JP5062111B2 - Method for producing high-purity arsenous acid aqueous solution from copper-free slime - Google Patents
Method for producing high-purity arsenous acid aqueous solution from copper-free slime Download PDFInfo
- Publication number
- JP5062111B2 JP5062111B2 JP2008229264A JP2008229264A JP5062111B2 JP 5062111 B2 JP5062111 B2 JP 5062111B2 JP 2008229264 A JP2008229264 A JP 2008229264A JP 2008229264 A JP2008229264 A JP 2008229264A JP 5062111 B2 JP5062111 B2 JP 5062111B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- arsenic
- antimony
- leaching
- arsenous acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、砒素と銅とアンチモンとを含有する混合物、例えば銅製錬で発生した脱銅スライムから、砒素とそれ以外の不純物とを分離して高純度な亜砒酸を製造する方法に関する。 The present invention relates to a method for producing high-purity arsenous acid by separating arsenic and other impurities from a mixture containing arsenic, copper and antimony, for example, copper-free slime generated by copper smelting.
銅の製錬では、鉱山で採掘した銅品位1%程度の硫化銅などの鉱石を破砕し、選鉱して銅品位を30%程度まで濃縮した銅精鉱を原料とする。この銅精鉱を自溶炉及び転炉などを用いる製錬工程で処理して純度99%程度の粗銅を製造し、得られた粗銅をアノードに用いて電解精製することにより、カソード上に純度99.99%以上の電気銅が得られる。 In copper smelting, ore such as copper sulfide with a copper grade of about 1% mined in the mine is crushed, and the concentrate is concentrated to a copper grade of about 30%. This copper concentrate is processed in a smelting process using a flash smelting furnace, converter, etc. to produce crude copper having a purity of about 99%, and the resulting crude copper is used as an anode for electrolytic purification, thereby purifying the purity on the cathode. 99.99% or more of electrolytic copper is obtained.
上述の一連の製錬工程において、鉱石に含まれる銅以外の多くの不純物は、選鉱や製錬工程によって、脈石、スラグ、ダスト、排ガスなどとして銅と分離され除去されるが、貴金属や砒素、アンチモン、ビスマス及び鉛などの不純物は一定の割合で粗銅中に含有される。粗銅に含有された貴金属や不純物は、電解精製によって砒素のように電解液に溶出するもの、貴金属や鉛のように電解スライムとして沈殿するもの、アンチモンやビスマスのように両方に分配するものなど様々な形態で銅と分離される。 In the above-mentioned series of smelting processes, many impurities other than copper contained in the ore are separated and removed from copper as gangue, slag, dust, exhaust gas, etc. by beneficiation and smelting processes. Impurities such as antimony, bismuth and lead are contained in the crude copper at a certain ratio. Precious metals and impurities contained in crude copper are various such as those that elute into the electrolyte like arsenic by electrolytic refining, those that precipitate as electrolytic slime like precious metals and lead, and those that distribute to both like antimony and bismuth Separated from copper.
電解スライムは別の貴金属処理工程で処理されて、貴金属と不純物とが分離される。除去された不純物は製錬工程に繰り返されるか、製錬工程の系外に払い出されて製品化される。一方、電解液に溶出した不純物は、そのまま放置すると液中に蓄積し、電気銅を汚染する恐れがあるので、電解液は定期的に抜き取られて浄液工程に送られ、不純物が除去される。例えば砒素やアンチモン、ビスマスの場合、電解精製とは別の電解槽を用いて電解採取され、電解液中の銅と共析して槽底に沈殿し、脱銅スライムとして電解液から除去される。 The electrolytic slime is treated in a separate noble metal treatment process to separate the noble metal and impurities. The removed impurities are repeated in the smelting process, or discharged out of the smelting process to be commercialized. On the other hand, the impurities eluted in the electrolytic solution accumulate in the solution if left as they are, and there is a risk of contaminating the copper. Therefore, the electrolytic solution is periodically withdrawn and sent to the cleaning process to remove the impurities. . For example, in the case of arsenic, antimony, and bismuth, it is electrolyzed using an electrolytic tank different from the electrolytic purification, co-deposited with copper in the electrolytic solution and precipitated at the bottom of the electrolytic solution, and removed from the electrolytic solution as decoppered slime. .
この脱銅スライムは有毒な砒素を含むため、そのままでは製品として販売することも埋立てなどの最終処理することも出来ないので、製錬工程に繰り返されて炉に投入される場合が多い。製錬工程に繰り返された脱銅スライムに含まれている不純物は、一部がスラグやダストに分配され、一部は再び粗銅に分配される。 Since this decopperized slime contains toxic arsenic, it cannot be sold as a product as it is, or it cannot be subjected to final treatment such as landfilling. Therefore, it is often repeated in the smelting process and put into a furnace. Part of the impurities contained in the copper removal slime repeated in the smelting process is distributed to slag and dust, and part is distributed again to crude copper.
スラグ中に分配された不純物は、スラグから溶出し難いことが知られている。これは、不純物がスラグの主成分であるシリカやカルシウムで構成されたガラス構造の結晶格子の中に封じ込まれ、イオン化し難くなるためと考えられている。不純物を安定に封じ込んで固定したスラグは、埋立て処理するほか、セメントやアスファルトコンクリートなどに利用することができ、従来から不純物の処理方法として用いられてきた。 It is known that impurities distributed in the slag are difficult to elute from the slag. This is thought to be because impurities are confined in a crystal lattice having a glass structure composed of silica and calcium, which are the main components of slag, and are difficult to ionize. Slag in which impurities are stably sealed and fixed can be used for cement, asphalt concrete, etc. in addition to landfill treatment, and has been conventionally used as a method for treating impurities.
上述したようにスラグは砒素などの不純物を安定して固定できるが、近年のように硫化銅鉱石に含まれる不純物、特に砒素が増加傾向をたどると、それに伴って銅精鉱中の砒素濃度も上昇し、スラグ中の砒素品位も上昇傾向となる。スラグの結晶格子中に固定できる砒素の量にも限界があり、砒素を固定するためにスラグ発生量を増やすのにも限度があるので、最近では砒素の増加に対する新たな安定した固定方法が求められていた。 As described above, slag can stably fix impurities such as arsenic. However, as impurities in copper sulfide ore, especially arsenic, have been increasing as in recent years, the concentration of arsenic in the copper concentrate also increases accordingly. The arsenic quality in the slag will also increase. There is a limit to the amount of arsenic that can be fixed in the slag crystal lattice, and there is a limit to increasing the amount of slag generation to fix arsenic. It was done.
砒素を安定して固定する方法としては、例えば特開2008−105921号公報(特許文献1)に示すような方法がある。この方法は、砒素イオンと2価の鉄イオンを含む水溶液に酸化剤を添加して撹拌しながら鉄砒素化合物の析出反応を進行させ、液のpHが0〜1.2の範囲で析出を終了させる方法である。具体的には、脱銅スライムなど系内繰り返し物の中に金属や硫化物の形態で存在している砒素を硫酸溶液中で酸化して浸出し、得られた浸出液から亜砒酸を生成し、その亜砒酸水溶液に2価の鉄イオンを添加して酸化することによって、結晶性の良い砒素鉄化合物中を生成すると共に、その中に砒素を固定して系外に払い出すものである。 As a method for stably fixing arsenic, for example, there is a method as disclosed in Japanese Patent Application Laid-Open No. 2008-105921 (Patent Document 1). In this method, an oxidant is added to an aqueous solution containing arsenic ions and divalent iron ions and the precipitation reaction of the iron arsenic compound proceeds while stirring, and the precipitation is completed when the pH of the solution is in the range of 0 to 1.2. It is a method to make it. Specifically, arsenic that exists in the form of metals and sulfides in repeated products in the system such as decopperized slime is oxidized and leached in a sulfuric acid solution, and arsenous acid is generated from the obtained leachate. By adding divalent iron ions to an aqueous arsenous acid solution and oxidizing it, an arsenic iron compound with good crystallinity is produced, and arsenic is fixed therein and discharged out of the system.
しかし、この方法を用いて砒素を固定する場合、浸出液中に目的とする砒素以外の不純物が存在すると、得られる生成物の中で鉄と砒素との化合物の結晶化が阻害され、その結果砒素の固定が不安定となって生成物からの砒素の溶出を生じることが知られている。従って、砒素と鉄とが安定して固定された結晶性の良い化合物からなる生成物を得るには、砒素以外の不純物の含有が少ない高純度な亜砒酸水溶液を用いることが必要となる。 However, when arsenic is fixed using this method, if impurities other than the target arsenic are present in the leachate, the crystallization of the compound of iron and arsenic is inhibited in the resulting product. It is known that the fixation of arsenic becomes unstable and arsenic is eluted from the product. Therefore, in order to obtain a product made of a compound with good crystallinity in which arsenic and iron are stably fixed, it is necessary to use a high-purity arsenous acid aqueous solution containing little impurities other than arsenic.
ところで、脱銅スライムを硫酸で浸出する場合、含有されるビスマスや鉛はほとんど浸出されず、ほぼ全量が残渣へ分配されるため、浸出される砒素と分離することができる。しかし、脱銅スライムに多量に含有される銅は、硫酸によって浸出されやすい。また、アンチモンイオンは3価及び5価いずれの形態でも水に対する溶解度は本来ほとんどないが、硫酸溶液中の砒素濃度が高いとアンチモンが浸出されるという特異的な性質がある。 By the way, when leaching decopperized slime with sulfuric acid, the contained bismuth and lead are hardly leached, and almost the entire amount is distributed to the residue, so that it can be separated from the leached arsenic. However, copper contained in a large amount in the copper removal slime is leached with sulfuric acid. Antimony ions have essentially no solubility in water in both trivalent and pentavalent forms, but have a specific property that antimony is leached when the arsenic concentration in the sulfuric acid solution is high.
従って、脱銅スライムを硫酸で浸出して得られた浸出液から砒素を回収する場合には、含有される銅やアンチモンと砒素とを分離することが必要である。銅の分離には、例えば、浸出液に硫化水素を吹き込んで硫化物として沈殿させることが可能である。しかしながら、銅と同時に砒素やアンチモンも硫化物として沈殿し、相互の分離が不十分であったり、取扱いの手間やコストを要したりする可能性が大きい。 Therefore, when recovering arsenic from the leachate obtained by leaching the decoppered slime with sulfuric acid, it is necessary to separate the contained copper, antimony and arsenic. For separation of copper, for example, hydrogen sulfide can be blown into the leachate and precipitated as sulfide. However, arsenic and antimony are also precipitated as sulfides at the same time as copper, and there is a high possibility that mutual separation will be insufficient, and handling and cost will be required.
また、砒素とアンチモンとの分離に関しては、脱銅スライムを硫酸で浸出した浸出液と活性炭を接触させ、活性炭上にアンチモンイオンを吸着させて浸出液から分離する方法や、特開昭60−050192号公報(特許文献2)に記載されているように、キレート樹脂又はイオン交換樹脂を浸出液に接触させてアンチモンイオンのみを選択的に樹脂に吸着させ、浸出液から分離する方法が提案されている。 As for the separation of arsenic and antimony, there is a method in which a leachate obtained by leaching decopperized slime with sulfuric acid and activated carbon are brought into contact with each other, and antimony ions are adsorbed on the activated carbon and separated from the leachate. As described in (Patent Document 2), a method has been proposed in which a chelate resin or an ion exchange resin is brought into contact with a leaching solution so that only antimony ions are selectively adsorbed on the resin and separated from the leaching solution.
しかし、上記の活性炭やイオン交換樹脂などを用いた分離方法は、浸出液のアンチモン濃度が1g/l未満のように低濃度な場合には効果的であるが、アンチモン濃度が例えば1g/lを超えるような場合は、活性炭やイオン交換樹脂の必要量が増加して設備規模が拡大し且つコストが増加し、使用する薬剤や廃水処理量の増加に伴って手間とコストを過剰に必要とするため、非効率的な処理方法となる可能性が大きい。 However, the above-described separation method using activated carbon, ion exchange resin, or the like is effective when the antimony concentration of the leachate is low, such as less than 1 g / l, but the antimony concentration exceeds, for example, 1 g / l. In such a case, the required amount of activated carbon and ion exchange resin increases, the scale of equipment expands and the cost increases, and excessive labor and cost are required as the amount of chemicals used and wastewater treatment increase. The possibility of an inefficient processing method is high.
本発明は、上記した従来の事情に鑑み、銅製錬での脱銅スライムから浸出された銅とアンチモンと砒素とを含有する硫酸酸性溶液から、銅とアンチモンを容易に且つ低コストで分離して、高純度な亜砒酸水溶液を得る方法を提供することを目的とする。 In view of the above-described conventional circumstances, the present invention easily and inexpensively separates copper and antimony from a sulfuric acid acidic solution containing copper, antimony and arsenic leached from a copper smelting slime in copper smelting. Another object of the present invention is to provide a method for obtaining a highly pure arsenous acid aqueous solution.
上記目的を達成するため、本発明が提供する亜砒酸水溶液の製造方法は、砒素と銅とアンチモンとを含有する混合物から、それぞれを分離して亜砒酸水溶液を得る方法であって、
(a)砒素と銅とアンチモンを含有する混合物に硫酸溶液を添加混合し、砒素と銅とアンチモンを含有する浸出液と浸出残渣とに分離し、浸出残渣を濾別して浸出液を回収する浸出工程と、
(b)該浸出液を60℃以上100℃以下の液温に維持しながら、還元剤を添加して、浸出液の酸化還元電位を標準水素電極で240mV以上560mV以下の範囲に維持することにより、砒素とアンチモンを主成分とする還元析出物を生成させ、還元析出物を濾別して回収する還元工程と、
(c)該還元析出物を60℃以上100℃以下に維持した温水に添加混合することにより、亜砒酸の水溶液とアンチモンを含有する未溶解残渣とに分離し、未溶解残渣を濾別して砒素とアンチモンとを分離する分離工程と、
を備えることを特徴とする。
In order to achieve the above object, a method for producing an arsenous acid aqueous solution provided by the present invention is a method for obtaining an arsenous acid aqueous solution by separating each from a mixture containing arsenic, copper and antimony,
(A) a leaching step of adding and mixing a sulfuric acid solution to a mixture containing arsenic, copper and antimony, separating into a leaching solution and a leaching residue containing arsenic, copper and antimony, and filtering the leaching residue to recover the leaching solution;
(B) While maintaining the leachate at a liquid temperature of 60 ° C. or higher and 100 ° C. or lower, a reducing agent is added to maintain the redox potential of the leachate within the range of 240 mV or higher and 560 mV or lower with a standard hydrogen electrode. And a reduction step of producing a reduced precipitate mainly composed of antimony and collecting the reduced precipitate by filtration;
(C) The reduced precipitate is added to and mixed with warm water maintained at 60 ° C. or more and 100 ° C. or less to separate the arsenous acid aqueous solution and the undissolved residue containing antimony, and the undissolved residue is separated by filtration to separate arsenic and antimony. A separation step of separating
It is characterized by providing.
上記本発明による亜砒酸水溶液の製造方法では、前記還元工程で用いる還元剤として、水素ガス、亜硫酸ガス、亜硫酸ナトリウム、亜硫酸水素ナトリウムの少なくとも1種が好ましい。更に、前記還元工程において、浸出液の液温は70℃以上80℃以下に維持することが望ましい。 In the method for producing an arsenous acid aqueous solution according to the present invention , the reducing agent used in the reduction step is preferably at least one of hydrogen gas, sulfurous acid gas, sodium sulfite, and sodium hydrogensulfite . Furthermore, in the reduction step, the temperature of the leachate is desirably maintained at 70 ° C. or higher and 80 ° C. or lower.
本発明によれば、脱銅スライムのような砒素と銅とアンチモンとを含有する混合物を硫酸で浸出した浸出液から、吸着装置やイオン交換装置などの特別な装置を必要とせずに、還元析出並びに温水溶解という簡単な手段によって、銅とアンチモンを含まない高純度の亜砒酸水溶液を得ることができる。 According to the present invention, from a leachate obtained by leaching a mixture containing arsenic, copper and antimony, such as decopperized slime, with sulfuric acid, without requiring a special device such as an adsorption device or an ion exchange device, reduction precipitation and By a simple means of dissolving in hot water, a high-purity arsenous acid aqueous solution containing no copper and antimony can be obtained.
従って、本発明によって得られた高純度亜砒酸水溶液を原料として、例えば上記特許文献1の方法を用いて、結晶性の良い鉄砒素化合物を生成し、砒素を安定して処理することができる。更に、高純度な亜砒酸や砒素メタルの製造原料としても利用することができる。 Therefore, using the high-purity arsenous acid aqueous solution obtained by the present invention as a raw material, for example, using the method of Patent Document 1, an iron arsenic compound with good crystallinity can be generated and arsenic can be stably treated. Furthermore, it can be used as a raw material for producing high-purity arsenous acid or arsenic metal.
本発明による高純度な亜砒酸水溶液の製造は、砒素と銅とアンチモンを含有する混合物、例えば銅製錬の電解精製工程で産出した脱銅スライムなどを原料とする。本発明方法によれば、この混合物に含有されるアンチモンや銅などを、浸出工程、還元工程、分離工程の3つの工程を順に経て処理することにより、銅やアンチモンを砒素と分離して、高純度の亜砒酸水溶液を得ることができる。 The high-purity arsenous acid aqueous solution according to the present invention is made from a mixture containing arsenic, copper and antimony, for example, copper-free slime produced in the electrolytic refining process of copper smelting. According to the method of the present invention, antimony, copper, and the like contained in the mixture are processed through three steps of a leaching step, a reduction step, and a separation step in order to separate copper and antimony from arsenic. A pure arsenous acid aqueous solution can be obtained.
以下、本発明による高純度な亜砒酸水溶液の製造方法を、図1を参照しながら詳細に説明する。尚、この図1の工程図では、砒素、銅、アンチモンを含有する混合物として脱銅スライムを図示してある。 Hereinafter, a method for producing a high purity arsenous acid aqueous solution according to the present invention will be described in detail with reference to FIG. In the process diagram of FIG. 1, copper removal slime is illustrated as a mixture containing arsenic, copper, and antimony.
最初の浸出工程(a)では、脱銅スライムに硫酸溶液を添加混合することによって砒素(As)、銅(Cu)、アンチモン(Sb)を溶液に浸出し、浸出残渣を濾別して浸出液を回収する。この浸出工程においては、従来から行なわれているように、硫酸溶液の硫酸濃度は始液で50〜100g/lとすることが好ましく、スラリー濃度は50〜150g/lの範囲が好ましい。 In the first leaching step (a), a sulfuric acid solution is added to and mixed with the decoppered slime so that arsenic (As), copper (Cu), and antimony (Sb) are leached into the solution, and the leaching residue is filtered to collect the leachate. . In this leaching step, as conventionally performed, the sulfuric acid concentration of the sulfuric acid solution is preferably 50 to 100 g / l at the start, and the slurry concentration is preferably in the range of 50 to 150 g / l.
また、上記浸出工程(a)では、浸出の際に溶解速度を増加させるため、エアーを吹き込むことが好ましい。また、過酸化水素などの酸化剤を添加して、例えば酸化還元電位で700mV以上の酸化雰囲気として浸出することによっても、溶解速度を増加させることができる。浸出時の液温は、反応を促進するために、60℃以上100℃以下とすることが好ましい。 In the leaching step (a), air is preferably blown in order to increase the dissolution rate during leaching. The dissolution rate can also be increased by adding an oxidizing agent such as hydrogen peroxide and leaching as an oxidizing atmosphere having a redox potential of 700 mV or higher. The liquid temperature during leaching is preferably 60 ° C. or higher and 100 ° C. or lower in order to promote the reaction.
尚、脱銅スライムを硫酸溶液で浸出する場合、脱銅スライムに多量に含有される銅は硫酸によって浸出されやすいが、ビスマスや鉛はほとんど浸出されずにほぼ全量が残渣へ分配される。また、アンチモンイオンは、水に対する溶解度は本来ほとんどないが、硫酸溶液中の砒素濃度が高いと浸出される。アンチモンが浸出されるメカニズムは分っていないが、本発明者らによる研究の結果、アンチモンイオンが5価の砒素イオンと錯体を形成して浸出されるものと考えられることが分った。 When leaching copper removal slime with a sulfuric acid solution, copper contained in a large amount in the copper removal slime is likely to be leached by sulfuric acid, but almost all of bismuth and lead are distributed to the residue without being leached. Antimony ions have essentially no solubility in water, but are leached when the arsenic concentration in the sulfuric acid solution is high. The mechanism by which antimony is leached is not known, but as a result of studies by the present inventors, it has been found that antimony ions are considered to be leached by forming a complex with pentavalent arsenic ions.
次の還元工程(b)では、上記浸出工程(a)で回収した浸出液を60〜100℃に維持しながら、還元剤を添加して砒素イオンとアンチモンイオンとを還元し、それぞれ亜砒酸や三酸化二アンチモンとして析出させて沈殿させる。一方、銅イオンは浸出液中に留まるため、還元析出物を濾別回収することによって砒素及びアンチモンから銅を分離することができる。 In the next reduction step (b), the leaching solution collected in the leaching step (a) is maintained at 60 to 100 ° C., and a reducing agent is added to reduce arsenic ions and antimony ions. Precipitate as diantimony. On the other hand, since copper ions remain in the leachate, copper can be separated from arsenic and antimony by collecting the reduced precipitates by filtration.
この砒素とアンチモンの還元析出の原理は以下のように考えられる。即ち、本発明者らの研究により、脱銅スライムを硫酸で浸出した浸出液中では、砒素イオンは5価の形態で溶解していると考えられる。ここで、図2に示した砒素の平衡状態での溶解度から分るように、3価の砒素イオンの溶解度は5価の砒素イオンの数分の1以下しかない。このため還元剤を用いて浸出液中の5価の砒素イオンを3価に還元すると、砒素イオンの溶解度が低下して、過飽和となった砒素イオンは亜砒酸(As2O3)の結晶として析出する。また、5価の砒素イオンが減少することで、アンチモンイオンは砒素イオンとの錯体が破壊され、溶解度の低い三酸化二アンチモン(Sb2O3)の形態で析出する。 The principle of this reduced precipitation of arsenic and antimony is considered as follows. That is, according to the study by the present inventors, it is considered that arsenic ions are dissolved in a pentavalent form in a leachate obtained by leaching decopperized slime with sulfuric acid. Here, as can be seen from the solubility of arsenic in the equilibrium state shown in FIG. 2, the solubility of trivalent arsenic ions is only a fraction of that of pentavalent arsenic ions. For this reason, when pentavalent arsenic ions in the leachate are reduced to trivalent using a reducing agent, the solubility of arsenic ions decreases and supersaturated arsenic ions are precipitated as crystals of arsenous acid (As 2 O 3 ). . Further, since pentavalent arsenic ions are reduced, antimony ions are destroyed in a complex with arsenic ions and precipitated in the form of diantimony trioxide (Sb 2 O 3 ) having low solubility.
還元時の液温は60〜100℃の範囲とする。液温が60℃未満では、二酸化硫黄ガスによる還元の反応速度が極端に低下し、図2の平衡状態に到達するまでに時間がかかるため、効率が大幅に低下する。良好な反応速度を得るためには、液温を70℃以上とすることが好ましい。一方、液温が100℃を超えると、加圧容器等の高価な設備が必要となるため、コストがかさみ好ましくない。更に、図2に示したように、砒素の3価と5価での溶解度の差は30℃から80℃の範囲で大きく、還元後の亜砒酸の析出量がより多く得られると期待できる。このため、反応速度と溶解度差の観点から、70℃から80℃の間の液温で還元することが最も好ましい。 The liquid temperature during the reduction is in the range of 60 to 100 ° C. When the liquid temperature is less than 60 ° C., the reaction rate of the reduction with sulfur dioxide gas is extremely reduced, and it takes time to reach the equilibrium state of FIG. In order to obtain a good reaction rate, the liquid temperature is preferably 70 ° C. or higher. On the other hand, if the liquid temperature exceeds 100 ° C., expensive equipment such as a pressurized container is required, which increases the cost and is not preferable. Furthermore, as shown in FIG. 2, the difference in solubility between trivalent and pentavalent arsenic is large in the range of 30 ° C. to 80 ° C., and it can be expected that a larger amount of arsenous acid precipitates after reduction can be obtained. For this reason, it is most preferable to reduce at a liquid temperature between 70 ° C. and 80 ° C. from the viewpoint of reaction rate and solubility difference.
使用する還元剤としては、例えば、水素ガス、ヒドラジン、亜硫酸ガス(二酸化硫黄ガス)、亜硫酸ナトリウム、亜硫酸水素ナトリウムなどがあるが、亜硫酸ガスを用いることが好ましい。その理由は、亜硫酸ガスは銅の製錬工程で多量に産出されるので、安価で且つ容易に利用できるうえ、還元剤として液に吹き込まれた後は硫酸となることから、処理工程に及ぼす影響が少なくて済むなどの利点があるためである。 Examples of the reducing agent to be used include hydrogen gas, hydrazine, sulfurous acid gas (sulfur dioxide gas), sodium sulfite, and sodium hydrogensulfite. It is preferable to use sulfurous acid gas. The reason for this is that sulfurous acid gas is produced in large quantities in the copper smelting process, so it can be used inexpensively and easily, and since it becomes sulfuric acid after being blown into the liquid as a reducing agent, it affects the treatment process. This is because there is an advantage that it is less.
亜硫酸ガスなどの還元剤による還元は、酸化還元電位(ORP)が標準水素電極で240〜560mVの範囲となるように維持することが望ましい。ORPが安定した後、更に1時間程度は撹拌を継続する。還元終了後、浸出液を常温まで冷却し、還元析出物を濾過して回収する。 The reduction with a reducing agent such as sulfurous acid gas is desirably maintained so that the redox potential (ORP) is in the range of 240 to 560 mV at the standard hydrogen electrode. After ORP is stabilized, stirring is continued for about 1 hour. After completion of the reduction, the leachate is cooled to room temperature and the reduced precipitate is collected by filtration.
分離工程(c)では、上記還元工程(b)で得られた還元析出物を、60〜100℃の温水中に添加して撹拌混合することにより、亜砒酸(As2O3)と三酸化二アンチモン(Sb2O3)を含有する還元析出物中の亜砒酸を選択的に溶解して亜砒酸水溶液を得る。その際、溶解度の低い三酸化二アンチモンは未溶解残渣中に留まるため、未溶解残渣を濾別することによって、高純度の亜砒酸水溶液を回収することができる。 In the separation step (c), the reduction precipitate obtained in the reduction step (b) is added to warm water at 60 to 100 ° C. and mixed with stirring, whereby arsenous acid (As 2 O 3 ) and dioxide trioxide are mixed. Arsenous acid in the reduced precipitate containing antimony (Sb 2 O 3 ) is selectively dissolved to obtain an aqueous arsenous acid solution. At that time, since diantimony trioxide having a low solubility remains in the undissolved residue, a high-purity arsenous acid aqueous solution can be recovered by filtering off the undissolved residue.
還元析出物を溶解する温水の温度としては、高いほど溶解速度が早く、効率よく取り扱うことができる。しかし、100℃を超えると、加圧容器等の高価な設備が必要になる。一方、温水の温度が60℃未満では、溶解速度が遅くなり、溶解時間が長くかかるため効率的でない。従って、還元析出物を溶解する温水の温度は60〜100℃とし、好ましくは70〜90℃とする。尚、温水に対する還元析出物のスラリー濃度は、50g/lを超えると溶解に長時間を要したり、未溶解残渣が増加して取扱い難くなったりするため、50g/l以下とすることが好ましい。 As the temperature of the hot water for dissolving the reduced precipitate, the higher the temperature, the faster the dissolution rate, and the more efficiently it can be handled. However, if the temperature exceeds 100 ° C., expensive equipment such as a pressurized container is required. On the other hand, if the temperature of the hot water is less than 60 ° C., the dissolution rate is slow and the dissolution time is long, which is not efficient. Therefore, the temperature of hot water for dissolving the reduced precipitate is set to 60 to 100 ° C, preferably 70 to 90 ° C. In addition, since the slurry density | concentration of the reduction | restoration deposit with respect to warm water will require a long time for melt | dissolution when it exceeds 50 g / l, or an undissolved residue will increase and it will become difficult to handle, it is preferable to set it as 50 g / l or less. .
上記した本発明方法により得られた高純度亜砒酸水溶液は、前述した特許文献1に示した方法に従って、鉄源を加えて酸化することにより、結晶性の鉄砒素化合物を析出させることができる。析出した結晶性の鉄砒素化合物は、新たな砒素の固定方法として利用できる。また、本発明により得られた高純度亜砒酸水溶液を原料として、亜砒酸粉末や砒素メタルを得、薬品や半導体材料として利用することができる。 The high-purity arsenous acid aqueous solution obtained by the above-described method of the present invention can precipitate a crystalline iron arsenic compound by adding an iron source and oxidizing according to the method shown in Patent Document 1 described above. The precipitated crystalline iron arsenic compound can be used as a new method for fixing arsenic. Also, using the high-purity arsenous acid aqueous solution obtained by the present invention as a raw material, arsenous acid powder and arsenic metal can be obtained and used as chemicals and semiconductor materials.
以下、実施例によって本発明を更に詳細に説明するが、本発明は実施例によって何ら限定されるものではない。尚、浸出液、還元析出物、還元後液、亜砒酸水溶液の各成分の化学分析は、ICP発光分析法で行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by an Example. The chemical analysis of each component of the leachate, the reduced precipitate, the reduced solution, and the aqueous arsenous acid solution was performed by ICP emission spectrometry.
[実施例1]
銅製錬の電解精製工程の操業現場で産出した脱銅スライム30gをスラリー濃度100g/lとなるように硫酸濃度75g/lの硫酸溶液300mlに添加混合し、85℃に加熱しながらエアーを吹き込んで酸化することにより浸出し、浸出残渣を濾別して下記表1に示す組成を有する浸出液300mlを得た。
[Example 1]
30 g of copper removal slime produced at the operation site of the copper smelting electrolytic refining process was added and mixed with 300 ml of sulfuric acid solution with a sulfuric acid concentration of 75 g / l so that the slurry concentration became 100 g / l, and air was blown in while heating to 85 ° C. The leaching was carried out by oxidation , and the leaching residue was filtered off to obtain 300 ml of a leachate having the composition shown in Table 1 below.
この浸出液を200ml分取し、液温度を70℃に保持しながら、液中に濃度100%の工業用亜硫酸ガス(SO2ガス)を吹き込み、酸化還元電位(ORP;標準水素電極)を吹き込み前の850mVから低下させて400mVを維持するように還元した。ORPが安定した後更に1時間継続してSO2ガスを吹き込んだ後、ガスの吹き込みを停止した。常温まで冷却して得られた還元析出物を濾過し、200mlの還元後液と7.8gの還元析出物とに分離した。 Take 200 ml of this leachate and keep the temperature at 70 ° C., blow 100% industrial sulfurous acid gas (SO 2 gas) into the liquid, before blowing redox potential (ORP; standard hydrogen electrode). Was reduced from 850 mV to maintain 400 mV. After the ORP was stabilized, the SO 2 gas was continuously blown for 1 hour, and then the gas blowing was stopped. The reduced precipitate obtained by cooling to room temperature was filtered and separated into 200 ml of post-reduction liquid and 7.8 g of reduced precipitate.
還元析出物と還元後液を分析した結果を下記表2に示す。砒素とアンチモンは還元析出物に分配するが、それ以外の不純物は還元析出物にほとんど分配されていない。また、還元析出物をX線回折(XRD)を用いて化合物同定した結果、亜砒酸(As2O3)と三酸化二アンチモン(Sb2O3)が生成していることが確認された。 The results of analyzing the reduced precipitate and the solution after reduction are shown in Table 2 below. Arsenic and antimony are distributed in the reduced precipitate, but the other impurities are hardly distributed in the reduced precipitate. Further, as a result of identifying the reduced precipitate using X-ray diffraction (XRD), it was confirmed that arsenous acid (As 2 O 3 ) and diantimony trioxide (Sb 2 O 3 ) were produced.
上記表2の分析値並びに物量を加味して、SO2ガス還元工程におけるアンチモンの還元析出物への分配率を求めると90%となった。また、砒素の還元析出物への分配率は64%となった。 Taking into account the analysis values and quantities in Table 2 above, the distribution ratio of antimony to the reduced precipitates in the SO 2 gas reduction step was 90%. The distribution ratio of arsenic to the reduced precipitate was 64%.
次に、上記還元工程で得られた還元析出物3gを分取し、85℃の温水200mlに添加して撹拌した。温水に対する析出物の添加割合は15g/lとなる。その後6時間かけて還元析出物を溶解した後、濾過して0.5gの未溶解残渣と200mlの濾液とを得た。濾液として得られた亜砒酸水溶液の分析結果を下記表3に示す。 Next, 3 g of the reduced precipitate obtained in the reduction step was collected, added to 200 ml of 85 ° C. warm water, and stirred. The addition ratio of the precipitate to the warm water is 15 g / l. Thereafter, the reduced precipitate was dissolved over 6 hours, followed by filtration to obtain 0.5 g of an undissolved residue and 200 ml of a filtrate. The analysis results of the arsenous acid aqueous solution obtained as the filtrate are shown in Table 3 below.
上記表1から表3までの各不純物の品位と物量を用いて、砒素とアンチモンが溶解液あるいは未溶解残渣に分配した割合を試算した。その結果、砒素は亜砒酸水溶液に84%が分配し、未溶解残渣へは16%しか分配しなかった。一方、アンチモンは亜砒酸水溶液には3%しか分配せず、未溶解残渣に97%が分配していた。 Using the grade and quantity of each impurity in Tables 1 to 3 above, the proportion of arsenic and antimony distributed to the solution or undissolved residue was estimated. As a result, 84% of arsenic was distributed in the arsenous acid aqueous solution, and only 16% was distributed to the undissolved residue. On the other hand, antimony was distributed only 3% in the arsenous acid aqueous solution, and 97% was distributed in the undissolved residue.
この実施例によって、脱銅スライム中の砒素とアンチモンとを確実に分離できることが確認された。尚、実操業の脱銅スライムでは、脱銅スライムにビスマスや鉛が含有されている場合がある。しかし、これらの不純物は本発明の各工程において砒素と分離され、最終的に得られる亜砒酸水溶液中にほとんど含有されることはない。 By this example, it was confirmed that arsenic and antimony in the copper removal slime can be reliably separated. In addition, in the copper removal slime of actual operation, bismuth and lead may be contained in the copper removal slime. However, these impurities are separated from arsenic in each step of the present invention, and are hardly contained in the finally obtained arsenous acid aqueous solution.
[実施例2]
上記実施例1と同じ脱銅スライムの浸出液を、亜硫酸ガスによって酸化還元電位260mV(標準水素電極)まで還元した。得られた還元析出物は上記表2の組成と同一であり、上記実施例1と同様にして高純度亜砒酸水溶液が得られることを確認することができた。
[Example 2]
The same leaching solution of copper-free slime as in Example 1 was reduced to a redox potential of 260 mV (standard hydrogen electrode) with sulfurous acid gas. The obtained reduced precipitate had the same composition as in Table 2 above, and it was confirmed that a high-purity arsenous acid aqueous solution was obtained in the same manner as in Example 1.
[実施例3]
上記実施例1と同じ脱銅スライムの浸出液を、亜硫酸ガスによって酸化還元電位550mV(標準水素電極)まで還元した。得られた還元析出物は上記表2の組成と同一であり、上記実施例1と同様にして高純度亜砒酸水溶液が得られることを確認することができた。
[Example 3]
The same copper-free slime leachate as in Example 1 was reduced to a redox potential of 550 mV (standard hydrogen electrode) with sulfurous acid gas. The obtained reduced precipitate had the same composition as in Table 2 above, and it was confirmed that a high-purity arsenous acid aqueous solution was obtained in the same manner as in Example 1.
Claims (3)
(a)砒素と銅とアンチモンを含有する混合物に硫酸溶液を添加混合し、砒素と銅とアンチモンを含有する浸出液と浸出残渣とに分離し、浸出残渣を濾別して浸出液を回収する浸出工程と、
(b)該浸出液を60℃以上100℃以下の液温に維持しながら、還元剤を添加して、浸出液の酸化還元電位を標準水素電極で240mV以上560mV以下の範囲に維持することにより、砒素とアンチモンを主成分とする還元析出物を生成させ、還元析出物を濾別して回収する還元工程と、
(c)該還元析出物を60℃以上100℃以下に維持した温水に添加混合することにより、亜砒酸の水溶液とアンチモンを含有する未溶解残渣とに分離し、未溶解残渣を濾別して砒素とアンチモンとを分離する分離工程と、
を備えることを特徴とする亜砒酸水溶液の製造方法。 A method for obtaining an aqueous arsenous acid solution by separating each from a mixture containing arsenic, copper and antimony,
(A) a leaching step of adding and mixing a sulfuric acid solution to a mixture containing arsenic, copper and antimony, separating into a leaching solution and a leaching residue containing arsenic, copper and antimony, and filtering the leaching residue to recover the leaching solution;
(B) While maintaining the leachate at a liquid temperature of 60 ° C. or higher and 100 ° C. or lower, a reducing agent is added to maintain the redox potential of the leachate within the range of 240 mV or higher and 560 mV or lower with a standard hydrogen electrode. And a reduction step of producing a reduced precipitate mainly composed of antimony and collecting the reduced precipitate by filtration;
(C) The reduced precipitate is added to and mixed with warm water maintained at 60 ° C. or more and 100 ° C. or less to separate the arsenous acid aqueous solution and the undissolved residue containing antimony, and the undissolved residue is separated by filtration to separate arsenic and antimony. A separation step of separating
A process for producing an aqueous arsenous acid solution, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008229264A JP5062111B2 (en) | 2008-09-08 | 2008-09-08 | Method for producing high-purity arsenous acid aqueous solution from copper-free slime |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008229264A JP5062111B2 (en) | 2008-09-08 | 2008-09-08 | Method for producing high-purity arsenous acid aqueous solution from copper-free slime |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010059035A JP2010059035A (en) | 2010-03-18 |
JP5062111B2 true JP5062111B2 (en) | 2012-10-31 |
Family
ID=42186296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008229264A Active JP5062111B2 (en) | 2008-09-08 | 2008-09-08 | Method for producing high-purity arsenous acid aqueous solution from copper-free slime |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5062111B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6139990B2 (en) * | 2013-06-11 | 2017-05-31 | Dowaメタルマイン株式会社 | Arsenic solution treatment method |
US20200299850A1 (en) * | 2019-03-22 | 2020-09-24 | Eco-Tec Limited | Processes for treating electrolyte from an electrorefining process |
CN113880288A (en) * | 2020-07-02 | 2022-01-04 | 浙江洁呈新材料科技股份有限公司 | Activated carbon adsorption treatment process for non-woven fabric printing and dyeing wastewater |
CN113511677B (en) * | 2021-07-09 | 2023-08-08 | 阳谷祥光铜业有限公司 | Treatment method of arsenic filter cake |
CN115043513A (en) * | 2022-04-22 | 2022-09-13 | 锡矿山闪星锑业有限责任公司 | Antimony-arsenic-containing wastewater treatment system |
CN115369266B (en) * | 2022-08-19 | 2024-02-20 | 江西铜业股份有限公司 | Method for removing and recycling arsenic in chlorohydrochloric acid leaching solution |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5235040B2 (en) * | 1973-06-19 | 1977-09-07 | ||
JPS6042172B2 (en) * | 1981-03-30 | 1985-09-20 | 住友金属鉱山株式会社 | Arsenous acid manufacturing method |
JPH0757895B2 (en) * | 1986-02-07 | 1995-06-21 | 住友金属鉱山株式会社 | Oxidation leaching method of decoppered slime |
JPH06279879A (en) * | 1993-03-29 | 1994-10-04 | Nikko Kinzoku Kk | Method for removing sb and/or bi from sulfuric acid-acidified aqueous solution containing sb and/or bi |
JP2009167442A (en) * | 2008-01-11 | 2009-07-30 | Sumitomo Metal Mining Co Ltd | Method for separating arsenic and antimony in arsenic acid aqueous solution |
-
2008
- 2008-09-08 JP JP2008229264A patent/JP5062111B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010059035A (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9284624B2 (en) | Process for recovering zinc and/or zinc oxide II | |
KR20090082925A (en) | Purified molybdenum technical oxide from molybdenite | |
MXPA03005959A (en) | Production of zinc oxide from complex sulfide concentrates using chloride processing. | |
US8956583B2 (en) | Method for separating rhenium and arsenic, and method for purification of rhenium | |
JP5062111B2 (en) | Method for producing high-purity arsenous acid aqueous solution from copper-free slime | |
JP6471912B2 (en) | Method for producing high purity cobalt sulfate aqueous solution | |
CN103555945B (en) | Method for removing arsenic and antimony of metallurgical dust pickle liquor through melt slag | |
JP5439997B2 (en) | Method for recovering copper from copper-containing iron | |
JP5370777B2 (en) | Method for recovering copper from copper sulfide | |
JP7016463B2 (en) | How to collect tellurium | |
EP3172348A1 (en) | Recovery of zinc and manganese from pyrometallurgy sludge or residues | |
US5290338A (en) | Antimony separation process | |
US7285677B1 (en) | System and method for recovering CTA residues and purifying/regenerating catalyst | |
JP4215547B2 (en) | Cobalt recovery method | |
JP2004285368A (en) | Method for refining cobalt aqueous solution | |
JP2008274382A (en) | Method for separating lead from aqueous cobalt chloride solution | |
JP5200588B2 (en) | Method for producing high purity silver | |
JP2020105587A (en) | Treatment method of acidic solution containing noble metal, selenium and tellurium | |
JP6233478B2 (en) | Purification method of bismuth | |
WO2018138917A1 (en) | Bismuth purification method | |
JP2010264331A (en) | Separation method of arsenic | |
JP2020105588A (en) | Treatment method of mixture containing noble metal, selenium and tellurium | |
WO2012068621A1 (en) | For recovering zinc and/or zinc oxide i | |
Scheiner et al. | Extraction and recovery of molybdenum and rhenium from molybdenite concentrates by electrooxidation: process demonstration | |
JP6835577B2 (en) | How to collect valuables |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20120515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120723 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5062111 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |