JP5064693B2 - Manufacturing method of SOI substrate - Google Patents

Manufacturing method of SOI substrate Download PDF

Info

Publication number
JP5064693B2
JP5064693B2 JP2006034863A JP2006034863A JP5064693B2 JP 5064693 B2 JP5064693 B2 JP 5064693B2 JP 2006034863 A JP2006034863 A JP 2006034863A JP 2006034863 A JP2006034863 A JP 2006034863A JP 5064693 B2 JP5064693 B2 JP 5064693B2
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
soi
temperature
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006034863A
Other languages
Japanese (ja)
Other versions
JP2007214478A (en
Inventor
昌次 秋山
芳宏 久保田
厚雄 伊藤
信 川合
優二 飛坂
好一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006034863A priority Critical patent/JP5064693B2/en
Priority to PCT/JP2007/052233 priority patent/WO2007094230A1/en
Publication of JP2007214478A publication Critical patent/JP2007214478A/en
Application granted granted Critical
Publication of JP5064693B2 publication Critical patent/JP5064693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Description

本発明は、透明絶縁性基板である石英基板上に単結晶シリコン薄膜を有するSOI基板の製造方法に関する。   The present invention relates to a method for manufacturing an SOI substrate having a single crystal silicon thin film on a quartz substrate which is a transparent insulating substrate.

石英基板上にシリコン薄膜を有するSOQ基板(Silicon on Quartz)は、光学デバイス、例えばTFT液晶モニタ製造用デバイスなどへの応用が期待されているSOI基板であり、SOQ基板の製造方法としてシリコン基板と石英基板という異種材料の基板同士の貼り合わせによる方法が提案されている。   An SOQ substrate (Silicon on Quartz) having a silicon thin film on a quartz substrate is an SOI substrate that is expected to be applied to optical devices such as TFT liquid crystal monitor manufacturing devices. A method has been proposed in which substrates of different materials called quartz substrates are bonded together.

従来より、基板を貼り合わせてSOI基板を製造するための方法として、SmartCut法やSiGen法などが知られている。このうち、SmartCut法は、貼り合せ面側に水素イオンを注入して「水素ブリスタ」と呼ばれる「気泡」を高密度で発生させたシリコン基板と、支持基板(ハンドルウエーハ)とを貼り合わせ、400℃以上(例えば500℃)の熱処理を施して「水素ブリスタ」を「成長」させ、この「気泡成長」を利用してシリコン薄膜を熱剥離することでSOI基板を得る方法である(例えば、特許文献1や非特許文献1)。   Conventionally, a SmartCut method, a SiGen method, or the like is known as a method for manufacturing an SOI substrate by bonding substrates together. Of these, the SmartCut method bonds a silicon substrate in which hydrogen bubbles are injected into the bonding surface side to generate “bubbles” called “hydrogen blisters” at a high density and a support substrate (handle wafer). This is a method of obtaining an SOI substrate by performing “growth” of “hydrogen blister” by performing a heat treatment at a temperature of ℃ or higher (for example, 500 ° C.), and using this “bubble growth” to thermally peel the silicon thin film. Document 1 and non-patent document 1).

また、SiGen法は、貼り合せ面側に水素イオンを注入したシリコン基板とシリコン基板あるいは他の材料の基板とを貼り合わせる前に、これらの基板の貼り合せ面をプラズマ処理し、表面が活性化された状態で両基板を貼り合わせ、低温(例えば、100〜300℃)で熱処理を施して接合強度を高めた後に、常温で機械的に剥離してSOI基板を得る方法である(例えば、特許文献2〜4)。
特許第3048201号公報 米国特許第6263941号明細書 米国特許第6513564号明細書 米国特許第6582999号明細書 A. J. Auberton-Herve et al., "SMART CUT TECHNOLOGY: INDUSTRIAL STATUS of SOI WAFER PRODUCTION and NEW MATERIAL DEVELOPMENTS" (Electrochemical Society Proceedings Volume 99-3 (1999) p.93-106).
In addition, the SiGen method activates the surface by plasma-treating the bonding surface of these substrates before bonding the silicon substrate implanted with hydrogen ions to the bonding surface and a substrate of silicon or another material. In this state, the two substrates are bonded together, heat treated at a low temperature (for example, 100 to 300 ° C.) to increase the bonding strength, and then mechanically peeled at room temperature to obtain an SOI substrate (for example, a patent) Literature 2-4).
Japanese Patent No. 3048201 US Pat. No. 6,263,941 US Pat. No. 6,513,564 US Pat. No. 6,582,999 AJ Auberton-Herve et al., "SMART CUT TECHNOLOGY: INDUSTRIAL STATUS of SOI WAFER PRODUCTION and NEW MATERIAL DEVELOPMENTS" (Electrochemical Society Proceedings Volume 99-3 (1999) p.93-106).

これら2つの方法の相違点は、主としてシリコン薄膜の剥離プロセスにあり、SmartCut法はシリコン薄膜の剥離のために高温での処理を必要とするが、SiGen法は常温での剥離が可能である。   The difference between these two methods is mainly in the silicon thin film peeling process. The SmartCut method requires high-temperature treatment for peeling the silicon thin film, but the SiGen method can be peeled off at room temperature.

SOQ基板をシリコン基板と石英基板との貼り合わせにより製造する場合、これら異種材料同士は熱膨張率や固有耐熱温度などにおいて相違するから、製造工程中で貼り合わせ基板に施される熱処理の温度が高くなると、両基板間の熱的諸特性の相違に起因して、割れや局所的なクラックなどが生じ易くなる。このような観点からは、シリコン薄膜の剥離に高温を要するSmartCut法は、貼り合わせによるSOQ基板の製造方法として好ましいものとはいえない。   When an SOQ substrate is manufactured by bonding a silicon substrate and a quartz substrate, these dissimilar materials differ in coefficient of thermal expansion, intrinsic heat resistance temperature, etc., so the temperature of heat treatment applied to the bonded substrate during the manufacturing process is different. If it is high, cracks and local cracks are likely to occur due to differences in thermal characteristics between the two substrates. From this point of view, the SmartCut method that requires high temperature for peeling off the silicon thin film is not preferable as a method for manufacturing an SOQ substrate by bonding.

一方、低温剥離が可能なSiGen法は、上述したような熱的諸特性の相違に起因した割れや局所的クラックは生じ難いものの、シリコン薄膜剥離のための外力を機械的に付与してシリコン原子の結合を切断することで薄膜剥離を実行するこの手法では、当該剥離工程中に過剰な外力が付与され易く、基板の接着面が剥がれたり剥離痕が生じたり或いはシリコン薄膜に機械的なダメージが導入され易いという問題がある。   On the other hand, the SiGen method, which can be peeled off at a low temperature, is unlikely to generate cracks or local cracks due to the difference in thermal properties as described above, but mechanically applies an external force for peeling the silicon thin film to form silicon atoms. In this method of performing thin film peeling by cutting the bonds, excessive external force is easily applied during the peeling process, the adhesive surface of the substrate is peeled off, peeling marks are generated, or the silicon thin film is mechanically damaged. There is a problem that it is easy to introduce.

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、単結晶シリコン基板と石英基板とを貼り合わせてSOQ基板を製造する工程において、基板間の熱的諸特性の相違に起因する割れや局所的クラック等および機械的ダメージのシリコン薄膜層(SOI層)への導入を回避し、もって膜厚均一性、結晶性、電気的諸特性(キャリア移動度など)に優れたSOI層を有するSOQ基板を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a thermal process between substrates in a process of manufacturing a SOQ substrate by bonding a single crystal silicon substrate and a quartz substrate. Avoids the introduction of cracks, local cracks, etc. due to the difference in characteristics and mechanical damage to the silicon thin film layer (SOI layer), so the film thickness uniformity, crystallinity, electrical characteristics (carrier mobility, etc.) An object of the present invention is to provide an SOQ substrate having an excellent SOI layer.

本発明は、このような課題を解決するために、請求項1に記載の発明は、SOI基板の製造方法であって、単結晶シリコン基板である第1の基板の表面側にドーズ量8×1016〜4×1017atoms/cm2の水素を注入して水素イオン注入層を形成する第1のステップと、石英基板である第2の基板の表面及び前記第1の基板の表面の少なくとも一方に表面活性化処理を施す第2のステップと、前記第1の基板の表面と前記第2の基板の表面とを貼り合わせる第3のステップと、前記貼り合わせた基板を150℃以上300℃以下の温度で加熱する第4のステップと、前記加熱処理後の貼り合せ基板の前記第1の基板からシリコン層を剥離して前記第2の基板の表面上にSOI層を形成する第5のステップとを備えていることを特徴とする。 In order to solve such a problem, the present invention provides a method for manufacturing an SOI substrate, wherein a dose amount of 8 × is applied to a surface side of a first substrate which is a single crystal silicon substrate. A first step of implanting hydrogen of 10 16 to 4 × 10 17 atoms / cm 2 to form a hydrogen ion implanted layer, a surface of a second substrate which is a quartz substrate, and at least a surface of the first substrate; A second step of performing a surface activation treatment on one side, a third step of bonding the surface of the first substrate and the surface of the second substrate, and a temperature of 150 ° C. to 300 ° C. A fourth step of heating at the following temperature, and a fifth step of peeling the silicon layer from the first substrate of the bonded substrate after the heat treatment to form an SOI layer on the surface of the second substrate And having a step .

請求項2に記載の発明は、請求項1に記載のSOI基板の製造方法において、前記第2のステップの表面活性化処理は、プラズマ処理又はオゾン処理の少なくとも一方で実行されることを特徴とする。   The invention according to claim 2 is the method for manufacturing an SOI substrate according to claim 1, wherein the surface activation process of the second step is performed by at least one of a plasma process and an ozone process. To do.

請求項3に記載の発明は、請求項1または2に記載のSOI基板の製造方法において、前記第5のステップは、前記水素イオン注入層の端部から機械的衝撃を付与することにより実行されることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing an SOI substrate according to the first or second aspect, the fifth step is performed by applying a mechanical impact from an end of the hydrogen ion implanted layer. It is characterized by that.

請求項4に記載の発明は、請求項1または2に記載のSOI基板の製造方法において、前記第5のステップは、前記貼り合わされた基板に振動衝撃を付与することにより実行されることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing an SOI substrate according to the first or second aspect, the fifth step is executed by applying a vibration shock to the bonded substrates. And

請求項5に記載の発明は、請求項1または2に記載のSOI基板の製造方法において、前記第5のステップは、前記貼り合わされた基板に熱衝撃を付与することにより実行されることを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing an SOI substrate according to the first or second aspect, the fifth step is executed by applying a thermal shock to the bonded substrates. And

請求項6に記載の発明は、請求項1乃至5の何れか1項に記載のSOI基板の製造方法において、前記第1の基板は、表面側に酸化膜を有する単結晶シリコン基板であることを特徴とする。   A sixth aspect of the present invention is the method for manufacturing an SOI substrate according to any one of the first to fifth aspects, wherein the first substrate is a single crystal silicon substrate having an oxide film on the surface side. It is characterized by.

本発明によれば、従来に比較して高濃度の水素をシリコン基板にイオン注入した貼り合せ基板に比較的低温の熱処理を施して両基板間の熱膨張係数差に起因する熱応力を生じさせてイオン注入層内のシリコン原子の化学結合を弱化させることとしたので、シリコン薄膜の剥離に必要とされる外部からの衝撃レベルを著しく低減させることが可能となる。これにより、基板間の熱的諸特性の相違に起因する割れや局所的クラック等および機械的ダメージのシリコン基板の表面領域から剥離されるシリコン薄膜への導入が回避され、その結果、膜厚均一性、結晶性、電気的諸特性(キャリア移動度など)に優れたSOI層を有するSOI基板を提供することが可能となる。   According to the present invention, a bonded substrate obtained by ion-implanting a high concentration of hydrogen into a silicon substrate is subjected to a relatively low temperature heat treatment to generate thermal stress due to a difference in thermal expansion coefficient between the two substrates. Thus, since the chemical bonds of silicon atoms in the ion implantation layer are weakened, it is possible to remarkably reduce the external impact level required for peeling the silicon thin film. This avoids the introduction of cracks, local cracks, etc. due to differences in thermal characteristics between substrates and mechanical damage to the silicon thin film that is peeled off from the surface region of the silicon substrate, resulting in uniform film thickness. It is possible to provide an SOI substrate having an SOI layer having excellent properties, crystallinity, and various electrical characteristics (such as carrier mobility).

以下に、図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明のSOI基板の製造方法のプロセス例を説明するための図で、図1(A)に図示された第1の基板10は単結晶Si基板、第2の基板20は石英基板である。ここで、単結晶Si基板10は、例えば、CZ法(チョクラルスキ法)により育成された一般に市販されているSi基板であり、その導電型や比抵抗率などの電気特性値や結晶方位や結晶径は、本発明の方法で製造されるSOI基板が供されるデバイスの設計値やプロセスあるいは製造されるデバイスの表示面積などに依存して適宜選択される。また、この単結晶Si基板10はその表面(貼り合せ面)に予め酸化膜が形成された状態のものであってもよい。   FIG. 1 is a diagram for explaining a process example of a method for manufacturing an SOI substrate according to the present invention. The first substrate 10 shown in FIG. 1A is a single crystal Si substrate, and the second substrate 20 is quartz. It is a substrate. Here, the single crystal Si substrate 10 is a generally commercially available Si substrate grown by, for example, the CZ method (Czochralski method), and has electrical characteristics such as conductivity type and specific resistivity, crystal orientation, and crystal diameter. Is appropriately selected depending on the design value and process of the device provided with the SOI substrate manufactured by the method of the present invention or the display area of the manufactured device. The single crystal Si substrate 10 may be in a state where an oxide film is formed in advance on the surface (bonding surface).

なお、これらの基板の直径は同一であり、後のデバイス形成プロセスの便宜のため、石英基板20にも単結晶Si基板10に設けられているオリエンテーション・フラット(OF)と同様のOFを設けておき、これらのOF同士を一致させて貼り合わせるようにすると好都合である。   The diameters of these substrates are the same, and for the convenience of the subsequent device formation process, the quartz substrate 20 is provided with an OF similar to the orientation flat (OF) provided in the single crystal Si substrate 10. It is convenient to make these OFs coincide with each other and paste them together.

先ず、第1の基板(単結晶Si基)10の表面に水素イオンを注入し、水素イオン注入層を形成する(図1(B))。このイオン注入面が後の「接合面(貼り合せ面)」となる。この水素イオン注入により、単結晶Si基板10の表面近傍の所定の深さ(平均イオン注入深さL)に均一なイオン注入層11が形成され、単結晶Si基板10の表面領域での平均イオン注入深さLに対応する領域には、当該領域に局在する「微小気泡層」が形成される(図1(C))。   First, hydrogen ions are implanted into the surface of the first substrate (single crystal Si group) 10 to form a hydrogen ion implanted layer (FIG. 1B). This ion-implanted surface becomes a later “bonding surface (bonding surface)”. By this hydrogen ion implantation, a uniform ion implantation layer 11 is formed at a predetermined depth (average ion implantation depth L) in the vicinity of the surface of the single crystal Si substrate 10, and the average ions in the surface region of the single crystal Si substrate 10 are formed. In the region corresponding to the implantation depth L, a “microbubble layer” localized in the region is formed (FIG. 1C).

本発明においては、水素のイオン注入量を従来法であるSmartCut法で採用されている値に比較して高く設定し、ドーズ量8×1016〜4×1017atoms/cm2とする。従来、SmartCut法でSOI基板を作製する場合には、水素イオンのドーズ量が1×1017atoms/cm2を越えるとその後に得られるSOI層の表面荒れが生じるとされ、7×1016atoms/cm2程度のドーズ量に設定するのが一般的であった。しかしながら、本発明者らの検討によれば、従来法において生じる上記イオン注入条件で生じるSOI層の表面荒れの原因は、水素イオンのドーズ量そのものではなく、シリコン薄膜を剥離してSOI層を得るために採用されている比較的高温(例えば500℃)の熱処理工程にあることが明らかとなった。 In the present invention, the hydrogen ion implantation amount is set higher than the value adopted in the SmartCut method, which is a conventional method, and the dose amount is 8 × 10 16 to 4 × 10 17 atoms / cm 2 . Conventionally, when an SOI substrate is manufactured by the SmartCut method, when the dose of hydrogen ions exceeds 1 × 10 17 atoms / cm 2 , the surface of the SOI layer obtained thereafter is roughened, and 7 × 10 16 atoms is obtained. Generally, the dose is set to about / cm 2 . However, according to the study by the present inventors, the cause of the surface roughness of the SOI layer generated in the conventional ion implantation conditions is not the hydrogen ion dose itself, but the silicon thin film is peeled to obtain the SOI layer. Therefore, it was revealed that the heat treatment process was performed at a relatively high temperature (eg, 500 ° C.).

上述したように、SmartCut法でSOI基板を作製する際には、シリコン基板の貼り合せ面側に水素イオンを注入して「水素ブリスタ」と呼ばれる「気泡」を高密度で発生させ、比較的高温の熱処理により生じる「水素ブリスタ」の「気泡成長」を利用してシリコン薄膜を熱剥離している。ここで、「気泡成長」は水素原子の拡散現象に他ならないから、高ドーズ条件で形成されることとなる極めて高密度の「気泡」が「成長」する過程においては水素原子の拡散が顕著に生じていることとなる。そして、このような原子拡散現象がSOI層の表面荒れを生じさせることとなるとの解釈が可能である。   As described above, when an SOI substrate is manufactured by the SmartCut method, hydrogen ions are implanted into the bonding surface side of the silicon substrate to generate “bubbles” called “hydrogen blisters” at a high density, which is relatively high in temperature. The silicon thin film is thermally peeled using “bubble growth” of “hydrogen blister” generated by the heat treatment. Here, “bubble growth” is nothing but a diffusion phenomenon of hydrogen atoms, so in the process of “growth” of extremely high-density “bubbles” that are formed under high dose conditions, the diffusion of hydrogen atoms is significant. It has occurred. It can be interpreted that such an atomic diffusion phenomenon causes surface roughness of the SOI layer.

したがって、シリコン薄膜の低温での剥離を可能とすれば、当該剥離処理工程中での水素原子の拡散は著しく抑制されることとなり、高いドーズ量の水素イオン注入を施したとしてもSOI層の表面荒れを生じさせることはないはずである。   Therefore, if the silicon thin film can be peeled off at a low temperature, the diffusion of hydrogen atoms during the peeling treatment step is remarkably suppressed, and even if a high dose of hydrogen ion implantation is performed, the surface of the SOI layer There should be no storms.

本発明者らはこのような仮設に立ち、種々のドーズ量で水素イオン注入を施してSOI層の表面荒れへの影響を調査したが、後述する低温剥離工程(350℃以下)を採用する限り、少なくとも4×1017atoms/cm2までのドーズ量での表面荒れは認められなかった。 The inventors of the present invention stood in such a provisional manner and conducted hydrogen ion implantation at various doses to investigate the influence on the surface roughness of the SOI layer. However, as long as the low-temperature peeling step (350 ° C. or lower) described later is employed. No surface roughness was observed at a dose amount of at least 4 × 10 17 atoms / cm 2 .

イオン注入層11の単結晶Si基板10表面からの深さ(平均イオン注入深さL)はイオン注入時の加速電圧により制御され、どの程度の厚さのSOI層を剥離させるかに依存して決定されるが、例えば、平均イオン注入深さLを0.5μm以下とし、加速電圧50〜100keVなどとする。なお、Si結晶中へのイオン注入プロセスにおいて注入イオンのチャネリング抑制のために通常行われているように、単結晶Si基板10のイオン注入面に予め酸化膜等の絶縁膜を形成させておき、この絶縁膜を通してイオン注入を施すようにしてもよい。   The depth of the ion implantation layer 11 from the surface of the single crystal Si substrate 10 (average ion implantation depth L) is controlled by the acceleration voltage at the time of ion implantation, and depends on how thick the SOI layer is peeled off. For example, the average ion implantation depth L is set to 0.5 μm or less and the acceleration voltage is set to 50 to 100 keV. In addition, an insulating film such as an oxide film is formed in advance on the ion implantation surface of the single-crystal Si substrate 10 as is normally performed to suppress channeling of implanted ions in the ion implantation process into the Si crystal, Ion implantation may be performed through this insulating film.

このようにしてイオン注入層11を形成した単結晶Si基板10と石英基板20のそれぞれの接合面に、表面清浄化や表面活性化などを目的としたプラズマ処理やオゾン処理を施す(図1(D))。なお、このような表面処理は、接合面となる表面の有機物除去や表面上のOH基を増大させて表面活性化を図るなどの目的で行われるものであり、単結晶Si基板10と石英基板20の双方の接合面に処理を施す必要は必ずしもなく、何れか一方の接合面にのみ施すこととしてもよい。   Plasma treatment and ozone treatment for the purpose of surface cleaning and surface activation are performed on the joint surfaces of the single-crystal Si substrate 10 and the quartz substrate 20 on which the ion implantation layer 11 is formed in this way (FIG. 1 ( D)). Such a surface treatment is performed for the purpose of removing organic substances on the surface to be a bonding surface or increasing the OH group on the surface to achieve surface activation. The single crystal Si substrate 10 and the quartz substrate are used. It is not always necessary to perform the treatment on both of the joint surfaces 20, and the treatment may be performed only on one of the joint surfaces.

この表面処理をプラズマ処理により実行する場合には、予めRCA洗浄等を施した表面清浄な単結晶Si基板および/または石英基板を真空チャンバ内の試料ステージに載置し、当該真空チャンバ内にプラズマ用ガスを所定の真空度となるように導入する。なお、ここで用いられるプラズマ用ガス種としては、単結晶Si基板の表面処理用として、酸素ガス、水素ガス、アルゴンガス、またはこれらの混合ガス、あるいは水素ガスとヘリウムガスの混合ガスなどがあり、単結晶Si基板の表面状態や目的などにより適宜変更され得る。   When this surface treatment is performed by plasma treatment, a surface-cleaned single crystal Si substrate and / or quartz substrate that has been previously subjected to RCA cleaning or the like is placed on a sample stage in a vacuum chamber, and plasma is placed in the vacuum chamber. The working gas is introduced so as to have a predetermined degree of vacuum. Examples of the plasma gas used here include oxygen gas, hydrogen gas, argon gas, or a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas, for surface treatment of a single crystal Si substrate. The surface condition and purpose of the single crystal Si substrate can be changed as appropriate.

また、当該表面処理が単結晶Si表面を酸化させることをも目的とするような場合には、少なくとも酸素ガスを含有するものをプラズマ用ガスとして用いる。なお、石英基板はその表面が酸化状態にあるため、このようなプラズマ用ガス種の選定に特別な制限はない。プラズマ用ガスの導入後、100W程度の電力の高周波プラズマを発生させ、プラズマ処理される単結晶Si基板および/または石英基板の表面に5〜10秒程度の処理を施して終了する。   When the surface treatment is intended to oxidize the single crystal Si surface, a gas containing at least oxygen gas is used as the plasma gas. In addition, since the surface of the quartz substrate is in an oxidized state, there is no particular restriction on the selection of the plasma gas species. After the introduction of the plasma gas, high-frequency plasma with a power of about 100 W is generated, the surface of the single crystal Si substrate and / or the quartz substrate to be plasma-treated is subjected to treatment for about 5 to 10 seconds, and the process is completed.

表面処理をオゾン処理で実行する場合には、予めRCA洗浄等を施した表面清浄な単結晶Si基板および/または石英基板を酸素含有の雰囲気とされたチャンバ内の試料ステージに載置し、当該チャンバ内に窒素ガスやアルゴンガスなどのプラズマ用ガスを導入した後に所定の電力の高周波プラズマを発生させ、当該プラズマにより雰囲気中の酸素をオゾンに変換させ、処理される単結晶Si基板および/または石英基板の表面に所定の時間の処理が施される。   When surface treatment is performed by ozone treatment, a surface-cleaned single crystal Si substrate and / or quartz substrate that has been subjected to RCA cleaning or the like in advance is placed on a sample stage in a chamber having an oxygen-containing atmosphere. After introducing a plasma gas such as nitrogen gas or argon gas into the chamber, a high frequency plasma of a predetermined power is generated, oxygen in the atmosphere is converted into ozone by the plasma, and / or a single crystal Si substrate to be processed and / or The surface of the quartz substrate is processed for a predetermined time.

このような表面処理が施された単結晶Si基板10と石英基板20の表面を接合面として密着させて貼り合わせる(図1(E))。上述したように、単結晶Si基板10と石英基板20の少なくとも一方の表面(接合面)は、プラズマ処理やオゾン処理などにより表面処理が施されて活性化しているために、室温で密着(貼り合せ)した状態でも後工程での機械的剥離や機械研磨に十分耐え得るレベルの接合強度を得ることができる。   The surfaces of the single crystal Si substrate 10 and the quartz substrate 20 that have been subjected to such a surface treatment are adhered and bonded together as a bonding surface (FIG. 1E). As described above, the surface (bonding surface) of at least one of the single crystal Si substrate 10 and the quartz substrate 20 is activated by being subjected to surface treatment by plasma treatment, ozone treatment, or the like, and thus is adhered (attached) at room temperature. Even in a combined state, it is possible to obtain a bonding strength that can sufficiently withstand mechanical peeling and mechanical polishing in the subsequent process.

これに続いて、貼り合わせた状態の基板を150℃以上300℃以下の比較的低い温度で加熱する(図1(F))。この加熱処理は、シリコン基板10と石英基板20の両基板間の熱膨張係数差に起因する熱応力を生じさせてイオン注入層11内のシリコン原子の化学結合を弱化させることを目的とするものである。   Subsequently, the bonded substrate is heated at a relatively low temperature of 150 ° C. to 300 ° C. (FIG. 1F). This heat treatment is intended to weaken the chemical bonds of silicon atoms in the ion implantation layer 11 by generating thermal stress due to the difference in thermal expansion coefficient between the silicon substrate 10 and the quartz substrate 20. It is.

上述したように、本発明においては、比較的高いドーズ量8×1016〜4×1017atoms/cm2で水素イオンを注入しているから、イオン注入層11内にはSi−H結合や不対結合手を有するSi原子が高密度で発生している。この状態で高温での熱処理を施してしまうと拡散現象によって表面荒れが生じることとなるため、熱処理温度を300℃以下に設定している。 As described above, in the present invention, since hydrogen ions are implanted at a relatively high dose amount of 8 × 10 16 to 4 × 10 17 atoms / cm 2 , Si—H bonds and Si atoms having dangling bonds are generated at high density. If heat treatment is performed at a high temperature in this state, the surface becomes rough due to the diffusion phenomenon, so the heat treatment temperature is set to 300 ° C. or lower.

貼り合せ基板にこのような熱処理が施されると、シリコン結晶が石英よりも大きな熱膨張係数をもつことに起因して、貼り合せ基板の全面において両基板間に大きな応力が発生する。イオン注入層11内の平均イオン注入深さLに対応する領域に局在する「微小気泡層」には不対結合手をもつSi原子や高密度のSi−H結合が発生して原子結合状態は局所的に脆弱化された状態にあるから、この状態のイオン注入層11に上述した基板間熱膨張係数差に起因する応力が付加されると、もともと脆弱な状態の化学結合は容易に切断されることとなってイオン注入層11内のシリコン原子の化学結合は著しく弱化することとなる。しかも、300℃以下という温度はシリコン結晶中での水素原子の拡散が顕著には生じない程度の低温であるから、従来法で問題とされていたSOI層の表面荒れが生じることもない。   When such a heat treatment is performed on the bonded substrate, a large stress is generated between the substrates on the entire surface of the bonded substrate due to the fact that the silicon crystal has a larger thermal expansion coefficient than quartz. In the “microbubble layer” localized in the region corresponding to the average ion implantation depth L in the ion implantation layer 11, Si atoms having unpaired bonds and high-density Si—H bonds are generated, and the atomic bonding state Is locally weakened, and when the stress caused by the above-described difference in thermal expansion coefficient between the substrates is applied to the ion-implanted layer 11 in this state, the originally weak chemical bond is easily broken. As a result, the chemical bonding of silicon atoms in the ion implantation layer 11 is significantly weakened. In addition, since the temperature of 300 ° C. or lower is a low temperature that does not cause significant diffusion of hydrogen atoms in the silicon crystal, the surface roughness of the SOI layer, which is a problem in the conventional method, does not occur.

本発明において熱処理温度を300℃以下に設定するもう一つの理由は、単結晶Siと石英との熱膨張係数差と当該熱膨張係数差に起因する歪量、およびこの歪量と単結晶Si基板10ならびに石英基板20の厚みを考慮したことによる。単結晶Si基板10と石英基板20の厚みが概ね同程度である場合、単結晶Siの熱膨張係数(2.33×10-6)と石英の熱膨張係数(0.6×10-6)の間に大きな差異があるために、320〜350℃を超える温度で熱処理を施した場合には、両基板間の剛性差に起因して、熱歪によるクラックや接合面における剥離などが生じたり、極端な場合には単結晶Si基板や石英基板が割れてしまうということが生じ得る。このような観点からも、熱処理温度の上限を300℃と選択している。なお、熱処理温度が150℃未満の場合には、イオン注入層11内のシリコン原子の化学結合の弱化に有効な程度の熱応力を得ることは困難であるため、熱処理温度の下限値を150℃と選択している。 Another reason for setting the heat treatment temperature to 300 ° C. or lower in the present invention is that the difference in thermal expansion coefficient between single crystal Si and quartz, the amount of strain resulting from the difference in thermal expansion coefficient, and the amount of strain and the single crystal Si substrate 10 and the thickness of the quartz substrate 20 are taken into consideration. When the single crystal Si substrate 10 and the quartz substrate 20 have substantially the same thickness, the thermal expansion coefficient of single crystal Si (2.33 × 10 −6 ) and the thermal expansion coefficient of quartz (0.6 × 10 −6 ) Therefore, when heat treatment is performed at a temperature exceeding 320 to 350 ° C., cracks due to thermal strain or peeling at the joint surface may occur due to the difference in rigidity between the two substrates. In an extreme case, the single crystal Si substrate or the quartz substrate may be broken. Also from such a viewpoint, the upper limit of the heat treatment temperature is selected to be 300 ° C. When the heat treatment temperature is lower than 150 ° C., it is difficult to obtain a thermal stress that is effective for weakening chemical bonds of silicon atoms in the ion implantation layer 11, so the lower limit of the heat treatment temperature is 150 ° C. Is selected.

このような熱処理に続いて、貼り合わされた基板に何らかの手法により外部衝撃を付与してシリコン薄膜を剥離し(図1(G))、石英基板20上にSOI層12を得る(図1(H))。   Following such heat treatment, an external impact is applied to the bonded substrate by any method to peel off the silicon thin film (FIG. 1G), and the SOI layer 12 is obtained on the quartz substrate 20 (FIG. 1H )).

ここで、シリコン薄膜の剥離のための外部からの衝撃付与の手法としては種々のものがあり得るが、150〜300℃の上記熱処理によりイオン注入層11内のシリコン原子の化学結合は既に弱化しているため、何れの手法を採用するにしてもその衝撃レベルは従来法に比較して著しく低いもので十分である。したがって、シリコン薄膜の機械的剥離によるダメージの導入は回避されることとなる。   Here, there are various methods for applying an external impact for peeling the silicon thin film, but the chemical bonding of silicon atoms in the ion implantation layer 11 has already been weakened by the heat treatment at 150 to 300 ° C. Therefore, no matter which method is adopted, it is sufficient that the impact level is significantly lower than that of the conventional method. Therefore, introduction of damage due to mechanical peeling of the silicon thin film is avoided.

図2は、シリコン薄膜剥離のための種々の手法を例示するための概念図で、図2(A)は熱衝撃により剥離を行う例、図2(B)は機械的衝撃により剥離を行う例、そして図2(C)は振動衝撃により剥離を行う例を図示している。   FIGS. 2A and 2B are conceptual diagrams for illustrating various methods for peeling a silicon thin film. FIG. 2A shows an example of peeling by thermal shock, and FIG. 2B shows an example of peeling by mechanical impact. FIG. 2C shows an example of peeling by vibration impact.

図2(A)において、符号30は加熱部であり、この図では、ホットプレート31の上に平滑面を有する加熱板32を載せ、この加熱板32の平滑面を、石英基板20と貼り合わされた単結晶Si基板10の裏面に密着させるようにしている。加熱板32にはダミーのシリコン基板を用いているが、平滑面が得られやすいもの(半導体基板やセラミック基板)であれば特に材料的な制限はない。シリコーンゴムなども加熱板材料として用いることも可能ではあるが、耐熱温度は250℃程度と考えられるのでそれ以上の温度での使用には適さない。また、ホットプレート31の面が十分に平滑であれば特別に加熱板32を用いることなく、ホットプレート31そのものを「加熱板」としてもよい。   In FIG. 2A, reference numeral 30 denotes a heating unit. In this figure, a heating plate 32 having a smooth surface is placed on a hot plate 31, and the smooth surface of the heating plate 32 is bonded to the quartz substrate 20. The single crystal Si substrate 10 is closely attached to the back surface. Although a dummy silicon substrate is used as the heating plate 32, there is no particular material limitation as long as a smooth surface can be easily obtained (semiconductor substrate or ceramic substrate). Silicone rubber or the like can also be used as a heating plate material, but since the heat-resistant temperature is considered to be about 250 ° C., it is not suitable for use at higher temperatures. In addition, if the surface of the hot plate 31 is sufficiently smooth, the hot plate 31 itself may be a “heating plate” without using the heating plate 32.

加熱板32の温度を例えば300℃の温度に保持し、この加熱板32に石英基板20と貼り合わされた単結晶Si基板10の裏面を密着させると熱伝導により単結晶Si基板10が加熱され、石英基板20との間に温度差が生じる。上述したように、シリコン基板の熱膨張係数は石英基板の熱膨張係数よりも大きいため、貼り合わされた状態の単結晶Si基板10が裏面から加熱されると、単結晶Si基板10側の急激な膨張によって両基板間で大きな応力が発生し、この応力によってシリコン薄膜の剥離が生じることとなる。   When the temperature of the heating plate 32 is maintained at, for example, 300 ° C., and the back surface of the single crystal Si substrate 10 bonded to the quartz substrate 20 is brought into close contact with the heating plate 32, the single crystal Si substrate 10 is heated by heat conduction, A temperature difference is generated between the quartz substrate 20 and the substrate. As described above, since the thermal expansion coefficient of the silicon substrate is larger than the thermal expansion coefficient of the quartz substrate, when the single crystal Si substrate 10 in the bonded state is heated from the back surface, the single crystal Si substrate 10 side has a sudden increase. Due to the expansion, a large stress is generated between both substrates, and the silicon thin film is peeled off by this stress.

図2(B)に図示した例では、機械的衝撃付与のために流体の噴出を利用しており、ガスや液体などの流体をノズル40の先端部41からジェット状に噴出させて単結晶Si基板10の側面から吹き付けることで衝撃を与えている。この他にも、ブレードの先端部をイオン注入層11の近傍領域に押し当てるなどして衝撃を付与するなどの手法によることもできる。   In the example shown in FIG. 2B, the ejection of fluid is used for applying a mechanical impact, and fluid such as gas or liquid is ejected from the tip 41 of the nozzle 40 in the form of a jet to obtain single crystal Si. The impact is given by spraying from the side surface of the substrate 10. In addition, it is also possible to use a technique such as applying an impact by pressing the tip of the blade against a region near the ion implantation layer 11.

さらに、図2(C)に図示したように、超音波発振器の振動板50から発振される超音波で振動衝撃を付与してシリコン薄膜の剥離を生じさせるようにしてもよい。   Further, as shown in FIG. 2C, the silicon thin film may be peeled off by applying a vibration impact with ultrasonic waves generated from the diaphragm 50 of the ultrasonic oscillator.

このような一連のプロセスに従って得られたSOI基板の表面状態を評価したところ、局所的なシリコン薄膜の剥がれや剥離痕あるいは未転写領域といった欠陥もなく、極めて平坦な状態を呈していた。剥離後のSOI層表面の10μm×10μmの領域を原子間力顕微鏡(AFM)で測定したところ、RMSの平均値は5nm以下と良好であった。また、SOI層の基板面内バラつき(PV:Peak-to-Valley)は4nm以下であった。   When the surface state of the SOI substrate obtained according to such a series of processes was evaluated, it was found to be extremely flat without defects such as local peeling of the silicon thin film, peeling traces or untransferred regions. When an area of 10 μm × 10 μm on the surface of the SOI layer after peeling was measured with an atomic force microscope (AFM), the average value of RMS was as good as 5 nm or less. The SOI layer had an in-plane variation (PV: Peak-to-Valley) of 4 nm or less.

このように、本発明においては、単結晶Si基板10と石英基板20との接合工程およびSOI層の剥離工程の何れの工程においても、SOI層にダメージが導入される虞のある機械的剥離処理を必要とせず、しかも、一貫して低温(300℃以下)での処理が可能であるため、膜厚均一性、結晶性、電気的諸特性(キャリア移動度など)に優れたSOI層を有するSOI基板を提供することが可能となることに加え、SOI基板の製造工程の安定化と簡易化の観点から極めて有利である。   As described above, in the present invention, mechanical peeling treatment that may cause damage to the SOI layer in any of the bonding process of the single crystal Si substrate 10 and the quartz substrate 20 and the peeling process of the SOI layer. In addition, it has an SOI layer that is excellent in film thickness uniformity, crystallinity, and various electrical characteristics (such as carrier mobility) because it can be processed at a low temperature (300 ° C. or lower) consistently. In addition to being able to provide an SOI substrate, it is extremely advantageous from the viewpoint of stabilization and simplification of the manufacturing process of the SOI substrate.

本発明によれば、単結晶シリコン基板と石英基板とを貼り合わせてSOI基板(SOQ基板)を製造する工程において、基板間の熱的諸特性の相違に起因する割れや局所的クラック等および機械的ダメージのSOI層への導入を回避することが可能となる。その結果、膜厚均一性、結晶性、電気的諸特性(キャリア移動度など)に優れたSOI層を有するSOI基板を提供することが可能となる。   According to the present invention, in the process of manufacturing an SOI substrate (SOQ substrate) by laminating a single crystal silicon substrate and a quartz substrate, cracks, local cracks, etc. due to differences in thermal characteristics between the substrates and mechanical It is possible to avoid introduction of mechanical damage into the SOI layer. As a result, it is possible to provide an SOI substrate having an SOI layer that is excellent in film thickness uniformity, crystallinity, and various electrical characteristics (such as carrier mobility).

本発明のSOI基板の製造プロセス例を説明するための図である。It is a figure for demonstrating the example of a manufacturing process of the SOI substrate of this invention. シリコン薄膜剥離のための熱処理の様子を説明するための概念図である。It is a conceptual diagram for demonstrating the mode of the heat processing for a silicon thin film peeling.

符号の説明Explanation of symbols

10 単結晶Si基板
11 イオン注入層
12 SOI層
13 バルク部
20 石英基板
30 加熱部
31 ホットプレート
32 加熱板
40 ノズル
41 ノズル先端部
50 超音波発振器の振動板
DESCRIPTION OF SYMBOLS 10 Single crystal Si substrate 11 Ion implantation layer 12 SOI layer 13 Bulk part 20 Quartz substrate 30 Heating part 31 Hot plate 32 Heating plate 40 Nozzle 41 Nozzle tip part 50 Ultrasonic oscillator diaphragm

Claims (6)

一貫して300℃以下の低温処理のみを施してSOI基板を製造するための方法であって、
単結晶シリコン基板である第1の基板の表面側にドーズ量8×1016〜4×1017atoms/cm2の水素を注入して水素イオン注入層を形成する第1のステップと、
石英基板である第2の基板の表面及び前記第1の基板の表面の少なくとも一方に表面活性化処理を施す第2のステップと、
前記第1の基板の表面と前記第2の基板の表面とを貼り合わせる第3のステップと、
前記貼り合わせた基板を150℃以上300℃以下の温度で加熱する第4のステップと、
前記加熱処理後の貼り合せ基板の前記第1の基板から300℃以下の温度でシリコン層を剥離して前記第2の基板の表面上にSOI層を形成する第5のステップと、
を備えていることを特徴とするSOI基板の製造方法。
A method for manufacturing an SOI substrate by consistently performing only a low temperature treatment of 300 ° C. or lower ,
A first step of implanting hydrogen at a dose of 8 × 10 16 to 4 × 10 17 atoms / cm 2 on the surface side of the first substrate, which is a single crystal silicon substrate, to form a hydrogen ion implanted layer;
A second step of performing a surface activation process on at least one of the surface of the second substrate which is a quartz substrate and the surface of the first substrate;
A third step of bonding the surface of the first substrate and the surface of the second substrate;
A fourth step of heating the bonded substrates at a temperature of 150 ° C. or higher and 300 ° C. or lower;
A fifth step of peeling the silicon layer from the first substrate of the bonded substrate after the heat treatment at a temperature of 300 ° C. or less to form an SOI layer on the surface of the second substrate;
A method for manufacturing an SOI substrate, comprising:
前記第2のステップの表面活性化処理は、プラズマ処理又はオゾン処理の少なくとも一方で実行されることを特徴とする請求項1に記載のSOI基板の製造方法。   2. The method for manufacturing an SOI substrate according to claim 1, wherein the surface activation process of the second step is performed by at least one of a plasma process and an ozone process. 前記第5のステップは、前記水素イオン注入層の端部から300℃以下の温度で機械的衝撃を付与することにより実行されることを特徴とする請求項1または2に記載のSOI基板の製造方法。 3. The manufacturing of an SOI substrate according to claim 1, wherein the fifth step is performed by applying a mechanical impact at a temperature of 300 ° C. or less from an end portion of the hydrogen ion implantation layer. Method. 前記第5のステップは、前記貼り合わされた基板に300℃以下の温度で振動衝撃を付与することにより実行されることを特徴とする請求項1または2に記載のSOI基板の製造方法。 3. The method for manufacturing an SOI substrate according to claim 1, wherein the fifth step is performed by applying a vibration shock to the bonded substrates at a temperature of 300 ° C. or less . 4. 前記第5のステップは、前記貼り合わされた基板に300℃以下の温度で熱衝撃を付与することにより実行されることを特徴とする請求項1または2に記載のSOI基板の製造方法。 3. The method for manufacturing an SOI substrate according to claim 1, wherein the fifth step is performed by applying a thermal shock to the bonded substrates at a temperature of 300 ° C. or less . 4. 前記第1の基板は、表面側に酸化膜を有する単結晶シリコン基板であることを特徴とする請求項1乃至5の何れか1項に記載のSOI基板の製造方法。
6. The method for manufacturing an SOI substrate according to claim 1, wherein the first substrate is a single crystal silicon substrate having an oxide film on a surface side.
JP2006034863A 2006-02-13 2006-02-13 Manufacturing method of SOI substrate Active JP5064693B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006034863A JP5064693B2 (en) 2006-02-13 2006-02-13 Manufacturing method of SOI substrate
PCT/JP2007/052233 WO2007094230A1 (en) 2006-02-13 2007-02-08 Method for manufacturing soi substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034863A JP5064693B2 (en) 2006-02-13 2006-02-13 Manufacturing method of SOI substrate

Publications (2)

Publication Number Publication Date
JP2007214478A JP2007214478A (en) 2007-08-23
JP5064693B2 true JP5064693B2 (en) 2012-10-31

Family

ID=38371417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034863A Active JP5064693B2 (en) 2006-02-13 2006-02-13 Manufacturing method of SOI substrate

Country Status (2)

Country Link
JP (1) JP5064693B2 (en)
WO (1) WO2007094230A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139558A1 (en) * 2007-11-29 2009-06-04 Shunpei Yamazaki Photoelectric conversion device and manufacturing method thereof
JP5455445B2 (en) * 2009-05-29 2014-03-26 信越化学工業株式会社 Manufacturing method of bonded wafer
DE102015006971A1 (en) 2015-04-09 2016-10-13 Siltectra Gmbh Method for producing low-loss multi-component wafers
KR102271268B1 (en) 2019-09-20 2021-06-30 재단법인대구경북과학기술원 Manufacturing method for electronic device
CN111799215B (en) * 2020-06-29 2021-05-11 中国科学院上海微系统与信息技术研究所 Method for reducing annealing thermal stress of heterostructure film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525991A (en) * 1997-05-12 2001-12-11 シリコン・ジェネシス・コーポレーション Controlled cleavage process
FR2773261B1 (en) * 1997-12-30 2000-01-28 Commissariat Energie Atomique METHOD FOR THE TRANSFER OF A THIN FILM COMPRISING A STEP OF CREATING INCLUSIONS
US7176528B2 (en) * 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
FR2854493B1 (en) * 2003-04-29 2005-08-19 Soitec Silicon On Insulator SCRUBBING TREATMENT OF SEMICONDUCTOR PLATE BEFORE COLLAGE
JP2005166911A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Semiconductor device, manufacturing method thereof, electro-optical device, manufacturing method thereof, and electronic equipment

Also Published As

Publication number Publication date
JP2007214478A (en) 2007-08-23
WO2007094230A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP5064692B2 (en) Manufacturing method of SOI substrate
JP2007220782A (en) Soi substrate, and method of manufacturing soi substrate
JP5284576B2 (en) Manufacturing method of semiconductor substrate
JP2008153411A (en) Manufacturing method of soi substrate
JP6160617B2 (en) Hybrid substrate manufacturing method and hybrid substrate
TW200816398A (en) A method of direct bonding two substrates used in electronics, optics, or optoelectronics
JP5249511B2 (en) SOQ substrate and method for manufacturing SOQ substrate
JP2010135764A (en) Method for manufacturing silicon thin-film transfer insulating wafer
JP5064693B2 (en) Manufacturing method of SOI substrate
JP2008021992A (en) Heat treatment for bonding interface stabilization
JP6160616B2 (en) SOS substrate manufacturing method and SOS substrate
JP5220335B2 (en) Manufacturing method of SOI substrate
JP5019852B2 (en) Method for manufacturing strained silicon substrate
JP5044195B2 (en) Manufacturing method of SOQ substrate
WO2010137683A1 (en) Process for production of soi substrate
JP2008263010A (en) Method for manufacturing soi substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3