JP5282864B2 - Membrane separation method and membrane separation apparatus - Google Patents

Membrane separation method and membrane separation apparatus Download PDF

Info

Publication number
JP5282864B2
JP5282864B2 JP2007284111A JP2007284111A JP5282864B2 JP 5282864 B2 JP5282864 B2 JP 5282864B2 JP 2007284111 A JP2007284111 A JP 2007284111A JP 2007284111 A JP2007284111 A JP 2007284111A JP 5282864 B2 JP5282864 B2 JP 5282864B2
Authority
JP
Japan
Prior art keywords
water
membrane
treated
membrane separation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007284111A
Other languages
Japanese (ja)
Other versions
JP2009056454A (en
Inventor
景二郎 多田
公伸 大澤
茂 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
MT AquaPolymer Inc
Original Assignee
Kurita Water Industries Ltd
MT AquaPolymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007284111A priority Critical patent/JP5282864B2/en
Application filed by Kurita Water Industries Ltd, MT AquaPolymer Inc filed Critical Kurita Water Industries Ltd
Priority to PCT/JP2008/064137 priority patent/WO2009020157A1/en
Priority to US12/673,165 priority patent/US20110094963A1/en
Priority to BRPI0815054-0A2A priority patent/BRPI0815054A2/en
Priority to EP08827117.6A priority patent/EP2177479A4/en
Priority to CN201410011104.2A priority patent/CN103768947B/en
Priority to KR1020107002175A priority patent/KR20100054126A/en
Priority to CN200880102068.3A priority patent/CN101815677B/en
Priority to TW097130006A priority patent/TWI459997B/en
Publication of JP2009056454A publication Critical patent/JP2009056454A/en
Application granted granted Critical
Publication of JP5282864B2 publication Critical patent/JP5282864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、工業用水、市水、井水などの被処理水を膜分離処理する際に、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を抑制することができる膜分離方法及び膜分離装置に関する。   In the present invention, when water to be treated such as industrial water, city water, and well water is subjected to membrane separation treatment, adsorption of membrane contaminants contained in the water to be treated to the membrane surface is reduced, and deterioration of membrane separation performance is suppressed. The present invention relates to a membrane separation method and a membrane separation apparatus that can be used.

工業用水、市水、井水などの被処理水を処理して例えば純水等にする方法として、精密濾過膜(MF膜)、限外濾過膜(UF膜)、逆浸透膜(RO膜)等の膜に通水する膜分離処理する方法がある。工業用水、市水、井水などは、通常フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物や、界面活性剤等の合成化学物質など、膜を汚染する膜汚染物質を含むため、膜分離処理をすると、これらの膜汚染物質が膜表面に吸着して膜分離性能が劣化するという問題がある。   As a method for treating treated water such as industrial water, city water, and well water to make pure water, for example, microfiltration membrane (MF membrane), ultrafiltration membrane (UF membrane), reverse osmosis membrane (RO membrane) There is a method of membrane separation treatment that allows water to pass through the membrane. Industrial water, city water, well water, etc. are usually membrane contaminants that contaminate membranes, such as humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, and synthetic chemicals such as surfactants. Therefore, when the membrane separation treatment is performed, there is a problem that these membrane contaminants are adsorbed on the membrane surface and the membrane separation performance deteriorates.

そこで、膜分離処理の前に、被処理水に無機凝集剤及びアニオン性等の高分子凝集剤を添加して膜汚染物質を凝結等する凝集処理をし、沈殿や加圧浮上などにより固液分離した後、上澄み、すなわち、膜汚染物質を除去した被処理水を膜分離処理する方法が行われている。しかしながら、高分子凝集剤を添加すると、水中に残留した高分子凝集剤が後段の膜に吸着して膜を汚染し、膜の分離性能を劣化させるという新たな問題が生じる。   Therefore, before the membrane separation treatment, an inorganic flocculant and an anionic polymer flocculant are added to the water to be treated to agglomerate to condense the membrane contaminants, and the liquid is solidified by precipitation or pressurized flotation. After the separation, a method of subjecting the supernatant, that is, the water to be treated from which membrane contaminants have been removed, to membrane separation treatment is performed. However, when the polymer flocculant is added, a new problem arises in that the polymer flocculant remaining in the water is adsorbed on the subsequent membrane to contaminate the membrane and deteriorate the separation performance of the membrane.

このような問題を解決する方法として、本出願人は、被処理水に無機凝集剤と高分子凝集剤とを添加し、凝集反応後、固液分離する前に再び無機凝集剤を添加した後、固液分離する凝集分離方法を先に出願した(特許文献1参照)。   As a method for solving such a problem, the present applicant added an inorganic flocculant and a polymer flocculant to the water to be treated, and after adding the inorganic flocculant again after the aggregation reaction and before solid-liquid separation. In addition, an application for a coagulation separation method for solid-liquid separation was filed earlier (see Patent Document 1).

しかしながら、この特許文献1の方法では、被処理水に無機凝集剤と高分子凝集剤とを添加した後に、再び無機凝集剤を添加する工程が必要であるため、より簡便な方法が求められている。   However, in the method of Patent Document 1, it is necessary to add an inorganic flocculant and a polymer flocculant to the water to be treated and then add the inorganic flocculant again. Therefore, a simpler method is required. Yes.

特開平11−77062号公報Japanese Patent Laid-Open No. 11-77062

本発明は上述した事情に鑑み、被処理水を膜分離処理する際に、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を低減することができる膜分離方法及び膜分離装置を提供することを目的とする。   In view of the circumstances described above, the present invention is a membrane capable of reducing adsorption of membrane contaminants contained in the water to be treated to the membrane surface and reducing deterioration of the membrane separation performance when the water to be treated is subjected to membrane separation treatment. An object is to provide a separation method and a membrane separation apparatus.

本発明者は上記目的を達成するために鋭意検討した結果、膜分離処理前に、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加することにより、上記目的が達成されることを見いだし、本発明を完成させた。   As a result of intensive investigations to achieve the above object, the present inventor has added, to the treated water, particles made of a cationic polymer that swells in water and does not substantially dissolve in water before the membrane separation treatment. It was found that the object was achieved, and the present invention was completed.

即ち、本発明の膜分離方法は、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、架橋剤モノマーとの共重合体であり且つ膨潤していない時の粒子径に対して水中で10〜200倍の粒子径に膨潤し実質的に水に溶解しない、逆相(W/O)エマルションポリマーであるカチオン性ポリマーからなる粒子を、被処理水に添加して吸着処理し、該吸着処理した被処理水を分離膜により膜分離処理することを特徴とする。 That is, the membrane separation method of the present invention is a copolymer of a cationic monomer having a functional group such as primary amine, secondary amine, tertiary amine and their acid salts, quaternary ammonium groups, and a crosslinking agent monomer. Particles made of a cationic polymer that is a reverse phase (W / O) emulsion polymer that swells to a particle size of 10 to 200 times in water and does not substantially dissolve in water relative to the particle size when present and not swollen Is added to the water to be treated and subjected to an adsorption treatment, and the water to be treated subjected to the adsorption treatment is subjected to a membrane separation treatment with a separation membrane.

ここで、前記吸着処理の際に、被処理水に無機凝集剤を添加することが好ましい。   Here, it is preferable to add an inorganic flocculant to the water to be treated during the adsorption treatment.

また、前記膜分離処理が、少なくとも精密濾過膜又は限外濾過膜による分離処理を有し、該膜分離処理により、前記吸着処理した後の前記粒子を被処理水から除去するようにしてもよい。   The membrane separation treatment may include a separation treatment using at least a microfiltration membrane or an ultrafiltration membrane, and the particles after the adsorption treatment may be removed from the water to be treated by the membrane separation treatment. .

さらに、前記膜分離処理が、少なくとも一段以上の逆浸透膜による分離処理を有してもよい。   Furthermore, the membrane separation process may include a separation process using a reverse osmosis membrane of at least one stage.

そして、前記吸着処理の後に、被処理水を脱イオン処理することにより純水を得るものであってもよい。   Then, after the adsorption treatment, pure water may be obtained by deionizing the water to be treated.

また、任意の頻度で、前記分離膜をpH11〜14の洗浄液で洗浄するようにしてもよく、前記洗浄液での洗浄は、逆洗としてもよい。   Further, the separation membrane may be washed with a washing solution having a pH of 11 to 14 at an arbitrary frequency, and the washing with the washing solution may be backwashed.

本発明の他の態様は、反応槽と、被処理水を反応槽に導入する被処理水導入手段と、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、架橋剤モノマーとの共重合体であり且つ膨潤していない時の粒子径に対して水中で10〜200倍の粒子径に膨潤し実質的に水に溶解しない、逆相(W/O)エマルションポリマーであるカチオン性ポリマーからなる粒子を前記反応槽又は反応槽の前段で導入して被処理水に前記粒子を添加するポリマー粒子導入手段と、前記反応槽で吸着処理した被処理水を排出する排出手段と、前記排出手段から排出された被処理水を分離膜により膜分離処理する膜分離処理手段とを具備することを特徴とする膜分離装置にある。
Other aspects of the present invention include a reaction vessel, a treated water introduction means for introducing treated water into the reaction vessel, a primary amine, a secondary amine, a tertiary amine and their acid salts, a quaternary ammonium group, and the like. It is a copolymer of a cationic monomer having a functional group and a cross-linking agent monomer, and swells to a particle size 10 to 200 times in water with respect to the particle size when not swollen and does not substantially dissolve in water. A polymer particle introduction means for introducing particles made of a cationic polymer which is a reverse phase (W / O) emulsion polymer into the reaction vessel or the previous stage of the reaction vessel and adding the particles to the water to be treated; and A membrane separation apparatus comprising: a discharge unit that discharges the water to be treated that has been subjected to adsorption treatment; and a membrane separation processing unit that performs a membrane separation process on the water to be treated discharged from the discharge unit using a separation membrane.

また、前記膜分離処理手段は少なくとも一段以上の逆浸透膜を有すると共に、前記反応槽よりも下流側に被処理水を脱イオン処理する脱イオン処理手段をさらに具備する純水製造装置としてもよい。   The membrane separation processing means may be a pure water production apparatus that has at least one or more reverse osmosis membranes and further includes a deionization processing means for deionizing the water to be treated downstream of the reaction tank. .

また、pH11〜14の洗浄液を前記膜分離処理手段に導入する洗浄液導入手段をさらに有する膜分離装置としてもよい。   Moreover, it is good also as a membrane separation apparatus which further has the washing | cleaning liquid introduction means which introduce | transduces the washing | cleaning liquid of pH 11-14 into the said membrane separation process means.

被処理水に、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加することにより、該粒子に膜汚染物質を吸着させることができる。そして、この水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子に膜汚染物質を吸着させた被処理水を膜分離処理すると、従来の高分子凝集剤や無機凝集剤を用いた場合と比較して、被処理水を膜分離処理する際に、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を低減することができる。また、この水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子に膜汚染物質を吸着させた被処理水を膜分離処理する系において、分離膜をpH11〜14の洗浄液で洗浄することにより、分離膜に吸着した膜汚染物質を除去することができるので、さらに膜分離性能の劣化を低減することができる。   By adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water to the water to be treated, it is possible to adsorb membrane contaminants on the particles. Then, when the water to be treated in which membrane contaminants are adsorbed on particles made of a cationic polymer that swells in water and does not substantially dissolve in water, a conventional polymer flocculant or inorganic flocculant was used. Compared to the case, when the water to be treated is subjected to membrane separation treatment, adsorption of membrane contaminants contained in the water to be treated to the membrane surface can be reduced, and deterioration of membrane separation performance can be reduced. Further, in the system for membrane separation treatment of the water to be treated in which the membrane contaminant is adsorbed on the particles made of a cationic polymer that swells in water and does not substantially dissolve in water, the separation membrane is washed with a washing solution having a pH of 11 to 14. As a result, membrane contaminants adsorbed on the separation membrane can be removed, so that deterioration of membrane separation performance can be further reduced.

以下、本発明を実施形態に基づいて詳細に説明する。
本発明の膜分離方法は、被処理水に、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加した後、被処理水を膜分離処理するものである。
Hereinafter, the present invention will be described in detail based on embodiments.
The membrane separation method of the present invention involves subjecting the water to be treated to membrane separation after adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water.

被処理水としては、例えば、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質など、後段の膜分離処理で用いる膜を汚染する物質(膜汚染物質)を含む水、具体的には、工業用水、市水、井水などが挙げられるが、これらに限定されるものではない。   As treated water, for example, humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, or synthetic chemicals such as surfactants contaminate the membrane used in the subsequent membrane separation treatment. Water containing the substance (membrane contaminant) to be used, specifically, industrial water, city water, well water, and the like, are not limited thereto.

被処理水に添加する粒子を構成する水中で膨潤し実質的に水に溶解しないカチオン性ポリマーは、例えば、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、実質的に水に溶解しないようにするための架橋剤モノマーとの共重合体である。カチオン性モノマーの具体例としては、ジメチルアミノエチル(メタ)アクリレートの酸塩もしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドの酸塩もしくはその4級アンモニウム塩、ジアリルジメチルアンモニウムクロリド等が挙げられる。架橋剤モノマーとしては、メチレンビスアクリルアミドなどのジビニルモノマーが挙げられる。また、上記カチオン性モノマーと共重合可能なアニオン性またはノニオン性モノマーとの共重合体としてもよい。共重合させるアニオン性モノマーの具体例としては、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸およびそれらのアルカリ金属塩等が挙げられるが、その含有量は、共重合体がカチオン性ポリマーとしての性質を損なわない程度に少量である必要がある。ノニオン性モノマーとしては、(メタ)アクリルアミド、Nイソプロピルアクリルアミド、Nメチル(NNジメチル)アクリルアミド、アクリロニトリル、スチレン、メチルもしくはエチル(メタ)アクリレート等が挙げられる。各モノマーは1種でも複数種でもよい。なお、ジビニルモノマー等の架橋剤モノマー量は、全モノマーに対して0.0001〜0.1モル%必要であり、この量によって、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子の膨潤度や水中での粒子径が調整できる。そして、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子としては、例えば、アコジェルC(三井サイテック株式会社製)が市販されている。また、WA20(三菱化学社製)等のアニオン交換樹脂を、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーとして用いてもよい。また、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子の平均粒子径は特に限定されないが、逆相エマルション液体やサスペンション状の分散液体中での平均粒子径、すなわち、水で膨潤していない状態の平均粒子径は100μm以下であることが好ましく、さらに好ましくは0.1〜10μmである。これは、粒子が小さい程、被処理水中に含まれる膜汚染物質の吸着効果が高くなるが、小さすぎると固液分離が困難になるためである。   Cationic polymers that swell in water that constitutes the particles to be added to the water to be treated and do not substantially dissolve in water include, for example, primary amines, secondary amines, tertiary amines and their acid salts, quaternary ammonium groups, and the like. It is a copolymer of a cationic monomer having a functional group and a cross-linking agent monomer for substantially not dissolving in water. Specific examples of the cationic monomer include dimethylaminoethyl (meth) acrylate acid salt or its quaternary ammonium salt, dimethylaminopropyl (meth) acrylamide acid salt or its quaternary ammonium salt, diallyldimethylammonium chloride, and the like. It is done. Examples of the cross-linking agent monomer include divinyl monomers such as methylene bisacrylamide. Moreover, it is good also as a copolymer with the anionic or nonionic monomer copolymerizable with the said cationic monomer. Specific examples of the anionic monomer to be copolymerized include (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkali metal salts thereof. It is necessary to use a small amount so as not to impair the properties as a conductive polymer. Nonionic monomers include (meth) acrylamide, N isopropylacrylamide, N methyl (NN dimethyl) acrylamide, acrylonitrile, styrene, methyl or ethyl (meth) acrylate. Each monomer may be one kind or plural kinds. The amount of the crosslinking agent monomer such as divinyl monomer is required to be 0.0001 to 0.1 mol% based on the total monomer, and this amount is composed of a cationic polymer that swells in water and does not substantially dissolve in water. The degree of particle swelling and the particle size in water can be adjusted. And as the particle | grains which consist of a cationic polymer which swells in water and does not melt | dissolve in water substantially, for example, Akogel C (made by Mitsui Cytec Co., Ltd.) is marketed. Alternatively, an anion exchange resin such as WA20 (manufactured by Mitsubishi Chemical Corporation) may be used as a cationic polymer that swells in water and does not substantially dissolve in water. Further, the average particle size of the particles made of a cationic polymer that swells in water and does not substantially dissolve in water is not particularly limited, but the average particle size in a reversed-phase emulsion liquid or a suspension-like dispersion liquid, that is, in water The average particle size in the unswelled state is preferably 100 μm or less, more preferably 0.1 to 10 μm. This is because the smaller the particles, the higher the effect of adsorbing the membrane contaminants contained in the water to be treated. However, if the particles are too small, solid-liquid separation becomes difficult.

上記水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する形態に特に限定はなく、例えば、粒子そのままでもよく、また、水中に分散した状態や、逆相エマルション液体やサスペンション状の分散液体の形態で添加してもよい。何れにしても、被処理水に水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加することによって、被処理水が吸着処理される、すなわち、被処理水が水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子と接触して、被処理水中に含まれる膜汚染物質が粒子に吸着するようにすればよい。   There is no particular limitation on the form of adding particles composed of a cationic polymer that swells in water and does not substantially dissolve in water to the water to be treated. For example, the particles may be used as they are, or dispersed in water, You may add in the form of an emulsion liquid or a suspension-like dispersion liquid. In any case, the water to be treated is adsorbed by adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water, that is, the water to be treated swells in water. The membrane contaminants contained in the water to be treated may be adsorbed on the particles by contacting with particles made of a cationic polymer that is substantially insoluble in water.

また、2種以上の水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加してもよい。なお、上記粒子を構成するカチオン性ポリマーは水中で膨潤し実質的に水に溶解しないため、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子も、通常の高分子凝集剤とは異なり、水中で膨潤し実質的に水に溶解しない。「実質的に水に溶解しない」とは、水溶性の程度が水中でカチオン性ポリマーからなる粒子として存在できる程度であればよく、具体的には、例えば、30℃での水への溶解性が0.1g/L以下程度であればよい。また、この粒子の水中での膨潤度は、水で膨潤していない時の粒子径に対して水中での粒子径は10〜200倍程度である。   Moreover, you may add the particle | grains which consist of a cationic polymer which swells in 2 or more types of water, and does not melt | dissolve in water substantially to treated water. Since the cationic polymer constituting the above particles swells in water and does not substantially dissolve in water, particles made of a cationic polymer that swells in water and does not substantially dissolve in water are also classified as ordinary polymer flocculants. Unlike, it swells in water and does not substantially dissolve in water. “Substantially insoluble in water” means that the degree of water solubility is such that it can exist as particles composed of a cationic polymer in water. Specifically, for example, solubility in water at 30 ° C. Is about 0.1 g / L or less. The degree of swelling of these particles in water is about 10 to 200 times the particle size in water with respect to the particle size when not swollen with water.

ここで、逆相エマルション液体の形態としたカチオン性ポリマーからなる粒子について以下に詳細に説明するが、この形態に限定されるものではない。なお、特殊なものではなく、ごく一般的な逆相(W/O)エマルションポリマーである。   Here, although it demonstrates in detail below about the particle | grains which consist of a cationic polymer made into the form of a reverse phase emulsion liquid, it is not limited to this form. In addition, it is not a special thing but is a very general reverse phase (W / O) emulsion polymer.

逆相エマルション液体は、上記カチオン性ポリマー、水、炭化水素液体及び界面活性剤を含有する。そして、各成分の質量比(%)は、カチオン性ポリマー:水:炭化水素液体:界面活性剤=20〜40:20〜40:20〜40:2〜20で、カチオン性ポリマーと水との合計質量が、カチオン性ポリマーと水と炭化水素液体と界面活性剤との全体質量に対して40〜60質量%とすることが好ましい。   The inverse emulsion liquid contains the cationic polymer, water, a hydrocarbon liquid, and a surfactant. And mass ratio (%) of each component is cationic polymer: water: hydrocarbon liquid: surfactant = 20-40: 20-40: 20-40: 2-20, and the cationic polymer and water. The total mass is preferably 40 to 60% by mass with respect to the total mass of the cationic polymer, water, hydrocarbon liquid and surfactant.

炭化水素液体としては、イソヘキサンなどのイソパラフィン、n−ヘキサン、ケロシン、鉱物油などの脂肪族系の炭化水素液体が挙げられるが、これらに限定されるものではない。   Examples of the hydrocarbon liquid include, but are not limited to, isoparaffins such as isohexane, and aliphatic hydrocarbon liquids such as n-hexane, kerosene, and mineral oil.

また、界面活性剤としては、例えば、HLB(親水親油バランス)が7〜10で、炭素数10〜20の高級脂肪族アルコールのポリオキシエチレンエーテル、もしくは、炭素数10〜22の高級脂肪酸のポリオキシエチレンエステルが挙げられる。前者の例としては、ラウリルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコールなどのポリオキシエチレン(EO付加モル数=3〜10)エーテルが挙げられる。後者の例としては、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸などのポリオキシエチレン(EO付加モル数=3〜10)エステルが挙げられる。   Examples of the surfactant include polyoxyethylene ethers of higher aliphatic alcohols having 10 to 20 carbon atoms, or higher fatty acids having 10 to 22 carbon atoms, such as HLB (hydrophilic lipophilic balance) of 7 to 10. A polyoxyethylene ester is mentioned. Examples of the former include polyoxyethylene (EO addition mole number = 3 to 10) ethers such as lauryl alcohol, cetyl alcohol, stearyl alcohol, and oleyl alcohol. Examples of the latter include polyoxyethylene (EO addition mole number = 3 to 10) esters such as lauric acid, palmitic acid, stearic acid, and oleic acid.

なお、逆相エマルション液体は、カチオン性ポリマーの原料であるカチオン性モノマーや架橋剤モノマーと、水、炭化水素液体、界面活性剤を混合してモノマーを重合(乳化重合又は懸濁重合)することにより得られるが、これに限定されるものではなく、例えば、各種モノマーを溶液重合した後、ホモジナイザーなどで粉砕し、その後、界面活性剤などの分散剤と共に炭化水素液体に添加することによっても得られる。   The reverse phase emulsion liquid is obtained by polymerizing a monomer (emulsion polymerization or suspension polymerization) by mixing a cationic monomer or a crosslinking agent monomer, which is a raw material of the cationic polymer, with water, a hydrocarbon liquid, and a surfactant. However, the present invention is not limited to this. For example, after various monomers are solution polymerized, they are pulverized with a homogenizer, and then added to a hydrocarbon liquid together with a dispersant such as a surfactant. It is done.

水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する際には、粒子の表面積が大きいことが好ましい。したがって、上記逆相エマルション液体やサスペンション状の分散液体の形態である粒子を、撹拌下の水に添加して粒子を膨潤させた状態にした後、被処理水に添加することが好ましい。   When particles made of a cationic polymer that swells in water and does not substantially dissolve in water are added to the water to be treated, the surface area of the particles is preferably large. Therefore, it is preferable to add the particles in the form of the above-mentioned reversed phase emulsion liquid or suspension-like dispersion liquid to the water to be treated after adding the particles to the water under stirring to swell the particles.

水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する量に特に制限は無いが、被処理水中に含まれる膜汚染物質に対して、1〜50質量%程度とすることが好ましい。また、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加した被処理水のpHは特に制限はないが、低pH、例えばpH5.0〜7.5程度とすることが好ましい。凝集性が特に良好になるためである。   There is no particular limitation on the amount of particles composed of a cationic polymer that swells in water and does not substantially dissolve in water, but it is 1 to 50% by mass with respect to membrane contaminants contained in the water to be treated. It is preferable to set the degree. The pH of the water to be treated to which particles made of a cationic polymer that swells in water and does not substantially dissolve in water is not particularly limited, but may be a low pH, for example, about pH 5.0 to 7.5. preferable. This is because the cohesiveness is particularly good.

このように、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加して吸着処理した後に、被処理水を膜分離処理する。   Thus, after adding the particle | grains which consist of a cationic polymer which swells in water and does not melt | dissolve substantially in water, and carries out an adsorption process, the to-be-processed water is membrane-separated.

膜分離処理としては、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、又は、逆浸透膜(RO膜)等が挙げられる。これらの膜は単独で一段以上用いてもよく、また、例えば、MF膜又はUF膜で被処理水を膜分離処理した後、RO膜で膜分離処理する等、各種の膜を組み合わせる膜分離処理としてもよい。   Examples of the membrane separation treatment include a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), or a reverse osmosis membrane (RO membrane). These membranes may be used alone or in one or more stages. For example, membrane separation treatment that combines various membranes, such as membrane separation treatment with MF membrane or UF membrane, followed by membrane separation treatment with RO membrane. It is good.

ここで、被処理水である工業用水、市水、井水などは、通常フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物や、界面活性剤等の合成化学物質などの膜汚染物質を含むため、膜分離処理をすると、膜汚染物質が膜表面に吸着して膜分離性能が劣化してしまうという問題がある。本発明においては、膜分離処理の前に、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加するため、該粒子に膜汚染物質が吸着して凝集した後に膜分離処理をすることになる。したがって、生物代謝物などの膜汚染物質の溶存有機物濃度が低い水を膜分離処理することができるので、膜汚染物質の膜への吸着を低減でき、膜の分離性能の劣化を抑制できる。   Here, industrial water, city water, well water, etc., which are treated water, include humic acid and fulvic acid organic substances, biological metabolites such as sugar produced by algae, synthetic chemical substances such as surfactants, etc. Therefore, when the membrane separation process is performed, there is a problem that the membrane contaminant is adsorbed on the membrane surface and the membrane separation performance is deteriorated. In the present invention, before the membrane separation treatment, particles made of a cationic polymer that swells in water and does not substantially dissolve in water are added. Therefore, the membrane separation treatment is performed after membrane contaminants are adsorbed and aggregated on the particles. Will do. Therefore, since water with a low dissolved organic matter concentration of membrane contaminants such as biological metabolites can be subjected to membrane separation treatment, adsorption of membrane contaminants to the membrane can be reduced, and deterioration of membrane separation performance can be suppressed.

また、吸着処理の際に、被処理水に無機凝集剤を添加してもよい。膜汚染物質の凝集剤として、無機凝集剤を添加することにより、膜汚染物質が凝集して、膜汚染物質除去効果が増大する。なお、無機凝集剤の添加は、膜分離処理の前であればよく、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を被処理水に添加する前でも後でもよく、また、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子と同時に添加してもよい。無機凝集剤は特に限定はなく、例えば、硫酸バンド、ポリ塩化アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩などが挙げられる。また、無機凝集剤の添加量にも特に限定はなく、処理する被処理水の性状に応じて調整すればよいが、被処理水に対して概ねアルミニウム又は鉄換算で0.5〜10mg/Lである。また、被処理水の性状にもよるが、無機凝集剤としてポリ塩化アルミニウム(PAC)を用いた場合、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子及び無機凝集剤を添加した被処理水のpHを、pH5.0〜7.0程度とすると、凝集が最適となる。   Further, an inorganic flocculant may be added to the water to be treated during the adsorption treatment. By adding an inorganic flocculant as a flocculant for the membrane contaminant, the membrane pollutant is agglomerated and the membrane pollutant removal effect is increased. The inorganic flocculant may be added before the membrane separation treatment, and may be before or after the addition of particles made of a cationic polymer that swells in water and does not substantially dissolve in water. Alternatively, it may be added simultaneously with the particles composed of a cationic polymer which swells in water and does not substantially dissolve in water. The inorganic flocculant is not particularly limited, and examples thereof include an aluminum salt such as a sulfuric acid band and polyaluminum chloride, and an iron salt such as ferric chloride and ferrous sulfate. Moreover, there is no limitation in particular also in the addition amount of an inorganic flocculant, What is necessary is just to adjust according to the property of the to-be-processed water to process, but about 0.5-10 mg / L in conversion of aluminum or iron with respect to to-be-processed water. It is. Depending on the nature of the water to be treated, when polyaluminum chloride (PAC) is used as an inorganic flocculant, particles made of a cationic polymer that swells in water and does not substantially dissolve in water and an inorganic flocculant are added. Aggregation is optimal when the pH of the treated water is about pH 5.0 to 7.0.

また、イオン交換処理等の脱イオン処理をさらに有していてもよい。これにより、純水や超純水を得ることができる。   Moreover, you may have further deionization processes, such as an ion exchange process. Thereby, pure water or ultrapure water can be obtained.

さらに、膜分離処理の前に、沈殿処理や加圧浮上処理により、吸着処理で生成した膜汚染物質を含むカチオン性ポリマーからなる粒子を被処理水から除去する固液分離を行ってもよい。沈殿処理や加圧浮上処理は、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子や無機凝集剤を被処理水に添加後、カセイソーダ、消石灰や硫酸などでpH調整を行い、最後に有機系高分子凝集剤にて懸濁物をフロック化する。また必要に応じて有機凝結剤を併用することもできる。有機凝結剤は特に限定はなく、例えば、ポリエチレンイミン、エチレンジアミンエピクロルヒドリン重縮合物、ポリアルキレンポリアミン、ジアリルジメチルアンモニウムクロリドやジメチルアミノエチル(メタ)アクリレートの四級アンモニウム塩を構成モノマーとする重合体等、通常水処理で使用されるカチオン性有機系ポリマーが挙げられる。また、有機凝結剤の添加量にも特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01〜10mg/Lである。そして、有機系高分子凝集剤も特に限定はなく、水処理で通常使用される高分子凝集剤を用いることができる。例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機系高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機系高分子凝集剤が挙げられる。また、有機系高分子凝集剤の添加量にも特に限定はなく、処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01〜10mg/Lである。   Furthermore, before the membrane separation treatment, solid-liquid separation may be performed in which particles made of a cationic polymer containing a membrane contaminant generated by the adsorption treatment are removed from the water to be treated by precipitation treatment or pressure flotation treatment. Precipitation treatment and pressurized flotation treatment are carried out by adjusting the pH with caustic soda, slaked lime, sulfuric acid, etc. after adding particles or inorganic flocculant consisting of a cationic polymer that swells in water and does not substantially dissolve in water to the treated water. Finally, the suspension is flocked with an organic polymer flocculant. Moreover, an organic coagulant can also be used together as needed. There is no particular limitation on the organic coagulant, for example, polyethyleneimine, ethylenediamine epichlorohydrin polycondensate, polyalkylene polyamine, polymers having quaternary ammonium salts of diallyldimethylammonium chloride or dimethylaminoethyl (meth) acrylate as constituent monomers, etc. Examples include cationic organic polymers that are usually used in water treatment. Moreover, there is no limitation in particular also in the addition amount of an organic coagulant | flocculant, What is necessary is just to adjust according to the property of to-be-processed water, However It is 0.01-10 mg / L in solid content with respect to to-be-processed water. The organic polymer flocculant is not particularly limited, and a polymer flocculant usually used in water treatment can be used. For example, poly (meth) acrylic acid, copolymers of (meth) acrylic acid and (meth) acrylamide, and anionic organic polymer flocculants such as alkali metal salts thereof, poly (meth) acrylamide, etc. Nonionic organic polymer flocculants, homopolymers composed of cationic monomers such as dimethylaminoethyl (meth) acrylate or quaternary ammonium salt thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salt thereof, and the like Examples thereof include cationic organic polymer flocculants such as a copolymer of a cationic monomer and a nonionic monomer copolymerizable. Moreover, there is no limitation in particular also in the addition amount of an organic type polymer flocculant, and what is necessary is just to adjust according to the property of treated water, but it is 0.01-10 mg / L in solid content with respect to to-be-treated water in general. .

なお、膜分離処理で、吸着処理後のカチオン性ポリマーからなる粒子を被処理水から除去してもよい。例えば、精密濾過膜又は限外濾過膜による分離処理で、吸着処理後のカチオン性ポリマーからなる粒子を被処理水から除去してもよい。
そして、脱炭酸処理や、活性炭処理等、被処理水の精製処理をさらに行ってもよい。
また、必要に応じて、凝結剤、殺菌剤、消臭剤、消泡剤、防食剤などを添加してもよい。さらに、必要に応じて、紫外線照射、オゾン処理、生物処理などを併用してもよい。
In addition, you may remove from the to-be-processed water the particle | grains which consist of a cationic polymer after a membrane | separation process. For example, particles made of a cationic polymer after the adsorption treatment may be removed from the water to be treated by a separation treatment using a microfiltration membrane or an ultrafiltration membrane.
And you may further perform the refinement | purification processes of to-be-processed water, such as a decarboxylation process and an activated carbon process.
Moreover, you may add a coagulant | flocculant, a disinfectant, a deodorant, an antifoamer, an anticorrosive, etc. as needed. Furthermore, you may use ultraviolet irradiation, ozone treatment, biological treatment, etc. together as needed.

以上述べたように、本発明の膜分離方法によれば、被処理水を膜分離処理する際に、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を抑制することができる。この膜分離方法を用いた膜分離装置の一例を図1の概略系統図に示す。   As described above, according to the membrane separation method of the present invention, when the water to be treated is subjected to the membrane separation treatment, the adsorption of membrane contaminants contained in the water to be treated to the membrane surface is reduced and the membrane separation performance is deteriorated. Can be suppressed. An example of a membrane separation apparatus using this membrane separation method is shown in the schematic system diagram of FIG.

図1に示すように、膜分離装置1は、反応槽10と、被処理水(原水)を導入するポンプ等の被処理水導入手段11と、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子等の薬品が保持される薬品槽12から反応槽10に薬品を導入するポンプ等からなる薬品導入手段13(ポリマー粒子導入手段)と、反応槽10で吸着処理した被処理水を排出する排出手段14とを有する。そして、反応槽10の下流側には、膜分離処理手段15、脱炭酸処理手段16、及び、活性炭処理手段17、逆浸透膜分離処理手段18が順に設けられている。   As shown in FIG. 1, the membrane separation apparatus 1 includes a reaction tank 10, treated water introduction means 11 such as a pump for introducing treated water (raw water), and a cation that swells in water and does not substantially dissolve in water. Chemical introduction means 13 (polymer particle introduction means) comprising a pump or the like for introducing chemicals from a chemical tank 12 in which chemicals such as particles made of a conductive polymer are held to the reaction tank 10, and water to be treated adsorbed in the reaction tank 10 Discharge means 14 for discharging the gas. Further, on the downstream side of the reaction tank 10, a membrane separation processing unit 15, a decarboxylation processing unit 16, an activated carbon processing unit 17, and a reverse osmosis membrane separation processing unit 18 are provided in this order.

このような膜分離装置1では、まず、工業用水、市水、井水などの被処理水(原水)が、反応槽10に導入される。そして、薬品槽12に保持された水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子等の薬品が、薬品導入手段13により反応槽10に導入され被処理水に添加される。そして、薬品が添加された被処理水は、攪拌機19で攪拌されて、吸着処理される。次いで、吸着処理された被処理水は、排出手段14で反応槽10から排出され、MF膜を有する膜分離処理手段15に送られて膜分離処理されて吸着処理後のカチオン性ポリマーからなる粒子が被処理水から除去される。本発明においては、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いて膜汚染物質を吸着させた後に膜分離処理手段15で膜分離処理するため、膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を抑制することができる。   In such a membrane separation apparatus 1, firstly, water to be treated (raw water) such as industrial water, city water, and well water is introduced into the reaction tank 10. A chemical such as particles made of a cationic polymer that swells in water held in the chemical tank 12 and does not substantially dissolve in water is introduced into the reaction tank 10 by the chemical introduction means 13 and added to the water to be treated. And the to-be-processed water to which the chemical | medical agent was added is stirred with the stirrer 19, and is adsorption-treated. Next, the water to be treated that has been subjected to the adsorption treatment is discharged from the reaction tank 10 by the discharge means 14, sent to the membrane separation treatment means 15 having an MF membrane, subjected to membrane separation treatment, and particles made of a cationic polymer after the adsorption treatment. Is removed from the treated water. In the present invention, since membrane contaminants are adsorbed using particles made of a cationic polymer that swells in water and does not substantially dissolve in water, membrane separation treatment is performed by the membrane separation treatment means 15. Adsorption to the surface can be reduced and deterioration of membrane separation performance can be suppressed.

次いで、膜分離処理された被処理水は、後段の脱炭酸処理手段16、及び、活性炭が充填された活性炭処理手段17に送られて、脱炭酸処理及び活性炭処理される。その後、RO膜を有する逆浸透膜分離処理手段18に送られ、RO膜による膜分離処理がなされる。この逆浸透膜分離処理手段18に通水する被処理水は、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いて膜汚染物質を吸着させたものであり、さらに、MF膜を有する膜分離処理手段15で膜分離処理した後の被処理水なので、非常に清澄なものであり、生物代謝物等の膜汚染物質の影響が大きいRO膜の劣化を顕著に抑制することができる。なお、イオン交換等の脱イオン処理を逆浸透膜分離処理手段18での膜分離処理の前又は後で行うと、純水又は超純水を得ることができ、膜分離装置1は純水製造装置や超純水製造装置となる。   Next, the water to be treated that has been subjected to membrane separation treatment is sent to the subsequent decarboxylation treatment means 16 and the activated carbon treatment means 17 filled with activated carbon, and is subjected to decarboxylation treatment and activated carbon treatment. Then, it is sent to the reverse osmosis membrane separation processing means 18 having the RO membrane, and membrane separation processing by the RO membrane is performed. The treated water that passes through the reverse osmosis membrane separation treatment means 18 is obtained by adsorbing membrane contaminants using particles made of a cationic polymer that swells in water and does not substantially dissolve in water, Since the water to be treated after being subjected to membrane separation treatment by the membrane separation treatment means 15 having an MF membrane, it is very clear and significantly suppresses the deterioration of the RO membrane that is greatly affected by membrane contaminants such as biological metabolites. be able to. If deionization treatment such as ion exchange is performed before or after membrane separation processing by the reverse osmosis membrane separation processing means 18, pure water or ultrapure water can be obtained, and the membrane separation apparatus 1 can produce pure water. Equipment and ultrapure water production equipment.

図1に示す膜分離装置においては、薬品を反応槽10に導入する態様のものを示したが、薬品は反応槽10に導入する前の被処理水に添加するようにしてもよい。また、膜分離処理手段15としてMF膜を示したが、UF膜、RO膜、又は、NF膜等でもよい。さらに、上述した図1の膜分離装置1では、膜分離処理手段15で吸着処理後のカチオン性ポリマーからなる粒子を除去するようにしたが、反応槽10で前記粒子を沈殿処理又は加圧浮上処理して被処理水から除去するようにしてもよい。   In the membrane separation apparatus shown in FIG. 1, the chemical is introduced into the reaction tank 10. However, the chemical may be added to the water to be treated before being introduced into the reaction tank 10. Moreover, although the MF membrane is shown as the membrane separation processing means 15, a UF membrane, an RO membrane, an NF membrane, or the like may be used. Further, in the membrane separation apparatus 1 of FIG. 1 described above, the particles made of the cationic polymer after the adsorption treatment are removed by the membrane separation treatment means 15, but the particles are subjected to precipitation treatment or pressurized flotation in the reaction vessel 10. You may make it process and remove from to-be-processed water.

また、任意の頻度で、pH11〜14程度、好ましくはpH12〜13の洗浄液で分離膜を洗浄することが好ましい。本発明においては、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子に膜汚染物質を吸着させた被処理水を膜分離処理するため、被処理水に含まれる膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を低減することができる。しかしながら、膜分離を継続すると、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子に起因すると考えられる固形物が膜表面に付着しだす。さらに、pH11〜14程度の洗浄液で分離膜を洗浄することにより、分離膜に吸着した前記固形物を溶解除去することができるので、膜分離性能の劣化を確実に抑制することができる。なお、通常分離膜の逆流洗浄(逆洗)等において使用されるpH3〜8程度の洗浄液では、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いる本発明においては、前記固形物の除去が不十分となるが、上記のように、pH11〜14程度の高pHの洗浄液を用いることにより、効果的に前記固形物を除去することができる。なお、高pHの洗浄液で洗浄する場合は、分離膜はPVDF(ポリフッ化ビニリデン)膜などの耐アルカリ性に優れた膜であることが好ましい。   Further, it is preferable to wash the separation membrane with a washing solution having a pH of about 11 to 14, preferably a pH of 12 to 13, at an arbitrary frequency. In the present invention, in order to subject the treated water in which the membrane contaminant is adsorbed to particles made of a cationic polymer that swells in water and does not substantially dissolve in water, the membrane contaminant contained in the treated water is removed. Adsorption on the membrane surface can be reduced, and deterioration of membrane separation performance can be reduced. However, when the membrane separation is continued, solid matter that is thought to be caused by particles composed of a cationic polymer that swells in water and does not substantially dissolve in water starts to adhere to the membrane surface. Furthermore, since the solid matter adsorbed on the separation membrane can be dissolved and removed by washing the separation membrane with a washing solution having a pH of about 11 to 14, deterioration of membrane separation performance can be reliably suppressed. In the present invention using particles made of a cationic polymer that swells in water and does not substantially dissolve in water, in a cleaning solution having a pH of about 3 to 8 that is usually used in backwashing (backwashing) or the like of the separation membrane, Although the removal of the solid matter becomes insufficient, the solid matter can be effectively removed by using a cleaning solution having a high pH of about 11 to 14 as described above. In the case of washing with a cleaning solution having a high pH, the separation membrane is preferably a membrane excellent in alkali resistance such as a PVDF (polyvinylidene fluoride) membrane.

pH11〜14の洗浄液としては、例えば、水酸化ナトリウム、次亜塩素酸ナトリウムなどを、膜分離処理した被処理水に混合したものが挙げられ、例えば、水酸化ナトリウムであれば1〜2重量%、次亜塩素酸ナトリムであれば10〜12重量%程度となるように被処理水に混合したものを洗浄液とすることが好ましい。また、洗浄方法としては、通常の分離膜の洗浄に用いられる方法が適用されるが、具体的には、逆洗、フラッシング及び浸漬洗浄などが挙げられる。   Examples of the cleaning solution having a pH of 11 to 14 include a solution obtained by mixing sodium hydroxide, sodium hypochlorite and the like with the water to be treated that has been subjected to membrane separation treatment. In the case of sodium hypochlorite, it is preferable to use the cleaning liquid mixed with the water to be treated so as to be about 10 to 12% by weight. Moreover, as a cleaning method, a method used for cleaning a normal separation membrane is applied, and specific examples include backwashing, flushing, and immersion cleaning.

洗浄の頻度は特に限定されず被処理水や分離膜の性状によって適宜設定すればよいが、例えば、好ましくは5分〜3時間、特に好ましくは10〜60分間膜分離処理したら膜分離処理を中断し、その後好ましくは10〜120秒、特に好ましくは20〜60秒間pH11〜14の洗浄液で逆洗などの洗浄をするようにしてもよい。なお、pH11〜14の洗浄液で分離膜を洗浄した後は、必要に応じて、膜分離処理した処理水や酸などを用いて、分離膜を洗浄又はリンスすることで、運転再開時の処理水pHが高くなりすぎないようにすることが好ましい。   The frequency of washing is not particularly limited and may be set as appropriate depending on the properties of the water to be treated and the separation membrane. For example, the membrane separation treatment is interrupted when the membrane separation treatment is preferably performed for 5 minutes to 3 hours, particularly preferably for 10 to 60 minutes. Thereafter, washing such as back washing may be preferably performed for 10 to 120 seconds, particularly preferably 20 to 60 seconds, with a pH 11 to 14 cleaning solution. In addition, after washing the separation membrane with a cleaning solution having a pH of 11 to 14, the separation membrane is washed or rinsed with treated water or acid that has been subjected to membrane separation treatment as necessary, so that the treated water at the time of restarting operation can be obtained. It is preferable to prevent the pH from becoming too high.

この分離膜をpH11〜14の洗浄液で洗浄する工程を有する膜分離方法を用いた膜分離装置の一例を図2の概略系統図に示す。なお、図1と同じものには同じ符号を付し、重複する説明は一部省略する。   An example of a membrane separation apparatus using a membrane separation method including a step of washing the separation membrane with a washing solution having a pH of 11 to 14 is shown in a schematic system diagram of FIG. The same components as those in FIG. 1 are denoted by the same reference numerals, and a part of the overlapping description is omitted.

図2に示すように、膜分離装置50は、反応槽10と、被処理水(原水)を導入するポンプ等の被処理水導入手段11と、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子等の薬品が保持される薬品槽12から反応槽10に薬品を導入するポンプ等からなる薬品導入手段13(ポリマー粒子導入手段)と、反応槽10で吸着処理した被処理水を排出する排出手段14とを有する。そして、反応槽10の下流側には、膜分離処理手段15及び膜分離処理手段15で膜分離処理された被処理水を貯留する処理水槽20が順に設けられている。また、処理水槽20に貯留された被処理水にアルカリ液21を混合した洗浄液を膜分離処理手段15に導入する洗浄液導入手段22、及び、処理水槽20に貯留された被処理水にアルカリ液21を混合した洗浄液のpHを測定するpH測定手段23を有する。   As shown in FIG. 2, the membrane separation device 50 includes a reaction tank 10, a treated water introduction means 11 such as a pump for introducing treated water (raw water), and a cation that swells in water and does not substantially dissolve in water. Chemical introduction means 13 (polymer particle introduction means) comprising a pump or the like for introducing chemicals from a chemical tank 12 in which chemicals such as particles made of a conductive polymer are held to the reaction tank 10, and water to be treated adsorbed in the reaction tank 10 Discharge means 14 for discharging the gas. Further, on the downstream side of the reaction tank 10, a membrane separation processing unit 15 and a treated water tank 20 for storing the water to be treated that has been subjected to membrane separation processing by the membrane separation processing unit 15 are sequentially provided. Further, the cleaning liquid introducing means 22 for introducing the cleaning liquid obtained by mixing the alkaline liquid 21 into the water to be treated stored in the treating water tank 20 to the membrane separation processing means 15, and the alkaline liquid 21 in the water to be treated stored in the treating water tank 20. PH measuring means 23 for measuring the pH of the cleaning liquid mixed with

このような膜分離装置50では、まず、工業用水、市水、井水などの被処理水(原水)が、反応槽10に導入される。そして、薬品槽12に保持された水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子や、無機凝集剤等の薬品が、薬品導入手段13により反応槽10に導入され被処理水に添加される。そして、薬品が添加された被処理水は、攪拌機19で攪拌されて、吸着処理される。次いで、吸着処理された被処理水は、排出手段14で反応槽10から排出され、PVDF製のMF膜を有する膜分離処理手段15に送られて膜分離処理されて吸着処理後のカチオン性ポリマーからなる粒子が被処理水から除去される。本発明においては、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いて膜汚染物質を吸着させた後に膜分離処理手段15で膜分離処理するため、膜汚染物質の膜表面への吸着を低減し膜分離性能の劣化を抑制することができる。次いで、膜分離処理された被処理水は、処理水槽20に貯留される。   In such a membrane separation apparatus 50, first, treated water (raw water) such as industrial water, city water, and well water is introduced into the reaction tank 10. Then, particles made of a cationic polymer that swells in water held in the chemical tank 12 and does not substantially dissolve in water, and chemicals such as an inorganic flocculant are introduced into the reaction tank 10 by the chemical introduction means 13 and treated water. To be added. And the to-be-processed water to which the chemical | medical agent was added is stirred with the stirrer 19, and is adsorption-treated. Next, the water to be treated that has been subjected to the adsorption treatment is discharged from the reaction tank 10 by the discharge means 14, sent to the membrane separation treatment means 15 having a PVDF MF membrane, subjected to membrane separation treatment, and the cationic polymer after the adsorption treatment. The particles consisting of are removed from the water to be treated. In the present invention, since membrane contaminants are adsorbed using particles made of a cationic polymer that swells in water and does not substantially dissolve in water, membrane separation treatment is performed by the membrane separation treatment means 15. Adsorption to the surface can be reduced and deterioration of membrane separation performance can be suppressed. Next, the water to be treated that has undergone membrane separation is stored in the treated water tank 20.

ここで、膜分離処理手段15のMF膜などの分離膜は、膜分離処理によって次第に水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子に起因する固形物やその他濁質などの汚染物質の付着により、膜分離性能が劣化する。そこで、任意の頻度で、例えば、14分間程度膜分離処理したら、反応槽10と膜分離処理手段15との間に設けられたバルブ30と、膜分離処理手段15と処理水槽20との間に設けられ膜分離処理の際には開けられているバルブ31を閉じて膜分離処理を中断する。そして、処理水槽20と膜分離処理手段15とを繋ぐもう一つのバルブ32を開け、処理水槽20に貯留された被処理水にアルカリ液21を混合したpH11〜14の洗浄液をポンプ等の洗浄液導入手段22で膜分離処理手段15に導入して、例えば1分程度分離膜を通過させることにより、分離膜を洗浄液で逆洗する。なお、洗浄液は、膜分離処理手段15からバルブ33を介して膜分離装置50外へ排水として排出される。   Here, the separation membrane such as the MF membrane of the membrane separation treatment means 15 is a solid matter or other turbidity caused by particles made of a cationic polymer that gradually swells in water by the membrane separation treatment and does not substantially dissolve in water. Membrane separation performance deteriorates due to adhesion of contaminants. Therefore, if the membrane separation process is performed at an arbitrary frequency, for example, for about 14 minutes, the valve 30 provided between the reaction tank 10 and the membrane separation processing means 15 and the membrane separation processing means 15 and the treated water tank 20 are disposed. During the membrane separation process, the valve 31 opened is closed to interrupt the membrane separation process. Then, another valve 32 connecting the treated water tank 20 and the membrane separation processing means 15 is opened, and a washing liquid having a pH of 11 to 14 in which the alkaline liquid 21 is mixed with the treated water stored in the treated water tank 20 is introduced into the washing liquid such as a pump. The separation membrane is introduced into the membrane separation processing means 15 by means 22 and, for example, is allowed to pass through the separation membrane for about 1 minute, so that the separation membrane is back-washed with the cleaning liquid. The cleaning liquid is discharged as waste water from the membrane separation processing means 15 through the valve 33 to the outside of the membrane separation device 50.

そして、pH11〜14の洗浄液による分離膜の洗浄が終了した後は、再び、バルブ30及び31を開けバルブ32及び33を閉じて、膜分離処理を再開する。このように、分離膜を洗浄することにより、分離膜に吸着した膜汚染物質を除去することができるので、膜分離性能の劣化を確実に抑制することができる。   Then, after the cleaning of the separation membrane with the pH 11 to 14 cleaning liquid is completed, the valves 30 and 31 are opened again, the valves 32 and 33 are closed, and the membrane separation process is restarted. In this way, by washing the separation membrane, the membrane contaminants adsorbed on the separation membrane can be removed, so that deterioration of the membrane separation performance can be reliably suppressed.

図2に示す膜分離装置においては、洗浄液で逆洗するようにしたが、これに限定されず、例えば、洗浄液を分離膜の膜面に高流速で流すことにより膜面の付着物を除去するフラッシングでもよい。また、膜分離処理手段15としてMF膜を示したが、UF膜、RO膜、又は、NF膜等でもよく、さらに、これらの膜を組み合わせて使用してもよい。   In the membrane separation apparatus shown in FIG. 2, backwashing is performed with a cleaning liquid. However, the present invention is not limited to this, and for example, deposits on the membrane surface are removed by flowing the cleaning liquid over the membrane surface of the separation membrane at a high flow rate. Flushing may be used. Further, although the MF membrane is shown as the membrane separation processing means 15, it may be a UF membrane, RO membrane, NF membrane or the like, and these membranes may be used in combination.

以下、本発明を実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example and a comparative example, this invention is not limited at all by this Example.

(実施例1)
被処理水としフミン質や生物代謝物を含有する工業用水をそれぞれ1000mL入れた各凝集ジャーに、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子(アコジェルC、三井サイテック社製)をアコジェルCとしてそれぞれ0.5、1、2、4、10mg/Lとなるように添加し攪拌した。
Example 1
Particles made of a cationic polymer (Acogel C, manufactured by Mitsui Cytec Co., Ltd.) that swells in water and does not substantially dissolve in water in each aggregation jar containing 1000 mL of industrial water containing humic substances and biological metabolites as treated water. ) Was added as acogel C to 0.5, 1, 2, 4, 10 mg / L and stirred.

次いで、この粒子を添加した被処理水を、目皿外径40mm、目皿上高さ100mmのブフナーロートと、直径47mmの微細孔0.45μmのメンブレンフィルター(ミリポア社)を用いて、目皿上の空間が常に水で満たされた状態で濾過し、濾過量が500mlとなるまでの時間T1(秒)と、濾過量が1,000mlとなるまでの時間T2(秒)を測定し、下記[数1]から各濃度におけるMFF値を求めた。なお、MFF値が小さいほど、測定された被処理水が清澄であることを示す。また、濾過されて得られた被処理水のうち、MFF値が最小値を示したものについて、波長260nmでの吸光度(E260:有機物濃度指標)も測定した。MFFの最小値及びMFFの最小値におけるE260の値を表1に示す。なお、被処理水として用いた工業用水は、E260=0.298、カオリン標準液を用いた透過光測定方法による濁度=22であった。   Next, the water to be treated to which the particles were added was prepared using a Buchner funnel having an outer diameter of 40 mm and a height of 100 mm on the upper part of the eye plate, and a membrane filter (Millipore) having a diameter of 47 mm and a micropore of 0.45 μm. The filtration is performed in a state where the upper space is always filled with water, and the time T1 (second) until the filtration amount reaches 500 ml and the time T2 (second) until the filtration amount reaches 1,000 ml are measured. The MFF value at each concentration was determined from [Equation 1]. In addition, it shows that the to-be-processed water measured is clear, so that a MFF value is small. Moreover, the light absorbency (E260: organic substance density | concentration parameter | index) in wavelength 260nm was also measured about the to-be-processed water obtained by filtering and the MFF value showed the minimum value. Table 1 shows the minimum value of MFF and the value of E260 at the minimum value of MFF. In addition, the industrial water used as to-be-processed water was E260 = 0.298, and turbidity = 22 by the transmitted light measuring method using a kaolin standard solution.

Figure 0005282864
Figure 0005282864

(実施例2)
アコジェルCの代わりに、アニオン交換樹脂(三菱化学社製WA20、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子)を用い、アニオン交換樹脂をそれぞれ0.5、1、2、4、10、20mg/Lとなるように添加した以外は、実施例1と同様の操作を行った。
(Example 2)
Instead of Akogel C, anion exchange resin (WA20 manufactured by Mitsubishi Chemical Corporation, particles made of a cationic polymer that swells in water and does not substantially dissolve in water) is used, and the anion exchange resin is 0.5, 1, 2, The same operation as in Example 1 was carried out except that it was added so as to be 4, 10, and 20 mg / L.

(実施例3)
アコジェルCと共に、無機凝集剤としてポリ塩化アルミニウム(PAC)を添加した以外は、実施例1と同様の操作を行った。なお、PAC(10重量% as Al23)ポリ塩化アルミニウムは、アコジェルCの濃度が低いほうから順に、0.5、1.5、2.5mg/L(as Al)となるように添加した。
(Example 3)
The same operation as Example 1 was performed except that polyaluminum chloride (PAC) was added as an inorganic flocculant together with Akogel C. PAC (10% by weight as Al 2 O 3 ) polyaluminum chloride is added in order from 0.5 to 1.5 mg / L (as Al) in descending order of the concentration of acogel C. did.

(比較例1)
アコジェルCの代わりに、ポリ塩化アルミニウムを用いた以外は、実施例1と同様の操作を行った。
(Comparative Example 1)
The same operation as in Example 1 was performed except that polyaluminum chloride was used instead of Akogel C.

(比較例2)
アコジェルCの代わりに、水中で膨潤し実質的に水に溶解しないノニオン性ポリマーからなる粒子(アコジェルN、三井サイテック社製)を用いた以外は、実施例1と同様の操作を行った。
(Comparative Example 2)
Instead of Akogel C, the same operation as in Example 1 was performed except that particles made of a nonionic polymer that swells in water and does not substantially dissolve in water (Akogel N, manufactured by Mitsui Cytec Co., Ltd.) were used.

この結果、実施例1〜3及び比較例1〜2とも、添加濃度の増加に伴いE260及びMFFが低下し、そして、それぞれある濃度を超えるとほぼ一定値となった。具体的には、無機凝集剤のみを用いた比較例1ではMFF値の最小値は1.31であるのに対し、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いた実施例1及び実施例2では、順に、1.22、1.26であり、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子の添加によって、無機凝集剤を添加した場合よりも、被処理水を顕著に清澄にすることができた。したがって、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加した後に被処理水を膜分離処理に用いると、被処理水がより清澄なので膜の汚染が抑制され膜分離性能の劣化を防止できることが分かった。そして、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子及び無機凝集剤を添加した実施例3では、MFF値は1.06であり、特に効果が顕著であった。また、水中で膨潤し実質的に水に溶解しないノニオン性ポリマーからなる粒子を用いた比較例2では、MFF値は高く、清澄な被処理水は得られなかった。   As a result, in each of Examples 1 to 3 and Comparative Examples 1 and 2, E260 and MFF decreased with an increase in the addition concentration, and each reached a substantially constant value when exceeding a certain concentration. Specifically, in Comparative Example 1 using only an inorganic flocculant, the minimum value of the MFF value is 1.31, whereas particles made of a cationic polymer that swells in water and does not substantially dissolve in water are used. In Example 1 and Example 2 in which the inorganic flocculant was added by the addition of particles composed of a cationic polymer that in turn was 1.22 and 1.26 and swelled in water and not substantially dissolved in water As a result, the water to be treated could be remarkably clarified. Therefore, if water to be treated is used for membrane separation treatment after adding particles made of a cationic polymer that swells in water and does not substantially dissolve in water, membrane contamination is suppressed because the water to be treated is clearer and membrane contamination is suppressed. It was found that the deterioration of can be prevented. In Example 3 to which particles made of a cationic polymer that swells in water and does not substantially dissolve in water and an inorganic flocculant were added, the MFF value was 1.06, and the effect was particularly remarkable. Further, in Comparative Example 2 using particles made of a nonionic polymer that swells in water and does not substantially dissolve in water, the MFF value was high, and clear water to be treated was not obtained.

Figure 0005282864
Figure 0005282864

(実施例4)
被処理水として、実施例1と同じ工業用水を図1に示す装置を用いて、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子(アコジェルC、三井サイテック社製)及びポリ塩化アルミニウム(PAC)を、順に、4mg/L、30mg/Lとなるように添加し攪拌して凝集物を生成した後に、この粒子及び無機凝集剤を添加した被処理水を、0.45μmのMF膜(酢酸セルロール製)で固液分離して凝集物を除去し、その後被処理水を、逆浸透膜(RO膜)に通水する膜分離処理を行った。この時のRO膜間差圧上昇速度を測定した。結果を表2に示す。なお、アコジェルCの濃度(=4mg/L)は実施例1で、ポリ塩化アルミニウム(PAC)の濃度(=30mg/L)は比較例1で、MFF値が最小値を示した時の濃度とした。
Example 4
As the water to be treated, using the same industrial water as in Example 1 shown in FIG. 1, particles made of a cationic polymer that swells in water and does not substantially dissolve in water (Acogel C, manufactured by Mitsui Cytec) and poly Aluminum chloride (PAC) was sequentially added to 4 mg / L and 30 mg / L and stirred to form aggregates, and then the water to be treated to which the particles and the inorganic flocculant were added was 0.45 μm. Solid-liquid separation was performed with an MF membrane (manufactured by Cellulose Acetate) to remove agglomerates, and then membrane separation treatment was performed in which water to be treated was passed through a reverse osmosis membrane (RO membrane). At this time, the RO membrane differential pressure increase rate was measured. The results are shown in Table 2. The concentration of Akogel C (= 4 mg / L) is in Example 1, the concentration of polyaluminum chloride (PAC) (= 30 mg / L) is in Comparative Example 1, and the concentration when the MFF value shows the minimum value. did.

(比較例3)
アコジェルCを用いずにポリ塩化アルミニウムの濃度を70mg/Lとした以外は実施例4と同様の操作を行った。
(Comparative Example 3)
The same operation as in Example 4 was performed except that the concentration of polyaluminum chloride was changed to 70 mg / L without using Akogel C.

この結果、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いずに無機凝集剤のみを用いた比較例3と比べて、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を用いた実施例4では、RO膜間差圧上昇速度を大幅に低減でき、RO膜による膜分離処理の前に被処理水に水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を添加することにより、RO膜の分離性能の劣化が抑制できることが分かった。   As a result, as compared with Comparative Example 3 using only the inorganic flocculant without using particles made of a cationic polymer that swells in water and does not substantially dissolve in water, the cation that swells in water and does not substantially dissolve in water In Example 4 using particles composed of a conductive polymer, the rate of increase in the RO membrane differential pressure can be significantly reduced, and it swells in the water to be treated before the membrane separation treatment with the RO membrane and does not substantially dissolve in water. It has been found that the addition of particles made of a cationic polymer can suppress the deterioration of the separation performance of the RO membrane.

Figure 0005282864
Figure 0005282864

(実施例5)
被処理水として、実施例1と同じ工業用水を図2に示す装置を用いて、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子(アコジェルC、三井サイテック社製)及びポリ塩化アルミニウム(PAC)を、順に、2ppm、30ppmとなるように添加し攪拌して凝集物を生成した後に、この粒子及び無機凝集剤を添加した被処理水を、0.1μmのMF膜(PVDF製)に14分間通水し、固液分離して凝集物を除去した。その後、MF膜による膜分離処理をした被処理水に次亜塩素酸を添加してpH12となるようにした洗浄液を用いて、流速2m/day上記MF膜を1分間逆洗した。この膜分離処理及び逆洗の工程を連続して行い、この時のMF膜間差圧を測定した。
(Example 5)
As the water to be treated, using the same industrial water as in Example 1 shown in FIG. 2, particles made of a cationic polymer that swells in water and does not substantially dissolve in water (Akogel C, manufactured by Mitsui Cytec) and poly Aluminum chloride (PAC) was added in order to 2 ppm and 30 ppm in order, and agglomerates were produced by stirring. Then, the water to be treated to which the particles and the inorganic flocculant were added was added to a 0.1 μm MF membrane (PVDF Product) for 14 minutes, and solid-liquid separation was performed to remove aggregates. Thereafter, the MF membrane was back-washed for 1 minute at a flow rate of 2 m / day using a cleaning solution in which hypochlorous acid was added to the water to be treated that had been subjected to membrane separation treatment with the MF membrane to a pH of 12. The membrane separation treatment and the backwashing step were continuously performed, and the MF transmembrane pressure difference at this time was measured.

この結果、通水開始時の膜間差圧は27kPaであったが、通水開始から480時間を経過しても、膜間差圧は50kPa未満であり、通水量の低下は生じず、膜分離処理性能は劣化していなかった。また、通水後480時間経過後のFI値は2.8であり、MF膜に損傷はないことが確認された。なお、FI(Fouling Index)値は、JIS K 3802に示されている値であり、主に逆浸透膜モジュールのファウリングに関して供給水中の微量な濁質を定量化する、すなわち、共給水の清澄度を表す指標で、FI=[1−T0/T15]×[100/15](T0:公称孔径0.45μmのメンブレンフィルターで試料水を206kPaの加圧下でろ過したときの、始めの500mLをろ過するのに要した時間(sec),T15:T0の後、同じ状態で15分間(標準値)継続してろ過した後、試料水を再び500mLろ過するのに要した時間)で表される。 As a result, the transmembrane pressure difference at the start of water flow was 27 kPa, but even after 480 hours had passed since the start of water flow, the transmembrane pressure difference was less than 50 kPa, and the flow rate did not decrease. The separation performance was not degraded. The FI value after 480 hours passed was 2.8, and it was confirmed that the MF membrane was not damaged. In addition, FI (Fouling Index) value is a value shown in JIS K 3802, and mainly quantifies a trace amount of turbidity in the feed water with respect to fouling of the reverse osmosis membrane module, that is, clarification of the shared water FI = [1−T 0 / T 15 ] × [100/15] (T 0 : start when sample water is filtered under a pressure of 206 kPa with a membrane filter having a nominal pore diameter of 0.45 μm. Time required to filter 500 mL of sample (sec), T 15 : Time required to filter 500 mL of sample water again after continuous filtration for 15 minutes (standard value) after T 0 ).

(実施例6)
逆洗の洗浄液として、MF膜による膜分離処理をした被処理水に次亜塩素酸を添加してpH12となるようにした洗浄液の代わりに、MF膜による膜分離処理をした被処理水に次亜塩素酸を添加してpH11となるようにした洗浄液を用いた以外は、実施例5と同様の操作を行った。
(Example 6)
Instead of a cleaning solution in which hypochlorous acid is added to the water to be treated that has been subjected to membrane separation treatment with an MF membrane as a cleaning solution for backwashing, the pH is set to 12 to the water to be treated that has undergone membrane separation treatment with an MF membrane. The same operation as in Example 5 was performed, except that a cleaning solution in which chlorous acid was added to adjust the pH to 11 was used.

この結果、通水開始時の膜間差圧は20kPaであり、通水開始から200時間経過頃までは膜間差圧は問題のない値であった。しかしながら、通水開始から200時間経過後は逆洗を行っても膜間差圧は上昇し始め、通水420時間経過後には膜間差圧200kPaとなった。   As a result, the transmembrane pressure difference at the start of water flow was 20 kPa, and the transmembrane pressure difference was a value with no problem until about 200 hours after the start of water flow. However, the transmembrane pressure difference began to increase even after backwashing was performed 200 hours after the start of water flow, and reached 200 kPa after 420 hours of water flow.

本発明の一実施形態に係る膜分離装置の概略系統図である。1 is a schematic system diagram of a membrane separation apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る膜分離装置の概略系統図である。1 is a schematic system diagram of a membrane separation apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1、50 膜分離装置
10 反応槽
11 被処理水導入手段
12 薬品槽
13 薬品導入手段
14 排出手段
15 膜分離処理手段
16 脱炭酸処理手段
17 活性炭処理手段
18 逆浸透膜分離処理手段
19 攪拌機
20 処理水槽
21 アルカリ液
22 洗浄液導入手段
23 pH測定手段
30〜33 バルブ
DESCRIPTION OF SYMBOLS 1, 50 Membrane separation apparatus 10 Reaction tank 11 To-be-treated water introduction means 12 Chemical tank 13 Chemical introduction means 14 Discharge means 15 Membrane separation treatment means 16 Decarbonation treatment means 17 Activated carbon treatment means 18 Reverse osmosis membrane separation treatment means 19 Stirrer 20 Treatment Water tank 21 Alkaline liquid 22 Cleaning liquid introducing means 23 pH measuring means 30 to 33 Valve

Claims (10)

一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、架橋剤モノマーとの共重合体であり且つ膨潤していない時の粒子径に対して水中で10〜200倍の粒子径に膨潤し実質的に水に溶解しない、逆相(W/O)エマルションポリマーであるカチオン性ポリマーからなる粒子を、被処理水に添加して吸着処理し、該吸着処理した被処理水を分離膜により膜分離処理することを特徴とする膜分離方法。 Particle size when it is a copolymer of a cationic monomer having a functional group such as primary amine, secondary amine, tertiary amine and their acid salts, quaternary ammonium groups, and a crosslinking agent monomer and is not swollen In contrast, particles made of a cationic polymer that is a reverse phase (W / O) emulsion polymer that swells to a particle size 10 to 200 times in water and does not substantially dissolve in water is added to the water to be treated and adsorbed. A membrane separation method comprising treating the treated water subjected to adsorption treatment with a separation membrane. 前記吸着処理の際に、被処理水に無機凝集剤を添加することを特徴とする請求項1に記載の膜分離方法。 The membrane separation method according to claim 1, wherein an inorganic flocculant is added to the water to be treated during the adsorption treatment. 前記膜分離処理が、少なくとも精密濾過膜又は限外濾過膜による分離処理を有し、該膜分離処理により、前記吸着処理した後の前記粒子を被処理水から除去することを特徴とする請求項1又は2に記載の膜分離方法。 The membrane separation treatment includes a separation treatment using at least a microfiltration membrane or an ultrafiltration membrane, and the particles after the adsorption treatment are removed from the water to be treated by the membrane separation treatment. 3. The membrane separation method according to 1 or 2. 前記膜分離処理が、少なくとも一段以上の逆浸透膜による分離処理を有することを特徴とする請求項1〜3の何れかに記載の膜分離方法。 The membrane separation method according to any one of claims 1 to 3, wherein the membrane separation treatment includes a separation treatment using at least one or more reverse osmosis membranes. 前記吸着処理の後に、被処理水を脱イオン処理することにより純水を得ることを特徴とする請求項1〜4の何れかに記載の膜分離方法。 The membrane separation method according to any one of claims 1 to 4, wherein pure water is obtained by deionizing the water to be treated after the adsorption treatment. 任意の頻度で、前記分離膜をpH11〜14の洗浄液で洗浄することを特徴とする請求項1〜5の何れかに記載の膜分離方法。 The membrane separation method according to any one of claims 1 to 5, wherein the separation membrane is washed with a washing solution having a pH of 11 to 14 at an arbitrary frequency. 前記洗浄液での洗浄が、逆洗であることを特徴とする請求項6に記載の膜分離方法。 The membrane separation method according to claim 6, wherein the washing with the washing liquid is back washing. 反応槽と、被処理水を反応槽に導入する被処理水導入手段と、一級アミン、二級アミン、三級アミンおよびそれらの酸塩、四級アンモニウム基などの官能基を有するカチオン性モノマーと、架橋剤モノマーとの共重合体であり且つ膨潤していない時の粒子径に対して水中で10〜200倍の粒子径に膨潤し実質的に水に溶解しない、逆相(W/O)エマルションポリマーであるカチオン性ポリマーからなる粒子を前記反応槽又は反応槽の前段で導入して被処理水に前記粒子を添加するポリマー粒子導入手段と、前記反応槽で吸着処理した被処理水を排出する排出手段と、前記排出手段から排出された被処理水を分離膜により膜分離処理する膜分離処理手段とを具備することを特徴とする膜分離装置。 A reaction tank, a treated water introduction means for introducing treated water into the reaction tank, and a cationic monomer having a functional group such as a primary amine, a secondary amine, a tertiary amine and their acid salts, and a quaternary ammonium group; A reverse phase (W / O) which is a copolymer with a crosslinking agent monomer and swells to a particle size of 10 to 200 times in water with respect to the particle size when not swollen and does not substantially dissolve in water Polymer particle introduction means for introducing particles made of a cationic polymer, which is an emulsion polymer, into the reaction tank or the previous stage of the reaction tank and adding the particles to the water to be treated, and discharging the water to be treated adsorbed in the reaction tank And a membrane separation processing means for subjecting the water to be treated discharged from the discharge means to a membrane separation treatment with a separation membrane. 前記膜分離処理手段は少なくとも一段以上の逆浸透膜を有すると共に、前記反応槽よりも下流側に被処理水を脱イオン処理する脱イオン処理手段をさらに具備する純水製造装置であることを特徴とする請求項8に記載の膜分離装置。 The membrane separation processing means has a reverse osmosis membrane of at least one stage and is a pure water production apparatus further comprising a deionization processing means for deionizing the water to be treated downstream of the reaction tank. The membrane separator according to claim 8. pH11〜14の洗浄液を前記膜分離処理手段に導入する洗浄液導入手段をさらに有することを特徴とする請求項8又は9に記載の膜分離装置。 The membrane separation apparatus according to claim 8 or 9, further comprising a cleaning solution introduction unit that introduces a cleaning solution having a pH of 11 to 14 into the membrane separation processing unit.
JP2007284111A 2007-08-07 2007-10-31 Membrane separation method and membrane separation apparatus Active JP5282864B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007284111A JP5282864B2 (en) 2007-08-07 2007-10-31 Membrane separation method and membrane separation apparatus
US12/673,165 US20110094963A1 (en) 2007-08-07 2008-08-06 Membrane separation method and membrane separation device
BRPI0815054-0A2A BRPI0815054A2 (en) 2007-08-07 2008-08-06 MEMBRANE SPERATION METHOD AND APPARATUS.
EP08827117.6A EP2177479A4 (en) 2007-08-07 2008-08-06 Membrane separation method and membrane separation device
PCT/JP2008/064137 WO2009020157A1 (en) 2007-08-07 2008-08-06 Membrane separation method and membrane separation device
CN201410011104.2A CN103768947B (en) 2007-08-07 2008-08-06 Membrane separating method
KR1020107002175A KR20100054126A (en) 2007-08-07 2008-08-06 Membrane separation method and membrane separation device
CN200880102068.3A CN101815677B (en) 2007-08-07 2008-08-06 Membrane separation method and membrane separation device
TW097130006A TWI459997B (en) 2007-08-07 2008-08-07 Membrane separation method and membrane separation apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007205854 2007-08-07
JP2007205854 2007-08-07
JP2007284111A JP5282864B2 (en) 2007-08-07 2007-10-31 Membrane separation method and membrane separation apparatus

Publications (2)

Publication Number Publication Date
JP2009056454A JP2009056454A (en) 2009-03-19
JP5282864B2 true JP5282864B2 (en) 2013-09-04

Family

ID=40552690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284111A Active JP5282864B2 (en) 2007-08-07 2007-10-31 Membrane separation method and membrane separation apparatus

Country Status (1)

Country Link
JP (1) JP5282864B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203006993U (en) * 2009-11-20 2013-06-19 三菱丽阳可菱水株式会社 Water purification system
JP2012206066A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Recovery method for water from aerobically and biologically treated water
JP5879901B2 (en) * 2011-10-13 2016-03-08 栗田工業株式会社 Organic wastewater recovery processing apparatus and recovery processing method
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment
JP6830833B2 (en) * 2017-03-07 2021-02-17 オルガノ株式会社 Treatment method and treatment equipment for water containing odorous substances
CN113289495B (en) * 2021-06-11 2022-04-29 湖北中烟工业有限责任公司 Method for treating ceramic membrane cleaning solution of oil-containing substance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644579A1 (en) * 1986-12-27 1988-07-07 Henkel Kgaa NEW FLOCKING AND FILTERING AGENTS AND THEIR USE
JPS6485199A (en) * 1987-09-25 1989-03-30 Mitsui Cyanamid Kk Dehydration method for sludge
FR2655277A1 (en) * 1989-12-06 1991-06-07 Atochem PROCESS FOR TREATING WATER WITH SIMULTANEOUS FLOCCULATION AND ADSORPTION USING PARTIALLY HYDROPHOBIC POLYELECTROLYTES
JPH0689093B2 (en) * 1990-09-20 1994-11-09 工業技術院長 Separation functional jelly
JPH0760249A (en) * 1993-08-31 1995-03-07 Ebara Corp Method for treating organic waste water
WO1997018167A1 (en) * 1995-11-14 1997-05-22 Cytec Technology Corp. High performance polymer flocculating agents
JP2007023146A (en) * 2005-07-15 2007-02-01 Hymo Corp Ionic fine particle and application of the same

Also Published As

Publication number Publication date
JP2009056454A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
TWI459997B (en) Membrane separation method and membrane separation apparatus
JP5218731B2 (en) Water treatment method and water treatment apparatus
US6027649A (en) Process for purifying water using fine floc and microfiltration in a single tank reactor
Wang et al. Impact of polymer flocculants on coagulation-microfiltration of surface water
JP5282864B2 (en) Membrane separation method and membrane separation apparatus
MX2008015301A (en) Method of improving performance of ultrafiltration or microfiltration membrane process in landfill leachate treatment.
JP3698093B2 (en) Water treatment method and water treatment apparatus
WO2002004362A1 (en) Process and apparatus for removal of heavy metals from wastewater
JP5672447B2 (en) Filtration device and water treatment device
JP5348369B2 (en) Water treatment method
Kimura et al. Hydraulically irreversible membrane fouling during coagulation–microfiltration and its control by using high-basicity polyaluminum chloride
JP3409322B2 (en) Pure water production method
AU2013365015A1 (en) Method for hydrophilizing reverse osmosis membrane
JP2014087787A (en) Processing method and processing device for manganese-containing water
Kim Microfiltration of humic-rich water coagulated with cationic polymer: The effects of particle characteristics on the membrane performance
US20040065613A1 (en) Use of polymer as flocculation aid in membrane filtration
JPWO2019044312A1 (en) Water treatment method and water treatment apparatus
WO2019008822A1 (en) Water treatment method and water treatment device
WO2019208532A1 (en) Water treatment method and water treatment apparatus
JP2011206750A (en) Water treatment method and water treatment apparatus
JP2012187467A (en) Membrane separation method and membrane separator
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP2019188338A (en) Water treatment method and water treatment apparatus
JP2008062223A (en) Membrane filtering method and membrane filtering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Ref document number: 5282864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250