JP5289784B2 - Refrigerator integrated cryogenic container - Google Patents

Refrigerator integrated cryogenic container Download PDF

Info

Publication number
JP5289784B2
JP5289784B2 JP2008015018A JP2008015018A JP5289784B2 JP 5289784 B2 JP5289784 B2 JP 5289784B2 JP 2008015018 A JP2008015018 A JP 2008015018A JP 2008015018 A JP2008015018 A JP 2008015018A JP 5289784 B2 JP5289784 B2 JP 5289784B2
Authority
JP
Japan
Prior art keywords
refrigerator
heat
temperature
cooling
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008015018A
Other languages
Japanese (ja)
Other versions
JP2009174804A (en
Inventor
典英 佐保
尚志 磯上
弘之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008015018A priority Critical patent/JP5289784B2/en
Priority to EP09000684.2A priority patent/EP2085720B1/en
Priority to US12/357,476 priority patent/US20090188260A1/en
Publication of JP2009174804A publication Critical patent/JP2009174804A/en
Application granted granted Critical
Publication of JP5289784B2 publication Critical patent/JP5289784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Packages (AREA)

Description

本発明は、冷凍機一体型低温容器に関する。   The present invention relates to a refrigerator-integrated cryogenic container.

例えば、特許文献1には、冷凍機で超電導磁石等の被冷却体を非常に低い温度に冷却する場合、被冷却体をより低温に保持する目的から、室温からの熱侵入を防止するために真空容器内に冷凍機の低温部と被冷却体とを配置する冷凍機システムが開示されている。   For example, in Patent Document 1, when a cooled object such as a superconducting magnet is cooled to a very low temperature in a refrigerator, in order to prevent the heat intrusion from room temperature from the purpose of keeping the cooled object at a lower temperature. A refrigerator system in which a low-temperature part of a refrigerator and an object to be cooled are arranged in a vacuum vessel is disclosed.

ここで、非常に小型の超電導磁石を低温に冷却する場合、使用する冷凍機は非常に小型のものとなる。   Here, when a very small superconducting magnet is cooled to a low temperature, the refrigerator used is very small.

ここで、冷凍機の冷凍性能の例を図4に示す。本図は、冷凍機の環境温度、すなわち冷凍機が置かれた環境における冷凍運転中の冷凍機の作動媒体であるヘリウムガスの入口温度をパラメータとした、冷凍機による冷却温度における冷凍性能を示している。例えば、真空容器内の低温部への熱進入量が0.3Wとすると、冷凍機システムの冷凍機による冷却温度は、超電導磁石の冷却温度は環境温度Trが296Kの場合、48Kとなるが、夏場で環境温度が318Kとなる場合、55Kに上昇してしまう。   Here, the example of the refrigerating performance of a refrigerator is shown in FIG. This figure shows the refrigeration performance at the cooling temperature by the refrigerator, using the ambient temperature of the refrigerator, that is, the inlet temperature of helium gas, which is the working medium of the refrigerator during the refrigeration operation, in the environment where the refrigerator is placed. ing. For example, if the amount of heat entering the low temperature part in the vacuum vessel is 0.3 W, the cooling temperature of the refrigerator of the refrigerator system is 48 K when the superconducting magnet cooling temperature is 296 K, If the environmental temperature reaches 318K in summer, it will rise to 55K.

ここで、超電導磁石が円柱状のイットリウム系の酸化物バルク超電導体で構成され、このバルク超電導体を高い磁場中で着磁して超電導磁石とする場合、着磁される磁場の強さは、バルク超電導体冷却温度が50Kを超えると急激に低下する特性を示す。例えば、円柱状バルク超電導体の直径が45mmの場合、バルク超電導体冷却温度が48Kである場合の着磁される磁場強度は6テスラとなるが、バルク超電導体冷却温度が55Kである場合の着磁される磁場強度は4テスラに低下し、超電導磁石の磁場性能が大幅に低下してしまう。一度、磁場性能が低下すると、この状態で再び冷却温度が48Kに低下しても磁場強度は4テスラのままで、磁場性能は低下したままである。   Here, when the superconducting magnet is composed of a cylindrical yttrium-based oxide bulk superconductor, and this bulk superconductor is magnetized in a high magnetic field to form a superconducting magnet, the strength of the magnetized magnetic field is When the bulk superconductor cooling temperature exceeds 50K, it shows a characteristic of rapidly decreasing. For example, when the diameter of a cylindrical bulk superconductor is 45 mm, the magnetic field strength to be magnetized when the bulk superconductor cooling temperature is 48K is 6 Tesla, but when the bulk superconductor cooling temperature is 55K, The magnetic field strength to be magnetized is reduced to 4 Tesla, and the magnetic field performance of the superconducting magnet is greatly reduced. Once the magnetic field performance is reduced, even if the cooling temperature is lowered to 48K again in this state, the magnetic field strength remains at 4 Tesla and the magnetic field performance remains lowered.

逆に、冬季で環境温度が273Kまで低下する場合、超電導磁石の冷却温度は45Kとなり着磁される磁場強度は6.5テスラまで向上する。   Conversely, when the environmental temperature drops to 273K in winter, the cooling temperature of the superconducting magnet is 45K, and the magnetic field strength to be magnetized is improved to 6.5 Tesla.

上記のように、例えばヘリウムガスを作動媒体とする断熱膨張を利用する冷凍方式の場合、冷凍機の入口温度が低いほど冷凍機の低温部の温度は低くなる。冷凍機に供給されるヘリウムガスが圧縮機で圧縮される工程において圧縮熱で約353Kに加熱され、この熱が室内に直接的または間接的に排熱される場合、実質的に、図4における環境温度が室温より10〜20K程度高くなることがある。   As described above, for example, in the case of a refrigeration system using adiabatic expansion using helium gas as a working medium, the lower the inlet temperature of the refrigerator, the lower the temperature of the low temperature part of the refrigerator. When the helium gas supplied to the refrigerator is heated to about 353 K by compression heat in the process of being compressed by the compressor, and this heat is exhausted directly or indirectly into the room, the environment in FIG. The temperature may be about 10-20K higher than room temperature.

したがって、冷凍機の作動媒体であるヘリウムガスの入口温度は室温より高くなり、冷凍機による冷却温度は冷凍機の入口温度が室温より低い場合に比べて高くなってしまう問題が生じる。   Therefore, the inlet temperature of helium gas, which is the working medium of the refrigerator, becomes higher than room temperature, and the cooling temperature by the refrigerator becomes higher than that when the inlet temperature of the refrigerator is lower than room temperature.

ヘリウムガスの入口温度を更に下げて冷凍機の冷凍温度を低下させる場合には、前記の圧縮熱で加熱されたヘリウムガスを室温より低い温度の冷却水で冷却し、ヘリウムガスの入口温度を室温より低くして冷凍機に供給する。   When the inlet temperature of the helium gas is further lowered to lower the freezing temperature of the refrigerator, the helium gas heated with the compression heat is cooled with cooling water having a temperature lower than room temperature, and the inlet temperature of the helium gas is set to room temperature. Lower and supply to refrigerator.

特許文献1に開示されているように、冷凍機入口部は真空容器の外部に配置され、室温部に露出しており、ヘリウムガスの入口温度を室内の露点より低くした場合、その部位に空気中の水分が凝縮し、結露した水が装置外に滴り落ちる問題が発生する。また、当該部に空気中の水分が凝縮することによりヘリウムガスの冷凍機入口温度が上昇し、冷凍機による冷却温度が上昇してしまう問題が発生する。   As disclosed in Patent Document 1, the refrigerator inlet portion is disposed outside the vacuum vessel and exposed to the room temperature portion. When the inlet temperature of the helium gas is lower than the dew point in the room, air is introduced into that portion. The water inside condenses, and the problem is that the condensed water dripping out of the device. In addition, the moisture in the air condenses in the portion, which raises the problem that the inlet temperature of the helium gas refrigerator rises and the cooling temperature of the refrigerator rises.

一方、冷却水を使用せず、ペルチェ素子等の電子機器で温度制御を行う例としては、特許文献2に開示されているように、冷媒として二酸化炭素を用いた冷凍サイクルにおいて、膨張機で回収した動力を使用し、ペルチェ素子を用いて大気側の放熱熱交換器と膨張機出口との間で冷媒の熱交換を行う構造がある。   On the other hand, as an example of performing temperature control with an electronic device such as a Peltier element without using cooling water, as disclosed in Patent Document 2, it is recovered by an expander in a refrigeration cycle using carbon dioxide as a refrigerant. There is a structure in which heat is exchanged between the radiant heat exchanger on the atmosphere side and the expander outlet using the Peltier element using the motive power.

また、冷凍機システムの圧縮機の排熱をヒートパイプにより放熱する構造は、例えば、特許文献3に開示されている。特許文献3の場合、雨滴の侵入を防止するため、冷凍機の低温部および高温部を密封筐体に収め、筐体外部にヒートパイプの放熱部を設け、筐体の高温部と放熱部とをヒートパイプで接続してあり、当該高温部の熱をヒートパイプ内の作動媒体を通じて大気の室温空気に廃熱するため、当該高温部は室温より常に高い状態の温度に制御される。特許文献3の場合も、温度制御する冷媒が室温より高めになっているため結露の問題は生じない。   Moreover, the structure which dissipates the exhaust heat of the compressor of a refrigerator system with a heat pipe is disclosed by patent document 3, for example. In the case of Patent Document 3, in order to prevent raindrops from entering, the low-temperature part and the high-temperature part of the refrigerator are housed in a sealed housing, a heat pipe heat-dissipating part is provided outside the housing, Are connected to each other by a heat pipe, and the heat of the high temperature part is exhausted to room temperature air in the atmosphere through the working medium in the heat pipe. Therefore, the high temperature part is controlled to a temperature always higher than room temperature. In the case of Patent Document 3 as well, there is no problem of condensation because the temperature-controlled refrigerant is higher than room temperature.

しかし、冷凍機の作動媒体の入口温度は室温より高くなるため、冷凍機による冷却温度は冷凍機の入口温度が室温より低い場合に比べて高くなってしまう問題が生じる。また、筐体で密封するため内部の空気温度は絶えず室温より高い状態にあり、冷凍機の低温部には室温の場合よりも大きな熱侵入が生じることになり、さらに冷凍機の冷却部の温度が上昇する問題が生じる。   However, since the inlet temperature of the working medium of the refrigerator becomes higher than room temperature, there arises a problem that the cooling temperature by the refrigerator becomes higher than when the inlet temperature of the refrigerator is lower than room temperature. In addition, since the internal air temperature is constantly higher than room temperature because it is sealed by the housing, a larger heat intrusion occurs at the low temperature part of the refrigerator than at room temperature, and the temperature of the cooling part of the refrigerator is further increased. The problem of rising.

さらに、特許文献3の場合、冷凍機を筐体で密封する場合、冷凍機の低温部を十分に断熱する必要があるため、筐体が大きくなり、冷凍機システム全体の体積および重量が大きくなる問題が生じる。   Furthermore, in the case of patent document 3, when sealing a refrigerator with a housing | casing, since it is necessary to fully insulate the low-temperature part of a refrigerator, a housing | casing becomes large and the volume and weight of the whole refrigerator system become large. Problems arise.

また、筐体で密封する代わりに、発泡剤等で覆って隙間を接着剤等で埋める構造とすることも可能であるが、発泡剤等は可燃性物質が一般的であり、当該箇所が燃焼することを防止できず、防火性が必要とされる場所での安全が確保できないという問題が生じる。   In addition, instead of sealing with a housing, it is possible to make a structure in which the gap is covered with an adhesive or the like and the gap is filled with an adhesive or the like. It is impossible to prevent this, and there arises a problem that safety cannot be ensured in a place where fire resistance is required.

特開平11−87131号公報Japanese Patent Laid-Open No. 11-87131 特開2004−144399号公報JP 2004-144399 A 特開2002−181437号公報JP 2002-181437 A

また、上記従来技術において、冷凍機システムによる冷却温度をより低温にするために、冷凍機の作動媒体であるヘリウムガスの入口温度を室内の露点より低い温度に冷却し、その温度部が大気に露出する場合、大気中の水分が凝集し結露する問題があり、かつ水分の凝縮によって冷却したヘリウムガス温度が再び上昇してしまう問題が生じる。   Further, in the above prior art, in order to lower the cooling temperature by the refrigerator system, the inlet temperature of helium gas, which is the working medium of the refrigerator, is cooled to a temperature lower than the dew point in the room, and the temperature portion is brought into the atmosphere. When exposed, there is a problem that moisture in the atmosphere aggregates and condenses, and the temperature of the cooled helium gas rises again due to condensation of moisture.

本発明の目的は、被冷却体を極低温に冷却できる冷凍機一体型低温容器に用いる冷凍機の圧縮部の放熱面における温度を室温以下に冷却して冷凍機の効率を向上させるとともに、被冷却体を極低温に冷却できる冷凍機一体型低温容器の外表面に、結露を発生させずに冷凍機の作動媒体の入口温度を室温より低い温度に制御し、かつ、冷凍機に室温部から侵入する熱侵入量を低減させ、冷凍機による冷却温度を低温に維持することである。   The object of the present invention is to improve the efficiency of the refrigerator by cooling the temperature at the heat radiating surface of the compressor of the refrigerator used in the refrigerator-integrated cryogenic container capable of cooling the object to be cooled to a cryogenic temperature to room temperature or lower. Controls the inlet temperature of the working medium of the refrigerator to a temperature lower than room temperature without causing condensation on the outer surface of the refrigerator-integrated cryogenic container that can cool the cooling body to a cryogenic temperature. It is to reduce the amount of heat intruding and maintain the cooling temperature by the refrigerator at a low temperature.

本発明の冷凍機一体型低温容器は、第一の吸熱部および第一の放熱部を有する冷凍機と、該冷凍機の該第一の吸熱部を介して極低温に冷却保持する被冷却体を内部に配置して断熱するための真空容器と、該第一の放熱部を冷却するための第二の吸熱部、および第二の放熱部を有する予備冷却手段とを含み、該第一の放熱部および該第二の吸熱部を該真空容器の内部に設けるとともに、該第二の放熱部を含む放熱手段の一部を該真空容器の外部に露出させたことを特徴とする。   The refrigerator-integrated cryogenic container according to the present invention includes a refrigerator having a first heat absorption part and a first heat dissipation part, and a cooled object that is cooled and held at a very low temperature via the first heat absorption part of the refrigerator. Including a vacuum container for insulating the first heat radiating portion, a second heat absorbing portion for cooling the first heat radiating portion, and a pre-cooling means having a second heat radiating portion. A heat dissipating part and the second heat absorbing part are provided inside the vacuum container, and a part of the heat dissipating means including the second heat dissipating part is exposed to the outside of the vacuum container.

本発明によれば、被冷却体を極低温に冷却できる冷凍機一体型低温容器に用いる冷凍機の第一の放熱部の放熱面における温度を室温以下に冷却して冷凍機の効率を向上するとともに、予備冷却手段で予冷して室温より低い温度に冷却される冷凍機の圧縮部が真空空間内に配置されているため、大気中の水分が結露することがなく、結露による電気回路の電気的短絡のトラブルや、運搬時における結露による不具合を防止できる。   According to the present invention, the efficiency of the refrigerator is improved by cooling the temperature at the heat radiation surface of the first heat radiation portion of the refrigerator used in the refrigerator-integrated cryogenic container capable of cooling the object to be cooled to a cryogenic temperature to room temperature or lower. At the same time, since the compression part of the refrigerator that is pre-cooled by the pre-cooling means and cooled to a temperature lower than room temperature is arranged in the vacuum space, moisture in the atmosphere does not condense and the electric circuit electrical Can prevent troubles due to static short circuit and problems caused by condensation during transportation.

本発明による冷凍機一体型低温容器は、ガスを作動媒体とし、該作動媒体を機械的に圧縮する、第一の放熱部を含む圧縮部とと、該作動媒体の断熱膨張により寒冷を発生する第一の吸熱部とを有する冷凍機、および該冷凍機により極低温に冷却保持する被冷却体を内部に配置して断熱する真空容器を含み、該第一の放熱部を冷却する予備冷却手段を設置し、該予備冷却手段からの排熱を大気に放熱可能としたことを特徴とする。   The refrigerator-integrated cryogenic container according to the present invention generates cold by using a gas as a working medium and mechanically compressing the working medium, including a first heat radiating part, and adiabatic expansion of the working medium. A refrigerating machine having a first heat absorbing part, and a precooling means for cooling the first heat dissipating part, including a vacuum vessel that heats and cools an object to be cooled and held at a very low temperature by the refrigerating machine The exhaust heat from the preliminary cooling means can be dissipated to the atmosphere.

本発明による冷凍機一体型低温容器は、冷凍機一体型低温容器の冷却温度をより低温にするために、ヘリウムガスの冷凍機入口温度を室温より低い温度に冷却するものであって、ヘリウムガスの冷凍機入口部を大気とを隔離する隔離手段を設け、かつ冷凍機入口部と大気とを隔離した隔離手段内の空間を断熱空間として構成し、前記断熱空間の熱伝導媒体を排除することを特徴とする。   A refrigerator-integrated cryogenic container according to the present invention cools the refrigerator inlet temperature of helium gas to a temperature lower than room temperature in order to lower the cooling temperature of the refrigerator-integrated cryogenic container. An isolating means for isolating the freezer inlet from the atmosphere is provided, and a space in the isolating means for isolating the freezer inlet from the atmosphere is configured as a heat insulating space, and a heat conduction medium in the heat insulating space is excluded. It is characterized by.

さらに、本発明による冷凍機一体型低温容器は、冷凍機の作動媒体であるヘリウムガスの冷凍機入口温度を室温より低い温度に冷却する予備冷却手段を前記断熱空間内に配置し、予備冷却手段の室温より温度が高い高温部と、前記隔離手段を構成する大気と接する隔壁とを熱伝導率が高い部材で構成した伝熱部材で熱的に連結し、前記冷却手段の高温部の熱を室温の前記隔壁を通じて大気に放熱することで、ヘリウムガスの冷凍機入口温度を室温より低い温度に冷却する予備冷却手段の冷却部へ室温からの熱の侵入を防止し、ヘリウムガスの冷凍機入口温度の温度上昇を防止することを特徴とする。   Furthermore, the refrigerator-integrated cryogenic container according to the present invention includes precooling means for cooling the inlet temperature of helium gas, which is a working medium of the refrigerator, to a temperature lower than room temperature in the heat insulating space, and the precooling means The high temperature part having a temperature higher than room temperature and the partition wall in contact with the atmosphere constituting the isolation means are thermally connected by a heat transfer member constituted by a member having a high thermal conductivity, and the heat of the high temperature part of the cooling means is obtained. Dissipating heat from the room temperature to the cooling part of the pre-cooling means that cools the inlet temperature of the helium gas refrigerator to a temperature lower than room temperature by radiating heat to the atmosphere through the partition wall at room temperature, and entering the helium gas refrigerator It is characterized by preventing temperature rise.

また、本発明による冷凍機一体型低温容器は、断熱空間を真空排気することによって、断熱空間を小さなスペースで構成して断熱機能を確保し、かつ空気を排気遮断することによって、空間内温度が高くなっても引火等の燃焼現象を発生しないことにより、小型で防火性に優れた特徴を有する。   In addition, the refrigerator-integrated cryogenic container according to the present invention is configured such that the heat insulation space is configured by a small space by evacuating the heat insulation space, and the heat insulation function is ensured, and the air temperature is reduced by shutting off the air. Even if it becomes high, it does not generate a combustion phenomenon such as ignition, so it has a small size and an excellent fireproof property.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

図1は、被冷却体が円柱状のイットリウム系のY−Ba−Cu−Oの組成を含むバルク超電導体である小型超電導磁石システムの断面図である。   FIG. 1 is a cross-sectional view of a small superconducting magnet system, which is a bulk superconductor in which an object to be cooled includes a cylindrical yttrium-based Y—Ba—Cu—O composition.

本実施例による冷凍機一体型低温容器は、被冷却体1であるバルク超伝導体を冷却するものであり、小型軽量である。この冷凍機一体型低温容器は、作動媒体であるヘリウムガスを圧縮し、高圧となったヘリウムガスを断熱膨張させることで寒冷を発生する被冷却体1の冷却手段であるスターリング冷凍機を内蔵し、その冷却部2と、圧縮部3と、圧縮部3に含まれ、圧縮部3の圧縮熱を冷凍機外に排熱するための予冷ステージ4と、予冷ステージ4に接する形で設置した熱伝導板5と、熱伝導板5に冷却面を接する形で設置した予備冷却手段であるペルチェ素子6と、ペルチェ素子6の高温排熱面に接する形で設置した熱伝導板7と、真空容器10と、真空容器10の内壁に接する形で設置した熱伝導板9と、熱伝導板7および熱伝導板9に接する形で設置した銅網8とを含む。予冷ステージ4は熱伝導板5とともに、冷凍機の圧縮部3に発生する熱をペルチェ素子6の冷却面に伝達することにより圧縮部3を冷却する。これにより、圧縮部3内部の、膨張前の高温のヘリウムガスを冷却することができる。   The refrigerator-integrated cryogenic container according to the present embodiment cools the bulk superconductor as the body to be cooled 1, and is small and light. This refrigerator-integrated cryogenic container incorporates a Stirling refrigerator, which is a cooling means for the object 1 to be cooled, which compresses helium gas as a working medium and adiabatically expands the high-pressure helium gas to generate cold. The cooling unit 2, the compression unit 3, the heat included in the compression unit 3, the precooling stage 4 for exhausting the compression heat of the compression unit 3 to the outside of the refrigerator, and the heat installed in contact with the precooling stage 4 A conductive plate 5; a Peltier element 6 which is a pre-cooling means installed in contact with the cooling surface of the heat conduction plate 5; a heat conduction plate 7 installed in contact with the high temperature exhaust heat surface of the Peltier element 6; 10, a heat conduction plate 9 installed in contact with the inner wall of the vacuum vessel 10, and a heat conduction plate 7 and a copper net 8 installed in contact with the heat conduction plate 9. The precooling stage 4 cools the compression unit 3 by transferring heat generated in the compression unit 3 of the refrigerator together with the heat conduction plate 5 to the cooling surface of the Peltier element 6. Thereby, the high temperature helium gas before expansion | swelling inside the compression part 3 can be cooled.

ここで、冷凍機の冷却部2を第一の吸熱部、冷凍機の圧縮部3に含まれる予冷ステージ4を第一の放熱部、予冷ステージ4を冷却するペルチェ素子6の冷却面を第二の吸熱部、ペルチェ素子6の高温排熱面を第二の放熱部とそれぞれ定義する。   Here, the cooling unit 2 of the refrigerator is the first heat absorption unit, the precooling stage 4 included in the compression unit 3 of the refrigerator is the first heat radiating unit, and the cooling surface of the Peltier element 6 that cools the precooling stage 4 is the second. And the high-temperature heat removal surface of the Peltier element 6 are defined as a second heat radiation part, respectively.

また、銅網8は、熱伝導板7から熱伝導板9へペルチェ素子6の排熱を伝達するための伝熱部材である。この伝熱部材は、銅網8に限らず、銅線の束、アルミニウムの網や線束など、熱伝導率が高く、柔軟性を併せ持つ部材であればよい。ここで、柔軟性は、冷凍機の振動を吸収し、真空容器10の外部に伝達される振動を軽減するとともに、冷凍機の振動により破壊されないための要件である。   The copper net 8 is a heat transfer member for transmitting the exhaust heat of the Peltier element 6 from the heat conductive plate 7 to the heat conductive plate 9. The heat transfer member is not limited to the copper mesh 8, but may be a member having high thermal conductivity and flexibility, such as a bundle of copper wires, an aluminum mesh or a wire bundle. Here, the flexibility is a requirement for absorbing vibration of the refrigerator and reducing vibration transmitted to the outside of the vacuum vessel 10 and not being destroyed by the vibration of the refrigerator.

本実施例では、熱伝導板9は、ボルト11により真空容器10の内壁に密着させている。真空容器10は、少なくとも放熱面を銅などの熱伝導率の高い金属で構成することが望ましい。   In this embodiment, the heat conducting plate 9 is brought into close contact with the inner wall of the vacuum vessel 10 with bolts 11. As for the vacuum vessel 10, it is desirable to comprise at least the heat radiating surface with a metal having high thermal conductivity such as copper.

ここで、ペルチェ素子6の高温排熱面である第二の放熱部と、熱伝導板7と、伝熱部材である銅網8と、熱伝導板9と、真空容器10の放熱面とを併せて放熱手段と定義する。この放熱手段は、ペルチェ素子6の高温排熱面である第二の放熱部を除く、熱伝導板7、伝熱部材である銅網8、熱伝導板9、および真空容器10の放熱面のうち、一個もしくは複数個、またはすべてが欠如していてもよい。すなわち、放熱手段は、第二の放熱部だけで構成される場合も含む。   Here, the second heat dissipating part that is the high-temperature exhaust heat surface of the Peltier element 6, the heat conducting plate 7, the copper net 8 that is the heat transfer member, the heat conducting plate 9, and the heat dissipating surface of the vacuum vessel 10 are provided. Also defined as heat dissipation means. The heat radiating means includes a heat conduction plate 7, a copper net 8 that is a heat transfer member, a heat conduction plate 9, and a heat radiating surface of the vacuum vessel 10, excluding a second heat radiating portion that is a high temperature heat removal surface of the Peltier element 6. Of these, one or more or all may be absent. That is, the heat radiating means includes a case where only the second heat radiating portion is configured.

ペルチェ素子6の高温排熱面、熱伝導体5および7は、インジウムシート等を介してボルトで締結するか、半田付けによりそれぞれ接続されている(図示せず)。   The high-temperature heat exhaust surface of the Peltier element 6 and the heat conductors 5 and 7 are connected by bolts or soldered via indium sheets or the like (not shown).

バルク超電導体1は、補強部材および熱伝導部材としての機能を兼ね備えた材料である、アルミニウム、銅またはステンレススチールなどで形成されたホルダー12の内側に接着剤等で固定され、ホルダー12は、例えば熱伝導率の大きなアルミニウムや銅で製作された支持体13とネジなどで接続され、支持体13は、熱伝導率が小さなガラス繊維入りエポキシ樹脂製の支持円筒体14の上部に接着剤等で固定され、支持円筒体14は、その底部で接着剤を用いてフランジ15に固定され、ボルト等(図示せず)で真空容器10の内壁に締結されている。   The bulk superconductor 1 is fixed with an adhesive or the like inside a holder 12 formed of aluminum, copper, stainless steel, or the like, which is a material having a function as a reinforcing member and a heat conducting member. The support 13 is made of aluminum or copper having a high thermal conductivity and is connected by screws or the like. The support 13 is attached to the upper part of the support cylindrical body 14 made of epoxy resin containing glass fiber having a low thermal conductivity with an adhesive or the like. The support cylindrical body 14 is fixed to the flange 15 using an adhesive at the bottom, and is fastened to the inner wall of the vacuum vessel 10 with a bolt or the like (not shown).

支持体13とスターリング冷凍機の冷却部2との間には、可撓性を有し、熱伝導率が高い銅網や銅製の薄板帯状の輪で形成された熱伝導体16を設け、それぞれを半田付け等で接続してある。ここで、半田付け作業は、支持円筒体14に設けた穴17を利用し、半田ゴテを使用して実施することができる。   Between the support 13 and the cooling unit 2 of the Stirling refrigerator, there are provided heat conductors 16 formed of copper nets or copper strip-like rings having flexibility and high thermal conductivity, Are connected by soldering or the like. Here, the soldering operation can be performed using a soldering iron using the holes 17 provided in the support cylindrical body 14.

冷凍機の圧縮部3およびペルチェ素子6には、電源ユニット18から配線19a、19bを通じて給電される。   Power is supplied from the power supply unit 18 to the compressor 3 and the Peltier element 6 of the refrigerator through wires 19a and 19b.

真空容器10の上部20は、例えばガラス繊維入りエポキシ樹脂で形成される。真空容器10の下部110には、溶接やロウ付けで一体化されたフランジ21があり、と真空容器10の上部20には、真空容器10の上部20と接着剤で一体化されたフランジ22がある。これらのフランジ21、22を、Oリング(図示せず)を介してボルト23とナット24とで接続している。これにより、真空容器10の気密性が保持される。   The upper part 20 of the vacuum vessel 10 is formed of an epoxy resin containing glass fiber, for example. The lower portion 110 of the vacuum vessel 10 has a flange 21 integrated by welding or brazing, and the upper portion 20 of the vacuum vessel 10 has a flange 22 integrated with the upper portion 20 of the vacuum vessel 10 by an adhesive. is there. These flanges 21 and 22 are connected by bolts 23 and nuts 24 via O-rings (not shown). Thereby, the airtightness of the vacuum vessel 10 is maintained.

冷凍機の圧縮部3は、真空容器10の内壁に一体化された保持板25に、防振ゴム33を介して、ボルト(図示せず)で固定されている。真空容器10内部の空間26は、ノズル27から弁28、配管29を通じて真空ポンプ30で真空排気される。ここで、防振ゴム33は、ゴムに限定されるものではなく、振動の伝達を抑制するための柔軟性のある部材であればよい。このような部材を防振部材と定義する。なお、真空容器10の内部には、例えば活性炭粒子32を封入し、空間26内の空気等の残留ガスを吸着し、真空度を保持するようにしている。   The compressor 3 of the refrigerator is fixed to a holding plate 25 integrated with the inner wall of the vacuum vessel 10 with a bolt (not shown) through a vibration isolating rubber 33. The space 26 inside the vacuum vessel 10 is evacuated by a vacuum pump 30 from a nozzle 27 through a valve 28 and a pipe 29. Here, the anti-vibration rubber 33 is not limited to rubber, and may be a flexible member for suppressing vibration transmission. Such a member is defined as a vibration-proof member. Note that, for example, activated carbon particles 32 are sealed inside the vacuum vessel 10 to adsorb residual gas such as air in the space 26 to maintain the degree of vacuum.

冷凍機の冷却部2先端と支持体13底部との距離は、熱変形などの影響で冷凍機運転前と運転中とで異なるが、可撓性を有する熱伝導体16を用いることにより冷却部2および支持体13に大きな熱応力が作用しないようにすることができる。   The distance between the tip of the cooling unit 2 of the refrigerator and the bottom of the support 13 is different between before and during the operation of the refrigerator due to the influence of thermal deformation or the like, but the cooling unit can be obtained by using a flexible heat conductor 16. 2 and the support 13 can be prevented from acting on a large thermal stress.

また、冷凍機の圧縮部3を、防振ゴム33を介して、真空容器10の内壁に一体化された保持板25に、ボルト(図示せず)で一体化する。スターリング冷凍機の圧縮部3は運転時の振動が大きく、この振動が真空容器10に直接伝播し、真空容器10自体が振動共鳴して騒音を発するため、防振ゴム33によりこの振動を低減する。また、真空容器10には、排熱性能を向上させるためにフィン31が設けられている。   Further, the compression unit 3 of the refrigerator is integrated with a bolt (not shown) on the holding plate 25 integrated with the inner wall of the vacuum vessel 10 through the vibration isolating rubber 33. The compression unit 3 of the Stirling refrigerator has a large vibration during operation, and this vibration propagates directly to the vacuum vessel 10, and the vacuum vessel 10 itself oscillates and generates noise. Therefore, the vibration isolating rubber 33 reduces this vibration. . Further, the vacuum vessel 10 is provided with fins 31 in order to improve the exhaust heat performance.

本実施例において、真空容器10の内部にある極低温の領域に侵入する熱侵入量が0.3Wである場合、冷凍機の圧縮部3に発生する圧縮熱7Wを冷凍機外に排熱する必要がある。冷却熱量7Wで温度差50Kを発生する性能を有するペルチェ素子6を適用すると、ペルチェ素子6で冷却された熱伝導板5は273Kに冷却される。このとき、ペルチェ素子6の排熱量は20Wと見積もられる。ペルチェ素子6の高温排熱面と接している熱伝導板7の温度は323Kとなり、温度が10K低い室温313Kの真空容器10の放熱面に銅網8を介して排熱される。   In the present embodiment, when the amount of heat intrusion into the extremely low temperature region inside the vacuum vessel 10 is 0.3 W, the compression heat 7 W generated in the compression unit 3 of the refrigerator is exhausted outside the refrigerator. There is a need. When the Peltier element 6 having the capability of generating a temperature difference of 50K with a cooling heat amount of 7 W is applied, the heat conducting plate 5 cooled by the Peltier element 6 is cooled to 273K. At this time, the amount of heat exhausted from the Peltier element 6 is estimated to be 20 W. The temperature of the heat conducting plate 7 in contact with the high temperature heat exhaust surface of the Peltier element 6 is 323 K, and the heat is exhausted through the copper net 8 to the heat radiating surface of the vacuum vessel 10 at room temperature 313 K, which is 10K lower.

上記の場合、真空容器10の内部に設置した冷凍機の予冷ステージ4の温度は273Kであり、バルク超電導体1の温度は約45Kに冷却される。円柱状のバルク超電導体1の直径が45mmの場合、バルク超電導体冷却温度が48Kである場合の着磁される磁場強度は6テスラを上回る6.5テスラとなる。   In the above case, the temperature of the precooling stage 4 of the refrigerator installed inside the vacuum vessel 10 is 273K, and the temperature of the bulk superconductor 1 is cooled to about 45K. When the diameter of the cylindrical bulk superconductor 1 is 45 mm, the magnetic field strength to be magnetized when the bulk superconductor cooling temperature is 48K is 6.5 Tesla, which exceeds 6 Tesla.

従来の技術では、ペルチェ素子6を使用しないで圧縮部5に発生する圧縮熱7Wを室温313Kで排熱する場合、圧縮部5を真空容器10の外部に露出させて排熱するが、排熱面の面積が狭く、圧縮部5の温度は約318Kとなる。これが冷凍機の環境温度となるため、バルク超電導体1の冷却温度が55Kとなり、着磁される磁場強度は4テスラとなる。   In the conventional technology, when the compression heat 7W generated in the compression unit 5 is exhausted at room temperature 313K without using the Peltier element 6, the compression unit 5 is exposed to the outside of the vacuum vessel 10 and exhausted. The area of the surface is narrow, and the temperature of the compression unit 5 is about 318K. Since this is the ambient temperature of the refrigerator, the cooling temperature of the bulk superconductor 1 is 55K, and the strength of the magnetized magnetic field is 4 Tesla.

本実施例では、冷凍機の圧縮部3の温度をペルチェ素子6で予冷して室温より低い温度とし、冷凍機で冷却されるバルク超電導体1を50K以下に冷却できるため、バルク超電導体1の着磁できる磁場強度を高めることができる。   In this embodiment, the temperature of the compressor 3 of the refrigerator is pre-cooled by the Peltier element 6 so that the temperature is lower than room temperature, and the bulk superconductor 1 cooled by the refrigerator can be cooled to 50K or less. The magnetic field intensity that can be magnetized can be increased.

また、本実施例では、冷凍機の圧縮部3を冷却するペルチェ素子6が真空容器10内部に配置されるため、ペルチェ素子6の冷却面に大気中の水分が結露することがなく、結露による電気回路の電気的短絡や、運搬時の結露水による不具合を防止できる。   Further, in this embodiment, since the Peltier element 6 for cooling the compression unit 3 of the refrigerator is disposed inside the vacuum vessel 10, moisture in the atmosphere does not condense on the cooling surface of the Peltier element 6, and the dew condensation occurs. It is possible to prevent problems due to electrical short circuits in the electrical circuit and condensed water during transportation.

さらに、ペルチェ素子6が真空容器10内部に配置されているため、ペルチェ素子6の低温部が室温部から断熱される。このため、ペルチェ素子6の冷却効率が向上し、冷凍機の圧縮部3を一層低い温度に冷却でき、冷凍機で冷却されるバルク超電導体1を50K以下に冷却することができる。   Furthermore, since the Peltier element 6 is disposed inside the vacuum vessel 10, the low temperature part of the Peltier element 6 is thermally insulated from the room temperature part. For this reason, the cooling efficiency of the Peltier element 6 is improved, the compression unit 3 of the refrigerator can be cooled to a lower temperature, and the bulk superconductor 1 cooled by the refrigerator can be cooled to 50K or less.

また、ペルチェ素子6が真空容器10内部に配置されているため、ペルチェ素子6の高温部の周辺に空気層がない。このため、ペルチェ素子6の高温部の熱が近接する圧縮部3に、空気層を介して伝達されることを抑制できる。このため、冷凍機の圧縮部3をより低温に冷却でき、冷凍機で冷却されるバルク超電導体1を50K以下に冷却することができる。また、着磁性能が向上して一層高い磁場を発生する超電導磁石を提供できる。   Further, since the Peltier element 6 is disposed inside the vacuum vessel 10, there is no air layer around the high temperature portion of the Peltier element 6. For this reason, it can suppress that the heat | fever of the high temperature part of the Peltier device 6 is transmitted to the compression part 3 which adjoins via an air layer. For this reason, the compression part 3 of a refrigerator can be cooled to low temperature, and the bulk superconductor 1 cooled with a refrigerator can be cooled to 50K or less. Further, it is possible to provide a superconducting magnet that improves the magnetization performance and generates a higher magnetic field.

図2に本発明による他の実施例を示す。本図が図1と異なる点は、冷凍機の冷却部34と冷凍機の圧縮部35とが配管36で分離して連結され、スプリット型のスターリング冷凍機を適用していることである。本実施例では、冷凍機の冷却部34を、支持板37を介して、また、冷凍機の圧縮部35を、防振ゴム33を介して、真空容器10の内壁に一体化された保持板38に、ボルト等(図示せず)で固定する。本実施例によれば、冷却部34と高温の圧縮部35とを管の断面積が小さな細管の配管で離してあるため、圧縮部35から冷却部34への熱伝導による侵入熱を低減できる。このため、冷却部34の温度をさらに低温に冷却でき、バルク超伝導体1の温度を低下させて着磁性能を向上させ、一層高い磁場の超電導磁石を提供できる。また、被冷却体であるバルク超伝導体1に圧縮部の運転振動が伝播することを低減できる。   FIG. 2 shows another embodiment according to the present invention. This figure is different from FIG. 1 in that the cooling unit 34 of the refrigerator and the compression unit 35 of the refrigerator are separated and connected by a pipe 36 and a split type Stirling refrigerator is applied. In the present embodiment, the cooling unit 34 of the refrigerator is integrated with the support plate 37, and the compression unit 35 of the refrigerator is integrated with the inner wall of the vacuum vessel 10 through the anti-vibration rubber 33. It fixes to 38 with a volt | bolt etc. (not shown). According to the present embodiment, since the cooling unit 34 and the high-temperature compression unit 35 are separated by a small pipe having a small cross-sectional area of the tube, intrusion heat due to heat conduction from the compression unit 35 to the cooling unit 34 can be reduced. . For this reason, the temperature of the cooling unit 34 can be cooled to a lower temperature, the temperature of the bulk superconductor 1 can be lowered to improve the magnetizing performance, and a superconducting magnet having a higher magnetic field can be provided. In addition, it is possible to reduce the propagation of the operating vibration of the compression portion to the bulk superconductor 1 that is the object to be cooled.

スプリット型冷凍機を適用する場合においても、室温より低い温度となるペルチェ素子6が真空容器10内部に配置されるため、ペルチェ素子6の冷却面に大気中の水分が結露することがなく、結露による電気回路の電気的短絡や、運搬時の結露水による不具合を防止できる。   Even when the split refrigerator is applied, since the Peltier element 6 having a temperature lower than room temperature is disposed inside the vacuum vessel 10, moisture in the atmosphere does not condense on the cooling surface of the Peltier element 6, and dew condensation occurs. It is possible to prevent electrical short circuit of the electrical circuit due to and trouble caused by dew condensation during transportation.

図3に本発明による他の実施例を示す。本図が図1と異なる点は、真空容器10の底部にファン39を設けたことである。ファン39には、電源18より配線19cで給電され、フィン31に送風を行う。これにより、フィン31での放熱特性を向上させることができる。   FIG. 3 shows another embodiment according to the present invention. This figure is different from FIG. 1 in that a fan 39 is provided at the bottom of the vacuum vessel 10. Power is supplied to the fan 39 from the power source 18 through the wiring 19c, and air is blown to the fins 31. Thereby, the heat dissipation characteristic in the fin 31 can be improved.

本実施例によれば、ファン39の運転によりフィン31における放熱特性が向上するため、熱伝導板7の温度が一層低くなり、それによって熱伝導板5の温度も低くなる。これにより、冷凍機の冷却部34の温度が一層低下し、バルク超伝導体1の温度が低下し、着磁性能が向上して更に高磁場を発生する超電導磁石を提供できる。   According to the present embodiment, since the heat dissipation characteristics of the fins 31 are improved by the operation of the fan 39, the temperature of the heat conducting plate 7 is further lowered, and thereby the temperature of the heat conducting plate 5 is also lowered. Thereby, the temperature of the cooling unit 34 of the refrigerator is further lowered, the temperature of the bulk superconductor 1 is lowered, the magnetization performance is improved, and a superconducting magnet that generates a higher magnetic field can be provided.

以上の実施例では、被冷却体を冷却する冷凍機としてスターリング冷凍機を適用する場合について説明したが、冷凍機としてギフォード・マクマホン式冷凍機、パルス管式冷凍機、熱音響式冷凍機等の他の冷凍機を適用する場合であっても同様な効果を得ることができる。   In the above embodiment, a case where a Stirling refrigerator is applied as a refrigerator for cooling an object to be cooled has been described. However, as a refrigerator, a Gifford McMahon refrigerator, a pulse tube refrigerator, a thermoacoustic refrigerator, etc. Even if other refrigerators are applied, the same effect can be obtained.

また、本実施例では被冷却体としてバルク超電導体を冷却する場合について説明したが、被冷却体が細胞のサンプルやたんぱく質のサンプルの場合も適用可能である。この場合、低温保存するサンプルを出し入れできるように、一端が大気に開放された構造を有する低温容器が望ましい。この場合も、予備冷却手段によりヘリウムガスの入口温度を室温以下に冷却し、低温容器の温度を一層低くすることができ、予備冷却手段の冷却面に結露を生じさせないという同様な効果を得ることができる。   In this embodiment, the case where the bulk superconductor is cooled as the body to be cooled has been described. However, the present invention can also be applied to the case where the body to be cooled is a cell sample or a protein sample. In this case, a cryogenic container having a structure in which one end is opened to the atmosphere so that a sample to be stored at a low temperature can be taken in and out is desirable. Also in this case, the temperature of the inlet of the helium gas can be cooled to room temperature or lower by the preliminary cooling means, the temperature of the cryogenic container can be further lowered, and the same effect can be obtained that no condensation occurs on the cooling surface of the preliminary cooling means. Can do.

以上の実施例においては、予備冷却手段であるペルチェ素子6全体をシンク容器10内部に設置したが、第二の吸熱部であるペルチェ素子6の冷却面だけを真空容器10内部に設置し、第二の放熱部であるペルチェ素子6の高温排熱面を真空容器10外部に露出させてもよい。この場合も、第一の放熱部である予冷ステージ4の温度を室内の露点以下とすることができ、結露水の発生も低減できる。   In the above embodiment, the entire Peltier element 6 serving as the pre-cooling means is installed inside the sink container 10, but only the cooling surface of the Peltier element 6 serving as the second heat absorbing part is installed inside the vacuum container 10. The high temperature heat exhaust surface of the Peltier element 6 that is the second heat radiating portion may be exposed to the outside of the vacuum vessel 10. Also in this case, the temperature of the pre-cooling stage 4 that is the first heat radiating section can be set to the indoor dew point or less, and the generation of condensed water can be reduced.

本発明によれば、被冷却体を極低温に冷却できる冷凍機一体型低温容器に用いる冷凍機の第一の放熱部の放熱面における温度を室温以下に冷却して冷凍機の効率を向上させることができる。   According to the present invention, the efficiency of the refrigerator is improved by cooling the temperature at the heat radiation surface of the first heat radiation part of the refrigerator used in the refrigerator-integrated cryogenic container capable of cooling the object to be cooled to a cryogenic temperature to room temperature or lower. be able to.

また、本発明によれば、予備冷却手段で予冷して室温より低い温度で冷却される冷凍機の圧縮部が真空空間内に配置されているため、大気中の水分が結露することがなく、結露による電気回路の電気的短絡のトラブルや、運搬時における結露による不具合を防止できる。また、本発明によれば、冷凍機入口部のヘリウムガス温度を常に室温より低い温度に保持できるため、冷凍機で冷却される被冷却体をより低温に冷却できる。   In addition, according to the present invention, since the compression unit of the refrigerator that is pre-cooled by the pre-cooling means and cooled at a temperature lower than the room temperature is disposed in the vacuum space, moisture in the atmosphere is not condensed, Troubles of electrical short circuits in electrical circuits due to condensation and problems due to condensation during transportation can be prevented. In addition, according to the present invention, the helium gas temperature at the refrigerator inlet can always be kept lower than room temperature, so that the object to be cooled cooled by the refrigerator can be cooled to a lower temperature.

また、本発明によれば、真空断熱容器内には酸素がないため防火性に優れており、防火性が必要とされる場所での安全性が確保できる。   Moreover, according to this invention, since there is no oxygen in a vacuum heat insulation container, it is excellent in fireproofing property and can ensure the safety | security in the place where fireproofing is required.

本発明による実施例1の冷凍機一体型低温容器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the refrigerator integrated cryogenic container of Example 1 by this invention. 本発明による実施例2の冷凍機一体型低温容器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the refrigerator integrated cryogenic container of Example 2 by this invention. 本発明による実施例3の冷凍機一体型低温容器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the refrigerator integrated cryogenic container of Example 3 by this invention. 本発明による実施例で使用する冷凍機の冷凍特性を説明するグラフである。It is a graph explaining the freezing characteristic of the refrigerator used in the Example by this invention.

符号の説明Explanation of symbols

1:バルク超電導体、2:冷却部、3:圧縮部、5:熱伝導板、6:ペルチェ素子、7:熱伝導板、8:銅網、9:熱伝導板、10:真空容器、14:支持円筒体、25:保持板。   1: Bulk superconductor, 2: Cooling unit, 3: Compression unit, 5: Thermal conductive plate, 6: Peltier element, 7: Thermal conductive plate, 8: Copper net, 9: Thermal conductive plate, 10: Vacuum container, 14 : Support cylindrical body, 25: holding plate.

Claims (5)

第一の吸熱部、および第一の放熱部を含む圧縮部を有する冷凍機と、
該冷凍機の該第一の吸熱部を介して極低温に冷却保持する被冷却体を内部に配置して断熱するための真空容器と、
前記第一の放熱部を冷却するための第二の吸熱部、および第二の放熱部を有する予備冷却手段とを含み、
前記冷凍機は、ガスを作動媒体とし、前記圧縮部は、該作動媒体を機械的に圧縮するものであり、前記冷凍機および前記第二の吸熱部を前記真空容器の内部に設けるとともに、前記第二の放熱部を含む放熱手段の一部を前記真空容器の外部に露出させたことを特徴とする冷凍機一体型低温容器。
A refrigerator having a first heat-absorbing part and a compression part including the first heat-dissipating part;
A vacuum vessel for heat-insulating the object to be cooled, which is cooled and held at a very low temperature via the first heat absorption part of the refrigerator;
A second heat absorbing part for cooling the first heat radiating part, and a pre-cooling means having a second heat radiating part,
The refrigerator, gas and the working medium, said compression unit is adapted to mechanically compress the working medium, provided with the refrigerator and the second heat absorbing part inside the vacuum container, wherein A refrigerator-integrated cryogenic container, wherein a part of the heat radiation means including the second heat radiation part is exposed to the outside of the vacuum container.
前記放熱手段が伝熱部材を含むことを特徴とする請求項記載の冷凍機一体型低温容器。 Cryogenic container with the built-in refrigerator according to claim 1, wherein said heat dissipating means is characterized in that it comprises a heat transfer member. 前記予備冷却手段がペルチェ素子であることを特徴とする請求項1または2に記載の冷凍機一体型低温容器。 The refrigerator-integrated cryogenic container according to claim 1 or 2 , wherein the preliminary cooling means is a Peltier element. 前記圧縮部と前記真空容器の内壁との間に防振部材を設置したことを特徴とする請求項2または3に記載の冷凍機一体型低温容器。 Cryogenic container with the built-in refrigerator according to claim 2 or 3, characterized in that they have installed vibration isolating member between the inner wall of the vacuum container and the compression unit. 前記第一の吸熱部と前記圧縮部とを細管で接続したことを特徴とする請求項2〜のいずれかに記載の冷凍機一体型低温容器。 The refrigerator-integrated cryogenic container according to any one of claims 2 to 4 , wherein the first heat absorption part and the compression part are connected by a thin tube.
JP2008015018A 2008-01-25 2008-01-25 Refrigerator integrated cryogenic container Expired - Fee Related JP5289784B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008015018A JP5289784B2 (en) 2008-01-25 2008-01-25 Refrigerator integrated cryogenic container
EP09000684.2A EP2085720B1 (en) 2008-01-25 2009-01-19 Cryogenic container with built-in refrigerator
US12/357,476 US20090188260A1 (en) 2008-01-25 2009-01-22 Cryogenic container with built-in refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015018A JP5289784B2 (en) 2008-01-25 2008-01-25 Refrigerator integrated cryogenic container

Publications (2)

Publication Number Publication Date
JP2009174804A JP2009174804A (en) 2009-08-06
JP5289784B2 true JP5289784B2 (en) 2013-09-11

Family

ID=40578538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015018A Expired - Fee Related JP5289784B2 (en) 2008-01-25 2008-01-25 Refrigerator integrated cryogenic container

Country Status (3)

Country Link
US (1) US20090188260A1 (en)
EP (1) EP2085720B1 (en)
JP (1) JP5289784B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512644B2 (en) * 2008-01-15 2010-07-28 株式会社日立製作所 Magnet magnetization system and magnetized superconducting magnet
CN103234299B (en) * 2013-04-03 2015-08-19 贾磊 A kind of method promoting and maintain vacuum cavity vacuum
EP3102897B1 (en) * 2014-01-31 2021-09-15 The Coca-Cola Company Systems and methods for vacuum cooling a beverage
JP6286242B2 (en) * 2014-03-18 2018-02-28 株式会社日立製作所 Superconducting magnet device
CN106298152A (en) * 2015-05-11 2017-01-04 通用电气公司 Superconducting magnet cooling system
FR3062899B1 (en) * 2017-02-10 2019-06-07 Noxant DEVICE AND METHOD FOR CONTROLLING THE TEMPERATURE OF A STIRLING ENGINE ADAPTED TO AN INFRARED QUANTUM SENSOR
WO2021146122A1 (en) * 2020-01-13 2021-07-22 The Regents Of The University Of California Devices and methods for high-stability supercooling of aqueous media and biological matter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286970A (en) * 1990-03-31 1991-12-17 Aisin Seiki Co Ltd Cooling system
US5551244A (en) * 1994-11-18 1996-09-03 Martin Marietta Corporation Hybrid thermoelectric/Joule-Thomson cryostat for cooling detectors
DE19547030A1 (en) * 1995-12-15 1997-06-19 Leybold Ag Low-temperature refrigerator with a cold head and process for optimizing the cold head for a desired temperature range
US5647219A (en) * 1996-06-24 1997-07-15 Hughes Electronics Cooling system using a pulse-tube expander
JPH1187131A (en) 1997-09-10 1999-03-30 Sumitomo Heavy Ind Ltd Magnetic field fluctuation suppressing helium-free superconducting magnet device
JP2000289451A (en) * 1999-04-08 2000-10-17 Bosch Automotive Systems Corp Air conditioning system for vehicle
JP2002181437A (en) 2000-12-14 2002-06-26 Cryodevice Inc Cooler for refrigerating machine system
US6581389B2 (en) * 2001-03-21 2003-06-24 The Coca-Cola Company Merchandiser using slide-out stirling refrigeration deck
JP2003336923A (en) * 2002-05-20 2003-11-28 Central Japan Railway Co Very low temperature refrigerating device
JP2004144399A (en) 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Refrigeration cycle device
EP1610074A4 (en) 2003-03-28 2012-09-05 Fujitsu Ltd Cooler for low-temperature operating article
US20070180836A1 (en) * 2006-02-04 2007-08-09 Shapiro Leonid A Closed-loop cycle cryogenic electronics cooling system with parallel multiple cooling temperatures
CN1818508B (en) * 2006-03-15 2010-04-14 浙江大学 Thermal acoustic driving refrigerator system with G-M pulsing pipe
US20070261416A1 (en) * 2006-05-11 2007-11-15 Raytheon Company Hybrid cryocooler with multiple passive stages

Also Published As

Publication number Publication date
EP2085720B1 (en) 2013-08-21
US20090188260A1 (en) 2009-07-30
JP2009174804A (en) 2009-08-06
EP2085720A2 (en) 2009-08-05
EP2085720A3 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5289784B2 (en) Refrigerator integrated cryogenic container
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
CN110645733A (en) Refrigeration system
CN114151989B (en) Superconducting magnet
JP7332413B2 (en) Low temperature thermal conductivity measuring device
JP2008061372A (en) Refrigerating device
CN109243752B (en) Auxiliary cooling device and cooling equipment
JP3784286B2 (en) Stirling refrigerator heat exchanger and Stirling refrigerator
US7073340B2 (en) Cryogenic compressor enclosure device and method
JP3952279B2 (en) Detection system
JPH1026427A (en) Cooler
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
JP3858269B2 (en) Cooling tube and cryogenic cryostat using the same
KR101205816B1 (en) Superconducting magnet system using cryogenic refrigerator
KR101013931B1 (en) Air Conditioner Using Thermoelectric modules
JPH07332829A (en) Freezer
Duband et al. Socool: A 300 K-0.3 K pulse tube/sorption cooler
JP3358376B2 (en) Cooling support device and method
JPH051857A (en) Cryocooling device
KR102118722B1 (en) Refrigerator with thermally isolated cooling flow channel
JP2001298293A (en) Cooling device of integrated circuit
Shrirao et al. Design and Development of Solar Powered Thermoelectric Refrigeration System for Rural Region
KR101562887B1 (en) Oscillating flow apparatus, active magnetic regenerative refrigerator system the oscillating flow apparatus and oscillating flow method
JP2005249265A (en) Stirling refrigerator
JP2006234356A (en) Low temperature retaining device and its maintenance method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120720

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

LAPS Cancellation because of no payment of annual fees