JP5266673B2 - Cylindrical shrink label, container with cylindrical shrink label - Google Patents
Cylindrical shrink label, container with cylindrical shrink label Download PDFInfo
- Publication number
- JP5266673B2 JP5266673B2 JP2007173316A JP2007173316A JP5266673B2 JP 5266673 B2 JP5266673 B2 JP 5266673B2 JP 2007173316 A JP2007173316 A JP 2007173316A JP 2007173316 A JP2007173316 A JP 2007173316A JP 5266673 B2 JP5266673 B2 JP 5266673B2
- Authority
- JP
- Japan
- Prior art keywords
- label
- shrink label
- heat
- cylindrical shrink
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
- B29C65/1683—Laser beams making use of an absorber or impact modifier coated on the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/36—Bending and joining, e.g. for making hollow articles
- B29C53/38—Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
- B29C53/40—Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of definite length, i.e. discrete articles
- B29C53/42—Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of definite length, i.e. discrete articles using internal forming surfaces, e.g. mandrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/38—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
- B29C63/42—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
- B29C63/423—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
- B29C63/426—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles in combination with the in situ shaping of the external tubular layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/432—Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
- B29C66/4322—Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/49—Internally supporting the, e.g. tubular, article during joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/532—Joining single elements to the wall of tubular articles, hollow articles or bars
- B29C66/5324—Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
- B29C66/53245—Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being hollow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/532—Joining single elements to the wall of tubular articles, hollow articles or bars
- B29C66/5326—Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/723—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/737—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
- B29C66/7371—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
- B29C66/73711—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/737—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
- B29C66/7371—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
- B29C66/73711—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
- B29C66/73712—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented mono-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/737—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
- B29C66/7371—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
- B29C66/73715—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable heat-shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/812—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
- B29C66/8126—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
- B29C66/81266—Optical properties, e.g. transparency, reflectivity
- B29C66/81267—Transparent to electromagnetic radiation, e.g. to visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C3/00—Labelling other than flat surfaces
- B65C3/06—Affixing labels to short rigid containers
- B65C3/065—Affixing labels to short rigid containers by placing tubular labels around the container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1619—Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8253—Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/812—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
- B29C66/8122—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2909/00—Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
- B29K2909/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0049—Heat shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/005—Oriented
- B29K2995/0051—Oriented mono-axially
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Wrappers (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、延伸方向で切断したラベルの両端を筒状に重ねた後に炭酸ガスレーザー光で溶着してなる筒状シュリンクラベル、該筒状シュリンクラベルを装着した容器およびこれらの製造方法に関する。 The present invention relates to a cylindrical shrink label formed by laminating both ends of a label cut in the stretching direction in a cylindrical shape and then welding with a carbon dioxide laser beam, a container equipped with the cylindrical shrink label, and a method for manufacturing the same.
従来から、飲料などの容器に全周にわたる筒状シュリンクラベルが使用され、このようなシュリンクラベルを装着した容器として、予め筒状のシュリンクラベルを調製し、これを容器外周に外嵌し、ついで熱処理してシュリンク形成するものがある(特許文献1)。該特許文献1では、筒状シュリンクラベルを製造する際に、シュリンクラベルの両端部にホットメルト型接着剤を貼付し、このホットメルト型接着剤を介してラベル両端を筒状に張り合わせている。 Conventionally, a cylindrical shrink label is used for a container such as a beverage, and a cylindrical shrink label is prepared in advance as a container equipped with such a shrink label. There exists what heat-processes and shrink-forms (patent document 1). In this patent document 1, when manufacturing a cylindrical shrink label, a hot-melt-type adhesive is affixed to the both ends of a shrink label, and both ends of a label are stuck together cylindrically via this hot-melt-type adhesive.
また、筒状にシュリンクラベルを接着する際に、レーザー光によって溶着し、得られた筒状シュリンクラベルを容器に外嵌装着する方法もある(特許文献2)。前記特許文献2で使用するラベルは、印刷が施された合成樹脂製フィルムの両端部を重ね合わせてレーザー光の照射によって溶着して筒状に形成したラベルであって、基材と、該基材の両面側に積層された表面層とを備え、該表面層は、前記基材よりも融点の低い材料からなり、前記両端部の溶着面は、印刷層が施されていない無印刷部に形成されている、というものである。 In addition, there is a method in which when a shrink label is bonded in a cylindrical shape, it is welded by laser light, and the obtained cylindrical shrink label is externally attached to a container (Patent Document 2). The label used in Patent Document 2 is a label formed in a cylindrical shape by superimposing both ends of a printed synthetic resin film and welding them by laser light irradiation. A surface layer laminated on both sides of the material, and the surface layer is made of a material having a melting point lower than that of the base material, and the welded surfaces of the both end portions are in a non-printed portion where no printing layer is applied. It is formed.
また、筒状シュリンクラベルの製造方法として、検出マークが印刷されたシュリンクラベル用ロールをラベル長に切断した後に筒状に成形してなる筒状シュリンクラベルもある(特許文献3)。長尺の熱収縮性のフィルム基材には、所定間隔ごとに検出マークが印刷され、該検出マークをセンサで検出することによりラベルの位置合わせなどを行うが、前記検出マークを熱収縮時の熱で消去可能なインキで印刷することで、別途特別な加熱工程を経ることなく検出マークを目立たなくすることができ、各ラベル及びフィルムに施したデザイン等の所定の表示の邪魔になるのを防止できる、という。特許文献3では、熱収縮フィルムの熱収縮方向の両端部を接着して筒状に成形するため、熱収縮フィルムを切断した後に切断ラベルを90度回転させ、ラベル両端を筒状に接着している。
しかしながら、上記特許文献1記載の筒状シュリンクラベルは、ホットメルト型接着剤によって容器と筒状シュリンクラベルとを接着する方法であるため、接着後に容器が高温条件下にある場合には、ホットメルト型接着剤が溶融し外観を損なう場合がある。特に、該容器の内容物が加温製品の場合には、内容物の保管温度によって移送中や販売期間内にホットメルト型接着剤が溶融する恐れがあり、シュリンクラベルの場合には熱収縮処理を行う際にホットメルト型接着剤が溶け出す場合がある。加えて、反応性ホットメルト型接着剤を使用すると、硬化後に熱に対する耐性を有するが、反応時間が長いために生産性が低下する。 However, since the cylindrical shrink label described in Patent Document 1 is a method of bonding a container and the cylindrical shrink label with a hot melt adhesive, if the container is in a high temperature condition after bonding, The mold adhesive may melt and impair the appearance. In particular, when the contents of the container are heated products, the hot melt adhesive may melt during transfer or within the sales period depending on the storage temperature of the contents. In some cases, the hot-melt adhesive may melt out. In addition, when a reactive hot melt adhesive is used, it has heat resistance after curing, but the productivity is lowered due to the long reaction time.
また、特許文献2記載のラベルは、レーザー光によって筒状ラベルとしたものであるが、レーザーでの接着性を確保するため、使用するラベルの層構成が複雑となる場合がある。また、レーザー光は樹脂の切断などにも使用されるものであり、照射範囲が狭いためレーザー溶着幅が狭く、溶着強度に劣る場合がある。このため透明なPETフィルムに半導体レーザー光を照射してもレーザー光がフィルムを透過し、フィルムを溶着することができない。 Moreover, although the label of patent document 2 is used as the cylindrical label with the laser beam, in order to ensure the adhesiveness with a laser, the layer structure of the label to be used may become complicated. Laser light is also used for cutting a resin and the like. Since the irradiation range is narrow, the laser welding width is narrow and the welding strength may be inferior. For this reason, even if a transparent PET film is irradiated with semiconductor laser light, the laser light is transmitted through the film and the film cannot be welded.
一方、シュリンクラベルは延伸方向に熱収縮するため、延伸方向と胴巻き方向とを一致させて容器に装着する。従来は、横一軸延伸フィルムを使用し、例えば特許文献3の図3に示すように、所定ラベル長さに切断した後に切断ラベルを90度回転させた後に筒状に成形し、直立する容器の上部から筒状ラベルを鉛直方向に装着していた。すなわち、シュリンクラベル用ロールの切断面を接着部として使用できないため、筒状に接着する際にラベルを90度回転させる工程が必要となっている。しかしながら、このような工程をなくすことができれば、筒状シュリンクラベルの製造がより簡単な工程で製造できる。 On the other hand, since the shrink label is thermally contracted in the stretching direction, it is attached to the container with the stretching direction and the body winding direction aligned. Conventionally, a laterally uniaxially stretched film is used. For example, as shown in FIG. 3 of Patent Document 3, a cut label is rotated 90 degrees after being cut into a predetermined label length, then formed into a cylindrical shape, and an upright container A cylindrical label was mounted vertically from the top. That is, since the cut surface of the shrink label roll cannot be used as an adhesive portion, a step of rotating the label by 90 degrees is required when adhering in a cylindrical shape. However, if such a process can be eliminated, the cylindrical shrink label can be manufactured in a simpler process.
上記現状に鑑み、本発明は、接着剤を使用することなく製造され、接着強度に優れる筒状シュリンクラベルを提供するものである。 In view of the above situation, the present invention provides a cylindrical shrink label that is manufactured without using an adhesive and has excellent adhesive strength.
また本発明は、凹凸が際立つ容器にも装着することができ、容器形状の多様化、消費者の購買意欲を満たしうる、熱収縮率に優れる筒状シュリンクラベルを提供するものである。 In addition, the present invention provides a cylindrical shrink label that can be attached to a container with concavities and convexities, can satisfy the diversification of the container shape, and satisfy the consumer's desire to purchase, and has an excellent heat shrinkage rate.
また本発明は、このような筒状シュリンクラベルを装着した容器を提供するものである。 The present invention also provides a container equipped with such a cylindrical shrink label.
更に本発明は、簡便な工程で迅速に、生産効率に優れる筒状シュリンクラベルの製造方法を提供するものである。 Furthermore, this invention provides the manufacturing method of the cylindrical shrink label which is excellent in production efficiency rapidly by a simple process.
本発明者は、筒状シュリンクラベルについて詳細に検討した結果、熱収縮率に優れる縦一軸延伸フィルムを使用して筒状シュリンクラベルを製造すれば、延伸方向と移送方向とを同方向にできるため、フィルムを所定のラベル長に切断した後に切断面を溶着部として筒状に形成でき、ラベルを90度回転する工程を省略できること、ラベル重ね部を炭酸ガスレーザー光で溶着すれば透明樹脂フィルムを、接着剤の使用を行うことなく短時間で効率的に溶着することができること、特に炭酸ガスレーザーをデフォーカスして照射するとラベル重ね部を安定して幅広に溶着することができ、接着強度に優れる筒状シュリンクラベルを製造しうることを見出し、本発明を完成させた。 As a result of examining the cylindrical shrink label in detail, the inventor can produce a cylindrical shrink label using a longitudinally uniaxially stretched film having an excellent heat shrinkage rate, so that the stretching direction and the transport direction can be made the same direction. After cutting the film into a predetermined label length, the cut surface can be formed into a cylindrical shape as a welded portion, the step of rotating the label 90 degrees can be omitted, and if the label overlap portion is welded with carbon dioxide laser light, a transparent resin film , It can be efficiently welded in a short time without the use of an adhesive, and in particular, when the carbon dioxide laser is defocused and irradiated, the label overlap can be stably and widely welded, and the adhesive strength can be increased. The present inventors have found that an excellent cylindrical shrink label can be produced and completed the present invention.
すなわち本発明は、熱収縮性基材フィルムの延伸方向にあるラベル両端を溶着してなる筒状シュリンクラベルであって、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断してラベルを切り出し、前記ラベルを筒状に成形して前記切断した両端を重ね、前記重ね部を炭酸ガスレーザー光で溶着することを特徴とする、筒状シュリンクラベルを提供するものである。 That is, the present invention is a cylindrical shrink label formed by welding both ends of the label in the stretching direction of the heat-shrinkable base film, and the heat-shrinkable base film stretched in the longitudinal direction is cut into a predetermined size in the stretching direction. The label is cut out, the label is formed into a cylindrical shape, the cut ends are overlapped, and the overlapped portion is welded with a carbon dioxide laser beam to provide a cylindrical shrink label.
また、前記筒状シュリンクラベルを装着し、熱収縮処理してなる筒状シュリンクラベル付き容器を提供するものである。 The present invention also provides a container with a cylindrical shrink label, which is provided with the cylindrical shrink label and subjected to a heat shrink process.
また、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを筒状に成形して前記切断した両端を重ね、前記重ね部を炭酸ガスレーザー光で溶着することを特徴とする、筒状シュリンクラベルの製造方法を提供するものである。 In addition, a heat-shrinkable base film formed by longitudinal uniaxial stretching is conveyed in the stretching direction, the film is cut into a predetermined label length in the stretching direction, the label is formed into a cylindrical shape, and the cut ends are overlapped, The manufacturing method of the cylindrical shrink label characterized by welding the said overlap part with a carbon dioxide laser beam.
さらに、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを鉛直に配置されたシリンダにまき付けて前記切断端を重ね、前記重ね部を炭酸ガスレーザー光で溶着して筒状シュリンクラベルを成形し、前記筒状シュリンクラベルの下部側または上部側から前記シリンダを抜き出し、かつラベルの上部側または下部側から容器を挿入して前記容器に筒状シュリンクラベルを装着し、ついで熱収縮処理することを特徴とする、筒状シュリンクラベル付き容器の製造方法を提供するものである。 Furthermore, the heat-shrinkable base film formed by longitudinally uniaxially stretching is conveyed in the stretching direction, the film is cut into a predetermined label length in the stretching direction, and the label is attached to a vertically arranged cylinder to cut the cut end. And stacking the overlapped portion with a carbon dioxide laser beam to form a cylindrical shrink label, withdrawing the cylinder from the lower side or upper side of the cylindrical shrink label, and a container from the upper side or lower side of the label A method of manufacturing a container with a cylindrical shrink label is provided, in which a cylindrical shrink label is attached to the container, followed by heat shrinkage treatment.
本発明の筒状シュリンクラベルは接着剤を使用しないため、生産工程を簡略化することができ、コストも低下させることができる。また、ホットメルト型接着剤を使用する場合と比較して、広い温度幅の環境で保管、流通させることができる。 Since the cylindrical shrink label of the present invention does not use an adhesive, the production process can be simplified and the cost can be reduced. In addition, it can be stored and distributed in an environment with a wide temperature range as compared with the case of using a hot melt adhesive.
本発明の筒状シュリンクレベルは炭酸ガスレーザー光を照射して調製するものであるため、レーザー溶着部が透明である筒状シュリンクレベルを提供することができる。 Since the cylindrical shrink level of the present invention is prepared by irradiating carbon dioxide laser light, it is possible to provide a cylindrical shrink level in which the laser welding portion is transparent.
本発明の筒状シュリンクレベルの製造方法は、炭酸ガスレーザー光を照射して筒状に溶着するため、短時間で溶着しうるため生産効率に優れる。また、半導体レーザー光などと相違して、溶着時に溶着部を加圧する必要がないため、より効率的に筒状シュリンクラベルを製造することができる。 The cylindrical shrink level manufacturing method of the present invention is excellent in production efficiency because it can be welded in a short time because it is welded in a cylindrical shape by irradiating a carbon dioxide laser beam. In addition, unlike a semiconductor laser beam or the like, it is not necessary to pressurize the welded part at the time of welding, so that a cylindrical shrink label can be manufactured more efficiently.
本発明の第一は、熱収縮性基材フィルムの延伸方向にあるラベル両端を溶着してなる筒状シュリンクラベルであって、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断してラベルを切り出し、前記ラベルを筒状に成形して前記切断した両端を重ね、前記重ね部を炭酸ガスレーザー光で溶着することを特徴とする、筒状シュリンクラベルである。 The first of the present invention is a cylindrical shrink label formed by welding both ends of the label in the stretching direction of the heat-shrinkable base film, and the heat-shrinkable base film stretched uniaxially to a predetermined size in the stretching direction. A cylindrical shrink label characterized by cutting out a label by cutting, forming the label into a cylindrical shape, overlapping the cut ends, and welding the overlapped portion with a carbon dioxide laser beam.
縦一軸延伸基材フィルムを使用することで、延伸方向にフィルムを移送して切断し、切断面を筒状に重ねて溶着することで筒状シュリンクラベルを製造することができ、このため溶着の際にラベル方向を90度回転させる必要がなく、従来よりもラベラーの構造を簡略化することができる。また、炭酸ガスレーザー光で溶着されるため透明の基材フィルムからなり、溶着幅が広く接着強度に優れる。以下、本発明の筒状シュリンクラベル、筒状シュリンクラベル付き容器、筒状シュリンクラベルの製造方法について説明する。 By using a longitudinally uniaxially stretched substrate film, it is possible to produce a cylindrical shrink label by transferring and cutting the film in the stretching direction, and stacking the cut surfaces in a cylindrical shape and welding them. At this time, it is not necessary to rotate the label direction by 90 degrees, and the structure of the labeler can be simplified as compared with the conventional case. Moreover, since it is welded by a carbon dioxide laser beam, it is made of a transparent base film, and has a wide welding width and excellent adhesive strength. Hereinafter, the manufacturing method of the cylindrical shrink label of this invention, the container with a cylindrical shrink label, and a cylindrical shrink label is demonstrated.
(1)筒状シュリンクラベルの構成
本発明の筒状シュリンクラベルは、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断し、前記ラベルの切断した両端を筒状に重ね、重ね部を炭酸ガスレーザー光で溶着して調製される。従って、図1に示すように、得られた筒状シュリンクラベル(100)は、ラベル(30)の両端の重ね部(37)にレーザー溶着部(35)が形成されたものであり、円周方向と二重矢印で示すラベル延伸方向とが同方向となっている。
(1) Configuration of cylindrical shrink label The cylindrical shrink label of the present invention is a longitudinally uniaxially stretched heat-shrinkable base film cut into a predetermined size in the stretching direction, and the cut ends of the label are stacked in a tubular shape. The overlapped portion is prepared by welding with a carbon dioxide laser beam. Therefore, as shown in FIG. 1, the obtained cylindrical shrink label (100) has a laser welded portion (35) formed on the overlapping portion (37) at both ends of the label (30). The direction and the label extending direction indicated by the double arrow are the same direction.
筒状シュリンクラベルの長さや太さは、装着する容器の形状や装着の態様に応じて適宜選択することができる。一方、レーザー溶着部(35)の幅は、0.5〜10mmであることが好ましい。この範囲で十分な溶着強度を確保することができる。 The length and thickness of the cylindrical shrink label can be appropriately selected according to the shape of the container to be attached and the manner of attachment. On the other hand, the width of the laser welded part (35) is preferably 0.5 to 10 mm. A sufficient welding strength can be ensured within this range.
また、レーザー溶着のための筒状シュリンクラベルの溶着部の重ね部(37)の幅は、3〜30mmであることが好ましい。この範囲であれば、上記レーザー溶着部幅を十分に確保することができ、かつラベルの美粧性を確保することができる。 Moreover, it is preferable that the width | variety of the overlap part (37) of the welding part of the cylindrical shrink label for laser welding is 3-30 mm. If it is this range, the said laser welding part width | variety can fully be ensured and the cosmetics of a label can be ensured.
本発明の筒状シュリンクラベルは、ラベル−ラベル間の剥離強度、すなわちレーザー溶着部(35)の剥離強度を、0.5〜30N/15mm、より好ましくは2.5〜20N/15mmとすることができる。また、レーザー溶着部(35)の剪断強度は、2〜65N/15mm、より好ましくは3.5〜60N/15mmである。なお、剥離強度および剪断強度は、後記する実施例で記載する数値である。 In the cylindrical shrink label of the present invention, the peel strength between the labels, that is, the peel strength of the laser welded portion (35) is 0.5 to 30 N / 15 mm, more preferably 2.5 to 20 N / 15 mm. Can do. Further, the shear strength of the laser welded portion (35) is 2 to 65 N / 15 mm, more preferably 3.5 to 60 N / 15 mm. The peel strength and shear strength are numerical values described in the examples described later.
なお、前記重ね部のレーザ溶着部と平行に、1以上のミシン目列が形成されていてもよい。使用後の容器からラベルを離脱することが容易だからである。 One or more perforation lines may be formed in parallel with the laser welded portion of the overlapped portion. This is because it is easy to remove the label from the container after use.
(i)熱収縮性基材フィルム
本発明の筒状シュリンクラベルは、縦一軸延伸した熱収縮性基材フィルムを使用する。
(I) Heat-shrinkable base film The cylindrical shrink label of the present invention uses a heat-shrinkable base film that has been longitudinally uniaxially stretched.
熱収縮性基材フィルムとしては、ポリオレフィン系フィルム、ポリエステル系フィルム、ポリスチレン系フィルム、ポリ乳酸系フィルム、またはこれらのフィルムの2種以上の積層フィルムであって、縦一軸延伸したものを好適に使用することができる。より好ましくは、前記ポリオレフィン系フィルムが縦一軸延伸ポリプロピレン系フィルムであり、前記ポリエステル系フィルムが縦一軸延伸ポリエチレンテレフタレート系フィルムであり、その他ポリエステル−ポリスチレン共押出しフィルムの縦一軸延伸フィルムなどである。従来から、縦一軸延伸フィルムは存在したが、縦一軸延伸フィルムをシュリンクラベルとして使用することはなかった。しかしながら、本発明では縦一軸延伸フィルムを使用することで製造工程を簡略化できることを見出し、特に縦一軸延伸フィルムに限定して使用することにした。 As the heat-shrinkable base film, a polyolefin film, a polyester film, a polystyrene film, a polylactic acid film, or a laminate film of two or more of these films, which is longitudinally uniaxially stretched, is preferably used. can do. More preferably, the polyolefin film is a longitudinally uniaxially stretched polypropylene film, the polyester film is a longitudinally uniaxially stretched polyethylene terephthalate film, and a longitudinally uniaxially stretched film of a polyester-polystyrene coextruded film. Conventionally, although a longitudinally uniaxially stretched film exists, the longitudinally uniaxially stretched film has not been used as a shrink label. However, in this invention, it discovered that a manufacturing process could be simplified by using a longitudinally uniaxially stretched film, and decided to use it limiting especially to a longitudinally uniaxially stretched film.
一般には、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリ乳酸系樹脂の1種または2種以上を使用し、押し出し法、キャスト成形法、Tダイ法、切削法、インフレーション法、その他等の製膜化法を用いて単層で製膜化したもの、または2種以上の樹脂を使用して共押し出しなどで多層製膜したもの、または2種以上の樹脂を混合使用して製膜したものを使用することができ、テンター方式やチューブラー方式等で縦一軸延伸してなる各種の延伸フィルムを使用することができる。 Generally, one or more of polyolefin resin, polyester resin, polystyrene resin, polylactic acid resin is used, and extrusion method, cast molding method, T-die method, cutting method, inflation method, etc. Films formed in a single layer using the film-forming method, films formed by coextrusion using two or more resins, or films formed using a mixture of two or more resins What is used can be used, and various stretched films formed by longitudinal uniaxial stretching by a tenter method, a tubular method, or the like can be used.
本発明において、熱収縮性基材フィルムの厚みは特に限定されないが、耐熱性、剛性、機械適性、外観等を損なわない範囲で適宜選択され、非発泡性縦一軸延伸フィルムの場合には15〜50μmである。上記範囲であれば、容器に装着して使用する際に、十分な機械的強度を確保しうると共に、炭酸ガスレーザー光で溶着強度に優れるからである。特に、本発明では炭酸ガスレーザー光でラベル端部を溶着するため、ラベル重ね部を加圧・押圧して接着させる必要がなく、非接触で両者を固定することができる。なお、前記ラベル厚は、熱収縮前の層厚である。 In the present invention, the thickness of the heat-shrinkable substrate film is not particularly limited, but is appropriately selected within a range that does not impair heat resistance, rigidity, mechanical suitability, appearance, etc. In the case of a non-foaming vertically uniaxially stretched film, 15 to 50 μm. If it is within the above range, it is possible to ensure sufficient mechanical strength when mounted on a container and to be excellent in welding strength with a carbon dioxide laser beam. In particular, in the present invention, since the label end portions are welded with carbon dioxide laser light, it is not necessary to press and press the label overlapping portion to adhere them, and both can be fixed without contact. The label thickness is a layer thickness before heat shrinkage.
上記の熱収縮性基材フィルムには、必要に応じて、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤等の各種添加剤が添加されたものであってもよい。また、熱収縮性基材フィルムの表面には、印刷性を向上させるためにコロナ放電処理、プラズマ処理、火炎処理、酸処理などの慣用の表面処理を施してもよい。 Various additives such as a lubricant, a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, and a colorant are added to the heat-shrinkable base film as necessary. It may be. In addition, the surface of the heat-shrinkable base film may be subjected to conventional surface treatment such as corona discharge treatment, plasma treatment, flame treatment, and acid treatment in order to improve printability.
本発明では、上記熱収縮性基材フィルムとして、縦方向の熱収縮率が温度100℃で5〜85%、より好ましくは20〜70%のものを好適に使用することができる。熱収縮率に優れるため凹部を有する容器にも好適に使用することができる。なお、本発明における熱収縮率とは、100℃の温水による熱収縮率であって、延伸方向の熱収縮率が下記式に従うものとする。従って、縦一軸延伸フィルムの場合には、収縮方向は、フィルム流れ方向であるため、流れ方向に対する熱収縮率が5〜85%である。 In the present invention, as the heat-shrinkable base film, a film having a longitudinal heat shrinkage rate of 5 to 85%, more preferably 20 to 70% at a temperature of 100 ° C. can be suitably used. Since it has an excellent heat shrinkage rate, it can be suitably used for a container having a recess. In addition, the heat shrinkage rate in this invention is a heat shrinkage rate by 100 degreeC hot water, Comprising: The heat shrinkage rate of an extending | stretching direction shall follow a following formula. Therefore, in the case of a longitudinally uniaxially stretched film, the shrinkage direction is the film flow direction, and thus the thermal shrinkage rate with respect to the flow direction is 5 to 85%.
本発明では、熱収縮性基材フィルムとして市販のフィルムを使用してもよい。このようなフィルムとして、PET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、)、ポリプロピレン縦一軸延伸フィルム(熱収縮率;80℃、10秒;10%、100℃、10秒、25%)、ポリサックプラスチックインダストリーリミテッド(Polysack Plastic Industries Ltd.)の商品名「ポリファンFIT ST(Polyphane FIT ST)」などの100℃での縦方向最大収縮率19%、130℃で70%の縦一軸延伸ポリスチレンフィルム、エクロンモービル社製、商品名「Label−Lyte−Roll−On−Shink−on LR210」、縦方向最大収縮率18%などの縦一軸延伸ポリプロピレンフィルム、縦一軸延伸白色ポリプロピレンフィルム、縦一軸延伸PLA系フィルムなどを好適に使用することができる。 In the present invention, a commercially available film may be used as the heat-shrinkable substrate film. As such a film, a PET longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 50%), a polypropylene longitudinally uniaxially stretched film (heat shrinkage rate: 80 ° C., 10 seconds; 10%, 100 ° C., 10% 25%), Polysack Plastic Industries Ltd. trade name "Polyphane FIT ST (Polyphane FIT ST)", etc., maximum shrinkage in longitudinal direction at 100 ° C 19%, 70 at 130 ° C % Uniaxially stretched polystyrene film, manufactured by Eclone Mobil Co., Ltd., trade name “Label-Lyte-Roll-On-Sink-on LR210”, longitudinal uniaxially stretched polypropylene film such as 18% maximum shrinkage in the longitudinal direction, longitudinally uniaxially stretched white A polypropylene film, a longitudinally uniaxially stretched PLA film, and the like can be suitably used.
なお、本発明において「シュリンクラベル」とは、熱処理によって収縮しうるラベルであるが熱収縮の有無は問わない。従って、熱収縮前後のいずれにおいても、シュリンクラベルである。 In the present invention, the “shrink label” is a label that can be shrunk by heat treatment. Therefore, it is a shrink label both before and after heat shrinkage.
(ii)レーザー吸収剤層
本発明の筒状シュリンクラベルは、前記重ね部の前記熱収縮性基材フィルムと熱収縮性基材フィルムとの間にレーザー光吸収剤層が積層されていてもよい。熱収縮性基材フィルム/レーザー吸収剤層/熱収縮性基材フィルムとなるようにラベル端部を重ね、いずれかの熱収縮性基材フィルムから半導体レーザーを照射すると、レーザー光が熱収縮性基材フィルムを透過してレーザー吸収剤層に到達し、レーザー光のエネルギーを吸収し当該端部の熱収縮性基材フィルムを軟化し、下側熱収縮性基材フィルムとの溶着を促進することができる。
(Ii) Laser Absorber Layer In the cylindrical shrink label of the present invention, a laser light absorber layer may be laminated between the heat-shrinkable base film and the heat-shrinkable base film in the overlapped portion. . When the end of the label is stacked so that it becomes a heat-shrinkable base film / laser absorber layer / heat-shrinkable base film, and a semiconductor laser is irradiated from any of the heat-shrinkable base films, the laser light is heat-shrinkable Passes through the base film and reaches the laser absorber layer, absorbs the energy of the laser beam, softens the heat-shrinkable base film at the end, and promotes welding with the lower heat-shrinkable base film be able to.
本発明では、レーザー吸収剤層として、前記熱収縮性基材フィルムのガラス転位温度よりも低いTgの樹脂を使用することが好ましい。レーザー吸収剤層を積層することで照射時間を短くし、生産性を向上させることができる。このような樹脂としては、前記した熱収縮性基材フィルムを構成する樹脂の中から適宜選択することができる。より好ましくは、熱収縮性基材フィルムと同種の樹脂を使用することである。例えば、熱収縮性基材フィルムがポリエステル系樹脂の場合には、レーザー吸収剤層に使用する樹脂もポリエステル系樹脂とし、熱収縮性基材フィルムがポリオレフィン系樹脂の場合には、レーザー吸収剤層に使用する樹脂もポリオレフィン系樹脂とする。 In this invention, it is preferable to use resin of Tg lower than the glass transition temperature of the said heat-shrinkable base film as a laser absorber layer. By laminating the laser absorber layer, the irradiation time can be shortened and the productivity can be improved. As such resin, it can select suitably from resin which comprises an above described heat-shrinkable base film. More preferably, the same kind of resin as the heat-shrinkable base film is used. For example, when the heat-shrinkable substrate film is a polyester resin, the resin used for the laser absorber layer is also a polyester resin, and when the heat-shrinkable substrate film is a polyolefin resin, the laser absorber layer The resin used in the above is also a polyolefin resin.
また、レーザー吸収剤層には、更にパール顔料が配合されていてもよい。炭酸ガスレーザー光はPETなどの透明フィルムに吸収されるため、特に透明フィルムを短時間に溶着しうるが、レーザー吸収剤層にパール顔料を配合すると、より安定して溶着することが判明した。また、パール顔料の配合により溶着部をパール光沢のあるものとすることができ、美粧性に優れる。なお、パール顔料とは、白色雲母の粒子径5〜130の微粉末であり、市販品であってもよい。このようなパール顔料として、例えば、メルク社製の商品名「レーザーフレア800」などを使用することができる。 Further, a pearl pigment may be further blended in the laser absorber layer. Since carbon dioxide laser light is absorbed by a transparent film such as PET, the transparent film can be particularly welded in a short time. However, it has been found that when a pearl pigment is blended in the laser absorbent layer, the film is more stably welded. Further, the blended portion of the pearl pigment can make the welded portion pearly, and is excellent in cosmetics. The pearl pigment is a fine powder of white mica having a particle size of 5 to 130, and may be a commercially available product. As such a pearl pigment, for example, “Laser Flare 800” manufactured by Merck & Co., Inc. can be used.
本発明では、上記パール顔料の合計は、レーザー吸収剤層中に3〜80質量%含有されることが好ましい。この範囲で、フィルムがレーザーをより効率よく吸収して、接着に十分な熱を得ることにより、強度及び生産効率のより優れる溶着を行うことができる。 In this invention, it is preferable that the sum total of the said pearl pigment contains 3-80 mass% in a laser absorber layer. Within this range, the film absorbs the laser more efficiently and obtains sufficient heat for bonding, whereby welding with higher strength and production efficiency can be performed.
レーザー光吸収剤層は、熱収縮性基材フィルムに、パール顔料と熱収縮性基材フィルムを構成する樹脂よりもTgの低い樹脂とからなる組成物を印刷し、または塗布することで形成することができる。 The laser light absorber layer is formed by printing or applying a composition comprising a pearl pigment and a resin having a Tg lower than that of the resin constituting the heat-shrinkable base film on the heat-shrinkable base film. be able to.
ただし、本発明で使用する熱収縮性基材フィルムは、炭酸ガスレーザーの吸収性があるため、上記レーザー吸収剤層を設けることなく、重ね部を溶着することができる。 However, since the heat-shrinkable base film used in the present invention has carbon dioxide laser absorptivity, the overlapping portion can be welded without providing the laser absorbent layer.
(iii)デザイン印刷層
本発明の筒状シュリンクラベル(100)は、熱収縮性基材フィルムのラベル最内層または最外層にデザイン印刷層を有するものであってもよい。ただし、前記重ね部(37)において、筒状に重ねる際に熱収縮性基材フィルムと熱収縮性基材フィルムとの間には印刷層がないことが好ましい。炭酸ガスレーザー光による溶着を阻害する場合があるからである。
(Iii) Design Print Layer The cylindrical shrink label (100) of the present invention may have a design print layer on the innermost label or the outermost layer of the heat-shrinkable base film. However, it is preferable that there is no printed layer between the heat-shrinkable base film and the heat-shrinkable base film when the superposed portion (37) is stacked in a cylindrical shape. This is because welding by carbon dioxide laser light may be hindered.
印刷方法に限定はなく、例えばグラビア印刷で印刷層を形成することができる。印刷層としては、樹脂と溶媒から通常のインキビヒクルの1種ないし2種以上を調製し、これに、必要ならば、可塑剤、安定剤、酸化防止剤、光安定剤、紫外線吸収剤、硬化剤、架橋剤、滑剤、帯電防止剤、充填剤、その他等の助剤の1種ないし2種以上を任意に添加し、更に、染料・顔料等の着色剤を添加し、溶媒、希釈剤等で充分に混練してインキ組成物を調整して得たインキ組成物を使用することができる。 There is no limitation in the printing method, for example, a printing layer can be formed by gravure printing. As the printing layer, one or more ordinary ink vehicles are prepared from a resin and a solvent, and if necessary, a plasticizer, a stabilizer, an antioxidant, a light stabilizer, an ultraviolet absorber, and a curing agent. 1 to 2 or more kinds of auxiliaries such as additives, crosslinking agents, lubricants, antistatic agents, fillers, etc. are optionally added, and further colorants such as dyes and pigments are added, and solvents, diluents, etc. The ink composition obtained by sufficiently kneading and adjusting the ink composition can be used.
このようなインキビヒクルとしては、公知のもの、例えば、あまに油、きり油、大豆油、炭化水素油、ロジン、ロジンエステル、ロジン変性樹脂、シェラック、アルキッド樹脂、フェノール系樹脂、マレイン酸樹脂、天然樹脂、炭化水素樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸系樹脂、ポリスチレン系樹脂、ポリビニルブチラール樹脂、アクリルまたはメタクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、尿素樹脂、メラミン樹脂、アミノアルキッド系樹脂、ニトロセルロース、エチルセルロース、塩化ゴム、環化ゴム、その他などの1種または2種以上を併用することができる。インクビヒクルは、版から被印刷物に着色剤を運び、被膜として固着させる働きをする。 As such an ink vehicle, known ones such as sesame oil, drill oil, soybean oil, hydrocarbon oil, rosin, rosin ester, rosin modified resin, shellac, alkyd resin, phenolic resin, maleic resin, Natural resin, hydrocarbon resin, polyvinyl chloride resin, polyacetic acid resin, polystyrene resin, polyvinyl butyral resin, acrylic or methacrylic resin, polyamide resin, polyester resin, polyurethane resin, epoxy resin, urea resin , Melamine resin, amino alkyd resin, nitrocellulose, ethyl cellulose, chlorinated rubber, cyclized rubber, etc. can be used alone or in combination. The ink vehicle serves to carry the colorant from the plate to the substrate and fix it as a coating.
また、溶剤によってインキの乾燥性が異なる。印刷インキに使用される主な溶剤は、トルエン、MEK、酢酸エチル、IPAであり、速く乾燥させるために沸点の低い溶剤を用いるが、乾燥が速すぎると印刷物がかすれたり、うまく印刷できない場合があり、沸点の高い溶剤を適宜混合することができる。これによって、細かい文字もきれいに印刷できるようになる。着色剤には、溶剤に溶ける染料と、溶剤には溶けない顔料とがあり、グラビアインキでは顔料を使用する。顔料は無機顔料と有機顔料に分けられ、無機顔料としては酸化チタン(白色)、カーボンブラック(黒色)、アルミ粉末(金銀色)などがあり、有機顔料としてはアゾ系のものを好適に使用することができる。 Further, the drying property of the ink varies depending on the solvent. The main solvents used in printing inks are toluene, MEK, ethyl acetate, and IPA. Solvents with a low boiling point are used for quick drying. However, if the drying is too fast, the printed matter may be faded or printing may not be successful. Yes, a solvent having a high boiling point can be appropriately mixed. This makes it possible to print fine characters neatly. Colorants include dyes that are soluble in solvents and pigments that are insoluble in solvents, and gravure inks use pigments. Pigments are classified into inorganic pigments and organic pigments. Examples of inorganic pigments include titanium oxide (white), carbon black (black), and aluminum powder (gold and silver), and organic pigments are preferably azo. be able to.
上記は、グラビア印刷で説明したが、凸版印刷、スクリーン印刷、転写印刷、フレキソ印刷、その他等の印刷方式であってもよい。また、印刷は、裏印刷でも、表印刷でもよい。 Although the above was demonstrated by gravure printing, printing systems, such as letterpress printing, screen printing, transfer printing, flexographic printing, etc., may be sufficient. The printing may be back printing or front printing.
本発明で好適に使用できるラベルの構成を図5に示す。熱収縮性基材フィルム(10)のレーザー溶着部の重ね部の双方(37,37’)を除いて印刷層(15)が裏印刷された態様を示し、図5(b)は、前記印刷層(15)と共に、レーザー溶着部の重ね部の一方(37’)にレーザー吸収剤層(17)が裏印刷された態様を示す。図5(a)を筒状に成形すると、熱収縮性基材フィルム/熱収縮性基材フィルムとなり、図5(b)は、熱収縮性基材フィルム/レーザー吸収剤層/熱収縮性基材フィルムとなる。なお、図5では、重ね部(37)には、印刷層(15)のない態様を示したが、印刷層(15)が存在してもよい。 FIG. 5 shows the structure of a label that can be suitably used in the present invention. FIG. 5 (b) shows an aspect in which the printed layer (15) is printed on the back side except for both of the overlapping portions (37, 37 ′) of the laser welded portion of the heat-shrinkable base film (10). A mode in which the laser absorbent layer (17) is printed on one side (37 ′) of the overlapping portion of the laser welded portion together with the layer (15) is shown. When FIG. 5A is formed into a cylindrical shape, it becomes a heat-shrinkable base film / heat-shrinkable base film, and FIG. 5B shows a heat-shrinkable base film / laser absorber layer / heat-shrinkable group. It becomes a material film. In addition, in FIG. 5, although the aspect without a printing layer (15) was shown in the overlap part (37), a printing layer (15) may exist.
(iv)外層
本発明の筒状シュリンクラベルは、前記熱収縮性基材フィルムの表面側に更に外層を設けてもよい。このような外層としては、筒状シュリンクラベルの用途や意匠性などによって適宜選択することができ、ラベル表面の滑り性を付与する場合にはOPニスを、ラベルを触ったときの触感を付与する場合にはスエードインキによる印刷層を、マット感を付与する場合にはマットOPなどを使用することが好ましい。なお、外層は、2層以上の積層とすることができ、外層にデザイン印刷層を形成してもよい。図5の(c)に熱収縮性基材フィルム(10)の外側に外層(13)を含む態様を示す。この際、重ね部(37’)の外側の外層には墨を含む印刷層(15)は形成されないことが好ましい。切断しやすくなる場合があるからである。
(iv) Outer layer The cylindrical shrink label of this invention may provide an outer layer further on the surface side of the said heat-shrinkable base film. As such an outer layer, it can be appropriately selected depending on the use and design properties of the cylindrical shrink label, and OP varnish is given when the label surface is touched to give the label surface slipperiness. In some cases, it is preferable to use a printed layer of suede ink, and in the case of giving a matte feeling, a mat OP or the like. The outer layer can be a laminate of two or more layers, and a design print layer may be formed on the outer layer. FIG. 5C shows an embodiment in which the outer layer (13) is included outside the heat-shrinkable base film (10). At this time, it is preferable that the printing layer (15) containing black is not formed on the outer layer outside the overlapping portion (37 ′). It is because it may become easy to cut | disconnect.
(2)容器
本発明の筒状シュリンクラベルを添付しうる容器としては、ガラス容器;PETなどの合成樹脂性容器;セラミックボトルなどの無機物容器;アルミや鉄、SUSなどの金属製容器;ガラス、合成樹脂、セラミック、金属、紙などを含む複合材からなる容器に好適に装着することができる。
(2) Container As a container to which the cylindrical shrink label of the present invention can be attached, a glass container; a synthetic resin container such as PET; an inorganic container such as a ceramic bottle; a metal container such as aluminum, iron, or SUS; It can be suitably mounted on a container made of a composite material including synthetic resin, ceramic, metal, paper and the like.
一方、前記容器が合成樹脂製容器である場合には、該容器を構成する熱可塑性樹脂層としては、PETなどのポリエステル樹脂、PPなどのポリオレフィン系樹脂を使用することが、軽量で、機械的強度、耐熱性、ガス遮断性、耐薬品性、保香性、衛生性等に優れるため好ましい。容器は、ポリエステル樹脂やポリオレフィン系樹脂を射出成形、真空成形、圧空成形等することにより製造することができる。 On the other hand, when the container is a synthetic resin container, it is lightweight and mechanical to use a polyester resin such as PET and a polyolefin resin such as PP as the thermoplastic resin layer constituting the container. It is preferable because it is excellent in strength, heat resistance, gas barrier properties, chemical resistance, aroma retention, hygiene and the like. The container can be manufactured by injection molding, vacuum forming, pressure forming, or the like of polyester resin or polyolefin resin.
容器の形状としては、筒状シュリンクラベルが装着される容器の横断面が丸型に限定されず、四角、八角などの多角型であってもよい。また、筒状シュリンクラベルが装着される容器胴部は、胴部の全長に亘って同一径である場合に限定されず、容器の胴部縦断面が四角である以外に、たとえばひょうたん型などであってもよい。むしろ、本発明では、熱収縮率に優れる縦一軸延伸フィルムを使用するため、容器が凹凸のある形状であっても好適に装着することができる。従って、図2に示すように、容器の筒状シュリンクラベル装着部の最大周径に対する最小周径(最小周径×100/最大周径(%))が50%以上、より好ましくは70〜90%、特に好ましくは75〜85%のものを好適に使用することができる。 As the shape of the container, the cross section of the container to which the cylindrical shrink label is attached is not limited to a round shape, and may be a polygonal shape such as a square or an octagon. Further, the container body to which the cylindrical shrink label is attached is not limited to the same diameter over the entire length of the body, and other than the case where the container body has a rectangular vertical section, for example, a gourd type There may be. Rather, in the present invention, since a longitudinally uniaxially stretched film having an excellent heat shrinkage rate is used, even if the container has an uneven shape, it can be suitably mounted. Therefore, as shown in FIG. 2, the minimum peripheral diameter (minimum peripheral diameter × 100 / maximum peripheral diameter (%)) with respect to the maximum peripheral diameter of the cylindrical shrink label mounting portion of the container is 50% or more , more preferably 70 to 90. %, Particularly preferably 75 to 85% can be suitably used.
本発明の筒状シュリンクラベルを図2の容器に装着し、熱収縮処理した後の筒状シュリンクラベル付き容器を図3に示す。 FIG. 3 shows a container with a cylindrical shrink label after the cylindrical shrink label of the present invention is attached to the container of FIG.
(3)筒状シュリンクラベルの製造方法
(i)ラベルの調製
本発明で使用するラベルは縦一軸延伸フィルムを使用し、適宜印刷層やレーザー吸収剤層を形成することで調製することができる。
(3) Manufacturing method of cylindrical shrink label (i) Preparation of label The label used by this invention can be prepared by forming a printing layer and a laser absorber layer suitably using a longitudinally uniaxially stretched film.
(ii)ラベルの筒状成形
本発明の筒状シュリンクラベルは、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを筒状に成形して前記切断した両端を重ね、この重ね部を炭酸ガスレーザー光で溶着することで筒状シュリンクラベルを製造することができる。この方法によれば、フィルム搬送方向と延伸方向とが同方向であるから、切断したラベルを筒状に成形して切断端を重ねると延伸方向の両端部を溶着することができる。すなわち、フィルムを水平方向に移動させるだけでフィルム切断、ラベル筒状溶着を行うことができるために、横一軸延伸フィルムを使用する場合のように、ラベルを90度回転させる工程が不要となる。また、炭酸ガスレーザー光で溶着するため、接着剤を使用することなく接着でき、短時間で効率的な溶着が行え、重ね合わせ部分を少なくすることもでき、デザイン印刷部分を隠蔽する部分を少なくすることができる。また、容器リサイクル時にラベルを剥がした際、接着剤で接着する場合と相違して、溶着部分が汚れることがなくリサイクル性に優れる。
(Ii) Cylindrical forming of label The cylindrical shrink label of the present invention transports a heat-shrinkable base film formed by longitudinal uniaxial stretching in the stretching direction, cuts the film into a predetermined label length in the stretching direction, A cylindrical shrink label can be produced by forming a label into a cylindrical shape, overlapping the cut ends, and welding the overlapped portion with a carbon dioxide laser beam. According to this method, since the film conveying direction and the stretching direction are the same direction, both ends in the stretching direction can be welded by forming the cut label into a cylindrical shape and overlapping the cut ends. That is, since the film cutting and label cylindrical welding can be performed only by moving the film in the horizontal direction, the step of rotating the label by 90 degrees as in the case of using a laterally uniaxially stretched film becomes unnecessary. Also, since it is welded with carbon dioxide laser light, it can be bonded without using an adhesive, efficient welding can be performed in a short time, overlapping parts can be reduced, and there are few parts that conceal the design printing part. can do. In addition, when the label is peeled off when recycling the container, the welded portion is not contaminated unlike the case of bonding with an adhesive, and the recyclability is excellent.
より具体的には図4に示すように、鉛直に配置されたシリンダ(20)にまきつけるように前記熱収縮性基材フィルム(10)を繰り出し、所定のラベル長に切断し、ラベル(30)の前端部からシリンダ(20)を回転させながらまきつけ、前記ラベル前端部の上にラベル後端部を重ね、この重ね部(35)をラベル後端部側から炭酸ガスレーザー光を照射して溶着し、幅0.5〜10mmでレーザー溶着部(37)を形成し、筒状シュリンクラベル(100)を製造することができる。使用するシリンダ(20)は、その表面に空気を吸引しまたは排出する空気孔(25)が多数設けられたものであれば、切断されたラベル(30)を前記シリンダ表面で吸引しながら安定してまき付けることができる。また、シリンダ(20)を鉛直方向を軸として回転させればラベル(30)のまき付けが容易となる。一般には重ね部は、幅3〜30mmである。 More specifically, as shown in FIG. 4, the heat-shrinkable base film (10) is fed out so as to be attached to a vertically arranged cylinder (20), cut into a predetermined label length, and a label (30). While rotating the cylinder (20) from the front end of the label, the label rear end is overlaid on the label front end, and the overlapped portion (35) is irradiated with carbon dioxide laser light from the label rear end. And a laser welding part (37) is formed by width 0.5-10mm, and a cylindrical shrink label (100) can be manufactured. If the cylinder (20) to be used has many air holes (25) for sucking or discharging air on its surface, the cylinder (20) is stable while sucking the cut label (30) on the cylinder surface. Can be attached. Further, if the cylinder (20) is rotated about the vertical direction, the label (30) can be easily attached. In general, the overlapping portion has a width of 3 to 30 mm.
重ね部は、図8に示すように押さえ具で上部から押さえることができ、これによって照射を容易に行うことができる。図8(a)は、重ね部のラベル端部を二股の金属製の押さえ具(110)で押さえる態様を示す。炭酸ガスレーザーは金属を透過できないため、レーザー照射位置に金属が存在することはできず、このため、レーザー照射位置を確保しつつ重ね部のラベル端部のみを押さえる態様となっている。また、図8(b)は、炭酸ガスレーザーが透過できる材質を使用し、重ね部の全面を押さえる態様を示す。このような広幅の押さえ具の材質としては、石英ガラスを好ましく使用することができる。 As shown in FIG. 8, the overlapped portion can be pressed from the top with a pressing tool, whereby irradiation can be easily performed. Fig.8 (a) shows the aspect which hold | suppresses the label edge part of an overlap part with the forked metal pressing tool (110). Since the carbon dioxide laser cannot pass through the metal, the metal cannot be present at the laser irradiation position. For this reason, only the label end of the overlapped portion is pressed while the laser irradiation position is secured. FIG. 8B shows a mode in which a material capable of transmitting a carbon dioxide laser is used and the entire surface of the overlapping portion is pressed. As a material for such a wide pressing tool, quartz glass can be preferably used.
本発明では、炭酸ガスレーザー光を照射して溶着する点に特徴がある。炭酸ガスレーザー光は波長が10.6μmであり、半導体レーザーなどと比較して物質に対する影響が大きく、短時間かつ非接触で筒状シュリンクラベルを製造することができる。例えばシリンダ(20)に巻きつけて固定した重ね部(37)に、外側から炭酸ガスレーザー光を照射する。 The present invention is characterized in that it is welded by irradiation with a carbon dioxide laser beam. Carbon dioxide laser light has a wavelength of 10.6 μm and has a larger influence on the substance than a semiconductor laser or the like, and can produce a cylindrical shrink label in a short time and in a non-contact manner. For example, a carbon dioxide laser beam is irradiated from the outside onto the overlapping portion (37) wound around the cylinder (20) and fixed.
本発明では、炭酸ガスレーザー光の照射をデフォーカスして行うことが好ましい。本発明における「デフォーカス」とは、通常は炭酸ガスレーザー光を照射する際に目的個所に焦点をあわせてレーザー光を照射するが、焦点を合わせることなくレーザー光を照射するであり、焦点を合わせる場合よりも広い範囲にレーザー光を照射することをいう。デフォーカスによれば、幅広い範囲に照射エネルギーを分散して単位面積当たりのエネルギー密度を下げることができるため、高い加工速度で広範囲に接着強度を確保することができる。しかも、照射エネルギーが希釈されるため、ラベル表面および溶着部の過剰な溶融を抑制することができ、広範に均一かつ安定的な溶着を行うことができる。高出力と低出力で炭酸ガスレーザーを照射した場合のスポット径と出力エネルギーとの関係を図9に模式的に示す。図9(a)に示すように、高出力でフォーカス照射すると、狭い範囲に照射されるため、出力エネルギーを示すピーク高さ(Hfa)が高くなり、フォーカス照射を行うとラベル表面の溶融が大きくなり、溶着できずに切断される、またはラベル表面の溶融が生じる。このような場合、図9(b)のように低出力でフォーカス照射すれば切断や溶融を回避することができるが、溶着幅が狭いために近傍を複数回炭酸ガスレーザーで照射して、溶着幅を広げなければ、筒状シュリンクラベルの実用に耐えることができない。本発明では、図9(a)に示すように、デフォーカス照射を行うことで溶着幅を広げ、かつ出力エネルギーを示すピーク高さ(Hdfa)を低くして、ラベルの切断やラベル表面の溶融などを回避する。なお、低出力でデフォーカス照射を行うと、出力エネルギーを示すピーク高さ(Hdfb)が低いため、ラベルを溶着させることができない。炭酸ガスレーザーの規定出力は使用する装置によって定められており、また、フォーカス照射の場合の照射幅、すなわち溶着範囲も装置によって定められている。そこで本発明では、いずれの装置を使用する場合であっても、デフォーカスしてラベル重ね部の溶着に適する溶着幅を選択し、溶着する。デフォーカスの程度は、使用する装置によって異なるが、一般に、フォーカス照射の場合の照射幅は、0.1〜1mmであるため、レーザー光の照射幅に換算して、フォーカス照射した場合の幅に対するデフォーカス照射した場合の幅(デフォーカス照射した場合の幅/フォーカス照射した場合の幅)が2倍以上であることが好ましい。なお、一般に、フォーカス照射の場合の照射幅は、0.1〜1mmであるため、1mmを超える溶着幅は一般にデフォーカス照射となっている。 In the present invention, it is preferable to perform defocusing of carbon dioxide laser beam irradiation. The term “defocus” in the present invention usually refers to irradiating a laser beam with a focus on a target portion when irradiating a carbon dioxide laser beam, but irradiating the laser beam without adjusting the focus. This refers to irradiating a laser beam over a wider range than when combining them. According to defocusing, the irradiation energy can be dispersed over a wide range and the energy density per unit area can be lowered. Therefore, the adhesive strength can be secured over a wide range at a high processing speed. In addition, since the irradiation energy is diluted, excessive melting of the label surface and the welded portion can be suppressed, and a wide range of uniform and stable welding can be performed. FIG. 9 schematically shows the relationship between the spot diameter and the output energy when the carbon dioxide laser is irradiated at high output and low output. As shown in FIG. 9A, when focus irradiation is performed at a high output, since a narrow range is irradiated, the peak height (Hfa) indicating the output energy is increased, and when the focus irradiation is performed, the melting of the label surface is large. It is cut without being welded, or the label surface is melted. In such a case, cutting and melting can be avoided if focus irradiation is performed at a low output as shown in FIG. 9B. However, because the welding width is narrow, the vicinity is irradiated with a carbon dioxide laser several times, and welding is performed. Unless the width is increased, the practical use of the cylindrical shrink label cannot be withstood. In the present invention, as shown in FIG. 9 (a), by performing defocus irradiation, the welding width is widened and the peak height (Hdfa) indicating the output energy is lowered to cut the label or melt the label surface. Avoid such things. When defocus irradiation is performed at a low output, the peak height (Hdfb) indicating the output energy is low, so that the label cannot be welded. The specified output of the carbon dioxide laser is determined by the apparatus used, and the irradiation width in the case of focus irradiation, that is, the welding range is also determined by the apparatus. Therefore, in the present invention, regardless of which apparatus is used, a welding width suitable for welding of the label overlapping portion is selected by defocusing and welding is performed. Although the degree of defocusing differs depending on the apparatus to be used, generally, the irradiation width in the case of focus irradiation is 0.1 to 1 mm. The width when defocused irradiation (width when defocused irradiation / width when focused irradiation) is preferably twice or more. In general, since the irradiation width in the case of focus irradiation is 0.1 to 1 mm, a welding width exceeding 1 mm is generally defocused irradiation.
なお、本発明の筒状シュリンクラベルが、レーザ溶着部と平行に、1以上のミシン目列を形成する場合には、例えば、炭酸ガスレーザー光をデフォーカスすることなく、前記レーザー溶着部と平行して照射すればよい。 In addition, when the cylindrical shrink label of this invention forms one or more perforation row | line | columns in parallel with a laser welding part, for example, without defocusing a carbon dioxide laser beam, it is parallel to the said laser welding part. And then irradiate.
(4)筒状シュリンクラベル付き容器の製造方法
本発明の筒状シュリンクラベル付き容器は、上記で製造した筒状シュリンクラベルに、ラベルの上部または下部から容器を挿入して容器に筒状シュリンクラベルを装着し、ついで熱収縮処理することで製造することができる。
(4) Manufacturing method of container with cylindrical shrink label The cylindrical shrink label container of the present invention is a cylindrical shrink label inserted into the cylindrical shrink label manufactured above by inserting the container from the upper part or the lower part of the label. It can be manufactured by mounting and then heat shrinking.
例えば、図6、図7に示すように、(a)ラベル(30)をシリンダ(20)にまき付け、(b)ラベル切断端の重ね部(37)を形成し、(c)重ね部(37)に外側からシリンダに向けてレーザー溶着部(35)を形成して筒状に溶着する。次いで、(d)シリンダ(20)を下方から引き抜く。具体的には、シリンダ(20)には多数の空気孔(25)が設けられており、炭酸ガスレーザー光で溶着した後にシリンダ(20)の前記空気孔(25)から空気を排出させると、シリンダ(20)とラベル(30)との間に空気を送り込むことができる。この状態で、シリンダ(20)をラベルの下端から下方に移動させると、容易に筒状シュリンクラベルからシリンダ(20)を引き抜くことができる。(e)これにより筒状シュリンクラベル(100)を鉛直した状態で製造することができる。 For example, as shown in FIG. 6 and FIG. 7, (a) the label (30) is attached to the cylinder (20), (b) the overlapping portion (37) of the label cutting end is formed, and (c) the overlapping portion ( In 37), a laser welding part (35) is formed from the outside toward the cylinder and welded in a cylindrical shape. Next, (d) the cylinder (20) is pulled out from below. Specifically, the cylinder (20) is provided with a large number of air holes (25), and when the air is discharged from the air holes (25) of the cylinder (20) after welding with a carbon dioxide laser beam, Air can be sent between the cylinder (20) and the label (30). When the cylinder (20) is moved downward from the lower end of the label in this state, the cylinder (20) can be easily pulled out from the cylindrical shrink label. (E) Thereby, the cylindrical shrink label (100) can be manufactured in a vertical state.
次いで、(f)筒状シュリンクラベルの上部から容器(90)を降下させ、(g)筒状シュリンクラベル(100)を容器(90)に装着し、次いで(h)熱収縮処理を順次行う。熱収縮処理は、ラベルの熱収縮性基材フィルムの種類や厚さ、延伸率などによって適宜選択することができ、例えば、60〜230℃の熱風や、水蒸気及び水蒸気が結露した湯気により加熱するスチームや、赤外線等の輻射熱を作用させてシュリンクラベルを周方向に高収縮させ、容器の胴部をシュリンクラベルで被覆することができる。なお、上記は、シリンダ(20)を、筒状シュリンクラベルの下部側から引き抜き、上部側から容器を挿入する態様を示したが、筒状シュリンクラベルの上部側から引き抜き、下部側から容器を挿入する態様であってもよい。 Next, (f) the container (90) is lowered from the upper part of the cylindrical shrink label, (g) the cylindrical shrink label (100) is attached to the container (90), and then (h) heat shrinkage treatment is sequentially performed. The heat shrink treatment can be appropriately selected depending on the type and thickness of the heat shrinkable base film of the label, the stretching ratio, and the like. For example, the heat shrink treatment is performed with hot air at 60 to 230 ° C. or steam with condensation of water vapor and water vapor. The shrink label can be highly shrunk in the circumferential direction by applying radiant heat such as steam or infrared rays, and the body of the container can be covered with the shrink label. In addition, although the above showed the aspect which pulls out a cylinder (20) from the lower side of a cylindrical shrink label and inserts a container from an upper side, it pulls out from the upper side of a cylindrical shrink label and inserts a container from the lower side It is also possible to use this mode.
本発明では、前記したように、フィルムを水平方向に移動するだけでフィルムの切断、ラベルの筒状溶着を行うことができるため、鉛直に配置されたシリンダにまきつければラベルの筒状化を円滑かつ容易に行うことができ、シリンダの外部から炭酸ガスレーザー光を照射することで、簡便かつ確実にレーザー溶着部を行うことができる。 In the present invention, as described above, the film can be cut and the label can be welded by simply moving the film in the horizontal direction. It can be carried out smoothly and easily, and by irradiating the carbon dioxide laser light from the outside of the cylinder, the laser welding part can be carried out simply and reliably.
(5)筒状シュリンクラベル付き容器
本発明の筒状シュリンクラベル付き容器は、上記筒状シュリンクラベル(100)が容器(90)の全長に亘って被覆するように装着されたものでもよく、容器(90)の上部のみ、下部のみ、蓋部のみ、など容器の一部のみに装着してもよい。更に、容器底部を包み込むように熱収縮させたり、容器蓋部から底部の全体に筒状シュリンクラベルを装着し、熱収縮させて、全面被覆することもできる。
(5) Container with cylindrical shrink label The container with cylindrical shrink label of the present invention may be one in which the cylindrical shrink label (100) is mounted so as to cover the entire length of the container (90). (90) Only the upper part, only the lower part, only the lid part, etc. may be attached to only a part of the container. Furthermore, it is possible to heat-shrink so as to wrap the container bottom, or to attach a cylindrical shrink label to the entire bottom from the container lid and heat-shrink to cover the entire surface.
次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.
(実施例1)
115mm巾、フィルム厚さが50μmのポリプロピレン縦一軸延伸フィルム(熱収縮率;100℃、10秒、25%)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、延伸方向に巻き取った。
Example 1
Using a polypropylene longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 25%) with a width of 115 mm and a film thickness of 50 μm, the label design printing is back-printed except for the welded portion at the rear end of the label, and stretched. Winded in the direction.
ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。 The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.
前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に8mmの重なりを設けて固定した。前記重なり部は、外側からPP/PP/デザイン印刷層/シリンダとなる。 The cut end portion of the single wafer label was wound around the cylinder while being sucked with air, and was fixed by providing an overlap of 8 mm at both ends of the label. The overlapping portion becomes PP / PP / design printing layer / cylinder from the outside.
ラベル両端重なり部分に外側から、コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)を使用し、パルス間隔500μs、パルス幅70μs、加工速度12m/minの条件でレーザ光を照射して溶着させた。なお、溶着線巾は約2mmとなるように焦点距離をずらしてレーザー光を照射し、これにより、筒状シュリンクラベルを調製した。 Using the DIAMOND K-250 (output 250W, 100Hz, wavelength 10.6μ) made by Coherent Co., Ltd. from the outside, the laser beam is emitted from the outside to the overlapping part of the label under the conditions of a pulse interval of 500μs, a pulse width of 70μs, and a processing speed of 12m / min. Irradiated and welded. In addition, the focal length was shifted so that the welding line width was about 2 mm, and laser light was irradiated, thereby preparing a cylindrical shrink label.
次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで120℃×10秒加熱してラベルを収縮させた。 Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was contracted by heating at 120 ° C. for 10 seconds in a hot air type shrink tunnel.
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.
(実施例2)
フィルム厚さが50μmのポリプロピレン縦一軸延伸フィルム(熱収縮率;100℃、10秒、25%)に代えて、フィルム厚さが50μmのポリエステル縦一軸フィルム(熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、レーザー光の照射条件を、コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)を使用し、パルス間隔500μs、パルス幅19μs、加工速度12m/minの条件で、溶着線巾が約2mmとなるように焦点距離をずらしてレーザー光を照射した以外は実施例1と同様に操作して、筒状シュリンクラベルおよびラベル付容器を製造した。
(Example 2)
Instead of a polypropylene longitudinal uniaxially stretched film having a film thickness of 50 μm (heat shrinkage rate: 100 ° C., 10 seconds, 25%), a polyester longitudinal uniaxial film having a film thickness of 50 μm (heat shrinkage rate: 100 ° C., 10 seconds, 50%, Tg 81 ° C.), laser irradiation conditions using DIAMOND K-250 (output 250 W, 100 Hz, wavelength 10.6 μ) manufactured by Coherent, pulse interval 500 μs, pulse width 19 μs, processing speed A cylindrical shrink label and a container with a label were manufactured in the same manner as in Example 1 except that the laser beam was irradiated with the focal length shifted so that the welding line width was about 2 mm under the condition of 12 m / min. .
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.
また、接着部の横断面を図10に示す。 Moreover, the cross section of an adhesion part is shown in FIG.
(実施例3)
コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)を使用し、レーザー光の照射条件を、ラベル両端重なり部分に外側から、パルス間隔500μs、パルス幅70μs、加工速度12m/minの条件でレーザ光を照射し、溶着線巾は約2mmとなるように焦点距離をずらしてレーザー光を照射して溶着させるとともに、前記溶着部12mmはなれた平行線上に、別途のコヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)で、パルス間隔500μs、パルス幅200μs、加工速度12m/minの条件でレーザ光をフォーカス照射し、ミシン目穴あけ加工を行った以外は、実施例1と同様に操作して、筒状シュリンクラベルおよびラベル付容器を製造した。
Example 3
DIAMOND K-250 (output 250W, 100Hz, wavelength 10.6μ) manufactured by Coherent Co., Ltd. was used, and the laser light irradiation conditions were changed from the outside to the overlapping portion of the label from the outside with a pulse interval of 500μs, a pulse width of 70μs, and a processing speed of 12m / Laser light is irradiated under the condition of min, the focal length is shifted so that the welding line width is about 2 mm, and laser light is irradiated for welding, and the welded part 12 mm is on a parallel line separated from Coherent. , Except that DIAMOND K-250 (output 250W, 100Hz, wavelength 10.6μ), focused laser irradiation under conditions of a pulse interval of 500μs, a pulse width of 200μs, and a processing speed of 12m / min to perform perforation processing In the same manner as in Example 1, a cylindrical shrink label and a labeled container were produced.
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。さらに、熱収縮後にミシン目部分からラベルを手で容易に剥がすことができた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. Furthermore, the label could be easily peeled off from the perforation after heat shrinkage. The results are shown in Table 1.
(実施例4)
フィルム厚さが25μmのポリプロピレン縦一軸延伸フィルム(熱収縮率;100℃、10秒、25%)に代えて、115mm巾、フィルム厚さが25μmのPET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)を使用し、レーザー光の照射条件を、パルス間隔500μs、パルス幅43μs、出力35W、加工速度60m/min、溶着線巾2.9mm、に代えた以外は、実施例1と同様に操作して、筒状シュリンクラベルおよびラベル付容器を製造した。なお、接着強度は、剪断強度21N/15mm、剥離強度5.1N/15mm)であった。
Example 4
Instead of a polypropylene longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 25%) having a film thickness of 25 μm, a PET longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C.) having a width of 115 mm and a film thickness of 25 μm 10 seconds, 50%, Tg 81 ° C.), Coherent's DIAMOND K-250 (output 250 W, 100 Hz, wavelength 10.6 μ), laser irradiation conditions, pulse interval 500 μs, pulse width A cylindrical shrink label and a labeled container were manufactured in the same manner as in Example 1 except that 43 μs, an output of 35 W, a processing speed of 60 m / min, and a welding line width of 2.9 mm were used. The adhesive strength was a shear strength of 21 N / 15 mm and a peel strength of 5.1 N / 15 mm.
なお、剥離強度は、試験片を長さ50mm、幅15mmに切出し、端部をはがしてつまみしろを作成した。これを引張試験機(オリエンテック社製)を用いて、JIS K6854に準じて、180度剥離により300mm/分の引張速度で測定し、15mm当たりの剥離強度(単位:N/15mm)で評価した。また、剪断強度は、試験片を長さ70mm、幅15mmに切り出し、引張り試験機でJIS K6850に準じて300mm/分で測定した。 For the peel strength, the test piece was cut out to a length of 50 mm and a width of 15 mm, and the edge was peeled off to create a pinch. This was measured at a tensile speed of 300 mm / min by 180-degree peeling according to JIS K6854 using a tensile tester (Orientec), and evaluated by peel strength per 15 mm (unit: N / 15 mm). . In addition, the shear strength was measured at 300 mm / min according to JIS K6850 using a tensile tester by cutting a test piece into a length of 70 mm and a width of 15 mm.
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.
(実施例5)
115mm巾、フィルム厚さが25μmのPET縦一軸延伸フィルム(東洋紡社製、熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、および前記ラベル後端の溶着部に、ポリエステル樹脂(商品名「エリーテルUE3223」、Tg4℃)からなるレーザー光吸収剤層を8g/m2となるように裏印刷し、延伸方向に巻き取った。
(Example 5)
Using a PET uniaxially stretched film (Toyobo Co., Ltd., heat shrinkage rate: 100 ° C., 10 seconds, 50%, Tg 81 ° C.) having a width of 115 mm and a film thickness of 25 μm, label design printing is performed on the welded portion at the rear end of the label. Except for printing on the back, and on the welded portion at the rear end of the label, a laser light absorber layer made of polyester resin (trade name “Eritel UE3223”, Tg 4 ° C.) is printed on the back so as to be 8 g / m 2 and stretched. Winded in the direction.
ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。 The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.
前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に4mmの重なりを設け固定した。前記重なり部は、外側側から、PET/レーザー光吸収剤層/PET/デザイン印刷層/シリンダとなる。 The cut end portion of the single wafer label was wound around the cylinder while sucking with air, and a 4 mm overlap was provided at both ends of the label to fix. The overlapping portion becomes PET / laser light absorber layer / PET / design printing layer / cylinder from the outer side.
ラベル重なり部に炭酸ガスレーザー光を照射して溶着した。照射条件は、コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)を使用し、パルス間隔500μs、パルス幅70μs、加工速度12m/minの条件でレーザ光を照射して溶着させた。なお、溶着線巾は約2mmとなるように焦点距離をずらしてレーザー光を照射した。これにより、筒状シュリンクラベルを調製した。 The label overlap portion was welded by irradiation with a carbon dioxide laser beam. DIAMOND K-250 (output 250W, 100Hz, wavelength 10.6μ) manufactured by Coherent Co., Ltd. is used as the irradiation condition, and laser beam irradiation is performed under the conditions of a pulse interval of 500μs, a pulse width of 70μs, and a processing speed of 12m / min. I let you. The laser beam was irradiated while shifting the focal length so that the welding line width was about 2 mm. Thereby, a cylindrical shrink label was prepared.
なお、接着強度は、剪断強度24N/15mm、剥離強度5.9N/15mmであった。 The adhesive strength was a shear strength of 24 N / 15 mm and a peel strength of 5.9 N / 15 mm.
次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで95℃×10秒加熱してラベルを収縮させた。 Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was shrunk by heating at 95 ° C. for 10 seconds in a hot air type shrink tunnel.
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.
(実施例6)
ポリエステル樹脂からなるレーザー光吸収剤層に代えて、ポリエステル樹脂(商品名「エリーテルUE3223」、Tg4℃)にパール顔料(メルク社製、商品名「レーザーフレア800」)を1:1で配合したレーザー光吸収剤層を8g/m2となるように裏印刷した以外は実施例2と同様に操作して、筒状シュリンクラベルおよびラベル付容器を製造した。なお、接着強度は、剪断強度30N/15mm、剥離強度6.5N/15mm)であった。
(Example 6)
A laser in which a pearl pigment (trade name “Laser Flare 800” manufactured by Merck & Co., Inc.) is blended at a ratio of 1: 1 to a polyester resin (trade name “Elitel UE3223”, Tg 4 ° C.) instead of the laser light absorber layer made of polyester resin. A cylindrical shrink label and a container with a label were manufactured in the same manner as in Example 2 except that the back printing was performed so that the light absorbent layer was 8 g / m 2 . The adhesive strength was a shear strength of 30 N / 15 mm and a peel strength of 6.5 N / 15 mm.
得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。 The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.
(比較例1)
レーザー光の照射条件を、キーエンスML−Z9520;波長10.6μを使用し、出力9W、加工速度750mm/sec、押さえ圧;溶着部はフリー、溶着部両サイドの未照射部分にSUS材を仮置して固定し、焦点を合わせて加工した以外は実施例2と同様に操作し、筒状シュリンクラベルおよびラベル付容器を製造した。結果を表1に示す。また、接着部の横断面を図11に示す。
(Comparative Example 1)
Laser light irradiation conditions: Keyence ML-Z9520; wavelength 10.6μ, output 9W, processing speed 750mm / sec, holding pressure; welded part is free, SUS material is temporarily applied to the unirradiated parts on both sides of the welded part A cylindrical shrink label and a container with a label were manufactured in the same manner as in Example 2 except that they were placed and fixed, and processed in focus. The results are shown in Table 1. Moreover, the cross section of an adhesion part is shown in FIG.
(比較例2)
図12に示すように、重ね部(37)の上側端部とラベル(30)の下側1枚部をまたいで、斜線で示す照射幅(36)にレーザー照射した以外は、実施例2と同様に操作した。この結果、溶着する前にラベルの下側1枚部分が切断された。
(Comparative Example 2)
As shown in FIG. 12, the laser beam was irradiated to the irradiation width (36) indicated by oblique lines across the upper end portion of the overlapping portion (37) and the lower one sheet portion of the label (30). The same operation was performed. As a result, the lower one sheet part of the label was cut before welding.
本発明に係る筒状シュリンクラベルは、炭酸ガスレーザー光で溶着によりラベルを筒状に成形するものであり、生産性高く、かつ接着剤を使用することなく筒状シュリンクラベルを製造することができ、有用である。 The cylindrical shrink label according to the present invention is formed in a cylindrical shape by welding with carbon dioxide laser light, and can be manufactured with high productivity and without using an adhesive. Is useful.
10・・・熱収縮性基材フィルム、
13・・・外層、
15・・・印刷層、
17・・・レーザー吸収剤層、
20・・・シリンダ、
25・・・空気孔、
30・・・ラベル、
35・・・レーザー溶着部、
37・・・ラベル重ね部、
90・・・容器、
100・・・筒状シュリンクラベル、
110・・・押さえ具。
10 ... heat-shrinkable substrate film,
13 ... outer layer,
15 ... printing layer,
17 ... laser absorber layer,
20 ... Cylinder,
25 ... Air holes,
30 ... label,
35 ... laser welding part,
37: Label overlapping part,
90 ... container,
100 ... cylindrical shrink label,
110: Presser.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007173316A JP5266673B2 (en) | 2007-06-29 | 2007-06-29 | Cylindrical shrink label, container with cylindrical shrink label |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007173316A JP5266673B2 (en) | 2007-06-29 | 2007-06-29 | Cylindrical shrink label, container with cylindrical shrink label |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009012780A JP2009012780A (en) | 2009-01-22 |
JP5266673B2 true JP5266673B2 (en) | 2013-08-21 |
Family
ID=40354168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007173316A Expired - Fee Related JP5266673B2 (en) | 2007-06-29 | 2007-06-29 | Cylindrical shrink label, container with cylindrical shrink label |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5266673B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5364039B2 (en) * | 2009-10-15 | 2013-12-11 | スタンレー電気株式会社 | Manufacturing method of resin molded products |
FR2977868A3 (en) * | 2011-07-12 | 2013-01-18 | Prot Decoration Conditionnement Pdc Europ | INSTALLATION FOR MANUFACTURING SLEEVES OR RETRACTABLE SLEEVES |
CN110174827B (en) * | 2019-04-30 | 2021-11-23 | 广东国溯科技有限公司 | 3D laser anti-counterfeit label spray printing device and method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0483637A (en) * | 1990-07-26 | 1992-03-17 | Du Pont Mitsui Polychem Co Ltd | Manufacture of cylindrical member for paper container |
JPH0977037A (en) * | 1995-09-13 | 1997-03-25 | Saraya Kk | Container |
JPH09226738A (en) * | 1996-02-23 | 1997-09-02 | Toyobo Co Ltd | Metal can and synthetic resin film for metal can |
JP3536644B2 (en) * | 1997-02-14 | 2004-06-14 | 東洋製罐株式会社 | Easy-open packaging materials and packaging bags |
ATE192692T1 (en) * | 1999-01-28 | 2000-05-15 | Leister Process Tech | LASER JOINING METHOD AND DEVICE FOR CONNECTING VARIOUS PLASTIC WORKPIECES OR PLASTIC WITH OTHER MATERIALS |
JP2001192036A (en) * | 1999-11-01 | 2001-07-17 | Lion Corp | Container, and method of forming character and pattern |
JP4605873B2 (en) * | 2000-09-01 | 2011-01-05 | 株式会社興人 | Shrinkable polyolefin film |
JP2005058869A (en) * | 2003-08-08 | 2005-03-10 | Mitsubishi Heavy Ind Ltd | Material liquid application header for thin film forming apparatus and thin film forming apparatus |
JP4121917B2 (en) * | 2003-08-28 | 2008-07-23 | アサヒビール株式会社 | Shrink label for container and shrink label coated container |
JP2005292195A (en) * | 2004-03-31 | 2005-10-20 | C I Kasei Co Ltd | Heat-shrinkable film for label |
JP4996836B2 (en) * | 2004-07-22 | 2012-08-08 | ダイセルポリマー株式会社 | Laser welding labels and composite molded products |
JP2006058647A (en) * | 2004-08-20 | 2006-03-02 | Dainippon Printing Co Ltd | Biodegradable shrinkable label, and container with the label |
ITMO20050230A1 (en) * | 2005-09-12 | 2007-03-13 | Sacmi Labelling S P A | APPARATUS AND METHOD TO OBTAIN LABELS |
JP2008284794A (en) * | 2007-05-18 | 2008-11-27 | Toyobo Co Ltd | Heat shrinkable label and method for manufacturing the same |
-
2007
- 2007-06-29 JP JP2007173316A patent/JP5266673B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009012780A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5088019B2 (en) | Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof | |
JP2009096527A (en) | Shrink label, container with tubular shrink label and manufacturing process therefor | |
JP5157145B2 (en) | Wound label, container with roll label, and manufacturing method thereof | |
KR100251400B1 (en) | In-mold label film and method | |
JP6210991B2 (en) | Cylindrical shrink label and manufacturing method thereof | |
JP5381085B2 (en) | Wrapped shrink label, container with rolled shrink label, and method for producing them | |
KR102360734B1 (en) | Composite preform and manufacturing method thereof, composite container and manufacturing method thereof, and product filled with beer in composite container | |
JP2008145498A (en) | Roll shrink label, container with roll shrink label, and manufacturing method of the same | |
JP7069005B2 (en) | Manufacturing method of packaging | |
JP2010173694A (en) | Shrink label, raw web for shrink label, container with shrink label, and method for manufacturing raw web for shrink label | |
JP6222172B2 (en) | label | |
JP2009012779A (en) | Cylindrical shrink label, container having cylindrical shrink label, and method for manufacturing them | |
JP2009119807A (en) | Laser fusible laminated material, laser fusing method, and packaging body | |
JP5476814B2 (en) | LASER PRINTED LAMINATE, LASER PRINTING METHOD, AND PACKAGE BODY USING THE LASER PRINTING LAMINATE | |
JP5266673B2 (en) | Cylindrical shrink label, container with cylindrical shrink label | |
JP4612278B2 (en) | Insulating label and labeled container | |
JP2009249002A (en) | Web for shrink label and container with shrink label | |
JP5169100B2 (en) | Laser-markable packaging materials and packaging bags | |
JP2012032657A (en) | Roll shrink label, container with roll shrink label, and method of manufacturing those | |
JP2013122514A (en) | Wraparound label | |
JP4718263B2 (en) | Cylindrical shrink label | |
JP2008152145A (en) | Body label | |
JP2009048147A (en) | Thermal-shrinkable label and method of sticking same | |
JP2022082378A (en) | Laminated sheet for tube container and tube container | |
JP5699312B2 (en) | Roll shrink label and method for producing container with roll shrink label |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5266673 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |