JP5144139B2 - Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve - Google Patents

Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve Download PDF

Info

Publication number
JP5144139B2
JP5144139B2 JP2007163850A JP2007163850A JP5144139B2 JP 5144139 B2 JP5144139 B2 JP 5144139B2 JP 2007163850 A JP2007163850 A JP 2007163850A JP 2007163850 A JP2007163850 A JP 2007163850A JP 5144139 B2 JP5144139 B2 JP 5144139B2
Authority
JP
Japan
Prior art keywords
treatment
nitriding
carbon
gas
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007163850A
Other languages
Japanese (ja)
Other versions
JP2009001863A (en
Inventor
朝博 坂田
崇則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water NV Inc
Original Assignee
Air Water NV Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water NV Inc filed Critical Air Water NV Inc
Priority to JP2007163850A priority Critical patent/JP5144139B2/en
Publication of JP2009001863A publication Critical patent/JP2009001863A/en
Application granted granted Critical
Publication of JP5144139B2 publication Critical patent/JP5144139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、窒化処理方法および異種材料接合機械部品、エンジンバルブの製造方法およびエンジンバルブに関するものである。   The present invention relates to a nitriding method, a dissimilar material joining machine component, an engine valve manufacturing method, and an engine valve.

浸炭処理や窒化処理などの表面硬化処理は、鋼材の耐磨耗性、耐焼付き性、疲労強度などの機械的性質を向上させるための手段として自動車部品や圧縮機などの各種機械部品を中心に幅広い分野で利用されている。これらのうち窒化処理は、鋼の変態点よりも低い温度で処理を行うため、歪の発生が少ないことなどの理由から、摺動部品を中心に様々な形状で精度を要求されるような部品に対しても適用されている。   Surface hardening treatments such as carburizing treatment and nitriding treatment are mainly used for various machine parts such as automobile parts and compressors as a means to improve mechanical properties such as wear resistance, seizure resistance and fatigue strength of steel materials. It is used in a wide range of fields. Of these, nitriding is performed at a temperature lower than the transformation point of steel, so parts that require precision in various shapes, mainly sliding parts, due to the fact that there is little distortion. It is also applied to.

このとき鋼材表面に形成される窒素化合物層は高度が高く、摺動する相手の金属材との反応性が母材よりも低いため、特に耐磨耗性や耐焼付性に優れるという性質を持つことから、ガス窒化処理、塩浴窒化処理、イオン窒化処理などの窒化処理方法にかかわらず、鋼材表面にFeN、FeNを主体とした窒素化合物を形成させ、部品の耐久性能を満たすことが行われている。 At this time, the nitrogen compound layer formed on the surface of the steel material is high in altitude, and has a property of being particularly excellent in wear resistance and seizure resistance because the reactivity with the sliding metal material is lower than that of the base material. Therefore, regardless of the nitriding treatment method such as gas nitriding treatment, salt bath nitriding treatment, ion nitriding treatment, etc., a nitrogen compound mainly composed of Fe 3 N and Fe 4 N is formed on the surface of the steel material to satisfy the durability performance of the parts. Things have been done.

窒化処理が適用されている機械部品の中で、例えば自動車部品として使用されるエンジンバルブがある。エンジンバルブは過酷な環境下で使用されることから、耐磨耗性だけではなく、耐熱性および耐衝撃性などが要求される部品である。特に、排気弁は高温の排気ガスに曝され、フェース部の最高温度は約700℃にも達する。このため、排気弁でもより高温となる弁傘側の部分には、Crを多く含有するSUH35、SUH36などのオーステナイト系の耐熱鋼が用いられる場合が多く、排気弁でも温度が低い部分となる弁軸側の部分には、よりCrやNiの含有量が少なく廉価なSUH3、SUH11などのマルテンサイト系の耐熱鋼が使用され、図1に例示するように、それらの異種材料を弁軸側の途中で接合した接合バルブが主に用いられてきている。   Among mechanical parts to which nitriding is applied, there are engine valves used as automobile parts, for example. Since engine valves are used in harsh environments, they are components that require not only wear resistance but also heat resistance and impact resistance. In particular, the exhaust valve is exposed to high-temperature exhaust gas, and the maximum temperature of the face portion reaches about 700 ° C. For this reason, austenitic heat-resistant steel such as SUH35 and SUH36 containing a large amount of Cr is often used for the portion on the valve umbrella side where the temperature becomes higher even in the exhaust valve. For the shaft side part, heat-resistant steels such as SUH3 and SUH11, which have lower Cr and Ni contents and are less expensive, are used. As illustrated in FIG. A joining valve joined in the middle has been mainly used.

近年では、エンジンの燃焼効率改善などを目的として、燃焼温度の更なる高温化が行われる傾向にあり、そのような高温環境では上記のような耐熱鋼では十分な耐磨耗性、耐衝撃性を得ることができない場合がある。そのため、より高温での耐熱性に優れるNiを多く含有するNCF750、NCF751などの耐食耐熱合金を弁傘側に用いたエンジンバルブが使用され始めている(下記の特許文献1)。   In recent years, there has been a tendency to further increase the combustion temperature for the purpose of improving the combustion efficiency of the engine. In such a high temperature environment, the above heat resistant steel has sufficient wear resistance and impact resistance. May not be able to get. Therefore, an engine valve using a corrosion-resistant heat-resistant alloy such as NCF750 or NCF751 containing a large amount of Ni, which is superior in heat resistance at a higher temperature, on the valve umbrella side has begun to be used (Patent Document 1 below).

ところが、NCF750、NCF751などの耐食耐熱合金は、Niを多く含有しているため、その表面には侵入を阻害するNiOなどの非常に還元が困難な酸化皮膜が形成されており、通常のガス窒化処理はもちろんのこと、窒化力の強い塩浴窒化処理やイオン窒化処理等の方法であっても均一な窒化層を形成することが困難である。   However, since corrosion-resistant and heat-resistant alloys such as NCF750 and NCF751 contain a large amount of Ni, an oxide film that is very difficult to reduce, such as NiO that inhibits penetration, is formed on the surface thereof. Of course, it is difficult to form a uniform nitride layer even by a method such as salt bath nitriding or ion nitriding with strong nitriding power.

上記のような難窒化材である耐食耐熱合金を窒化する方法として、窒化処理の前処理としてフッ化処理を行なう方法がある。この方法は酸化物よりもフッ化物の方が安定でありながら、還元雰囲気では酸化物よりもフッ化物の方が還元され易い性質を利用するもので、上記の非常に還元しづらい酸化皮膜をフッ化物膜に一旦置換した後、例えばNHのように窒化処理温度域で還元性のある窒素源ガスを供給することによって、NHの分解によって発生する水素で上記のフッ化物膜を容易に還元除去するのと同時に、NHの分解によって発生する窒素を処理品の内部へ侵入、拡散させることができる。この方法によって通常窒化処理が困難な耐食耐熱合金であっても均一な窒化層の形成を行うことが可能になる(下記の特許文献2)。
特開平9−256821 特開平5−195193
As a method for nitriding the corrosion-resistant and heat-resistant alloy that is a hardly nitrided material as described above, there is a method of performing a fluorination treatment as a pretreatment of the nitriding treatment. This method uses the property that fluoride is more easily reduced than oxide in the reducing atmosphere, while fluoride is more stable than oxide. After replacement with a fluoride film, the above fluoride film can be easily reduced with hydrogen generated by the decomposition of NH 3 by supplying a nitrogen source gas having a reducing property in the nitriding temperature range, for example, NH 3. Simultaneously with the removal, nitrogen generated by the decomposition of NH 3 can enter and diffuse into the treated product. This method makes it possible to form a uniform nitrided layer even with a corrosion-resistant and heat-resistant alloy that is normally difficult to nitride (Patent Document 2 below).
JP-A-9-256821 JP-A-5-195193

しかしながら、窒化処理を行い材料表面に窒化層を形成させると、被処理物は窒素化合物の形成および窒素原子の侵入によって膨張する現象が生じる。例えば、弁軸側の素材がフェライトやマルテンサイトを主体とする鋼種で構成され、弁傘側の素材がオーステナイトを主体とする耐食耐熱合金で構成されたエンジンバルブに窒化処理を行なった場合、それぞれの材料で窒素原子の拡散速度が違うことから、2種類の材料の双方に所定の窒化層を形成することが極めて困難であった。   However, when a nitriding treatment is performed to form a nitride layer on the material surface, the object to be processed expands due to the formation of nitrogen compounds and the intrusion of nitrogen atoms. For example, when the valve shaft side material is composed of steel types mainly composed of ferrite and martensite, and the valve head side material is composed of a corrosion resistant heat resistant alloy mainly composed of austenite, nitriding treatment is performed, respectively. It was extremely difficult to form a predetermined nitride layer on both of the two types of materials, because the diffusion rate of nitrogen atoms was different for these materials.

加えて、形成される窒化層の状態も違うことから、その膨張量も異なって窒化処理後の膨張量に差が発生し、その接合部分の両側で軸径差が生じる。このような軸径差が生じた場合、エンジンが駆動する際に異音を発したり、ガス漏れが生じたりするなどの問題が発生する。その対策として窒化処理後、接合部分を含めた軸部を研削や研磨することにより接合部の軸径差を低減させる方法も考えられるが、上記の研削や研磨によって窒化層厚さが減少して十分な耐磨耗性が得られない可能性があるのと同時に、工程が増えるためコストの上昇につながるという問題点がある。   In addition, since the state of the formed nitride layer is also different, the expansion amount is also different, resulting in a difference in the expansion amount after the nitriding treatment, and a shaft diameter difference is generated on both sides of the joint portion. When such a shaft diameter difference occurs, problems such as abnormal noise or gas leakage occur when the engine is driven. As a countermeasure, after the nitriding treatment, a method of reducing the shaft diameter difference of the joint portion by grinding or polishing the shaft portion including the joint portion may be considered, but the nitride layer thickness is reduced by the above grinding and polishing. There is a possibility that sufficient wear resistance may not be obtained, and at the same time, the number of processes increases, leading to an increase in cost.

本発明は、このような事情に鑑みなされたものであり、異種材料の接合部材において、双方の材料に所定の窒化層を形成し、窒化処理における接合部の寸法変化を小さくした窒化処理方法および異種材料接合機械部品を提供することを第1の目的とし、弁軸側と弁傘側が異なる材料から構成されたエンジンバルブについて、双方の材料に所定の窒化層を形成し、窒化処理による接合部の軸径差を小さくしたエンジンバルブの製造方法およびエンジンバルブを提供することを第2の目的とする。   The present invention has been made in view of such circumstances, and in a joining member of different materials, a predetermined nitriding layer is formed on both materials, and a nitriding treatment method in which a dimensional change of a joint portion in nitriding treatment is reduced and A first object is to provide a dissimilar material joining machine part, and a predetermined nitrided layer is formed on both materials of an engine valve composed of different materials on the valve shaft side and the valve head side, and a joining part by nitriding treatment A second object of the present invention is to provide an engine valve manufacturing method and an engine valve with a reduced shaft diameter difference.

上記目的を達成するため、本発明の第1の窒化処理方法は、フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行うことにより、窒化処理における第1材と第2材の寸法変化の差を小さくすることを要旨とする。   In order to achieve the above object, the first nitriding method of the present invention is a bonding member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are bonded. On the other hand, before performing the nitriding treatment for heating and holding in the nitriding gas atmosphere to form a nitride layer on the surface layer portion, the fluorination treatment by heating and holding in the fluorine-based gas atmosphere is performed in advance, and in the carbon source gas atmosphere. The gist is to reduce the difference in the dimensional change between the first material and the second material in the nitriding treatment by performing a carbon diffusion treatment in which a carbon diffusion layer is formed on the surface layer by heating and holding.

上記目的を達成するため、本発明の第2の窒化処理方法は、フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行い、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、窒化処理における第1材と第2材の寸法変化の差を制御することを要旨とする。   In order to achieve the above object, the second nitriding method of the present invention provides a joining member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are joined. On the other hand, before performing the nitriding treatment for heating and holding in the nitriding gas atmosphere to form a nitride layer on the surface layer portion, the fluorination treatment by heating and holding in the fluorine-based gas atmosphere is performed in advance, and in the carbon source gas atmosphere. A carbon diffusion treatment for forming a carbon diffusion layer on the surface layer portion by heating and holding is performed, and the carbon potential of the atmospheric gas in the carbon diffusion treatment is controlled, whereby a difference in dimensional change between the first material and the second material in the nitriding treatment is achieved. The gist is to control.

上記目的を達成するため、本発明の異種金属接合機械部品は、フェライト相またはマルテンサイト相を主体とした第1材と、Niを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材とが接合されて構成された異種材料接合機械部品であって
フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の寸法差が片側で2μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成されたことを要旨とする。
In order to achieve the above object, the dissimilar metal joining machine component of the present invention includes a first material mainly composed of a ferrite phase or a martensite phase, and a heat resistant steel or Ni composed mainly of an austenitic phase containing 20 mass% or more of Ni. A dissimilar material joining machine component formed by joining a second material of a base alloy,
In addition to the fluorination treatment that is heated and held in the fluorine-based gas atmosphere, the carbon diffusion treatment is performed in which the carbon diffusion layer is formed in the surface layer portion by heating and holding in the carbon source gas atmosphere. Nitriding treatment is performed to form a nitride layer on the surface layer portion, and the dimensional difference between the first material and the second material after the nitriding treatment is 2 μm or less on one side, and both the first material and the second material The gist of this is that a nitride layer of 5 μm or more is formed on the surface.

上記目的を達成するため、本発明のエンジンバルブの製造方法は、弁軸側の素材がフェライト相またはマルテンサイト相を主体とした鋼材であり、弁傘側の素材がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金から構成されたエンジンバルブに対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行い、上記炭素拡散処理を、炭素源ガス濃度が5容量%以上となる雰囲気中において300〜600℃の温度で10分以上保持することを要旨とする。   In order to achieve the above object, the method for manufacturing an engine valve according to the present invention is such that the material on the valve shaft side is a steel material mainly composed of a ferrite phase or a martensite phase, and the material on the valve head side contains 20% by mass or more of Ni. Before performing nitriding treatment to form a nitride layer on the surface layer by heating and holding the engine valve composed of heat-resistant steel or Ni-base alloy mainly composed of austenite phase to form a nitride layer on the surface layer portion While performing the fluorination treatment that is heated and held in the gas atmosphere, the carbon diffusion treatment is performed in which the carbon diffusion layer is formed in the surface layer portion by heating and holding in the carbon source gas atmosphere. The gist is to hold at a temperature of 300 to 600 ° C. for 10 minutes or more in an atmosphere of 5% by volume or more.

上記目的を達成するため、本発明のエンジンバルブは、弁軸側がフェライト相またはマルテンサイト相を主体とした鋼の第1材であり、弁傘側がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材であり、上記第1材と第2材が軸部で接合されて構成されたエンジンバルブであって、
フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の軸径差が4μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成されたことを要旨とする。
In order to achieve the above object, the engine valve of the present invention is a first steel material mainly composed of a ferrite phase or a martensite phase on the valve shaft side, and mainly composed of an austenitic phase containing 20% by mass or more of Ni on the valve head side. A heat-resistant steel or Ni-based alloy second material, and an engine valve constructed by joining the first material and the second material at a shaft portion,
In addition to the fluorination treatment that is heated and held in the fluorine-based gas atmosphere, the carbon diffusion treatment is performed in which the carbon diffusion layer is formed in the surface layer portion by heating and holding in the carbon source gas atmosphere. Nitriding treatment is performed to form a nitride layer on the surface layer portion, the difference in the axial diameter of the joint portion between the first material and the second material after the nitriding treatment is 4 μm or less, and both the first material and the second material are The gist is that a nitride layer of 5 μm or more is formed on the surface.

なお、本発明において、上記炭素源ガス雰囲気としては、炭素源ガスを含むガス、還元性ガスと炭素源ガスの両方を含むガス、還元性のある炭素源ガスのいずれかを用いることができる。   In the present invention, as the carbon source gas atmosphere, any of a gas containing a carbon source gas, a gas containing both a reducing gas and a carbon source gas, and a reducing carbon source gas can be used.

本発明の第1の窒化処理方法は、フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化処理を行なう前に、あらかじめフッ化処理を行うとともに炭素拡散処理を行うことにより、窒化処理における第1材と第2材の寸法変化の差を小さくする。   In the first nitriding method of the present invention, a nitriding treatment is performed on a bonding member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are bonded. Further, by performing the fluorination treatment and the carbon diffusion treatment in advance, the difference in dimensional change between the first material and the second material in the nitriding treatment is reduced.

このようにすることにより、被処理物である接合部材の表面に炭素が優先的に拡散し、素材がフェライト相もしくはマルテンサイト相を主体とする第1材ではその後の窒化処理でその表面から窒素を侵入、拡散させようとしても、窒素原子は表層部に侵入している炭素原子の間をかい潜って侵入するか、あるいは侵入している炭素原子をさらに深部まで押し込むようにしながら侵入することになる。したがって、炭素拡散処理を実施しない場合に比べて窒素原子の侵入と拡散が抑制されることにより窒化層の成長もある程度抑制され、結果的に窒化処理による過度な膨張を抑制することができる。   By doing so, carbon diffuses preferentially on the surface of the joining member that is the object to be processed, and in the first material mainly composed of ferrite phase or martensite phase, nitrogen is removed from the surface by subsequent nitriding treatment. Even when trying to penetrate and diffuse, nitrogen atoms penetrate between the carbon atoms invading into the surface layer part, or penetrate while pushing the invading carbon atoms deeper. Become. Therefore, since the intrusion and diffusion of nitrogen atoms are suppressed as compared with the case where the carbon diffusion process is not performed, the growth of the nitride layer is also suppressed to some extent, and as a result, excessive expansion due to the nitriding process can be suppressed.

一方、素材がオーステナイト相を主体とする第2材では、素材がフェライト相やマルテンサイト相を主体とする材料に比較して窒素および炭素の拡散速度自体は遅いものの、窒素および炭素の固溶可能量が多いため、炭素拡散処理によってその表面に優先的に炭素を拡散させたとしても、その後行われる窒化処理において窒素の侵入を妨げる効果は軽微である。   On the other hand, in the second material whose material is mainly austenite phase, the diffusion rate of nitrogen and carbon itself is slower than the material whose material is mainly ferrite phase and martensite phase, but nitrogen and carbon can be dissolved. Since the amount is large, even if carbon is diffused preferentially on the surface by the carbon diffusion treatment, the effect of preventing the penetration of nitrogen in the subsequent nitriding treatment is slight.

フェライト相もしくはマルテンサイト相を主体とする第1材であっても、フッ化処理を実施しなければ、その表面に形成されている酸化皮膜の影響によって均一に炭素原子を侵入、拡散させることが困難であるが、上述した炭素拡散処理の前にフッ化処理を実施することにより、炭素原子の侵入と拡散が可能となり、更にその後行なわれる窒化処理においても均一な窒化層の形成が可能となる。   Even if it is the 1st material which mainly has a ferrite phase or a martensite phase, if it does not carry out fluorination treatment, it will invade and diffuse a carbon atom uniformly by the influence of the oxide film formed in the surface. Although difficult, by performing the fluorination treatment before the above-described carbon diffusion treatment, carbon atoms can penetrate and diffuse, and a uniform nitride layer can be formed even in the nitridation treatment performed thereafter. .

このように、窒化処理の前に、フッ化処理と炭素拡散処理を行なうことにより、第1材と第2材が接合された接合部材であっても、2種類の材料の双方に所定の窒化層を形成することができる。また、接合部に大きな寸法差を発生させることなく、窒化処理後の研磨などの後工程を必要とせず、双方の材料に耐磨耗性に優れた窒化層を形成させることが可能となる。また、第1材において窒化処理による窒化層の成長が抑制されて過度な膨張が抑制される一方、第2材において窒化処理における窒素侵入を妨げる作用が軽微であることから、第1材と第2材での窒化処理による寸法変化の差が小さくなる。   As described above, by performing the fluorination treatment and the carbon diffusion treatment before the nitriding treatment, even if the joining member is obtained by joining the first material and the second material, predetermined nitriding is performed on both of the two types of materials. A layer can be formed. In addition, it is possible to form a nitride layer having excellent wear resistance on both materials without generating a large dimensional difference in the joint and without requiring a post-process such as polishing after nitriding. In addition, the growth of the nitride layer due to the nitriding treatment in the first material is suppressed and excessive expansion is suppressed. On the other hand, the action of preventing the nitrogen intrusion in the nitriding treatment in the second material is slight. The difference in dimensional change due to nitriding between the two materials is reduced.

本発明の第2の窒化処理方法は、フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化処理を行なう前に、あらかじめフッ化処理を行うとともに炭素拡散処理を行い、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、窒化処理における第1材と第2材の寸法変化の差を制御する。   According to the second nitriding method of the present invention, before the nitriding treatment is performed on the bonding member in which the first material mainly composed of the ferrite phase or the martensite phase and the second material mainly composed of the austenite phase are bonded. In addition, the difference in dimensional change between the first material and the second material in the nitriding treatment is controlled by performing the fluorination treatment and the carbon diffusion treatment in advance and controlling the carbon potential of the atmospheric gas in the carbon diffusion treatment.

上述したように、炭素拡散処理により、フェライト相もしくはマルテンサイト相を主体とする第1材ではその後の窒化処理での窒素原子の侵入と拡散が抑制されることから、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、その後の窒化処理における第1材の膨張度合を制御できる。これにより、窒化処理における第1材と第2材の寸法変化の差を制御することが可能となるのである。   As described above, in the first material mainly composed of the ferrite phase or martensite phase by the carbon diffusion treatment, intrusion and diffusion of nitrogen atoms in the subsequent nitriding treatment are suppressed. By controlling the carbon potential, the degree of expansion of the first material in the subsequent nitriding treatment can be controlled. Thereby, it becomes possible to control the difference in dimensional change between the first material and the second material in the nitriding treatment.

そして、本発明の異種材料接合機械部品は、フェライト相またはマルテンサイト相を主体とした第1材と、Niを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材とが接合されて構成され、フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の寸法差が片側で2μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成され、2種の材料の双方に、耐磨耗性に優れた窒化層を形成されているのである。
The dissimilar material joining machine part of the present invention is a second material of a heat-resisting steel or Ni-based alloy mainly composed of a first material mainly composed of a ferrite phase or a martensite phase and an austenite phase containing Ni of 20% by mass or more. The material is bonded to each other, and together with the fluorination treatment that is heated and held in a fluorine-based gas atmosphere, the carbon diffusion treatment that is heated and held in the carbon source gas atmosphere to form a carbon diffusion layer on the surface layer portion is further performed. A nitriding treatment is performed in which a nitride layer is formed in the surface layer portion by heating and holding in a nitriding gas atmosphere, and the dimensional difference between the first material and the second material after the nitriding treatment is 2 μm or less on one side, and A nitride layer of 5 μm or more is formed on the surface of both the first material and the second material, and a nitride layer having excellent wear resistance is formed on both of the two materials.

本発明の異種材料接合機械部品、上記窒化層を形成するための窒化処理後における第1材と第2材の接合部の寸法差が片側で2μm以下であるため、接合部の寸法差が小さく、研磨などの後工程を必要とせず、耐磨耗性に優れた窒化層が形成されるのである。
Dissimilar materials bonded mechanical component of the present invention, since the size difference between the junction of the first member and the second member after the nitriding treatment for forming the nitride layer is 2μm or less on one side, dimensional differences junction A nitride layer that is small and does not require post-processing such as polishing and has excellent wear resistance is formed.

本発明のエンジンバルブの製造方法は、弁軸側の素材がフェライト相またはマルテンサイト相を主体とした鋼材であり、弁傘側の素材がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金から構成されたエンジンバルブに対し、窒化処理を行なう前に、あらかじめフッ化処理を行うとともに炭素拡散処理を行い、上記炭素拡散処理を、炭素源ガス濃度が5容量%以上となる雰囲気中において300〜600℃の温度で10分以上保持する。   In the method for producing an engine valve of the present invention, the material on the valve shaft side is a steel material mainly composed of a ferrite phase or a martensite phase, and the material on the valve head side is mainly composed of an austenite phase containing 20% by mass or more of Ni. An engine valve made of heat-resistant steel or Ni-based alloy is subjected to fluorination treatment and carbon diffusion treatment before nitriding treatment, and the carbon diffusion treatment is performed at a carbon source gas concentration of 5% by volume or more. In an atmosphere to be maintained at a temperature of 300 to 600 ° C. for 10 minutes or more.

このようにすることにより、被処理物であるエンジンバルブの表面に炭素が優先的に拡散し、素材がフェライト相もしくはマルテンサイト相を主体とする鋼材ではその後の窒化処理でその表面から窒素を侵入、拡散させようとしても、窒素原子は表層部に侵入している炭素原子の間をかい潜って侵入するか、あるいは侵入している炭素原子をさらに深部まで押し込むようにしながら侵入することになる。したがって、炭素拡散処理を実施しない場合に比べて窒素原子の侵入と拡散が抑制されることにより窒化層の成長も抑制される。   In this way, carbon diffuses preferentially on the surface of the engine valve, which is the object to be treated, and in the case of steel materials mainly composed of ferrite phase or martensite phase, nitrogen enters the surface by the subsequent nitriding treatment. Even if it is intended to diffuse, nitrogen atoms penetrate between the carbon atoms entering the surface layer part, or enter while pushing the penetrated carbon atoms deeper. Therefore, the growth and growth of the nitride layer can be suppressed by suppressing the intrusion and diffusion of nitrogen atoms compared to the case where the carbon diffusion treatment is not performed.

一方、素材がオーステナイト相を主体とする材料、特にNiを多く含有する耐食耐熱合金などでは、素材がフェライト相やマルテンサイト相を主体とする材料に比較して窒素および炭素の拡散速度自体は遅いものの、窒素および炭素の固溶可能量が多いため、炭素拡散処理によってその表面に優先的に炭素を拡散させたとしても、その後行われる窒化処理において窒素の侵入を妨げる効果は軽微である。   On the other hand, in the case of materials mainly composed of austenite phase, especially corrosion-resistant heat-resistant alloys containing a large amount of Ni, the diffusion rate of nitrogen and carbon itself is slower than materials mainly composed of ferrite phase and martensite phase. However, since nitrogen and carbon can be dissolved in a large amount, even if carbon is preferentially diffused on the surface by the carbon diffusion treatment, the effect of preventing the penetration of nitrogen in the subsequent nitriding treatment is slight.

素材がフェライト相もしくはマルテンサイト相を主体とする比較的Crなどの含有量が少ない材料であっても、フッ化処理を実施しなければ、その表面に形成されている酸化皮膜の影響によって均一に炭素原子を侵入、拡散させることが困難であるが、上述した炭素拡散処理の前にフッ化処理を実施することにより、炭素原子の侵入と拡散が可能となり、更にその後行なわれる窒化処理工程においても均一な硬化層の形成が可能となる。   Even if the material is a material mainly composed of a ferrite phase or a martensite phase and containing a relatively small amount of Cr or the like, if the fluorination treatment is not performed, the material is uniformly applied due to the influence of the oxide film formed on the surface. Although it is difficult to intrude and diffuse carbon atoms, it is possible to intrude and diffuse carbon atoms by performing the fluorination treatment before the above-described carbon diffusion treatment, and also in the nitriding treatment process performed thereafter. A uniform cured layer can be formed.

上述したように、窒化処理の前に、フッ化処理と炭素拡散処理を行なうことにより、異種材料が接合された接合バルブであっても、2種類の材料の双方に所定の窒化層を形成することができる。また、接合部に大きな軸径差を発生させることなく、窒化処理後の研磨などの後工程を必要とせず、双方の材料に耐磨耗性に優れた窒化層を形成させることが可能となる。また、フェライト相もしくはマルテンサイト相を主体とする材料において窒化処理による窒化層の成長が抑制されて過度な膨張が抑制される一方、オーステナイト相を主体とする材料において窒化処理における窒素侵入を妨げる作用が軽微であることから、双方の材料での窒化処理による寸法変化の差が小さくなる。   As described above, by performing the fluorination treatment and the carbon diffusion treatment before the nitriding treatment, a predetermined nitrided layer is formed on both of the two types of materials even in the joining valve in which different materials are joined. be able to. In addition, it is possible to form a nitride layer having excellent wear resistance on both materials without generating a large shaft diameter difference at the joint and without requiring a post-process such as polishing after nitriding. . In addition, the growth of the nitrided layer due to nitriding treatment is suppressed in materials mainly composed of ferrite phase or martensite phase, and excessive expansion is suppressed. On the other hand, the material mainly composed of austenite phase prevents nitrogen penetration during nitriding treatment. Therefore, the difference in dimensional change due to the nitriding treatment between both materials is small.

そして、本発明のエンジンバルブは、弁軸側がフェライト相またはマルテンサイト相を主体とした鋼の第1材であり、弁傘側がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材であり、上記第1材と第2材が軸部で接合されて構成され、フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の軸径差が4μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成され、2種の材料の双方に、耐磨耗性に優れた窒化層を形成されているのである。
The engine valve of the present invention is a first material of steel mainly composed of a ferrite phase or a martensite phase on the valve shaft side, and a heat resistant steel mainly composed of an austenitic phase containing 20% by mass or more of Ni on the valve head side. Ni-base alloy second material, composed of the first material and the second material joined at the shaft , heated and held in a carbon source gas atmosphere together with a fluorination treatment that is heated and held in a fluorine-based gas atmosphere Then, a carbon diffusion treatment for forming a carbon diffusion layer on the surface layer portion is performed, and further, a nitridation treatment for forming a nitride layer on the surface layer portion by heating and holding in a nitriding gas atmosphere is performed. The difference in the axial diameter of the joint between the material and the second material is 4 μm or less, and a nitride layer of 5 μm or more is formed on the surface of both the first material and the second material. A nitride layer with excellent properties is formed It is.

本発明のエンジンバルブ、上記窒化層を形成するための窒化処理後における第1材と第2材の接合部の軸径差が4μm以下であるため、接合部の軸径差が小さく、研磨などの後工程を必要とせず、耐磨耗性に優れた窒化層が形成されるのである。 An engine valve of the present invention, since the shaft diameter difference junction of the first member and the second member after the nitriding treatment for forming the nitride layer is 4μm or less, small axial diameter difference of the joint, grinding Thus, a nitride layer having excellent wear resistance is formed without the need for subsequent processes.

次に本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described.

本発明の窒化処理方法は、フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行う。   In the nitriding method of the present invention, a bonded member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are heated and held in a nitriding gas atmosphere. Then, before performing the nitriding treatment to form a nitride layer on the surface layer portion, the fluorination treatment is performed by heating and holding in a fluorine-based gas atmosphere in advance, and the carbon diffusion layer is formed on the surface layer portion by heating and holding in the carbon source gas atmosphere. A carbon diffusion treatment is performed to form the carbon.

対象とする接合部材を構成する第1材としては、フェライト相またはマルテンサイト相を主体とした鋼材が用いられ、例えば、高張力鋼、機械構造用鋼、快削鋼、炭素工具鋼、合金工具鋼、高速度鋼、軸受鋼、ばね鋼、フェライト系耐熱鋼、マルテンサイト系耐熱鋼等を用いることができる。これらは、塑性加工や切削加工等により所定の部品形状に成形した後、あらかじめ所定の熱処理を施すことができる。   As the first material constituting the target joining member, a steel material mainly composed of a ferrite phase or a martensite phase is used. For example, high-tensile steel, steel for machine structure, free-cutting steel, carbon tool steel, alloy tool Steel, high speed steel, bearing steel, spring steel, ferritic heat resistant steel, martensitic heat resistant steel and the like can be used. These can be subjected to a predetermined heat treatment in advance after being formed into a predetermined part shape by plastic processing or cutting.

上記接合部材を構成する第2材としては、Niを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金を好適に用いることができる。   As the second material constituting the joining member, a heat-resistant steel or Ni-based alloy mainly composed of an austenite phase containing 20 mass% or more of Ni can be suitably used.

例えば、上記耐熱鋼としては、Cr−Ni系のオーステナイト系耐熱鋼、Cr−Ni−Mn系のオーステナイト系耐熱鋼、18−8鋼にNb、Ti、Moを添加した18−8Nb鋼、18−8Ti鋼、18−8Mo鋼、18−8TiNb鋼、23−13鋼、25−20鋼、16−30鋼等を用いることができる。また、エンジンバルブ用として用いられるCr−Ni−Mn系耐熱鋼、Cr−Ni系耐熱鋼等も好適に用いることができる。   For example, as the heat-resistant steel, Cr-Ni-based austenitic heat-resistant steel, Cr-Ni-Mn-based austenitic heat-resistant steel, 18-8 steel added with Nb, Ti, Mo, 18-8 Nb steel, 18- 8Ti steel, 18-8Mo steel, 18-8TiNb steel, 23-13 steel, 25-20 steel, 16-30 steel and the like can be used. In addition, Cr—Ni—Mn heat resistant steel, Cr—Ni heat resistant steel and the like used for engine valves can also be suitably used.

また、上記Ni基合金としては、Inconel,Hastelloy,Nimonic,Udimet,Rene41,Astoroy,Waspaloy(いずれも登録商標),D979,M252,IN738,IN100等の各種ニッケル基耐熱合金を用いることができる。   As the Ni-based alloy, various nickel-based heat-resistant alloys such as Inconel, Hastelloy, Nimonic, Udimet, Rene41, Astroy, Waspaloy (all are registered trademarks), D979, M252, IN738, IN100, and the like can be used.

上記接合部材としては、例えば、自動車用等のエンジンバルブを挙げることができる。上記エンジンバルブとしては、弁軸側の素材としてフェライト相またはマルテンサイト相を主体とした鋼材である第1材を用い、弁傘側の素材としてNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金である第2材を用い、弁軸側の第1材と弁傘側の第2材を軸部で接合した接合バルブを用いることができる。   Examples of the joining member include an engine valve for automobiles. As the engine valve, the first material, which is a steel material mainly composed of a ferrite phase or a martensite phase, is used as a material on the valve shaft side, and an austenite phase containing 20% by mass or more of Ni is mainly used as a material on the valve head side. It is possible to use a joint valve obtained by joining the first material on the valve shaft side and the second material on the valve head side at the shaft portion using the second material which is the heat-resistant steel or Ni-based alloy.

上記接合部材を所定の熱処理炉内に装入し、
(1)あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行い、
(2)炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行い、
(3)その後、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう。
以下、各工程について説明する。
The joint member is charged into a predetermined heat treatment furnace,
(1) Perform fluorination treatment by heating and holding in a fluorine-based gas atmosphere in advance.
(2) A carbon diffusion treatment is performed by heating and holding in a carbon source gas atmosphere to form a carbon diffusion layer on the surface layer portion,
(3) Thereafter, a nitriding treatment is performed in which a nitride layer is formed on the surface layer portion by heating and holding in a nitriding gas atmosphere.
Hereinafter, each step will be described.

(1)フッ化処理工程
上記フッ化処理工程は、まずエンジンバルブ等の接合部材をフッ素源ガスを含む雰囲気に加熱保持してエンジンバルブ表面に形成している酸化物膜を除去しフッ化物膜を形成させる。
(1) Fluorination treatment step In the fluorination treatment step, first, a joining member such as an engine valve is heated and held in an atmosphere containing a fluorine source gas to remove an oxide film formed on the surface of the engine valve to remove a fluoride film. To form.

上記フッ化処理に使用するフッ素源ガスとしては、酸化物膜を形成している母材成分であるFe、CrおよびNiなどに対して酸素よりも親和性が強いハロゲン系物質であるフッ素系ガス(フッ素化合物ガスまたはフッ素ガスを含有するガス)が用いられる。このフッ素系ガスとしては、フッ素化合物、例えばNF、BF、CF、SFなどを主成分とするガスやFを主成分とするガスがあげられる。通常は、この主成分ガスを窒素ガスなどの希釈ガスで希釈してフッ素系ガスとして使用する。これらのフッ素系ガスに用いられる主成分ガスのうち、反応性、取り扱い性などの面でNFが最も優れており、実用的である。 The fluorine source gas used for the fluorination treatment is a fluorine-based gas that is a halogen-based substance having a stronger affinity than oxygen for Fe, Cr, Ni, etc., which are base material components forming an oxide film. (Fluorine compound gas or gas containing fluorine gas) is used. Examples of the fluorine-based gas include a gas mainly containing a fluorine compound, for example, NF 3 , BF 3 , CF 4 , SF 6 , and a gas mainly containing F 2 . Usually, this main component gas is diluted with a diluent gas such as nitrogen gas and used as a fluorine-based gas. Of the main component gases used for these fluorine-based gases, NF 3 is the most excellent in terms of reactivity and handling properties and is practical.

上記フッ素系ガス雰囲気でエンジンバルブを、例えばNFを含む窒素ガス雰囲気中で200〜600℃の温度域に10〜60分保持することでNFが分解して活性なFが発生し、エンジンバルブ表面の酸化物が置換されて酸化物よりも安定なフッ化物膜が形成される。このフッ化物膜は還元性雰囲気に曝されると容易に還元、除去されるため、この方法によって窒素や炭素の原子が侵入、拡散する際の障壁となる酸化物膜などの無い表面が現れることになるため、ガス窒化処理およびガス軟窒化処理の前処理として極めて適した処理である。なお上記の処理温度および処理時間については処理を行なうエンジンバルブの材質、表面状態などに応じて、表面の酸化物膜がフッ化物膜に置換できるよう適当な条件を設定する。 By holding the engine valve in a nitrogen gas atmosphere containing, for example, NF 3 in a temperature range of 200 to 600 ° C. for 10 to 60 minutes in the above fluorine-based gas atmosphere, NF 3 is decomposed to generate active F, and the engine The oxide on the valve surface is replaced to form a fluoride film that is more stable than the oxide. Since this fluoride film is easily reduced and removed when exposed to a reducing atmosphere, this method will result in the appearance of a surface that does not have an oxide film that becomes a barrier when nitrogen and carbon atoms enter and diffuse. Therefore, this process is extremely suitable as a pretreatment for gas nitriding and gas soft nitriding. In addition, about said process temperature and process time, suitable conditions are set so that the oxide film of a surface can be substituted by a fluoride film according to the material, surface state, etc. of the engine valve which processes.

上述した理由により、フッ化処理の後に窒化処理を行なうことによって、エンジンバルブの表面に容易に均一な窒化層を得ることが可能になる。またフッ化物膜が還元され酸化物膜などのない表面は窒素だけでなく炭素も浸透、拡散し易い状態となっているため、引き続き実施する炭素拡散処理工程において炭素を拡散させる前処理としても極めて適した処理である。   For the reasons described above, it is possible to easily obtain a uniform nitride layer on the surface of the engine valve by performing nitriding after fluorination. Moreover, since the fluoride film is reduced and the surface without the oxide film is in a state where not only nitrogen but also carbon easily permeates and diffuses, it is extremely pretreatment for diffusing carbon in the subsequent carbon diffusion treatment process. It is a suitable process.

このとき、フッ素系ガス雰囲気のフッ素化合物またはフッ素の濃度は1000〜10000ppmとするのが好ましい。   At this time, the concentration of the fluorine compound or fluorine in the fluorine-based gas atmosphere is preferably 1000 to 10,000 ppm.

またこのフッ化処理工程については、そのまま同一の炉を用いて炭素拡散処理工程および窒化処理工程を実施することも可能であるし、例えば連続炉内でフッ化処理室と以降の工程を実施する処理室を分けて実施する方法なども可能である。   As for this fluorination treatment step, it is possible to carry out the carbon diffusion treatment step and the nitridation treatment step as they are using the same furnace. For example, the fluorination treatment chamber and the subsequent steps are carried out in a continuous furnace. A method in which processing chambers are separated and implemented is also possible.

(2)炭素拡散処理工程
上記フッ化処理工程と同時期またはその後に、上記フッ化処理工程によって形成されたエンジンバルブ表面のフッ化物膜を還元、除去し、更にその表面から炭素を侵入、拡散させるため、CO等の炭素源ガスを含むガスを含む雰囲気中、アセチレンやメタン等の炭化水素ガスのように還元性のある炭素源ガスを含む雰囲気中、もしくはHガスやNHガスなどの還元性ガスとCO等の炭素源ガスの両方を含む雰囲気中に上記エンジンバルブ等の接合部材を加熱保持する炭素拡散処理工程を実施する。
(2) Carbon diffusion treatment step At the same time as or after the fluorination treatment step, the fluoride film on the engine valve surface formed by the fluorination treatment step is reduced and removed, and carbon is further intruded and diffused from the surface. Therefore, in an atmosphere containing a gas containing a carbon source gas such as CO, in an atmosphere containing a reducing carbon source gas such as a hydrocarbon gas such as acetylene or methane, or H 2 gas or NH 3 gas, etc. A carbon diffusion treatment step of heating and holding the joining member such as the engine valve is performed in an atmosphere containing both a reducing gas and a carbon source gas such as CO.

このとき、上記の還元性ガスと炭素源ガスは同時に供給する必要はなく、先に還元性ガスを供給しフッ化物膜を還元、除去した後、炭素源ガスを供給する方法も可能であるが、同時に供給する方法を用いた方が工程時間の短縮化が図れるためより好ましい。ただしこのとき上記のフッ化物膜を還元するための還元性ガスとしてNHガスを供給する場合は、炭素の拡散が優先的に起こるようにその濃度を調整することが望ましく、処理温度によっても最適な量は異なるが、好ましくは30容量%以下、より好ましくは20容量%以下とすることが望ましい。 At this time, it is not necessary to supply the reducing gas and the carbon source gas at the same time, and it is also possible to supply the carbon source gas after supplying the reducing gas and reducing and removing the fluoride film first. It is more preferable to use the method of supplying them simultaneously because the process time can be shortened. However, when supplying NH 3 gas as a reducing gas for reducing the above-mentioned fluoride film at this time, it is desirable to adjust the concentration so that carbon diffusion occurs preferentially, and it is optimal depending on the processing temperature. Although the amount is different, it is preferably 30% by volume or less, more preferably 20% by volume or less.

また、このとき供給する炭素源ガスとしてはメタンやアセチレンなどの炭化水素系ガスや一酸化炭素など、浸炭性のあるガスであれば特に限定されるものではないが、プロパンガスやブタンガスなどの変性ガスであるRXガスは、炭素源ガスとなる一酸化炭素と還元性ガスであるHガスの両方を含有していることから浸炭性と還元性の双方を備え、かつ低コストであるためより好適に使用できる。 The carbon source gas supplied at this time is not particularly limited as long as it is a carburizing gas such as a hydrocarbon gas such as methane or acetylene or carbon monoxide, but is not limited to propane gas or butane gas. Since RX gas, which is a gas, contains both carbon monoxide, which is a carbon source gas, and H 2 gas, which is a reducing gas, it has both carburizing and reducing properties and is low in cost. It can be used suitably.

このように、窒化処理の前にフッ化処理および炭素拡散処理を行なうことにより、フェライト相もしくはマルテンサイト相を主体とする第1材では、炭素の拡散によりその後の窒化処理における窒素の侵入、拡散が抑制され、オーステナイト相を主体とする第2材では、炭素が拡散してもそれほど窒化処理における窒素の侵入、拡散が抑制されない。また、フッ化処理により、フェライト相もしくはマルテンサイト相を主体とする第1材に対する炭素原子の侵入と拡散が可能となり、更にその後行なわれる窒化処理において均一な窒化層の形成が可能となる。   As described above, by performing the fluorination treatment and the carbon diffusion treatment before the nitriding treatment, in the first material mainly composed of the ferrite phase or the martensite phase, the penetration and diffusion of nitrogen in the subsequent nitriding treatment due to the carbon diffusion. In the second material mainly composed of the austenite phase, the penetration and diffusion of nitrogen in the nitriding treatment is not so suppressed even when carbon diffuses. In addition, the fluorination treatment allows carbon atoms to enter and diffuse into the first material mainly composed of a ferrite phase or a martensite phase, and a uniform nitride layer can be formed in the subsequent nitridation treatment.

このように、窒化処理の前に、フッ化処理と炭素拡散処理を行なうことにより、第1材と第2材が接合された接合部材であっても、2種類の材料の双方に所定の窒化層を形成することができる。また、接合部の寸法変化の差を小さくすることができる。   As described above, by performing the fluorination treatment and the carbon diffusion treatment before the nitriding treatment, even if the joining member is obtained by joining the first material and the second material, predetermined nitriding is performed on both of the two types of materials. A layer can be formed. Moreover, the difference in the dimensional change of the joint can be reduced.

この炭素拡散処理工程で供給する上記の炭素源ガスの濃度は5容量%以上とすることが好ましい。炭素源ガスの濃度が5容量%未満では、弁軸側の材料に対し、次工程の窒化処理工程で窒素の拡散を抑制するのに十分な炭素量を拡散させるのに長時間を要してしまい効率的ではないからである。   The concentration of the carbon source gas supplied in the carbon diffusion treatment step is preferably 5% by volume or more. When the concentration of the carbon source gas is less than 5% by volume, it takes a long time to diffuse a sufficient amount of carbon to suppress the diffusion of nitrogen in the next nitriding treatment step with respect to the material on the valve shaft side. This is because it is not efficient.

このとき、炭素拡散処理の際の雰囲気ガスの炭素源ガスの濃度を高くしたり低くしたりして制御し、炭素拡散処理における炭素ポテンシャルを制御することにより、第1材に対する窒化処理での窒素の侵入、拡散を抑制する程度を制御することが可能であることから、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、窒化処理における第1材と第2材の寸法変化の差を制御することが可能となる。   At this time, the concentration of the carbon source gas in the atmospheric gas during the carbon diffusion treatment is controlled to be increased or decreased, and the carbon potential in the carbon diffusion treatment is controlled, so that the nitrogen in the nitriding treatment for the first material The degree of dimensional change between the first material and the second material in the nitriding process can be controlled by controlling the carbon potential of the atmospheric gas in the carbon diffusion process. Can be controlled.

また、この炭素拡散処理工程を行なう温度は300℃以上600℃以下とするのが好ましい。処理温度が300℃未満では、弁軸側の材料に対し、次工程の窒化処理工程で窒素の拡散を抑制するのに十分な炭素量を拡散させるのに長時間を要してしまい効率的ではないからであり、より好ましい温度は400度以上である。また処理温度が600℃を超える場合には、通常の窒化処理温度より高温となってしまい、次工程の窒化処理工程で温度を下げる必要があり効率的ではないからである。   Moreover, it is preferable that the temperature which performs this carbon diffusion process process shall be 300 degreeC or more and 600 degrees C or less. If the treatment temperature is less than 300 ° C., it takes a long time to diffuse a sufficient amount of carbon to suppress the diffusion of nitrogen in the next nitriding treatment step for the material on the valve shaft side. This is because the temperature is more preferably 400 ° C. or more. Further, when the processing temperature exceeds 600 ° C., it becomes higher than the normal nitriding temperature, and it is necessary to lower the temperature in the next nitriding step, which is not efficient.

また、この炭素拡散処理工程を行なう時間は10分以上とするのが好ましい。処理時間が10分未満では弁軸側の材料に対し、次工程の窒化処理工程で窒素の拡散を抑制するのに十分な炭素量を拡散させることが困難だからである。   In addition, the time for performing this carbon diffusion treatment step is preferably 10 minutes or more. This is because if the treatment time is less than 10 minutes, it is difficult to diffuse a sufficient amount of carbon to suppress the diffusion of nitrogen in the next nitriding treatment step with respect to the valve shaft side material.

なお、上記の処理温度および時間については、弁軸側の材質、次工程の窒化処理工程などを考慮して最適化されることが望ましい。これによって、弁軸と弁傘が異なる材質で構成され、軸部で接合されたエンジンバルブ等の接合部材に対し、次工程の窒化処理工程を実施しても、接合部両側に生じる軸径差を微小にすることが可能となる。   The processing temperature and time are preferably optimized in consideration of the material on the valve shaft side, the next nitriding step, and the like. As a result, even if the nitriding treatment process of the next process is performed on a joint member such as an engine valve which is made of different materials and is joined at the shaft part, the shaft diameter difference generated on both sides of the joint part Can be made minute.

このように、第1材と第2材が接合された異種金属接合部材に対し、窒化処理の前に炭素拡散処理を行なうことにより、窒化処理における第1材と第2材の寸法変化の差を小さくすることが可能となる。また、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、窒化処理における第1材と第2材の寸法変化の差を制御することが可能となる。   As described above, the carbon diffusion treatment is performed before the nitriding treatment on the dissimilar metal joining member in which the first material and the second material are joined, so that the difference in the dimensional change between the first material and the second material in the nitriding treatment. Can be reduced. Further, by controlling the carbon potential of the atmospheric gas in the carbon diffusion treatment, it is possible to control the difference in dimensional change between the first material and the second material in the nitriding treatment.

(3)窒化処理工程
上述したフッ化処理工程および炭素拡散処理工程の効果により、引き続き実施される窒化処理工程については、そのガス組成、処理温度など、特に限定されるものではないが、窒素源ガスとしてNHガスを5容量%以上、より好ましくは10容量%以上含む雰囲気中で、300〜600℃、より好ましくは400〜600℃の処理温度で実施することが望ましい。ただし十分な耐磨耗性を得るために弁軸側および弁傘側の軸部には双方とも5μm以上の硬化層を形成させることが望ましく、処理を行なうエンジンバルブ等の接合部材の材質によって窒化処理条件は適宜調整する必要がある。
(3) Nitriding treatment step Due to the effects of the fluorination treatment step and the carbon diffusion treatment step described above, the nitriding treatment step to be carried out is not particularly limited in terms of its gas composition, treatment temperature, etc. It is desirable to carry out at a processing temperature of 300 to 600 ° C., more preferably 400 to 600 ° C. in an atmosphere containing 5% by volume or more, more preferably 10% by volume or more of NH 3 gas as a gas. However, in order to obtain sufficient wear resistance, it is desirable to form a hardened layer of 5 μm or more on both the valve shaft side and the valve head side shaft, and it is nitrided depending on the material of the joint member such as the engine valve to be processed. The processing conditions need to be adjusted as appropriate.

なお、本実施形態において、窒化層とは、窒化処理後の被処理材の表層部の状態によって窒素拡散層だけの窒化層の場合もあるし、窒素拡散層のさらに表面部に窒素化合物層が形成されて窒素拡散層と窒素化合物層から形成された窒化層の場合もある。本実施形態の場合、フェライト相またはマルテンサイト相を主体とした第1材の表面部には、窒素化合物層と窒素拡散層からなる窒化層が形成されることが多く、オーステナイト相を主体とした第2材の表面部には窒素拡散層からなる窒化層が形成されることが多い。   In the present embodiment, the nitride layer may be a nitride layer consisting of only a nitrogen diffusion layer depending on the state of the surface layer portion of the material to be treated after nitriding treatment, or a nitrogen compound layer may be provided on the surface portion of the nitrogen diffusion layer. In some cases, the nitride layer is formed from a nitrogen diffusion layer and a nitrogen compound layer. In the case of this embodiment, a nitride layer composed of a nitrogen compound layer and a nitrogen diffusion layer is often formed on the surface portion of the first material mainly composed of ferrite phase or martensite phase, and mainly composed of austenite phase. A nitride layer composed of a nitrogen diffusion layer is often formed on the surface portion of the second material.

本発明の窒化方法は、例えば、図2に示すような熱処理炉によって行なうことができる。   The nitriding method of the present invention can be performed by, for example, a heat treatment furnace as shown in FIG.

この熱処理炉は、加熱ヒーター2を備えた炉体本体1に窒化性ガスや浸炭性ガス等のプロセスガスを供給するプロセスガス供給ポート3と、炉内に導入されたプロセスガスを撹拌する撹拌ファン6および撹拌ファン用モーター5と、排ガス排出ポート4とが設けられている。   This heat treatment furnace includes a process gas supply port 3 for supplying a process gas such as a nitriding gas and a carburizing gas to a furnace body 1 provided with a heater 2, and a stirring fan for stirring the process gas introduced into the furnace. 6 and an agitation fan motor 5 and an exhaust gas discharge port 4 are provided.

上記プロセスガス供給ポート3は、RXガス等の浸炭性ガスを発生するガス変性装置11、NFガスボンベ12、Nガスボンベ13、NHガスボンベ14、Hガスボンベ15が接続され、それぞれプロセスガスとして変性ガス、NFガス、Nガス、NHガス、Hガスを供給するようになっている。上記ガス変性装置11には、炭素源となるエンリッチガスとしてプロパンガスを供給するプロパンガスボンベ16が接続されている。図において、7はガス供給ライン元弁、8は空圧作動弁、9は減圧弁、10はガス流量計、17は排ガス除害装置である。 The process gas supply port 3 is connected to a gas modification device 11 that generates a carburizing gas such as RX gas, an NF 3 gas cylinder 12, an N 2 gas cylinder 13, an NH 3 gas cylinder 14, and an H 2 gas cylinder 15 as process gases. Denatured gas, NF 3 gas, N 2 gas, NH 3 gas, and H 2 gas are supplied. A propane gas cylinder 16 for supplying propane gas as an enriched gas serving as a carbon source is connected to the gas denaturing device 11. In the figure, 7 is a gas supply line main valve, 8 is a pneumatically operated valve, 9 is a pressure reducing valve, 10 is a gas flow meter, and 17 is an exhaust gas abatement device.

上記熱処理炉を用い、窒素ガスで希釈したNFガスを供給してフッ化処理を行ない、RXガスを主成分とする還元性と浸炭性の双方を備えたガスを供給して炭素拡散処理を行ない、NHガス単独、もしくは必要に応じてRXガスやNガスなどを加えたNHガスを主成分とする窒素源ガスを供給して窒化処理を行なう。RXガスは、Nガス、Hガス、COガス、COガス等の混合ガスで、そのうち浸炭性のあるCOガスを20〜25容量%含んだガスである。 Using the above heat treatment furnace, NF 3 gas diluted with nitrogen gas is supplied to perform fluorination treatment, and gas having both reducing and carburizing properties with RX gas as the main component is supplied to perform carbon diffusion treatment. Then, nitriding is performed by supplying a nitrogen source gas mainly composed of NH 3 gas alone or NH 3 gas added with RX gas or N 2 gas as required. The RX gas is a mixed gas such as N 2 gas, H 2 gas, CO gas, CO 2 gas, etc., and is a gas containing 20 to 25% by volume of carburizing CO gas.

すなわち、まず、被処理物であるエンジンバルブ等の接合部材を炉内に配置し、昇温中の酸化を防止するため炉内雰囲気をNガス等で十分に置換した後、200〜600℃に加熱する。炉内の被処理物が均熱された時点でNF等を含むガスを炉内に導入しエンジンバルブ等の接合部材の表面にフッ化物膜を形成させるフッ化処理を行なう。 That is, first, a joining member such as an engine valve, which is an object to be processed, is placed in the furnace, and the atmosphere in the furnace is sufficiently replaced with N 2 gas or the like to prevent oxidation during temperature rise, and then 200 to 600 ° C. Heat to. When the workpiece in the furnace is soaked, a gas containing NF 3 or the like is introduced into the furnace, and a fluoride treatment is performed to form a fluoride film on the surface of a joining member such as an engine valve.

次にNFガスの供給を停止し、300〜600℃、より好ましくは400〜600℃に加熱した炉内にRXガスを主成分とし、より還元力を高める必要がある場合には適量のHガスやNHガスなどを加えた、還元性ガスを導入し、上記フッ化処理を実施したエンジンバルブ等の接合部材に対してフッ化物膜の還元処理と炭素拡散処理を行なう。 Next, when the supply of NF 3 gas is stopped and the main component is RX gas in a furnace heated to 300 to 600 ° C., more preferably 400 to 600 ° C., and it is necessary to increase the reducing power, an appropriate amount of H A reducing gas added with 2 gas, NH 3 gas, or the like is introduced, and the reduction treatment of the fluoride film and the carbon diffusion treatment are performed on the joining member such as the engine valve that has been subjected to the fluorination treatment.

フッ化処理で表面に形成されたフッ化物は上記の混合ガスによって容易に還元され表面から除去される。これによって活性な金属表面が露出する。そしてこの活性な金属表面にRXガス中に含まれるCOガスから発生する炭素が鋼材中へ侵入、拡散し炭素濃化層を形成する。   The fluoride formed on the surface by the fluorination treatment is easily reduced and removed from the surface by the mixed gas. This exposes the active metal surface. Carbon generated from the CO gas contained in the RX gas enters and diffuses into the steel material on the active metal surface to form a carbon concentrated layer.

このとき、上記の炭素拡散工程を行なわずに窒化処理工程を実施した場合には、その窒化処理時の雰囲気にRXガスなどの炭素源ガスが含まれていたとしても、窒素の拡散が優先して起こり、弁軸側の素材であるフェライト相もしくはマルテンサイト相を主体とする材料では、表面に形成する窒素化合物層には炭素が添加できるものの内部の拡散層にはほとんど炭素原子を拡散させることができない。これは炭素原子の拡散経路である金属の結晶格子間が先に窒素原子によって占められてしまうためであり、この場合、結果的に厚い窒化層が形成し、弁軸側の素材であるオーステナイト相を主体とする材料、特にNiを多量に含むいわゆるNi基合金などの窒素および炭素の拡散速度が遅い材料との窒化層厚さの差が顕著となり、両者の膨張量すなわち接合部両側の軸径に大きな差が生じてしまう。   At this time, if the nitriding process is performed without performing the above carbon diffusing process, the diffusion of nitrogen is given priority even if the atmosphere during the nitriding process includes a carbon source gas such as RX gas. In the material mainly composed of the ferrite phase or martensite phase that is the material on the valve shaft side, carbon can be added to the nitrogen compound layer formed on the surface, but almost all carbon atoms are diffused in the internal diffusion layer. I can't. This is because the space between the metal crystal lattices, which is the diffusion path of carbon atoms, is first occupied by nitrogen atoms. As a result, a thick nitride layer is formed, resulting in the austenite phase that is the material on the valve stem side. The difference in the thickness of the nitrided layer from the material mainly composed of Ni, especially the so-called Ni-based alloy containing a large amount of Ni, such as a material with a slow diffusion rate of nitrogen and carbon, becomes significant, and the expansion amount of both, that is, the shaft diameter on both sides of the joint There will be a big difference.

しかし、上記の炭素拡散処理工程を窒化処理工程の前に実施することにより、窒化処理工程において厚い窒化層を形成し易い上記の弁軸側の材料の膨張量を大きく抑制することができる。これは窒化処理工程に先立って上記弁軸側の材料に炭素濃化層を形成させておくことによって、その後窒化処理を行なった場合でも窒素は表層部に侵入している炭素の間をかい潜って侵入するか、あるいは侵入している炭素をさらに深部まで押し込むようにしながら侵入しなければならないためである。したがって、上記の炭素濃化層がない場合に比べ窒素原子の侵入と拡散が抑制され、弁傘側の材料と弁軸側の材料の双方に所定の窒化層が形成されるととももに、弁傘側の材料の膨張量が非常に少ない場合でも両者の軸径の膨張量に大きな差が生じないのである。   However, by performing the carbon diffusion treatment step before the nitriding treatment step, the amount of expansion of the material on the valve shaft side on which a thick nitride layer is easily formed in the nitriding treatment step can be greatly suppressed. This is because a carbon-enriched layer is formed on the valve shaft side material prior to the nitriding process, so that even when nitriding is performed thereafter, nitrogen penetrates between the carbon invading the surface layer. This is because it is necessary to intrude while intruding or pushing the invading carbon deeper. Therefore, invasion and diffusion of nitrogen atoms are suppressed as compared with the case where there is no carbon enriched layer, and a predetermined nitrided layer is formed on both the material on the valve umbrella side and the material on the valve shaft side, Even when the amount of expansion of the material on the valve umbrella side is very small, there is no significant difference between the amounts of expansion of the shaft diameters of the two.

このとき、接合部の両側の材料の軸径差すなわち窒化処理による膨張量差をできるだけ小さくするため、両者の材質を考慮し、適当な炭素拡散処理工程の時間を設定する必要がある。ただし炭素拡散処理工程の効果を発現させるためには少なくとも10分以上、より好ましくは20分以上の時間に設定することが望ましい。   At this time, in order to minimize the difference between the shaft diameters of the materials on both sides of the joint, that is, the difference in expansion due to the nitriding treatment, it is necessary to set an appropriate time for the carbon diffusion treatment process in consideration of both materials. However, in order to develop the effect of the carbon diffusion treatment step, it is desirable to set the time to at least 10 minutes or more, more preferably 20 minutes or more.

上記炭素拡散処理工程を実施した後、NHを含む窒素源ガスを供給して目的とする窒化層厚さを得るために300〜600℃、より好ましくは400〜600℃に加熱保持もしくは昇温して必要な時間保持することで窒化処理が行なわれ、弁軸側、弁傘側の材料とも少なくとも5μm以上の硬化層が形成される。 After performing the carbon diffusion treatment step, heating or holding at 300 to 600 ° C., more preferably 400 to 600 ° C. is performed in order to obtain a desired nitride layer thickness by supplying a nitrogen source gas containing NH 3. Then, the nitriding treatment is performed by holding for a necessary time, and a hardened layer of at least 5 μm or more is formed on the material on the valve shaft side and the valve head side.

このとき、フェライト相もしくはマルテンサイト相を主体とする材料の最表面に形成される窒素化合物層は硬度が高く耐磨耗性、耐焼付き性に優れているものの、脆い性質も持っていることから、RXガスなどの添加によって、耐磨耗性だけでなくある程度の靭性を有するよう窒化処理工程の雰囲気の調整を行なうことが望ましい。   At this time, the nitrogen compound layer formed on the outermost surface of the material mainly composed of ferrite phase or martensite phase has high hardness and excellent wear resistance and seizure resistance, but also has brittle properties. It is desirable to adjust the atmosphere of the nitriding process so as to have not only wear resistance but also toughness by adding RX gas or the like.

また、エンジンバルブの場合、弁傘側の素材が耐熱性を重視したNiを20質量%以上含有する合金である場合には、5μm以上の硬化層を得るためには通常550〜600℃と比較的高い窒化処理温度を適用しなければならないが、このような上記の弁軸側の材料が厚い窒化層を形成し、膨張量が多くなり易い条件においても、上記の炭素拡散処理条件を最適化することで、必要とする硬化層を形成させることができ、両者の膨張量に大きな差を発生させることもないため、本発明の窒化処理方法がより好適に使用できる。   In the case of an engine valve, when the material on the valve head side is an alloy containing 20% by mass or more of Ni with an emphasis on heat resistance, it is usually compared with 550 to 600 ° C. to obtain a hardened layer of 5 μm or more. High nitriding temperature must be applied, but the above-mentioned carbon diffusion treatment conditions are optimized even under such conditions that the above-mentioned material on the valve shaft side forms a thick nitride layer and the amount of expansion tends to increase. By doing so, the required hardened layer can be formed and a large difference between the expansion amounts of the two is not generated, so that the nitriding method of the present invention can be used more suitably.

このように、本実施形態では、フッ化処理を実施し、材料表面に形成している緻密な酸化皮膜を除去した後、そのフッ化物膜を還元によって除去し、かつ窒化処理を行なう前に炭素源ガス雰囲気で炭素拡散処理を実施することにより、異なる材質が接合されたエンジンバルブ等の異種金属接合機械部品であっても接合部両側の軸径差を微小にすることが可能となる。   Thus, in this embodiment, after performing the fluorination treatment and removing the dense oxide film formed on the material surface, the fluoride film is removed by reduction, and before the nitriding treatment, the carbon is added. By performing the carbon diffusion treatment in the source gas atmosphere, it is possible to make the difference in the shaft diameters on both sides of the joint portion minute even in the case of dissimilar metal joining machine parts such as engine valves joined with different materials.

さらに、本実施形態の窒化処理方法はエンジンバルブ等の弁軸側の素材がフェライト相またはマルテンサイト相を素地とする鉄鋼材、弁傘側の素材が耐熱性の観点からNiを20%以上含有するオーステナイト相を素地とする合金から構成されている場合に、より効果的な窒化処理方法である。   Furthermore, in the nitriding method of this embodiment, the material on the valve shaft side of the engine valve or the like is a steel material based on a ferrite phase or martensite phase, and the material on the valve head side contains 20% or more of Ni from the viewpoint of heat resistance. This is a more effective nitriding method when it is made of an alloy whose base material is an austenite phase.

そして、本発明の窒化処理を行なった異種金属接合機械部品は、上記第1材と第2材双方の表面に5μm以上の窒化層が形成される。また、上記窒化層を形成するための窒化処理後における第1材と第2材の接合部の寸法差は片側で2μm以下、好ましくは1.5μm以下となる。   In the dissimilar metal bonding machine part subjected to the nitriding treatment of the present invention, a nitride layer of 5 μm or more is formed on the surfaces of both the first material and the second material. The dimensional difference between the first material and the second material after the nitriding treatment for forming the nitride layer is 2 μm or less on one side, preferably 1.5 μm or less.

また、上記のようにして製造したエンジンバルブは、上記第1材と第2材双方の表面に5μm以上の窒化層が形成され、優れた耐熱性、耐磨耗性を発揮する。さらに、上記窒化層を形成するための窒化処理後における第1材と第2材の接合部の軸径差が4μm以下、好ましくは3μm以下と微小であることから優れた性能を有し、曝される温度の高い排気弁としてより好適に使用できる。   Further, the engine valve manufactured as described above has a nitride layer of 5 μm or more formed on the surface of both the first material and the second material, and exhibits excellent heat resistance and wear resistance. Furthermore, since the difference in the axial diameter of the joint portion between the first material and the second material after the nitriding treatment for forming the nitride layer is as small as 4 μm or less, preferably 3 μm or less, it has excellent performance. It can be used more suitably as an exhaust valve having a high temperature.

次に、実施例について説明する。   Next, examples will be described.

弁軸側の材質がマルテンサイト系の耐熱鋼であるSUH11、弁傘側の材質がオーステナイト系の耐熱鋼でNiを約25%含有するSUH660で構成されており、上記の両材料が図1に示すように弁軸部で接合され、接合部を含めた弁軸を研磨仕上げされたエンジンバルブを使用し、図2に示す炉体本体1内に配置し、400℃に昇温してNFガスを含むフッ化処理用ガスを炉体本体1内に導入し15分保持した。 The material on the valve shaft side is composed of SUH11 which is martensitic heat resistant steel, the material on the valve head side is composed of austenitic heat resistant steel and SUH660 containing about 25% Ni, both of which are shown in FIG. joined at the valve stem as shown, the valve shaft including the joint use abrasive-finished engine valve, arranged in the furnace body 1 shown in FIG. 2, NF 3 was heated to 400 ° C. A gas for fluorination treatment containing gas was introduced into the furnace body 1 and held for 15 minutes.

その後、500℃に昇温しRXガスが50容量%、Hガスが15容量%、NHガスが15容量%、Nガスが20容量%となる組成の混合ガスを炉体本体1内に導入し、実施例(a)として10分、実施例(b)として20分保持し炭素拡散処理を行なった。 Thereafter, the temperature is raised to 500 ° C., and a mixed gas having a composition of 50% by volume of RX gas, 15% by volume of H 2 gas, 15% by volume of NH 3 gas, and 20% by volume of N 2 gas is contained in the furnace body 1. The carbon diffusion treatment was performed by holding for 10 minutes as Example (a) and 20 minutes as Example (b).

その後、540℃に昇温しNHガスが50容量%、RXガスが50容量%となる組成の混合ガスを炉体本体1内に導入し3時間保持して窒化処理を実施した。
また比較例(c)として上記のフッ化処理を実施したのち炭素拡散処理を実施せずに上記の窒化処理を実施したものを、また比較例(d)として上記のフッ化処理を実施せずに上記の炭素拡散処理を10分実施し、上記の窒化処理を実施したものを作製した。
Thereafter, the temperature was raised to 540 ° C., and a mixed gas having a composition of NH 3 gas 50% by volume and RX gas 50% by volume was introduced into the furnace body 1 and held for 3 hours for nitriding.
In addition, as a comparative example (c), the above nitriding treatment was performed without performing the carbon diffusion treatment after the above fluorination treatment, and as the comparative example (d), the above fluorination treatment was not performed. Then, the above carbon diffusion treatment was carried out for 10 minutes to produce a material subjected to the above nitriding treatment.

これらの硬化層厚さや軸径差などをまとめたものを下記の表1に示す。

Figure 0005144139
Table 1 below summarizes these cured layer thicknesses, shaft diameter differences, and the like.
Figure 0005144139

上記表1に示すように炭素拡散処理が10分以上であれば硬化層が厚くなり膨張し易い弁軸側の硬化層厚さ、すなわち窒化処理による膨張量が抑制されることによって上記接合部両側の軸径差が3μm以下となることがわかる。またより好ましい炭素拡散処理の時間は20分以上である。   As shown in Table 1 above, if the carbon diffusion treatment is 10 minutes or longer, the thickness of the hardened layer on the valve shaft side, which is easily expanded due to the thickened hardened layer, that is, the amount of expansion due to the nitriding treatment is suppressed. It can be seen that the difference in the shaft diameter is 3 μm or less. A more preferable carbon diffusion treatment time is 20 minutes or more.

なお、上記表1において、硬化層とは、窒化層(窒素拡散層だけから構成される窒化層、または窒素拡散層と窒素化合物層とから構成される窒化層)と、窒化層の直下に形成された炭素拡散層とを合わせた硬化層をいう。   In Table 1, the hardened layer is a nitride layer (a nitride layer composed of only a nitrogen diffusion layer or a nitride layer composed of a nitrogen diffusion layer and a nitrogen compound layer), and is formed immediately below the nitride layer. The hardened layer combined with the carbon diffusion layer formed.

一方フッ化処理を行ない、炭素拡散処理を行なわない比較例(c)の場合には、実施例(a)および実施例(b)と同様に、弁軸側、弁傘側とも均一な窒化層は形成されているものの、接合部両側の軸径差が大きく再研磨等の後加工が必要になる。
またフッ化処理を行なわない比較例(d)の場合には硬化層の形成が認められないことから、本発明の窒化処理方法にとってフッ化処理の適用が不可欠であることが分かる。
On the other hand, in the case of the comparative example (c) in which the fluorination treatment is carried out and the carbon diffusion treatment is not carried out, a uniform nitride layer is formed on both the valve shaft side and the valve umbrella side as in the case of the embodiment (a) and the embodiment (b). However, the post-processing such as re-polishing is necessary because of the large difference in the shaft diameters on both sides of the joint.
In the case of Comparative Example (d) in which no fluorination treatment is performed, formation of a hardened layer is not recognized, and thus it is understood that application of the fluorination treatment is indispensable for the nitriding treatment method of the present invention.

次に弁軸側の材質がマルテンサイト系の耐熱鋼であるSUH3、弁傘側の材質がオーステナイト系の耐熱鋼でNiを約70%含有するNCF751で構成されており、上記の両材料が図1に示すように弁軸部で接合され、接合部を含めた弁軸を研磨仕上げされたエンジンバルブを使用し、図2に示す炉体本体1内に配置し、実施例(e)として500℃に昇温してNF3ガスを含むフッ化処理用ガスを炉体本体1内に導入し10分保持した。   Next, the material on the valve shaft side is composed of SUH3, which is martensitic heat resistant steel, and the material on the valve head side is composed of austenitic heat resistant steel and NCF751 containing approximately 70% Ni. As shown in FIG. 1, an engine valve is used which is joined at the valve shaft portion and the valve shaft including the joint portion is polished and disposed in the furnace body main body 1 shown in FIG. The temperature was raised to 0 ° C., and a fluorination gas containing NF 3 gas was introduced into the furnace body 1 and held for 10 minutes.

その後、590℃に昇温しRXガスが70容量%、Hガスが30容量%となる組成の混合ガスを炉体本体1内に導入し、15分保持し炭素拡散処理を行なった。 Thereafter, the temperature was raised to 590 ° C., and a mixed gas having a composition of 70% by volume of RX gas and 30% by volume of H 2 gas was introduced into the furnace body 1 and held for 15 minutes for carbon diffusion treatment.

その後、590℃でNH3ガスが70容量%、RXガスが30容量%となる組成の混合ガスを炉体本体1内に導入し3時間保持して窒化処理を実施した。
また比較例(f)として590℃で3時間塩浴窒化処理を実施したものも作製した。
After that, a mixed gas having a composition of NH 3 gas of 70% by volume and RX gas of 30% by volume at 590 ° C. was introduced into the furnace body 1 and held for 3 hours to perform nitriding treatment.
Moreover, what carried out the salt bath nitriding process at 590 degreeC for 3 hours as a comparative example (f) was also produced.

これらの硬化層厚さや軸径差などをまとめたものを下記の表2に示す。

Figure 0005144139
A summary of these hardened layer thicknesses and shaft diameter differences is shown in Table 2 below.
Figure 0005144139

上記表2に示すように弁傘側の材質がNiを70%以上含むような材料であり、できる限り短時間で必要な硬化層を得るため、高温処理を適用した場合であっても、本実施例(e)では接合部両側の軸径差は3μm以内となっていることが分かる。なおフッ化処理の効果により、比較的硬化層を形成し易い弁軸側はもちろんのこと、Niを多量に含有する弁傘側にも均一な硬化層が形成されており、その硬化層厚さは約10μmであることを確認した。   As shown in Table 2 above, the material on the leaflet side is a material containing 70% or more of Ni, and even when a high temperature treatment is applied in order to obtain a necessary hardened layer in as short a time as possible, In Example (e), it can be seen that the axial diameter difference on both sides of the joint is within 3 μm. Due to the effect of the fluorination treatment, a uniform hardened layer is formed not only on the valve shaft side where a hardened layer is relatively easily formed but also on the valve umbrella side containing a large amount of Ni. Was about 10 μm.

なお、上記表2における硬化層も表1の場合と同様に、窒化層(窒素拡散層だけから構成される窒化層、または窒素拡散層と窒素化合物層とから構成される窒化層)と、窒化層の直下に形成された炭素拡散層とを合わせた硬化層である。   As in Table 1, the hardened layer in Table 2 is also a nitride layer (a nitride layer composed only of a nitrogen diffusion layer or a nitride layer composed of a nitrogen diffusion layer and a nitrogen compound layer), and nitrided. It is a hardened layer combined with a carbon diffusion layer formed immediately below the layer.

一方実施例(e)と同一温度、同一時間塩浴窒化処理を実施した比較例(f)については、弁軸側には比較的均一な硬化層が形成されているものの、弁傘側にはほとんど硬化層が形成されていないことを確認した。したがって比較的窒化力が強くエンジンバルブの窒化処理方法として広く用いられている塩浴窒化処理では、Niを多く含有する耐熱合金に対して均一な窒化処理が実施できず、接合部両側の軸径差の問題だけではなく、弁傘側の材料がNiを多量に含有するような場合には耐磨耗性に問題が発生する可能性が高いことが分かる。   On the other hand, in Comparative Example (f) in which salt bath nitriding was performed at the same temperature and for the same time as Example (e), a relatively uniform hardened layer was formed on the valve shaft side, It was confirmed that almost no cured layer was formed. Therefore, in the salt bath nitriding treatment, which has a relatively strong nitriding power and is widely used as a nitriding treatment method for engine valves, a uniform nitriding treatment cannot be performed on a heat-resistant alloy containing a large amount of Ni, and the shaft diameters on both sides of the joint portion In addition to the problem of difference, it can be seen that when the material on the valve head side contains a large amount of Ni, there is a high possibility of a problem in wear resistance.

軸部で異種材料が接合されたエンジンバルブの一例を示す外観図である。It is an external view which shows an example of the engine valve in which the dissimilar material was joined by the axial part. 処理炉の一例を示す断面図である。It is sectional drawing which shows an example of a processing furnace.

符号の説明Explanation of symbols

1 炉体本体
2 加熱ヒーター
3 プロセスガス供給ポート
4 排ガス排出ポート
5 撹拌ファン用モーター
6 撹拌ファン
7 ガス供給ライン元弁
8 空圧作動弁
9 減圧弁
10 ガス流量計
11 ガス変性装置
12 NFガスボンベ
13 Nガスボンベ
14 NHガスボンベ
15 Hガスボンベ
16 プロパンガスボンベ
17 排ガス除害装置
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Heating heater 3 Process gas supply port 4 Exhaust gas discharge port 5 Stirrer fan motor 6 Stirrer fan 7 Gas supply line main valve 8 Pneumatic pressure valve 9 Pressure reducing valve 10 Gas flow meter 11 Gas denaturing device 12 NF 3 Gas cylinder 13 N 2 gas cylinder 14 NH 3 gas cylinder 15 H 2 gas cylinder 16 Propane gas cylinder 17 Exhaust gas abatement system

Claims (5)

フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行うことにより、窒化処理における第1材と第2材の寸法変化の差を小さくすることを特徴とする窒化処理方法。   A bonding member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are bonded by heating in a nitriding gas atmosphere to form a nitride layer on the surface layer portion. Before performing the nitriding treatment to be formed, the fluorination treatment is performed by heating and holding in a fluorine-based gas atmosphere, and the carbon diffusion treatment is performed by heating and holding in the carbon source gas atmosphere to form a carbon diffusion layer in the surface layer portion. Thus, the difference in dimensional change between the first material and the second material in the nitriding treatment is reduced. フェライト相またはマルテンサイト相を主体とした第1材と、オーステナイト相を主体とした第2材とが接合された接合部材に対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行い、上記炭素拡散処理における雰囲気ガスの炭素ポテンシャルを制御することにより、窒化処理における第1材と第2材の寸法変化の差を制御することを特徴とする窒化処理方法。   A bonding member in which a first material mainly composed of a ferrite phase or a martensite phase and a second material mainly composed of an austenite phase are bonded by heating in a nitriding gas atmosphere to form a nitride layer on the surface layer portion. Before performing the nitriding treatment to be formed, a fluorination treatment is carried out in advance by heating and holding in a fluorine gas atmosphere, and a carbon diffusion treatment is carried out in which a carbon diffusion layer is formed in the surface layer portion by heating and holding in a carbon source gas atmosphere. A nitriding treatment method characterized by controlling the difference in dimensional change between the first material and the second material in the nitriding treatment by controlling the carbon potential of the atmospheric gas in the carbon diffusion treatment. フェライト相またはマルテンサイト相を主体とした第1材と、Niを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材とが接合されて構成された異種材料接合機械部品であって
フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の寸法差が片側で2μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成されたことを特徴とする異種材料接合機械部品。
Dissimilar material joint composed of a first material mainly composed of a ferrite phase or a martensite phase and a second material composed of a heat-resistant steel or Ni-based alloy mainly composed of an austenite phase containing 20 mass% or more of Ni Machine parts ,
In addition to the fluorination treatment that is heated and held in the fluorine-based gas atmosphere, the carbon diffusion treatment is performed in which the carbon diffusion layer is formed in the surface layer portion by heating and holding in the carbon source gas atmosphere. Nitriding treatment is performed to form a nitride layer on the surface layer portion, and the dimensional difference between the first material and the second material after the nitriding treatment is 2 μm or less on one side, and both the first material and the second material A dissimilar material joining machine part, characterized in that a nitride layer of 5 μm or more is formed on the surface.
弁軸側の素材がフェライト相またはマルテンサイト相を主体とした鋼材であり、弁傘側の素材がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金から構成されたエンジンバルブに対し、窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理を行なう前に、あらかじめフッ素系ガス雰囲気中で加熱保持するフッ化処理を行うとともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理を行い、上記炭素拡散処理を、炭素源ガス濃度が5容量%以上となる雰囲気中において300〜600℃の温度で10分以上保持することを特徴とするエンジンバルブの製造方法。   The material on the valve shaft side is a steel material mainly composed of a ferrite phase or a martensite phase, and the material on the valve head side is composed of a heat-resistant steel or a Ni-based alloy mainly composed of an austenite phase containing 20 mass% or more of Ni. Prior to performing nitriding to heat and hold the engine valve in a nitriding gas atmosphere to form a nitride layer on the surface layer portion, the engine valve is preliminarily heated and held in a fluorine-based gas atmosphere, and carbon source gas A carbon diffusion treatment is performed by heating and holding in the atmosphere to form a carbon diffusion layer on the surface layer portion. The carbon diffusion treatment is performed at a temperature of 300 to 600 ° C. in an atmosphere where the carbon source gas concentration is 5% by volume or more. A method for producing an engine valve, characterized by holding for at least minutes. 弁軸側がフェライト相またはマルテンサイト相を主体とした鋼の第1材であり、弁傘側がNiを20質量%以上含有するオーステナイト相を主体とした耐熱鋼もしくはNi基合金の第2材であり、上記第1材と第2材が軸部で接合されて構成されたエンジンバルブであって、
フッ素系ガス雰囲気中で加熱保持するフッ化処理とともに、炭素源ガス雰囲気中に加熱保持して表層部に炭素拡散層を形成させる炭素拡散処理が行われ、さらに窒化性ガス雰囲気中で加熱保持して表層部に窒化層を形成させる窒化処理が行なわれて、窒化処理後における第1材と第2材の接合部の軸径差が4μm以下でかつ、上記第1材と第2材双方の表面に5μm以上の窒化層が形成されたことを特徴とするエンジンバルブ。
The valve stem side is the first material of steel mainly composed of ferrite phase or martensite phase, and the valve head side is the second material of heat resistant steel or Ni base alloy mainly composed of austenite phase containing Ni of 20 mass% or more. The engine valve is configured by joining the first material and the second material at the shaft portion,
In addition to the fluorination treatment that is heated and held in the fluorine-based gas atmosphere, the carbon diffusion treatment is performed in which the carbon diffusion layer is formed in the surface layer portion by heating and holding in the carbon source gas atmosphere. Nitriding treatment is performed to form a nitride layer on the surface layer portion, the difference in the axial diameter of the joint portion between the first material and the second material after the nitriding treatment is 4 μm or less, and both the first material and the second material are An engine valve having a nitride layer of 5 μm or more formed on a surface.
JP2007163850A 2007-06-21 2007-06-21 Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve Expired - Fee Related JP5144139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163850A JP5144139B2 (en) 2007-06-21 2007-06-21 Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163850A JP5144139B2 (en) 2007-06-21 2007-06-21 Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve

Publications (2)

Publication Number Publication Date
JP2009001863A JP2009001863A (en) 2009-01-08
JP5144139B2 true JP5144139B2 (en) 2013-02-13

Family

ID=40318566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163850A Expired - Fee Related JP5144139B2 (en) 2007-06-21 2007-06-21 Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve

Country Status (1)

Country Link
JP (1) JP5144139B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296594B2 (en) * 2009-04-07 2013-09-25 日鍛バルブ株式会社 Exhaust poppet valve for internal combustion engines
JP6137434B1 (en) 2015-09-30 2017-05-31 新日鐵住金株式会社 Austenitic stainless steel
KR102385104B1 (en) * 2021-11-03 2022-04-11 신승호 Valve for hydraulic breaker that minimizes dimensional change due to temperature rise of hydraulic fluid of hydraulic breaker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256821A (en) * 1996-03-19 1997-09-30 Aisan Ind Co Ltd Engine valve
JP3671114B2 (en) * 1998-08-10 2005-07-13 本田技研工業株式会社 Friction welding method for engine valves

Also Published As

Publication number Publication date
JP2009001863A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
CA2833579C (en) Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method.
JP6241896B2 (en) Method for solution hardening of cold-deformed workpieces of passive alloys, and members solution-hardened by this method
JP3961390B2 (en) Surface carbonitrided stainless steel parts with excellent wear resistance and manufacturing method thereof
JP3064907B2 (en) Carburizing hardening fasteners and their manufacturing method
JP5144139B2 (en) Nitriding processing method, dissimilar material joining machine part, engine valve manufacturing method and engine valve
US11840765B2 (en) Nitriding process for carburizing ferrium steels
JP2004003435A (en) Fuel injection valve for internal combustion engine and method for manufacturing the same
JP4063709B2 (en) Method for surface modification of austenitic metal, refractory metal product and turbo part obtained thereby
EP1707646A1 (en) Method for activating surface of metal member
EP1712658B1 (en) Method for surface treatment of metal material
JP3701036B2 (en) High strength gear
JP3005952B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
JP2007197822A (en) Method for nitriding metal and vane member
JP4771718B2 (en) Metal nitriding method
JP2004115893A (en) Vacuum carburizing method
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JP7262376B2 (en) steel material
CN108103432B (en) Nitriding method of nickel-based high-temperature alloy
WO2021106233A1 (en) Metal component and method for producing same
JP4494995B2 (en) Metal surface treatment method
JP2021088754A (en) Metal product, and manufacturing method thereof
JP2006131922A (en) Method for manufacturing gear made of steel
JPH01201458A (en) Method for carburizing high-chromium steel parts
JP2007238974A (en) Carburizing method, and carburized steel component manufactured by using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees