それらの検出器によって光強度に応じて周波数の異なる複数の集束波(波形)を検出するものであり、波形(集束波)の最大値(ピーク)を求める際に、CCDaにより取得した波形(集束波)に、CCDbの定常波をかけて、波形(集束波)の最大値(ピーク)を浮き出させ、かつ、CCDbの1ビットをスケールの基準として校正することを特徴とする測定装置。
Using a two-beam interferometer that divides a light beam shaped from a point light source with a finite coherence distance and irradiates the sample and a reference mirror, observation and inspection of minute irregularities on the sample surface and internal height information In the interference microscope that
A reference optical path for guiding and irradiating a light beam to a reference mirror, a condensing means for condensing and irradiating the sample with a light beam at a point, and a fine reflection and scattered light from the sample are collected and converted into a light beam and guided. By providing a measurement optical path to be measured and providing a slight amount of inclined optical path difference in the reference optical path, a reference mirror and an interference fringe having height information are formed at a position where light beams from the sample overlap, Alternatively , the height information can be acquired without moving the interference fringes , and furthermore, a detection means for generating the interference fringes is provided. The detection means includes a CCDa for detecting the focused wave (waveform) and a standing wave (waveform). The CCDa has a plurality of detectors and detects a plurality of focused waves (waveforms) having different frequencies according to the light intensity by the detectors. ) Maximum value (peak) When that, in the waveform (focused wave) acquired by CCDA, over a standing wave of ccdB, was embossed maximum value of the waveform (focusing wave) (peak), and, to calibrate the 1-bit ccdB as a reference scale A measuring device.
JP2008172321A 2008-07-01 2008-07-01 measuring device Expired - Fee Related JP5330749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172321A JP5330749B2 (en) 2008-07-01 2008-07-01 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172321A JP5330749B2 (en) 2008-07-01 2008-07-01 measuring device

Publications (2)

Publication Number Publication Date
JP2010014426A JP2010014426A (en) 2010-01-21
JP5330749B2 true JP5330749B2 (en) 2013-10-30

Family

ID=41700683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172321A Expired - Fee Related JP5330749B2 (en) 2008-07-01 2008-07-01 measuring device

Country Status (1)

Country Link
JP (1) JP5330749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118533A (en) * 2018-02-05 2019-08-13 上海微电子装备(集团)股份有限公司 A kind of 3 D detection method and detection device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078269A (en) * 2010-10-05 2012-04-19 Naoyuki Furuyama Ranging method and laser ranging device
PL2634551T3 (en) * 2010-10-28 2021-11-02 Foss Analytical A/S Interferometer and fourier-transform spectroscopic analyzer
WO2012132811A1 (en) * 2011-03-29 2012-10-04 Koyama Naoyuki Ranging method and laser ranging device
JP2012247324A (en) * 2011-05-30 2012-12-13 Naoyuki Furuyama Range finding method and laser range finding apparatus
JP4997406B1 (en) * 2011-06-16 2012-08-08 レーザーテック株式会社 Shape measuring device, depth measuring device and film thickness measuring device
CN102591031B (en) * 2012-03-02 2014-07-02 浙江大学 Aligning device and aligning method for partial compensating lens during detection of aspheric surface and nonzero digit interference
US9645044B2 (en) 2014-09-30 2017-05-09 Corning Optical Communications LLC Controlled-contact method of measuring insertion loss in optical fiber connectors
CN105806236B (en) * 2016-05-11 2018-08-28 天津大学 Linnik type interference spectrums measure the nonlinear phase compensation method of film
CN107966453B (en) 2016-10-20 2020-08-04 上海微电子装备(集团)股份有限公司 Chip defect detection device and detection method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235807A (en) * 1988-03-16 1989-09-20 Toshiba Corp Depth measuring instrument
JPH05209841A (en) * 1992-01-13 1993-08-20 Hitachi Ltd Method and apparatus for detecting foreign matter
JP3346851B2 (en) * 1993-10-25 2002-11-18 株式会社東芝 Position detection device
JPH1183457A (en) * 1997-09-12 1999-03-26 Yazaki Corp Spectral interference microscope and surface shape measuring method using it
JP2000338242A (en) * 1999-05-24 2000-12-08 Topcon Corp Light source means and light wave range finder
JP3903105B2 (en) * 2000-05-23 2007-04-11 富士フイルム株式会社 Dynamic change detection method, dynamic change detection apparatus, and ultrasonic diagnostic apparatus
JP4608855B2 (en) * 2003-07-23 2011-01-12 ブラザー工業株式会社 Three-dimensional shape detection device, imaging device, and three-dimensional shape detection method
JP4183089B2 (en) * 2004-09-16 2008-11-19 東レエンジニアリング株式会社 Surface shape and / or film thickness measuring method and apparatus
JP4512822B2 (en) * 2004-10-20 2010-07-28 国立大学法人 筑波大学 Line condensing type Fourier domain interference shape measuring device
JP4492346B2 (en) * 2004-12-28 2010-06-30 セイコーエプソン株式会社 Droplet discharge device
JP4710078B2 (en) * 2006-02-01 2011-06-29 国立大学法人東京工業大学 Surface shape measuring method and apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118533A (en) * 2018-02-05 2019-08-13 上海微电子装备(集团)股份有限公司 A kind of 3 D detection method and detection device
CN110118533B (en) * 2018-02-05 2021-08-03 上海微电子装备(集团)股份有限公司 Three-dimensional detection method and detection device

Also Published As

Publication number Publication date
JP2010014426A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5330749B2 (en) measuring device
WO2011016146A1 (en) Interference microscope and measuring apparatus
US11029258B2 (en) Optical phase measurement method and system
JP4378533B2 (en) Calibration method for components of optical coherence tomography
KR102456213B1 (en) Systems and Methods for Focus Optimization for Imaging-Based Overlay Metrology
US20110261347A1 (en) Method for interferometric detection of surfaces
JP2013092402A (en) Multi-wavelength interferometer, measurement apparatus, and measurement method
KR20130039005A (en) Three dimensional depth and shape measuring device
WO2013091584A1 (en) Method and device for detecting defects in substrate
JP2020517911A (en) Radius of curvature measurement by spectrum controlled interferometry
JP2013152191A (en) Multi-wavelength interferometer
KR101251292B1 (en) Three dimensional shape and depth measuring device using polarized light
JP5514641B2 (en) Laser interference bump measuring instrument
JP4852651B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP4474535B2 (en) 3D shape measurement and analysis equipment
JP5428538B2 (en) Interfering device
JP4469951B2 (en) Shape / step measurement method using interference fringes
JP2006250826A (en) Measuring element, processing device and measuring method, and measuring element of refractive index
JP2006064610A (en) Coaxial-type spatial light interference tomographic image measuring instrument
JP2010014536A (en) Measuring method and measuring apparatus for object under measurement mounted on processing apparatus
Tang Investigation of line-scan dispersive interferometry for in-line surface metrology
JP4613310B2 (en) Surface shape measuring device
JP5894464B2 (en) Measuring device
KR20120016419A (en) Method for measuring width of sample using 3d shape measuring unit
JP2009258131A (en) Method for calibrating constituent device of optical coherence tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees