JP5080877B2 - Sound absorber - Google Patents
Sound absorber Download PDFInfo
- Publication number
- JP5080877B2 JP5080877B2 JP2007162518A JP2007162518A JP5080877B2 JP 5080877 B2 JP5080877 B2 JP 5080877B2 JP 2007162518 A JP2007162518 A JP 2007162518A JP 2007162518 A JP2007162518 A JP 2007162518A JP 5080877 B2 JP5080877 B2 JP 5080877B2
- Authority
- JP
- Japan
- Prior art keywords
- sound
- sound absorbing
- layer
- absorbing layer
- sound absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006096 absorbing agent Substances 0.000 title claims description 43
- 238000010521 absorption reaction Methods 0.000 claims description 96
- 239000011358 absorbing material Substances 0.000 claims description 56
- 239000012528 membrane Substances 0.000 claims description 49
- 230000007423 decrease Effects 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 133
- 239000000463 material Substances 0.000 description 42
- 238000003475 lamination Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 20
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 229920001903 high density polyethylene Polymers 0.000 description 10
- 239000004700 high-density polyethylene Substances 0.000 description 10
- 229920000092 linear low density polyethylene Polymers 0.000 description 9
- 239000004707 linear low-density polyethylene Substances 0.000 description 9
- -1 Polypropylene Polymers 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 3
- 239000004709 Chlorinated polyethylene Substances 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 3
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 3
- 239000011491 glass wool Substances 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000012766 organic filler Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- NRJXUPLBIUZXLW-UHFFFAOYSA-N ethene;prop-1-ene;styrene Chemical compound C=C.CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 NRJXUPLBIUZXLW-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Building Environments (AREA)
Description
本発明は吸音体に関する。 The present invention relates to a sound absorber.
騒音は振動とともに身近な問題であり、吸音体への要求は依然として高い。また用途や目的に応じて要求特性も多岐にわたり、最近では低周波領域での吸音性能が高い材料が望まれている。
従来の吸音材料として、例えば、グラスウール、ロックウールのように繊維を綿状またはボード状に成型した材料や、ポリウレタンフォームのように高分子材料を発泡させた材料などの多孔質材料が用いられる。これらの多孔質材料に音波が入射すると、音波が材料内の隙間の空気を振動させるため、空気自身の粘性および周囲との摩擦によって、振動エネルギーの一部が熱エネルギーに変換、散逸されて吸音効果が得られる。
Noise is a familiar problem with vibration, and the demand for sound absorbers is still high. In addition, there are a wide range of required characteristics depending on the application and purpose, and recently, a material having a high sound absorption performance in a low frequency region is desired.
As a conventional sound-absorbing material, for example, a porous material such as a material obtained by molding fibers into a cotton or board shape such as glass wool or rock wool, or a material obtained by foaming a polymer material such as polyurethane foam is used. When sound waves are incident on these porous materials, the sound waves vibrate the air in the gaps in the materials, so some of the vibration energy is converted into heat energy and dissipated by the viscosity of the air itself and the friction with the surroundings. An effect is obtained.
低周波領域における吸音性能の向上を目的とした吸音体として、例えば下記特許文献1には、音響的に透明な2枚のシートの間の空間に粉体を充填してなる粉体含有シート状物を断熱材層に積層一体化した構成が開示されており、この構成においては、粉体粒子の縦振動により低周波領域での吸音が得られる旨が記載されている。
下記特許文献2には、可撓性を有するベースフィルム上にバインダー接着剤により微細な粒子を接着してなる吸音層と、弾性層とを面接着してなる吸音体が開示されている。この吸音体において、ベースフィルムの厚さ、粒子の重さや大きさ、およびバインダー接着剤の粘性によって、吸音効果が得られる音域を変えることができる旨が記載されている。
下記特許文献3には、通気性材料の一面に通気止めフィルムを積層するとともに、該通気性材料の一面に凹部を設けるなどして、通気性材料と通気止めフィルムとが接触していない部分を形成することにより、共振効果による膜振動を利用して、広い周波数領域で吸音効果が得られるようにした吸音体が記載されている。
Patent Document 2 below discloses a sound absorber formed by surface-bonding a sound absorbing layer formed by bonding fine particles with a binder adhesive onto a flexible base film and an elastic layer. In this sound absorbing body, it is described that the sound range in which the sound absorbing effect can be obtained can be changed by the thickness of the base film, the weight and size of the particles, and the viscosity of the binder adhesive.
In Patent Document 3 below, a portion where the air-permeable material and the air-blocking film are not in contact with each other is formed by laminating a gas-permeable film on one surface of the air-permeable material and providing a recess on one surface of the air-permeable material. There is described a sound absorber that is formed so that a sound absorption effect can be obtained in a wide frequency range by utilizing membrane vibration due to a resonance effect.
しかしながら、上記特許文献1〜3に記載されている吸音体では、例えば500Hz以下の低周波数領域において、吸音率が0.5以上となるような高度な吸音効果を達成することは難しい。
図4は、発泡ウレタン(厚さ10、20、50mm)、フェルト(厚さ10、50mm)、エチレン−酢酸ビニル共重合体の発泡体(発泡EVA、厚さ10mm)について、吸音率の周波数特性を測定した結果を示すグラフである。横軸は周波数(単位:Hz)、縦軸は吸音率を示す。
従来の多孔質材料にあっては、例えば図4に示すように、厚さを増大させれば低周波領域での吸音率が向上し、例えば発泡ウレタンの厚さを50mmにすれば450〜500Hzの周波数領域において、0.5〜0.6程度の吸音率を達成することが可能である。
しかしながら、多孔質材料の厚さを増大させると、吸音体が大型化するため好ましくない。
本発明は前記事情に鑑みてなされたもので、吸音体の大型化を招くことなく、低周波領域において高度な吸音効果を達成することができる吸音体を提供することを目的とする。
However, with the sound absorbers described in
FIG. 4 shows frequency characteristics of sound absorption coefficient for foamed urethane (thickness 10, 20, 50 mm), felt (thickness 10, 50 mm), and ethylene-vinyl acetate copolymer foam (foamed EVA, thickness 10 mm). It is a graph which shows the result of having measured. The horizontal axis represents frequency (unit: Hz), and the vertical axis represents sound absorption rate.
In the conventional porous material, for example, as shown in FIG. 4, if the thickness is increased, the sound absorption coefficient in the low frequency region is improved. For example, if the thickness of the urethane foam is 50 mm, 450 to 500 Hz. In the frequency region, it is possible to achieve a sound absorption coefficient of about 0.5 to 0.6.
However, increasing the thickness of the porous material is not preferable because the sound absorber increases in size.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sound absorber that can achieve an advanced sound absorbing effect in a low frequency region without causing an increase in the size of the sound absorber.
前記課題を解決すべく本発明者等が鋭意研究を重ねた結果、良好な吸音効果が得られる周波数領域が所望の周波数領域よりも高周波数側にある膜振動型の吸音層に、該吸音層よりも貯蔵弾性率が低い膜振動型の吸音層を積層一体化することによって、良好な吸音効果が得られる周波数領域を低周波数側へシフトさせることができることを見出して本発明に至った。
すなわち本発明の吸音体は、貫通孔が形成された枠体と、該貫通孔の一方の開口を覆う膜振動型吸音材を有する吸音体であって、前記膜振動型吸音材が、複数の吸音層が一体化された積層体からなり、該複数の吸音層のうち最も貯蔵弾性率が高い吸音層を第1の吸音層、最も貯蔵弾性率が低い吸音層を第2の吸音層とし、前記第1の吸音層の貯蔵弾性率をE’1、前記第2の吸音層の貯蔵弾性率をE’2とするとき、(E’1/E’2)≧3であり、かつ前記積層体において第1の吸音層から外側に向かって、各吸音層の貯蔵弾性率が漸次減少していることを特徴とする。
As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, the sound absorption layer is provided in a membrane vibration type sound absorption layer in which the frequency region where a good sound absorption effect is obtained is higher than the desired frequency region. The present inventors have found that a frequency region in which a good sound absorption effect can be obtained can be shifted to a low frequency side by laminating and integrating a membrane vibration type sound absorption layer having a lower storage elastic modulus than that of the present invention.
That is, the sound absorber of the present invention is a sound absorber having a frame body in which a through hole is formed and a membrane vibration type sound absorbing material that covers one opening of the through hole. The sound absorbing layer is composed of a laminated body, and among the plurality of sound absorbing layers, the sound absorbing layer having the highest storage elastic modulus is the first sound absorbing layer, and the sound absorbing layer having the lowest storage elastic modulus is the second sound absorbing layer. When the storage elastic modulus of the first sound absorbing layer is E′1 and the storage elastic modulus of the second sound absorbing layer is E′2, (E′1 / E′2) ≧ 3 and the laminate In the body, the storage elastic modulus of each sound absorbing layer gradually decreases from the first sound absorbing layer toward the outside.
本発明によれば、吸音体の大型化を招くことなく、低周波領域において高度な吸音効果を達成することができる吸音体が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the sound absorber which can achieve a high-quality sound absorption effect in a low frequency area | region without causing the enlargement of a sound absorber is obtained.
本発明における貯蔵弾性率(E’)の値は JIS K7244−3(曲げ振動)に準処する測定方法により、サンプルサイズを長さ20mm、幅5mm、厚さ2mmとし、測定条件を歪振幅6μm、25℃、20Hzとして得られる値(単位:Pa)である。また損失正接(tanδ)は貯蔵弾性率(E’)に対する損失弾性率(E”)の比(E”/E’)の絶対値で表される値である。該貯蔵弾性率(E’)および損失正接(tanδ)の測定周波数は、一般的に測定可能な範囲(0.2〜50Hz)の中で、実際の吸音周波数により近いという理由で20Hzを採用した(なお、50Hzではデータのばらつきが多い為、20Hzとした。)。貯蔵弾性率(E’)および損失正接(tanδ)は材質によって決まる値である。
尚、貯蔵弾性率(E’)および損失正接(tanδ)の測定は、エスアイアイ・ナノテクノロジー株式会社製、粘弾性スペクトロメータEXSTAR6000 DMS、形式名DMS6100を使用した。
The value of the storage elastic modulus (E ′) in the present invention is determined by the measurement method according to JIS K7244-3 (bending vibration), the sample size is 20 mm long, 5 mm wide, 2 mm thick, and the measurement conditions are 6 μm strain amplitude, It is a value (unit: Pa) obtained as 25 ° C. and 20 Hz. The loss tangent (tan δ) is a value represented by the absolute value of the ratio (E ″ / E ′) of the loss elastic modulus (E ″) to the storage elastic modulus (E ′). The measurement frequency of the storage elastic modulus (E ′) and loss tangent (tan δ) is generally 20 Hz because it is closer to the actual sound absorption frequency within a measurable range (0.2 to 50 Hz). (In addition, since there was much variation in data at 50 Hz, it was set to 20 Hz.) The storage elastic modulus (E ′) and loss tangent (tan δ) are values determined by the material.
The storage elastic modulus (E ′) and loss tangent (tan δ) were measured using a viscoelastic spectrometer EXSTAR6000 DMS, model name DMS6100, manufactured by SII Nanotechnology.
本明細書における吸音率は「垂直入射吸音率」の意味であり、JIS A 1405−2に準処する方法で、直径100mmのインピーダンス管内にサンプルをセットして測定される値である。サンプル直径は100mm弱とし、スペーサーを介して、インピーダンス管内に固定する。背後空気層厚(すなわち、枠体の厚さT)の変更は、サンプルの背後にある剛体(ピストン)の位置を調整することによって行うことができる。またサンプル径(すなわち、枠体の貫通孔の直径D)の変更は、スペーサーの内径を調整することによって行うことができる。
入射周波数を変化させながら吸音率を測定し、吸音率が最も高くなるときの周波数をピーク周波数(吸音周波数ということもある。)という。
また、本発明の吸音体による吸音は膜振動型吸音であるため、共振する周波数での吸音となる。そこで、良好な吸音が生じる周波数の範囲の広さの指標となる値として、ピーク周波数±50Hzの吸音率平均をとり、平均吸音率と定義した。
The sound absorption coefficient in this specification means “normal incidence sound absorption coefficient”, and is a value measured by setting a sample in an impedance tube having a diameter of 100 mm by a method according to JIS A 1405-2. The sample diameter is a little less than 100 mm, and it is fixed in the impedance tube through a spacer. Changes in the back air layer thickness (ie, frame thickness T) can be made by adjusting the position of the rigid body (piston) behind the sample. The sample diameter (that is, the diameter D of the through hole of the frame) can be changed by adjusting the inner diameter of the spacer.
The sound absorption rate is measured while changing the incident frequency, and the frequency at which the sound absorption rate becomes the highest is called the peak frequency (sometimes referred to as the sound absorption frequency).
Further, since the sound absorption by the sound absorber of the present invention is a membrane vibration type sound absorption, the sound absorption is performed at a resonating frequency. Therefore, the average sound absorption rate was defined as an average value of the sound absorption rate at a peak frequency of ± 50 Hz as a value indicating the range of the frequency range where good sound absorption occurs.
図1は本発明の吸音体の一実施形態を示したもので、図1(a)は平面図、(b)は(a)中のB−B線に沿う断面図である。図中符号1は吸音体、2は枠体、3は膜振動型吸音材、4は吸音体が取り付けられている施工面を示している。吸音体1は、貫通孔2aを有する枠体2の表面2b上に、膜振動型吸音材3が積層され、固定されている。
本実施形態の吸音体1は枠体2の裏面2cが施工面4に接着固定されており、膜振動型吸音材3と施工面4との間に背後空気層5が形成された状態で使用される。すなわち枠体2の表面2bおよび裏面2cそれぞれにおける貫通孔2aの開口のうち、表面における開口が膜振動型吸音材3で覆われており、裏面における開口が施工面4によって閉じられている。
1A and 1B show an embodiment of a sound absorber according to the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line BB in FIG. In the figure,
The
本実施形態の枠体2は、外形形状が円形で、同心円状の貫通孔2aが設けられている。枠体2は貫通孔2aを有していればよく、外形形状は任意とすることができる。枠体2自身は、吸音性能を有していてもよく、有していなくてもよい。枠体2の材質は特に制限されないが、軽量化の点からは樹脂などの比重の低い材料が好ましい。
枠体2の厚さTによって膜振動型吸音材3の施工面4側に形成される背後空気層5の厚さが決まる。
枠体2の厚さTは、吸音性能の点からは3mm以上が好ましい。また全体のサイズを抑える点からは、50mm以下が好ましい。
The frame body 2 of the present embodiment has a circular outer shape and is provided with concentric through
The thickness T of the frame 2 determines the thickness of the
The thickness T of the frame 2 is preferably 3 mm or more from the viewpoint of sound absorption performance. Moreover, from the point which suppresses the whole size, 50 mm or less is preferable.
貫通孔2aの形状(枠体2の表面2bにおける開口の形状)は円形に限らず、多角形など任意の形状とすることができる。特に、吸音率がピークとなるピーク周波数がより低くなる点、および該ピーク周波数における吸音率がより高くなる点からは、円形であることが好ましい。貫通孔2aの直径Dは吸音性能の点から20mm以上が好ましい。
枠体2の厚さTおよび貫通孔2aの直径Dは、これらによって得られる吸音体1の吸音特性(ピーク周波数および吸音率)が変化する。例えば500Hz以下の低周波数領域に吸音率が0.5以上となる周波数領域が存在するような、高度な吸音効果を良好に達成できるように、これらの寸法を設定することが好ましい。
The shape of the through
The thickness T of the frame body 2 and the diameter D of the through
膜振動型吸音材3は、複数の吸音層が一体化された積層体からなる。該積層体における吸音層は該層自身が膜振動により吸音作用を生じうる膜振動型の吸音層である。具体的に、該積層体を構成している吸音層が膜振動により吸音作用を生じるためには、それぞれの吸音層における流れ抵抗が1×106N・s/m4以上であることが好ましい。本明細書における流れ抵抗の値は、材料表面に垂直方向に一定の空気流を通した時の材料両面間の圧力差を空気流の速度を割った値である。音は流速が非常に小さい状態に相当するので、流速が0に近づいた場合の極限値として定義される。測定法は、ISO 9053のDC法に準拠する。 The membrane vibration type sound absorbing material 3 is composed of a laminated body in which a plurality of sound absorbing layers are integrated. The sound absorbing layer in the laminate is a membrane vibration type sound absorbing layer that itself can generate a sound absorbing action by membrane vibration. Specifically, in order for the sound absorbing layer constituting the laminate to generate a sound absorbing action by membrane vibration, the flow resistance in each sound absorbing layer is preferably 1 × 10 6 N · s / m 4 or more. . In this specification, the value of the flow resistance is a value obtained by dividing the pressure difference between the two surfaces of the material when the air flow is perpendicular to the material surface by the velocity of the air flow. Since sound corresponds to a state where the flow velocity is very small, it is defined as a limit value when the flow velocity approaches zero. The measurement method conforms to the DC method of ISO 9053.
膜振動型吸音材3は吸音層以外に、膜振動型吸音材3の吸音特性に影響を及ぼさない他の層を有していてもよい。例えば接着層は、厚さが0.5mm以下であれば膜振動型吸音材3の吸音特性に影響しない。したがって、膜振動型吸音材3は、複数の吸音層の他に、厚さが0.5mm以下の接着剤層を有していてもよい。 The membrane vibration type sound absorbing material 3 may have other layers that do not affect the sound absorbing characteristics of the membrane vibration type sound absorbing material 3 in addition to the sound absorbing layer. For example, if the thickness of the adhesive layer is 0.5 mm or less, the sound absorbing characteristics of the membrane vibration type sound absorbing material 3 are not affected. Therefore, the membrane vibration type sound absorbing material 3 may have an adhesive layer having a thickness of 0.5 mm or less in addition to the plurality of sound absorbing layers.
本発明において、膜振動型吸音材3を構成している吸音層のうち、最も貯蔵弾性率(E’)が高い吸音層を第1の吸音層といい、最も貯蔵弾性率(E’)が低い吸音層を第2の吸音層とし、第1の吸音層の貯蔵弾性率をE’1、前記第2の吸音層の貯蔵弾性率をE’2とすると、E’1/E’2で表される比は3以上である。該E’1/E’2の値は好ましくは4以上であり、より好ましくは17以上である。E’1とE’2の比が上記範囲であると吸音層を積層することによる周波数領域を低周波数側へシフトさせる効果が得られやすい。
該E’1/E’2の上限値は特に限定されないが1600以下が好ましい。これより大きいと膜振動型吸音材3の耐熱性や強度が不足するおそれがある。
膜振動型吸音材3を構成している第1の吸音層の貯蔵弾性率E’1の範囲は特に制限されないが、例えば1×107〜1×1010Paが好ましく、5×107〜5×109Paがより好ましい。
In the present invention, among the sound absorbing layers constituting the membrane vibration type sound absorbing material 3, the sound absorbing layer having the highest storage elastic modulus (E ′) is referred to as a first sound absorbing layer, and the storage elastic modulus (E ′) is the highest. If the low sound absorption layer is the second sound absorption layer, the storage elastic modulus of the first sound absorption layer is E′1, and the storage elastic modulus of the second sound absorption layer is E′2, then E′1 / E′2. The represented ratio is 3 or more. The value of E′1 / E′2 is preferably 4 or more, more preferably 17 or more. When the ratio of E′1 and E′2 is within the above range, an effect of shifting the frequency region to the low frequency side by stacking the sound absorbing layer is easily obtained.
The upper limit of E′1 / E′2 is not particularly limited, but is preferably 1600 or less. If it is larger than this, the heat resistance and strength of the membrane vibration type sound absorbing material 3 may be insufficient.
The range of the storage elastic modulus E′1 of the first sound absorbing layer constituting the membrane vibration type sound absorbing material 3 is not particularly limited, but is preferably 1 × 10 7 to 1 × 10 10 Pa, for example, 5 × 10 7 to 5 × 10 9 Pa is more preferable.
膜振動型吸音材3を構成する吸音層が2層である場合、第2の吸音層は第1の吸音層に対して表側および裏側(枠体2側)のどちら側に積層してもよい。温度変化に対する耐久性の点からは、枠体2に最も近い吸音層の貯蔵弾性率が、より大きい方が好ましい。
膜振動型吸音材3を構成する吸音層が3層以上である場合の積層順序は、第1の吸音層の表側、裏側(枠体2側)のいずれにおいても、第1の吸音層から外側に向かって、各吸音層の貯蔵弾性率が漸次減少するように構成される。例えば貯蔵弾性率の大小の関係が「第1の吸音層A>第3の吸音層C>第2の吸音層B」である3種の層を用いる場合、積層順序の例としては、BAB(第2の吸音層B上に第1の吸音層Aおよび第2の吸音層Bがこの順に積層されていることを示す、表側と裏側は区別しない、以下同様。)、BAC、CAC、CAB、BCA、BCAB、BCAC、BCACBが挙げられる。
When the sound absorbing layer constituting the membrane vibration type sound absorbing material 3 is two layers, the second sound absorbing layer may be laminated on either the front side or the back side (the frame 2 side) with respect to the first sound absorbing layer. . From the viewpoint of durability against temperature changes, it is preferable that the storage elastic modulus of the sound absorbing layer closest to the frame 2 is larger.
The stacking order when there are three or more sound absorbing layers constituting the membrane vibration type sound absorbing material 3 is the outer side from the first sound absorbing layer on either the front side or the back side (frame body 2 side) of the first sound absorbing layer. The storage elastic modulus of each sound absorbing layer is configured to gradually decrease. For example, in the case of using three types of layers whose storage elastic modulus is “first sound absorption layer A> third sound absorption layer C> second sound absorption layer B”, as an example of the stacking order, BAB ( The first sound absorbing layer A and the second sound absorbing layer B are laminated on the second sound absorbing layer B in this order. The front side and the back side are not distinguished. The same applies hereinafter.), BAC, CAC, CAB, BCA, BCAB, BCAC, BCACB are listed.
得ようとする吸音体1において、枠体2の貫通孔2aの表面2bにおける開口を第1の吸音層のみで覆った状態で測定した、吸音率のピーク周波数(以下、積層前ピーク周波数ということもある)が700Hz以下であり、かつ該積層前ピーク周波数における吸音率(以下、積層前吸音率ということもある。)が0.5以上であることが好ましい。該積層前ピーク周波数および積層前吸音率の値は、枠体2の厚さ(T)および枠体2の貫通孔の直径(D)が一定であれば、第1の吸音層の貯蔵弾性率(E’1)、第1の吸音層の層厚、第1の吸音層の比重によって変わる。積層前ピーク周波数及び積層前吸音率の値が上記の範囲であると、500Hz以下の低周波数領域に吸音率が0.5以上となる周波数領域が存在するような高度な吸音効果を達成しやすい。積層前ピーク周波数の下限値は特に制限されないが、300Hz以上が好ましい。積層前吸音率の上限は特に制限されず1でもよい。
In the
膜振動型吸音材3を構成する吸音層(第1の吸音層、第2の吸音層、第3の吸音層…)の材質としては、例えば、熱可塑性樹脂を用いることができ、具体的には、EEA(エチレンエチルアクリレート)、EVA(酢酸ビニル共重合体)、LLDPE(直鎖状低密度ポリエチレン)、HDPE(高密度ポリエチレン)、CPE(塩素化ポリエチレン)、PVC(ポリ塩化ビニル)、PP(ポリプロピレン)、SEBS(スチレンエチレンブチレンスチレンブロック共重合体)、SIS(スチレンイソプレンスチレンブロック共重合体),SEPS(スチレンエチレンプロピレンスチレンブロック共重合体)、PET(ポリエチレンテレフタレート)、PET−G(ポリエチレンテレフタレートグリコール)、アクリル樹脂、ポリメチルペンテン、ポリブテン、PEEK(ポリエーテルエーテルケトン)、環状オレフィン、ポリ乳酸、EBM(エチレンブテン共重合体)、エチレン−αオレフィン共重合体、TPU(熱可塑性ポリウレタン)等から選ばれる1種または2種以上の混合樹脂、またはこれらの樹脂をベース樹脂とし、これに無機フィラー及び又は有機フィラーを適宜添加した混合物等が挙げられる。
上記に挙げた樹脂の中でも、以下の組合せが好ましい。(HDPE/LLDPE/EBM)、(HDPE/LLDPE/エチレン−オクテン共重合体)、(PET−G/TPU)、(軟質PVC(可塑剤量40部以上)/半硬質PVC(可塑剤量30部以下))、(PP/EBM)、(PP/エチレン−オクテン共重合体)、(CPE/EEA)、(PP/SEBS)、(HDPE/SEBS)、(HDPE/LLDPE/SIS)、(HDPE+LLDPEブレンド物/SIS)、(ABS/SIS)、(PP/SIS)、(ABS/軟質PVC(可塑剤量40部以上))。
As a material of the sound absorbing layer (the first sound absorbing layer, the second sound absorbing layer, the third sound absorbing layer,...) Constituting the membrane vibration type sound absorbing material 3, for example, a thermoplastic resin can be used. Are EEA (ethylene ethyl acrylate), EVA (vinyl acetate copolymer), LLDPE (linear low density polyethylene), HDPE (high density polyethylene), CPE (chlorinated polyethylene), PVC (polyvinyl chloride), PP (Polypropylene), SEBS (styrene ethylene butylene styrene block copolymer), SIS (styrene isoprene styrene block copolymer), SEPS (styrene ethylene propylene styrene block copolymer), PET (polyethylene terephthalate), PET-G (polyethylene) Terephthalate glycol), acrylic resin, polymethylpente , Polybutene, PEEK (polyetheretherketone), cyclic olefin, polylactic acid, EBM (ethylene butene copolymer), ethylene-α olefin copolymer, TPU (thermoplastic polyurethane), etc. Or a mixture obtained by appropriately adding an inorganic filler and / or an organic filler to the base resin.
Among the resins listed above, the following combinations are preferable. (HDPE / LLDPE / EBM), (HDPE / LLDPE / ethylene-octene copolymer), (PET-G / TPU), (soft PVC (plasticizer amount 40 parts or more) / semi-rigid PVC (plasticizer amount 30 parts) Below)), (PP / EBM), (PP / ethylene-octene copolymer), (CPE / EEA), (PP / SEBS), (HDPE / SEBS), (HDPE / LLDPE / SIS), (HDPE + LLDPE blend) Product / SIS), (ABS / SIS), (PP / SIS), (ABS / soft PVC (plasticizer amount of 40 parts or more)).
無機フィラーの例としては、マイカ、タルク、炭酸カルシウム、水酸化マグネシウム、等が挙げられる。
無機フィラーを配合する場合、その配合量は特に限定されないが機械強度の点からは、吸音層の構成材料中80質量%以下が好ましく、60質量%以下がより好ましい。
有機フィラーの例としては、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール(例えば、製品名:アデカスタブ AO−330、ADEKA社製)、トリス(2,4ジ−tert−ブチルフェニル)フォスファイト(例えば、製品名:Irg168、チバ・スペシャルティ・ケミカルズ社製)が好ましい。
有機フィラーを配合する場合、その配合量は特に限定されないが、機械強度の点からは、吸音層の構成材料中80質量%以下が好ましく、60質量%以下がより好ましい。
Examples of the inorganic filler include mica, talc, calcium carbonate, magnesium hydroxide, and the like.
When the inorganic filler is blended, the blending amount is not particularly limited, but from the viewpoint of mechanical strength, it is preferably 80% by mass or less and more preferably 60% by mass or less in the constituent material of the sound absorbing layer.
Examples of organic fillers include 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″-(mesitylene-2,4,6-triyl ) Tri-p-cresol (for example, product name: ADK STAB AO-330, manufactured by ADEKA), tris (2,4 di-tert-butylphenyl) phosphite (for example, product name: Irg168, Ciba Specialty Chemicals) Product).
When the organic filler is blended, the blending amount is not particularly limited, but from the viewpoint of mechanical strength, it is preferably 80% by mass or less and more preferably 60% by mass or less in the constituent material of the sound absorbing layer.
膜振動型吸音材3を構成する吸音層のうち、貯蔵弾性率(E’)が最も高い第1の吸音層が、最も厚いことが好ましい。
第1の吸音層の厚さは、前記積層前ピーク周波数及び積層前吸音率が好ましい値となるように、材料に応じて設定することが好ましい。例えば 0.1〜3.0mmの範囲が好ましく、0.2〜2.0mmがより好ましく、0.3〜1.6mmがさらに好ましい。
第2の吸音層および必要に応じて設けられる第3の吸音層…の厚さは、第1の吸音層の厚さよりも小さいことが好ましく、互いに同じであってもよく異なっていてもよい。例えば0.1〜1.5mmの範囲が好ましく、0.1〜1.0mmがより好ましく、0.1〜0.5mmがさらに好ましい。
膜振動型吸音材3を構成する吸音層の各層の厚さの合計は、0.2〜4.5mmの範囲が好ましく、0.3〜3.0mmがより好ましく、0.4〜2.1mmがさらに好ましい。該厚さの合計が上記範囲より大きいと、製品重量が増加して好ましくない。
Among the sound absorbing layers constituting the membrane vibration type sound absorbing material 3, the first sound absorbing layer having the highest storage elastic modulus (E ′) is preferably the thickest.
The thickness of the first sound absorbing layer is preferably set according to the material so that the peak frequency before lamination and the sound absorption rate before lamination are preferable values. For example, the range of 0.1-3.0 mm is preferable, 0.2-2.0 mm is more preferable, and 0.3-1.6 mm is further more preferable.
The thickness of the second sound absorbing layer and the third sound absorbing layer provided as necessary is preferably smaller than the thickness of the first sound absorbing layer, and may be the same or different from each other. For example, the range of 0.1-1.5 mm is preferable, 0.1-1.0 mm is more preferable, and 0.1-0.5 mm is further more preferable.
The total thickness of the sound absorbing layers constituting the membrane vibration type sound absorbing material 3 is preferably in the range of 0.2 to 4.5 mm, more preferably 0.3 to 3.0 mm, and 0.4 to 2.1 mm. Is more preferable. If the total thickness is larger than the above range, the product weight increases, which is not preferable.
膜振動型吸音材3は、これを構成する複数の吸音層を一体化することにより形成できる。一体化の方法は、接着剤層を介して接着一体化してもよく、熱融着でもよい。具体的には多層押出成形により複数の吸音層を備えた積層体を成形してもよく、各層をそれぞれ成形した後に接着剤を用いたドライラミネート法で積層一体化してもよい。接着剤層の厚さは0.1mm以下であればよく、充分な接着強度が得られる厚さとする。 The membrane vibration type sound absorbing material 3 can be formed by integrating a plurality of sound absorbing layers constituting the film vibration type sound absorbing material 3. The method of integration may be integrated by adhesion via an adhesive layer, or may be heat fusion. Specifically, a laminate including a plurality of sound absorbing layers may be formed by multilayer extrusion molding, or each layer may be formed and then laminated and integrated by a dry laminating method using an adhesive. The thickness of the adhesive layer may be 0.1 mm or less, and is set to a thickness that provides sufficient adhesive strength.
枠体2に膜振動型吸音材3を固定する手段としては、接着剤、両面テープ等の接着または粘着手段を用いてもよく、圧着、溶融圧着により固定してもよい。枠体2と膜振動型吸音材3との間に接着剤層または粘着剤層を設ける場合、該接着剤層または粘着剤層の厚さは0.08mm以下であればよく、充分な固定強度が得られる厚さとする。 As a means for fixing the membrane vibration type sound absorbing material 3 to the frame 2, an adhesive or adhesive means such as an adhesive or a double-sided tape may be used, or may be fixed by pressure bonding or melt pressure bonding. When an adhesive layer or a pressure-sensitive adhesive layer is provided between the frame 2 and the membrane vibration type sound absorbing material 3, the thickness of the adhesive layer or the pressure-sensitive adhesive layer may be 0.08 mm or less, and sufficient fixing strength To obtain a thickness.
さらに膜振動型吸音材3の表面上(枠体2側とは反対側)に、他の吸音層(図示せず)を積層してもよい。該他の吸音層は、膜振動以外の吸音作用により吸音効果を生じる層である。具体的に該他の吸音層は、流れ抵抗が1×106N・s/m4より小さい層からなる。
かかる他の吸音層の材質は、従来の吸音材として公知の材料から、上記流れ抵抗の範囲を満たすものを適宜使用できる。具体例としては、発泡樹脂、フェルト、繊維材料、グラスウール、ロックウール、木粉セメント等が挙げられる。特に発泡樹脂、フェルト、繊維材料、グラスウールが好ましい。
このように他の吸音層を積層することにより、吸音体1全体として、吸音効果が得られる周波数領域をより広くすることができる。例えば、膜振動型吸音材3により吸音効果が得られる周波数領域よりも、高周波数領域において吸音効果を奏する他の吸音層を膜振動型吸音材3上に積層して設けると、両方の周波数領域において吸音効果が得られる。
Further, another sound absorbing layer (not shown) may be laminated on the surface of the membrane vibration type sound absorbing material 3 (on the side opposite to the frame 2 side). The other sound absorbing layer is a layer that produces a sound absorbing effect by a sound absorbing action other than the membrane vibration. Specifically, the other sound absorbing layer is formed of a layer having a flow resistance smaller than 1 × 10 6 N · s / m 4 .
As the material of the other sound absorbing layer, a material satisfying the above flow resistance range can be appropriately used from materials known as conventional sound absorbing materials. Specific examples include foamed resin, felt, fiber material, glass wool, rock wool, wood powder cement, and the like. Particularly preferred are foamed resin, felt, fiber material, and glass wool.
By laminating other sound absorbing layers in this manner, the frequency region in which the sound absorbing effect can be obtained can be broadened as the
本発明によれば、後述の実施例に示されるように、積層前ピーク周波数が所望のピーク周波数よりも高周波数側にある吸音層に、該吸音層よりも貯蔵弾性率が低い吸音層を積層一体化することによって、ピーク周波数を低周波数側へシフトさせることができる。また、そのシフト量は、積層する各層の材料を混合して1層の吸音層とした場合よりも大きい。このように特定の条件を満たす吸音層を積層することにより、ピーク周波数を低周波数側へ充分にシフトできることは知られておらず、驚くべき知見である。 According to the present invention, a sound absorbing layer having a storage elastic modulus lower than that of the sound absorbing layer is laminated on the sound absorbing layer whose peak frequency before lamination is higher than the desired peak frequency, as shown in the examples described later. By integrating, the peak frequency can be shifted to the low frequency side. Further, the shift amount is larger than that in the case of mixing the material of each layer to be laminated to form one sound absorbing layer. Thus, it is not known that it is possible to sufficiently shift the peak frequency to the low frequency side by laminating sound absorbing layers satisfying specific conditions, which is a surprising finding.
また特に、膜振動型吸音材3を構成している吸音層のうち、最も貯蔵弾性率(E’)が低い第2の吸音層の損失正接(tanδ2)の値が小さいと、積層構造とすることによるピーク周波数の低周波数側へのシフト量が大きくなりやすく、ピーク周波数における吸音率の低下が小さいのに対して、該tanδ2の値が大きいと、積層構造とすることによるピーク周波数の低周波数側へのシフト量が小さくなりやすく、周波数を横軸、吸音率を縦軸とするグラフにおいてピーク形状がブロード化しやすい傾向があることも見出した。ピーク形状がブロード化すると、ピーク周波数における吸音率が低下する場合があるが、平均吸音率が増大し、良好な吸音が生じる周波数の範囲が広くなる。
具体的には、tanδ2の値が0.3未満であると、本発明にかかる積層構造とすることにより、ピーク周波数における吸音率の低下を抑えつつ、ピーク周波数が低周波数側へ充分にシフトした吸音特性が得られやすい。一方、該tanδ2の値が0.3以上であると、積層構造とすることによりピーク周波数が低周波数側へシフトするとともに、平均吸音率が増大した吸音特性が得られやすい。
In particular, if the loss tangent (tan δ2) of the second sound absorbing layer having the lowest storage elastic modulus (E ′) among the sound absorbing layers constituting the membrane vibration type sound absorbing material 3 is small, a laminated structure is obtained. However, if the value of tan δ2 is large, the peak frequency is low due to the laminated structure. It was also found that the amount of shift to the side tends to be small, and the peak shape tends to be broadened in a graph in which the horizontal axis represents frequency and the vertical axis represents sound absorption rate. When the peak shape is broadened, the sound absorption coefficient at the peak frequency may be reduced, but the average sound absorption coefficient is increased, and the frequency range in which good sound absorption occurs is widened.
Specifically, when the value of tan δ2 is less than 0.3, the laminated structure according to the present invention allows the peak frequency to be sufficiently shifted to the low frequency side while suppressing a decrease in sound absorption coefficient at the peak frequency. Sound absorption characteristics are easy to obtain. On the other hand, when the value of tan δ2 is 0.3 or more, the laminated structure makes it easy to obtain a sound absorption characteristic in which the peak frequency is shifted to the low frequency side and the average sound absorption coefficient is increased.
したがって、本発明によれば、従来は達成することが難しかった、薄い膜振動型吸音材3で低周波領域における高度な吸音効果を得ることができる。例えば、図1の例において、膜振動型吸音材3の厚さと枠体2の厚さ(T)との合計が55mm以下、好ましくは25mm以下でありながら、500Hz以下、好ましくは460Hz以下、より好ましくは440Hz以下の低周波領域において、吸音率が0.5以上となる高度な吸音効果を達成できる吸音体が得られる。また、単一の吸音層からなる吸音体に比べて、比較的安価な材料からなる吸音層を組み合わせることができるため、低周波領域における吸音効果が高い吸音体を低コストで提供することができる。 Therefore, according to the present invention, an advanced sound absorbing effect in the low frequency region can be obtained with the thin film vibration type sound absorbing material 3 that has been difficult to achieve conventionally. For example, in the example of FIG. 1, the total of the thickness of the membrane vibration type sound absorbing material 3 and the thickness (T) of the frame 2 is 55 mm or less, preferably 25 mm or less, but 500 Hz or less, preferably 460 Hz or less. A sound absorber that can achieve a high sound absorption effect with a sound absorption coefficient of 0.5 or more in a low frequency region of 440 Hz or less is obtained. Further, since a sound absorbing layer made of a relatively inexpensive material can be combined as compared with a sound absorbing body made of a single sound absorbing layer, a sound absorbing body having a high sound absorbing effect in a low frequency region can be provided at low cost. .
なお、図1の実施形態においては枠体2の厚さが均一であるが、これが均一でなくてもよい。すなわち図1の例では膜振動型吸音材3と施工面4は平行であるが、施工面4に対して膜振動型吸音材3が傾斜していてもよい。
また本発明の吸音体は、貫通孔を有する枠体と、該貫通孔の一方の開口を覆う吸音材を備えた構成であればよく、図1に示す形態に限らず、各種の構成とすることができる。例えば図2に示すように、板状の枠体22に複数の貫通孔22aが設けられており、該枠体22の一面上に、該複数の貫通孔22aを一括的に覆うように膜振動型吸音材23が積層、固定された構成を有する吸音体21であってもよい。図2は吸音体21を枠体22側から見た斜視図である。このように、枠体22に複数の貫通孔22aが設けられている場合、該複数の貫通孔22aの形状および大きさは均一でもよく、異なっていてもよい。
また該複数の貫通孔22aの配置は任意であるが、隣り合う貫通孔22aどうしの距離dが小さいほど吸音体21における吸音の効率が高くなる。
In the embodiment of FIG. 1, the thickness of the frame body 2 is uniform, but this need not be uniform. That is, in the example of FIG. 1, the membrane vibration type sound absorbing material 3 and the
In addition, the sound absorber of the present invention may be configured to include a frame having a through hole and a sound absorbing material that covers one opening of the through hole. be able to. For example, as shown in FIG. 2, a plurality of through
The arrangement of the plurality of through
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
以下の例において、吸音層の材料として表1に示すものを用いた。各材料の貯蔵弾性率E’(単位:Pa)および損失正接(tanδ)の値を表1に示す。
また各吸音層の厚さの値は、サンプルをミクロトームにて冷凍破断して、断面を観察して測定した。
なお、以下の例で用いた各吸音層の流れ抵抗はいずれも1×106N・s/m4以上であることを確認した。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
In the following examples, the materials shown in Table 1 were used as the material of the sound absorbing layer. Table 1 shows values of storage elastic modulus E ′ (unit: Pa) and loss tangent (tan δ) of each material.
The value of the thickness of each sound absorbing layer was measured by freezing and breaking the sample with a microtome and observing the cross section.
In addition, it was confirmed that the flow resistance of each sound absorbing layer used in the following examples is 1 × 10 6 N · s / m 4 or more.
(実施例1)
表2に示す積層順序で吸音層を積層一体化して膜振動型吸音材3を作製した。すなわちEBMからなる厚さ0.2mmの吸音層上に、HDPEからなる厚さ0.5mmの吸音層を積層し、その上にLLDPEからなる厚さ0.1mmの吸音層を積層して一体化した。吸音層どうしの一体化は接着剤を使用せず、140℃熱プレスにて積層品を作製した。表中の「EBM:0.2」はEBMからなる層の厚さが0.2mmであることを示す(以下、同様。)
得られた膜振動型吸音材3を用いて図1に示す構成の吸音体1を作製した。膜振動型吸音材3の向きは、LLDPEからなる吸音層が枠体側となるように配した。枠体2の材質はアクリル樹脂であり、貫通孔2aは円形とした。枠体の厚さTは9mm、貫通孔2aの直径Dは90mmとした。
作製した吸音体1について吸音率を測定し、ピーク周波数(表中、吸音周波数と記載する。)、該ピーク周波数における吸音率の値(表中、吸音率と記載する。)、およびピーク周波数±50Hzの周波数領域における吸音率の平均値(表中、平均吸音率と記載する。)を求めた。その結果を表2に示す。
Example 1
A sound absorbing layer 3 was produced by laminating and integrating the sound absorbing layers in the order shown in Table 2. That is, a 0.5 mm thick sound absorbing layer made of HDPE is laminated on a 0.2 mm thick sound absorbing layer made of EBM, and a 0.1 mm thick sound absorbing layer made of LLDPE is laminated on top of it. did. The sound absorbing layers were integrated with each other without using an adhesive, and a laminated product was produced by 140 ° C. hot pressing. “EBM: 0.2” in the table indicates that the thickness of the layer made of EBM is 0.2 mm (the same applies hereinafter).
A
The sound absorption coefficient of the produced
これとは別に、実施例1で用いた枠体2に、膜振動型吸音材3の代わりに、HDPEからなる厚さ0.5mmの吸音層のみを固定した状態で吸音率を測定し、積層前ピーク周波数(吸音周波数)と該積層前ピーク周波数における積層前吸音率および平均吸音率を求めた。その結果を表2に示す。 Separately, the sound absorption coefficient was measured in a state where only the 0.5 mm thick sound absorbing layer made of HDPE was fixed to the frame body 2 used in Example 1 instead of the membrane vibration type sound absorbing material 3. The sound absorption coefficient before lamination and the average sound absorption coefficient at the previous peak frequency (sound absorption frequency) and the peak frequency before lamination were determined. The results are shown in Table 2.
(実施例2、比較例1)
実施例1において、吸音層の積層順序を表2に示すとおりに変更したほかは、実施例1と同様にして吸音体1を作製し、吸音率を測定した。その結果を表2に示す。
(Example 2, Comparative Example 1)
In Example 1, the
(参考例1)
実施例1において、積層体(膜振動型吸音材3)を構成する3層の吸音層の材料を混合した混合樹脂からなる、厚さ0.8mmの層を膜振動型吸音材3とした。該3層の吸音層の材料の混合割合は、該混合樹脂中における各材料の含有割合(質量基準)が、該3層の積層体(膜振動型吸音材3)における各材料の存在割合(質量基準)と一致するように設定した。
その他は実施例1と同様にして吸音体1を作製し、吸音率を測定した。その結果を表2に示す。
(Reference Example 1)
In Example 1, a layer having a thickness of 0.8 mm made of a mixed resin obtained by mixing the materials of the three sound-absorbing layers constituting the laminate (membrane-vibration type sound-absorbing material 3) was used as the membrane vibration-type sound-absorbing material 3. The mixing ratio of the materials of the three-layer sound absorbing layer is such that the content ratio (mass basis) of each material in the mixed resin is the proportion of each material existing in the three-layer laminate (membrane vibration type sound absorbing material 3) ( (Mass standard).
Otherwise, the
図3は実施例1、2、比較例1、参考例1で得られた吸音体について、吸音率を測定して得られた周波数と吸音率の関係を示すグラフである。
表2およびグラフに示されるように、実施例1,2は、積層前に比べてピーク周波数が低周波数側にシフトしており、該ピーク周波数における吸音率の低下は少ない。
3層の材料を混合して1層の吸音層とした参考例1では、剛性の低い材料をブレンドすることにより、ピーク周波数は低周波数側にシフトしているが、そのシフト量は充分ではない。
更に、貯蔵弾性率E’が3層のうちで最も低いEBM層をHDPE層とLLDPE層の間に配置した比較例1では、積層前に比べてピーク周波数は低周波数側にシフトしているものの、そのシフト量は参考例1よりも小さい。
FIG. 3 is a graph showing the relationship between the frequency and the sound absorption coefficient obtained by measuring the sound absorption coefficient for the sound absorbers obtained in Examples 1 and 2, Comparative Example 1 and Reference Example 1.
As shown in Table 2 and the graph, in Examples 1 and 2, the peak frequency is shifted to the lower frequency side than before the lamination, and the decrease in the sound absorption coefficient at the peak frequency is small.
In Reference Example 1 in which three layers of materials are mixed to form a single sound absorbing layer, the peak frequency is shifted to the low frequency side by blending materials with low rigidity, but the shift amount is not sufficient. .
Furthermore, in Comparative Example 1 in which the EBM layer having the lowest storage elastic modulus E ′ among the three layers is arranged between the HDPE layer and the LLDPE layer, the peak frequency is shifted to the lower frequency side than before lamination. The shift amount is smaller than that of Reference Example 1.
(実施例3〜14)
表3〜10に示す積層順序で、実施例1と同様にして吸音層を積層一体化して膜振動型吸音材3を作製し、これを用いて吸音体1を作製した。表の積層順序の欄において「‐」は間に層が無いことを表している。例えば実施例3、5等において積層体(膜振動型吸音材3)は2層の積層体からなっている。
作製した吸音体1について、実施例1と同様にして吸音率を測定した結果を表3〜10に示す。
また実施例1と同様にして積層前ピーク周波数(吸音周波数)と該積層前ピーク周波数における積層前吸音率および平均吸音率を求めた。その結果を表3〜10に示す。
(Examples 3 to 14)
In the stacking order shown in Tables 3 to 10, the sound absorbing layer 3 was manufactured by stacking and integrating the sound absorbing layers in the same manner as in Example 1, and the
About the produced sound-absorbing
Further, in the same manner as in Example 1, the peak frequency before lamination (sound absorption frequency), the sound absorption rate before lamination at the peak frequency before lamination, and the average sound absorption rate were obtained. The results are shown in Tables 3-10.
(参考例2〜5)
参考例2は、実施例7において、積層体(膜振動型吸音材3)を構成する2層の吸音層の材料を混合した混合樹脂からなる、厚さ0.8mmの層を膜振動型吸音材3とした。
参考例3は、実施例11において、積層体(膜振動型吸音材3)を構成する3層の吸音層の材料を混合した混合樹脂からなる、厚さ0.8mmの層を膜振動型吸音材3とした。
参考例4は、実施例13において、積層体(膜振動型吸音材3)を構成する2層の吸音層の材料を混合した混合樹脂からなる、厚さ0.6mmの層を膜振動型吸音材3とした。
参考例5は、実施例16において、積層体(膜振動型吸音材3)を構成する2層の吸音層の材料を混合した混合樹脂からなる、厚さ0.7mmの層を膜振動型吸音材3とした。
該2層または3層の吸音層の材料の混合割合は、該混合樹脂中における各材料の含有割合(質量基準)が、該2層または3層の積層体(膜振動型吸音材3)における各材料の存在割合(質量基準)と一致するように設定した。
その他は実施例1と同様にして吸音体1を作製し、吸音率を測定した。その結果を表に示す。
(Reference Examples 2-5)
In Reference Example 2, a layer having a thickness of 0.8 mm made of a mixed resin obtained by mixing the materials of the two sound-absorbing layers constituting the laminate (membrane-vibration-type sound-absorbing material 3) in Example 7 is a membrane-vibration-type sound-absorbing material. Material 3 was obtained.
In Reference Example 3, a layer having a thickness of 0.8 mm made of a mixed resin obtained by mixing the materials of the three sound-absorbing layers constituting the laminate (membrane-vibration-type sound-absorbing material 3) in Example 11 is a membrane-vibration-type sound-absorbing material. Material 3 was obtained.
Reference Example 4 is a film vibration type sound absorbing material having a thickness of 0.6 mm made of a mixed resin obtained by mixing the materials of the two sound absorbing layers constituting the laminate (membrane vibration type sound absorbing material 3) in Example 13. Material 3 was obtained.
In Reference Example 5, in Example 16, a 0.7 mm-thick layer made of a mixed resin obtained by mixing the materials of the two sound-absorbing layers constituting the laminate (membrane-vibration-type sound-absorbing material 3) is a membrane-vibration-type sound-absorbing material. Material 3 was obtained.
The mixing ratio of the materials of the two-layer or three-layer sound absorbing layer is such that the content ratio (mass basis) of each material in the mixed resin is in the two-layer or three-layer laminate (membrane vibration type sound absorbing material 3). It set so that it might correspond with the abundance ratio (mass standard) of each material.
Otherwise, the
表3〜10に示されるように、いずれの実施例においても積層前に比べて吸音周波数(ピーク周波数)が低周波数側にシフトした。また、参考例2〜5とそれぞれに対応する実施例とを比較すると、実施例の方が吸音周波数が低い。
また、特にtanδ2が1以上と非常に高い実施例15では、積層前に比べて吸音周波数は低周波数側へシフトしたものの、そのシフト量は他の実施例と比べると少なく、他の実施例と比べて積層による吸音率の低下が見られるが、ピークがブロード化して平均吸音率が大きく向上した。
実施例15以外の実施例では、ピーク周波数における吸音率は積層前とほぼ同等であった。
なお上記各実施例および比較例において、膜振動型吸音材3の向きを逆向き、すなわち表面側と枠体側とを入れ替えても吸音率の測定結果は同じであった。
As shown in Tables 3 to 10, the sound absorption frequency (peak frequency) was shifted to the lower frequency side in any of the Examples as compared to before lamination. Moreover, when the reference examples 2-5 and the corresponding examples are compared, the sound absorption frequency is lower in the examples.
Further, in Example 15, in which tan δ2 is very high as 1 or more, the sound absorption frequency is shifted to the low frequency side compared to before lamination, but the shift amount is small compared to other examples, and other examples and Compared with the decrease in the sound absorption coefficient due to the lamination, the peak was broadened and the average sound absorption coefficient was greatly improved.
In Examples other than Example 15, the sound absorption coefficient at the peak frequency was almost the same as before lamination.
In each of the above examples and comparative examples, the measurement results of the sound absorption rate were the same even when the direction of the membrane vibration type sound absorbing material 3 was reversed, that is, the surface side and the frame side were switched.
本発明の吸音体は、例えば、壁、床などの建材、自動車用の吸音材、電気製品の吸音材など、広い範囲に適用できる。 The sound absorber of the present invention can be applied to a wide range, for example, building materials such as walls and floors, sound absorbing materials for automobiles, and sound absorbing materials for electric products.
1、21…吸音体、
2、22…枠体、
2a、22a…貫通孔、
3、23…吸音材、
5…背後空気層。
1, 21 ... Sound absorber,
2, 22 ... Frame,
2a, 22a ... through hole,
3, 23 ... Sound absorbing material,
5 ... Back air layer.
Claims (2)
前記膜振動型吸音材が、複数の吸音層が一体化された積層体からなり、該複数の吸音層のうち最も貯蔵弾性率が高い吸音層を第1の吸音層、最も貯蔵弾性率が低い吸音層を第2の吸音層とし、前記第1の吸音層の貯蔵弾性率をE’1、前記第2の吸音層の貯蔵弾性率をE’2とするとき、(E’1/E’2)≧3であり、かつ前記積層体において第1の吸音層から外側に向かって、各吸音層の貯蔵弾性率が漸次減少していることを特徴とする吸音体。 A sound absorber having a frame body in which a through hole is formed and a membrane vibration type sound absorbing material covering one opening of the through hole,
The membrane vibration type sound absorbing material is formed of a laminated body in which a plurality of sound absorbing layers are integrated, and among the plurality of sound absorbing layers, the sound absorbing layer having the highest storage elastic modulus is the first sound absorbing layer, and the storage elastic modulus is the lowest. When the sound absorbing layer is a second sound absorbing layer, the storage elastic modulus of the first sound absorbing layer is E′1, and the storage elastic modulus of the second sound absorbing layer is E′2, (E′1 / E ′) 2) A sound absorber, wherein ≧ 3, and the storage elastic modulus of each sound absorbing layer gradually decreases from the first sound absorbing layer toward the outside in the laminate.
The peak frequency of the sound absorption coefficient when one opening of the through hole of the frame is covered only with the first sound absorption layer is 700 Hz or less, and the sound absorption coefficient at the peak frequency is 0.5 or more. The sound absorber according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007162518A JP5080877B2 (en) | 2007-06-20 | 2007-06-20 | Sound absorber |
PCT/JP2008/059745 WO2008155981A1 (en) | 2007-06-20 | 2008-05-27 | Sound absorbing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007162518A JP5080877B2 (en) | 2007-06-20 | 2007-06-20 | Sound absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009003089A JP2009003089A (en) | 2009-01-08 |
JP5080877B2 true JP5080877B2 (en) | 2012-11-21 |
Family
ID=40156140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007162518A Active JP5080877B2 (en) | 2007-06-20 | 2007-06-20 | Sound absorber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5080877B2 (en) |
WO (1) | WO2008155981A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210331630A1 (en) * | 2019-01-11 | 2021-10-28 | Fujifilm Corporation | Silencing member for electrified vehicle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010237418A (en) * | 2009-03-31 | 2010-10-21 | Hiroshima Prefecture | Sound absorbing material |
JP6043407B2 (en) | 2015-02-27 | 2016-12-14 | 富士フイルム株式会社 | Soundproof structure and method for manufacturing soundproof structure |
US10397695B2 (en) | 2015-10-14 | 2019-08-27 | Audio Klaraty Limited | Laminated glass and laminated acrylic loudspeaker enclosure |
WO2018151067A1 (en) * | 2017-02-14 | 2018-08-23 | 富士フイルム株式会社 | Soundproof structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUP9801690A3 (en) * | 1995-05-12 | 1999-03-01 | Huntsman Ici Chemicals | New flexible polyurethane foams |
JP2000053731A (en) * | 1998-06-04 | 2000-02-22 | Mitsubishi Motors Corp | Damping resin composition and damping resin molding product for structure using the same |
JP2000163078A (en) * | 1998-11-25 | 2000-06-16 | Chugoku Rubber Kogyo Kk | Vibration damping material |
JP2001247626A (en) * | 2000-03-06 | 2001-09-11 | Chisso Corp | Vibration-damping polypropylene |
JP2002220890A (en) * | 2001-01-26 | 2002-08-09 | Sekisui Chem Co Ltd | Sound insulating partition |
JP4621529B2 (en) * | 2005-03-31 | 2011-01-26 | 株式会社共和 | Sound insulation cover and piping body with sound insulation cover |
JP2006308679A (en) * | 2005-04-26 | 2006-11-09 | Tokyo Institute Of Technology | Method of controlling sound absorption frequency, and sound absorption structure |
WO2006118160A1 (en) * | 2005-04-27 | 2006-11-09 | Prime Polymer Co., Ltd. | Extruded propylene-resin composite foam |
JP2006330570A (en) * | 2005-05-30 | 2006-12-07 | Tokai Rubber Ind Ltd | Soundproof cover having vibration damping property and manufacturing method thereof |
-
2007
- 2007-06-20 JP JP2007162518A patent/JP5080877B2/en active Active
-
2008
- 2008-05-27 WO PCT/JP2008/059745 patent/WO2008155981A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210331630A1 (en) * | 2019-01-11 | 2021-10-28 | Fujifilm Corporation | Silencing member for electrified vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2009003089A (en) | 2009-01-08 |
WO2008155981A1 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4832245B2 (en) | Sound absorber | |
JP5080877B2 (en) | Sound absorber | |
EP1020846B1 (en) | Sound absorbing structure | |
ES2739175T3 (en) | Appropriate panel for mounting a waterproof covering of a floor or wall, method of producing a panel | |
JP2007230130A (en) | Sound absorption laminate structure using foam honeycomb core | |
JP5632595B2 (en) | Sound absorber and sound absorbing structure | |
TW201534143A (en) | Multi-layer laminate with high internal damping | |
JP2006103403A (en) | Floor sheet | |
JP5512949B2 (en) | Vehicle sound absorber and vehicle sound absorbing structure using the same | |
JP5384201B2 (en) | Sound absorption panel | |
JP2010085818A (en) | Sound absorbing material | |
JP2017044796A (en) | Sound absorption structure | |
JP5543705B2 (en) | Sound absorbing structure | |
JP4945123B2 (en) | Sound absorption board | |
JP5512950B2 (en) | Interior parts for vehicles | |
JP4910969B2 (en) | Sound absorbing structure | |
JP2007137045A (en) | Composite foamed sheet, laminated structure thereof, and honeycomb sound-absorbing structure using the same | |
JP5550227B2 (en) | Sound absorber | |
JP5116629B2 (en) | Sound absorber | |
JP2011039355A (en) | Sound-absorbing body and sound-absorbing structure | |
JP2014029504A (en) | Soundproof material | |
JP2011039357A (en) | Sound absorbing body and sound absorbing structure | |
JP2010097143A (en) | Sound absorbing body | |
JP6092605B2 (en) | Sound absorbing material and door structure of automobile using this sound absorbing material | |
JP6441705B2 (en) | Soundproof material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120831 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5080877 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |