JP5005582B2 - Superconducting current lead manufacturing method - Google Patents

Superconducting current lead manufacturing method Download PDF

Info

Publication number
JP5005582B2
JP5005582B2 JP2008052864A JP2008052864A JP5005582B2 JP 5005582 B2 JP5005582 B2 JP 5005582B2 JP 2008052864 A JP2008052864 A JP 2008052864A JP 2008052864 A JP2008052864 A JP 2008052864A JP 5005582 B2 JP5005582 B2 JP 5005582B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
current lead
conductor
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008052864A
Other languages
Japanese (ja)
Other versions
JP2009211899A (en
Inventor
育孝 讃岐
雅行 今野
章 富岡
秀美 林
忠利 今吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2008052864A priority Critical patent/JP5005582B2/en
Publication of JP2009211899A publication Critical patent/JP2009211899A/en
Application granted granted Critical
Publication of JP5005582B2 publication Critical patent/JP5005582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

この発明は、超電導エネルギー貯蔵装置、超電導限流器、超電導ケーブル、超電導発電機、超電導変圧器などの超電導装置において、室温にある電源から極低温に冷却された超電導装置へ電力を供給する超電導電流リードの製造方法に関する。特に、その導体の一部に高温超電導線材を用いた超電導電流リード(以下、単に電流リードともいう。)の製造方法に関する。 The present invention relates to a superconducting current that supplies power from a power source at room temperature to a superconducting device cooled to a cryogenic temperature in a superconducting device such as a superconducting energy storage device, a superconducting current limiter, a superconducting cable, a superconducting generator, and a superconducting transformer. a method of manufacturing a lead. In particular, the present invention relates to a method of manufacturing a superconducting current lead (hereinafter also simply referred to as a current lead ) using a high-temperature superconducting wire as a part of the conductor.

超電導エネルギー貯蔵装置、超電導限流器、超電導ケーブル、超電導発電機、超電導変圧器などの超電導装置は、従来の常電導装置と比べ、小型、高効率などの特徴があり、実用化への期待が高まっている。   Superconducting devices such as superconducting energy storage devices, superconducting current limiters, superconducting cables, superconducting generators, and superconducting transformers have features such as small size and high efficiency compared to conventional ordinary conducting devices, and are expected to be put to practical use. It is growing.

電流リードは、極低温下の超電導装置に対して、室温にある電源から電力を供給する役割があり、超電導装置には不可欠なものである。電流リードは、超電導装置や周囲設備との位置関係による寸法制約などから0.5m〜1.5mの長さで使われることが多い。長手方向の電源側は室温状態にあり、極低温側は、超電導装置の運転環境と電流リードの冷却方法により異なるが、概ね4.2K〜80Kである。従って、電流リードは長手方向に温度分布を持ち、電流リードの室温端から低温端に向けて熱が侵入する。   The current lead has a role of supplying electric power from a power source at room temperature to a superconducting device at a cryogenic temperature, and is indispensable for the superconducting device. Current leads are often used with a length of 0.5m to 1.5m due to dimensional constraints due to the positional relationship with superconducting devices and surrounding equipment. The power supply side in the longitudinal direction is at room temperature, and the cryogenic temperature side is generally 4.2K to 80K, depending on the operating environment of the superconducting device and the current lead cooling method. Therefore, the current lead has a temperature distribution in the longitudinal direction, and heat penetrates from the room temperature end to the low temperature end of the current lead.

電流リードの材料としては、銅などの良導電性材料が用いられるが、電気伝導率が大きいと共に熱伝導率も大きいので、電流リードの低温端への熱侵入量が大きくなる。電流リードの熱侵入量が大きいと、極低温における熱負荷が増え、運転効率を低下させたり、侵入熱が電流リードと超電導装置の接続部に伝わることで装置の温度が上昇し、超電導導体の臨界電流が低下する等の悪影響を及ぼす恐れがある。電流リードの低温端熱侵入量の低減対策として、電流リードの低温側の電流経路に、酸化物超電導材料からなる高温超電導線材を用いたものが開発されている(特許文献1〜3参照)。   As a material for the current lead, a highly conductive material such as copper is used. However, since the electrical conductivity is large and the thermal conductivity is large, the amount of heat penetration into the low temperature end of the current lead is large. If the amount of heat penetration of the current lead is large, the heat load at cryogenic temperatures increases, reducing the operating efficiency, and the penetration heat is transmitted to the connection between the current lead and the superconducting device. There is a risk of adverse effects such as a decrease in critical current. As a countermeasure for reducing the amount of heat penetration at the low temperature end of the current lead, one using a high temperature superconducting wire made of an oxide superconducting material in the current path on the low temperature side of the current lead has been developed (see Patent Documents 1 to 3).

高温超電導線材は、電流密度が銅の100倍近くあり、さらに、導体が酸化物(一種のセラミックス)であるので、熱伝導率が低く、熱侵入量抑制に効果がある。高温超電導電流リードの冷却方式としては、大きく分けてガス冷却方式と伝導冷却方式がある。ガス冷却方式の場合、電流リードの導体を包むように(もしくは導体の内方に)冷媒配管が配設され、配管内をヘリウムガス等の冷媒ガスを流すことで導体を冷却する。一方、伝導冷却方式の場合には、真空シールドなどで周囲と断熱された極低温容器内に設けた超電導装置と外部に設けた電源とを接続する電流リードに対して、極低温容器内で冷凍機や冷媒配管を熱的に接触させて、冷凍機や冷媒ガスで電流リードの導体を冷却する。   The high-temperature superconducting wire has a current density nearly 100 times that of copper, and since the conductor is an oxide (a kind of ceramic), it has a low thermal conductivity and is effective in suppressing the amount of heat penetration. The cooling method for the high-temperature superconducting current lead is roughly divided into a gas cooling method and a conduction cooling method. In the case of the gas cooling method, a refrigerant pipe is provided so as to wrap the conductor of the current lead (or inside the conductor), and the conductor is cooled by flowing a refrigerant gas such as helium gas through the pipe. On the other hand, in the case of the conduction cooling method, freezing is carried out in the cryogenic vessel with respect to the current lead connecting the superconducting device provided in the cryogenic vessel insulated from the surroundings by a vacuum shield or the like and the power supply provided outside. The conductor of the lead and the refrigerant pipe are brought into thermal contact, and the conductor of the current lead is cooled by the refrigerator or the refrigerant gas.

ところで、前記特許文献1〜3は、いずれも、電気絶縁性材料(例えば、FRP)や低熱伝導性金属材料(例えば、ステンレス鋼やチタン合金等)からなる中空円筒状の支持部材の外周面上に、複数個の酸化物超電導部材を配置し、支持部材の中空部に冷却用のガスを通流するガス冷却方式の電流リードを開示している。そして、特許文献1は、前記円筒状支持部材と複数個の酸化物超電導部材とをエポキシ系接着剤により接着する構成を開示する。また、特許文献2は、その明細書の段落[0025]に記載されたように、複数個の酸化物超電導部材と円筒状支持部材とを、支持部材外周側からのバインドや拡散接合により密着させる構成を開示する。   By the way, as for the said patent documents 1-3, all are on the outer peripheral surface of the hollow cylindrical support member which consists of an electrically insulating material (for example, FRP) and a low heat conductive metal material (for example, stainless steel, a titanium alloy etc.). Discloses a current lead of a gas cooling system in which a plurality of oxide superconducting members are arranged and a cooling gas is passed through the hollow portion of the support member. And patent document 1 discloses the structure which adhere | attaches the said cylindrical support member and several oxide superconducting member with an epoxy-type adhesive agent. Moreover, as described in paragraph [0025] of the specification, Patent Document 2 brings a plurality of oxide superconducting members and a cylindrical support member into close contact by binding or diffusion bonding from the outer periphery side of the support member. The configuration is disclosed.

特許文献3は、その明細書の段落[0005]〜[0007]に記載されたように、上記特許文献1および2のような構成の問題点、即ち、「ミクロ的に見て支持部材の表面とユニット導体(酸化物超電導部材)の表面との間の接触が不完全であって接触面間の伝熱抵抗が大きく、このためにユニット導体で超電導体が常電導転移(クエンチ)した場合には、支持部材がユニット導体の熱を吸収する熱容量体として十分に寄与せず、このためにユニット導体のみが異常に温度上昇して最悪の場合にはユニット導体が焼損する危険性がある。」旨の問題点に鑑み、「酸化物超電導部材と円筒状支持部材とは、はんだ付で接合し、はんだ付け性を改善するために、予めステンレス鋼に、金、銀、銅、錫、亜鉛等の薄膜を蒸着またはスパッタリングで成膜した上で、はんだ付する方法」を開示する。   As described in paragraphs [0005] to [0007] of the specification, Patent Document 3 describes the problem of the configuration as in Patent Documents 1 and 2 described above, that is, “the surface of the support member as viewed microscopically”. When the contact between the contact surface and the surface of the unit conductor (oxide superconducting member) is incomplete and the heat transfer resistance between the contact surfaces is large, the superconducting transition (quenching) of the superconductor occurs in the unit conductor. The support member does not sufficiently contribute as a heat capacity body that absorbs the heat of the unit conductor. For this reason, only the unit conductor abnormally rises in temperature, and in the worst case, the unit conductor may be burned out. In view of the problem, “the oxide superconducting member and the cylindrical support member are joined together by soldering, in order to improve solderability, in advance to stainless steel, gold, silver, copper, tin, zinc, etc. Vapor deposition or sputtering On which was formed, discloses a method "subjecting the solder.

次に、高温超電導電流リードの冷却方式として、前述の伝導冷却方式を採用した従来の構成例について述べる。   Next, a conventional configuration example employing the above-described conduction cooling method as a cooling method for the high-temperature superconducting current lead will be described.

図5は、伝導冷却方式を採用した高温超電導電流リードを備えた超電導装置の模式的構成の一例を示す。図5に示す超電導装置は、極低温に冷却された超電導装置21と、超電導装置21を収納する極低温容器22、室温にある電源24、電源24から超電導装置21へ電力を供給する電流リード23とからなる。   FIG. 5 shows an example of a schematic configuration of a superconducting device including a high-temperature superconducting current lead that employs a conduction cooling method. The superconducting device shown in FIG. 5 includes a superconducting device 21 cooled to a cryogenic temperature, a cryogenic container 22 that houses the superconducting device 21, a power source 24 at room temperature, and a current lead 23 that supplies power from the power source 24 to the superconducting device 21. It consists of.

図5の例では、高温超電導導体部27の高温側と低温側とを各々異なる冷凍機25に熱的に接続させた冷却導体28により、伝導冷却を行う電流リードを示している。高温超電導電流リードは、銅導体部26と高温超電導導体部27とからなる。銅導体部26は、室温側に設けられ、丸棒や撚り線の銅で構成されている。一方、高温超電導導体部27は、低温側に設けられ、高温超電導導体や支持部材等からなる。その構成例の詳細は図2に示す。   In the example of FIG. 5, a current lead for conducting cooling is shown by a cooling conductor 28 in which the high temperature side and the low temperature side of the high temperature superconducting conductor portion 27 are thermally connected to different refrigerators 25. The high temperature superconducting current lead includes a copper conductor portion 26 and a high temperature superconducting conductor portion 27. The copper conductor part 26 is provided on the room temperature side, and is made of a round bar or stranded copper. On the other hand, the high-temperature superconducting conductor portion 27 is provided on the low-temperature side, and is made of a high-temperature superconducting conductor, a support member, or the like. Details of the configuration example are shown in FIG.

図4は、図5におけるA−A線に沿った高温超電導導体部27の断面図である。図4に示す高温超電導導体部は、例えば、複数本の高温超電導線材1からなる高温超電導導体2が、例えばステンレス鋼からなる支持部材3に設けた溝4内に、はんだ5により固定された構成を備える。高温超電導線材1としては、ビスマス系やイットリウム系とよばれるセラミックスの超電導線材が用いられる。ビスマス系超電導線材は、セラミックスの粉末を母材となる銀パイプに充填して、伸線、圧延、焼結などのプロセスを得て製作される。イットリウム系超電導線材は、主として、ハステロイのテープに中間層を形成し、その上に超電導層を成膜して製作され、安定化のために、前記超電導層の上には銀または銀合金がコーティングされる。   FIG. 4 is a cross-sectional view of the high-temperature superconducting conductor portion 27 along the line AA in FIG. The high-temperature superconducting conductor portion shown in FIG. 4 has a configuration in which, for example, a high-temperature superconducting conductor 2 made of a plurality of high-temperature superconducting wires 1 is fixed by a solder 5 in a groove 4 provided in a support member 3 made of stainless steel, for example. Is provided. As the high-temperature superconducting wire 1, a ceramic superconducting wire called bismuth or yttrium is used. Bismuth-based superconducting wire is manufactured by filling ceramic powder into a silver pipe as a base material and obtaining processes such as wire drawing, rolling, and sintering. Yttrium-based superconducting wires are mainly manufactured by forming an intermediate layer on a Hastelloy tape and forming a superconducting layer thereon, and for stabilization, the superconducting layer is coated with silver or a silver alloy. Is done.

支持部材3としては、通常運転時に電流リードの熱侵入量をできるだけ抑える観点から、熱伝導率の低い材料が適している。一方、電流リードを冷やす冷媒の供給停止や冷凍機の異常停止、さらには、超電導線の劣化、断線などの異常が生じた場合に、支持部材3は電流のバイパス機能を備える必要があり、保護導体としての機能が求められる。そのため、支持部材3は、保護導体を兼ねることができ、比較的熱伝導率が小さい材料が好ましく、低熱伝導性金属材料であるステンレス鋼やチタン合金などが用いられる。また、支持部材3と高温超電導導体2とは、電気的に並列となるように構成される。   As the support member 3, a material having low thermal conductivity is suitable from the viewpoint of suppressing the heat penetration amount of the current lead as much as possible during normal operation. On the other hand, the support member 3 must be provided with a current bypass function in the event of an abnormality such as a supply stop of the refrigerant that cools the current lead, an abnormal stop of the refrigerator, or a deterioration or disconnection of the superconducting wire. A function as a conductor is required. Therefore, the support member 3 can also serve as a protective conductor and is preferably made of a material having a relatively low thermal conductivity, such as stainless steel or titanium alloy, which is a low thermal conductive metal material. The support member 3 and the high-temperature superconducting conductor 2 are configured to be electrically in parallel.

高温超電導導体2と支持部材3との接続は、高温超電導導体表面の銀または銀合金の面を支持部材に向けて乗せ、150℃〜200℃に加熱して溶かしたはんだを流し込んで行う。この場合、ステンレスははんだ付け性が悪いので、前述の特許文献2に開示された方法のように、予めステンレスにはんだ付け性の良い銀や銅等の薄膜を蒸着またはスパッタリングで成膜する。また、はんだを流し込みやすいように、さらに高温超電導導体が作業中に移動しないように、支持部材3に高温超電導導体2をはめ込む溝4を設け、そこにはんだを流し込んで接続する。   The high temperature superconducting conductor 2 and the supporting member 3 are connected by placing the silver or silver alloy surface of the high temperature superconducting conductor on the supporting member and pouring solder melted by heating to 150 ° C. to 200 ° C. In this case, since stainless steel has poor solderability, a thin film such as silver or copper having good solderability is formed on the stainless steel by vapor deposition or sputtering in advance, as in the method disclosed in Patent Document 2 described above. Further, a groove 4 for fitting the high temperature superconducting conductor 2 is provided in the support member 3 so that the solder does not move during the operation so that the solder can be easily poured, and the solder is poured into the support member 3 for connection.

接続方法の一例としては、支持部材3の溝4内に高温超電導導体2とはんだ5とを挿入し、電流リードの両端に棒ヒータを密着させて電流リード全体を150℃〜200℃に加熱する。これにより、はんだ5が溶けて溝全体に広がるが、その際、高温超電導導体2が浮かないように押さえながらはんだを均一に広げる必要がある。その後、ヒータ電源を切って、電流リード全体が冷えるのを待つ。なお、ヒータが支持部材に密着可能なように、銅製の冶具を用いることもある。また、はんだ付は、前記支持部材3と高温超電導導体2との接合のほか、高温超電導導体部27の長手方向両端部に接続する導体部との接合においても実施される。
特開平4−218215号公報 特開平10−188691号公報 特開2002−64014号公報
As an example of the connection method, the high-temperature superconducting conductor 2 and the solder 5 are inserted into the groove 4 of the support member 3 and a bar heater is brought into close contact with both ends of the current lead to heat the entire current lead to 150 ° C. to 200 ° C. . As a result, the solder 5 melts and spreads over the entire groove. At that time, it is necessary to spread the solder uniformly while holding the high-temperature superconducting conductor 2 so as not to float. Then turn off the heater power and wait for the entire current lead to cool. A copper jig may be used so that the heater can be in close contact with the support member. Soldering is performed not only in joining the support member 3 and the high-temperature superconducting conductor 2 but also in joining the conductor portions connected to both longitudinal ends of the high-temperature superconducting conductor portion 27.
JP-A-4-218215 Japanese Patent Laid-Open No. 10-188691 JP 2002-64014 A

図4に示したような、はんだ付構成の従来の電流リードにおいては、下記のような問題があった。   The conventional current lead having the soldering configuration as shown in FIG. 4 has the following problems.

はんだ付工程において、高温超電導導体が支持部材から外れないように、高温超電導導体が埋まる程度にはんだを溝に流しこむ必要があるが、流し込む量は作業者の手加減に依存するので、はんだの量が一定とならず、並列接続される電流リード間で電気的および熱伝導特性にばらつきが生ずる。特に、はんだの量が多すぎる場合には、その箇所からの熱侵入量が増えるため、予想外に大きな熱負荷が生じ冷却システム上問題となることがあった。   In the soldering process, it is necessary to pour the solder into the groove to the extent that the high-temperature superconductor is buried so that the high-temperature superconductor is not detached from the support member. Is not constant, and electrical and thermal conduction characteristics vary among current leads connected in parallel. In particular, when the amount of solder is too large, the amount of heat intrusion from that portion increases, which may cause an unexpectedly large heat load and cause a problem in the cooling system.

また、電流リードの長手方向(例えば長さ0.5m〜1m)にわたって高温超電導導体ができるだけ浮かないように、押さえつけながらはんだを均一に広げる必要があるが、この場合、加熱しながらの作業であるので、作業性が悪く、製造上手間がかかるという問題もあった。   Also, it is necessary to spread the solder evenly while pressing down so that the high-temperature superconducting conductor does not float as much as possible in the longitudinal direction of the current lead (for example, length 0.5m to 1m). There is also a problem that workability is poor and manufacturing takes time.

さらに、電流リードの加熱、はんだの流し込み、その後の冷却に長時間を要し、電流リードのサイズが大きい場合には数時間を要する。また、前述のように支持部材としてステンレス鋼を用い、予めステンレス鋼にはんだ付け性の良い銀や銅等の薄膜を蒸着またはスパッタリングで成膜する場合、その処理にも作業と時間を要し、全体として、はんだ付けは作業性が悪く、製造コストが増大する問題があった。   Furthermore, it takes a long time to heat the current lead, pour the solder, and then cool it down, and it takes several hours if the size of the current lead is large. Moreover, when using stainless steel as a support member as described above, and forming a thin film such as silver or copper with good solderability on stainless steel in advance by vapor deposition or sputtering, the process also requires work and time, Overall, soldering has a problem of poor workability and increased manufacturing costs.

上記のように、高温超電導導体と支持部材との接合をはんだ付けとすることは好ましくないので異なる接合方法を採用することが望ましいが、実際の超電導電流リードにおいては、後に詳述するように、前記高温超電導導体は、はんだにより接合された少なくとも2つの電極を備える必要があり、超電導電流リードの製造方法としては、この点も考慮して、前記問題点を解消する必要がある。   As described above, since it is not preferable to solder the high-temperature superconducting conductor and the support member, it is desirable to adopt a different joining method, but in an actual superconducting current lead, as described in detail later, The high-temperature superconducting conductor needs to include at least two electrodes joined by solder, and the above-described problem needs to be solved in consideration of this point as a method of manufacturing a superconducting current lead.

この発明は、上記のような点に鑑みてなされたもので、この発明の課題は、電流リード低温端への熱侵入量増加を抑制し、ばらつきの少ない安定した特性が得られるようにし、かつ作業性の向上を図った、高温超電導導体と支持部材との接続構成を備えた超電導電流リードの製造方法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to suppress an increase in the amount of heat penetration into the low temperature end of the current lead, to obtain stable characteristics with little variation, and thereby improving the workability, it is to provide a superconducting current lead manufacturing method having the connection structure of the high-temperature superconductor and the support member.

前述の課題を解決するため、この発明は、極低温容器内に設置された超電導装置に対して、室温環境下に設置された電源から電力を供給し、低温側の少なくとも一部に酸化物超電導材料からなる高温超電導線材を用いた高温超電導導体部を備え、前記高温超電導導体部は、銅に比較して熱伝導率が小さい低熱伝導性金属材料からなる支持部材と、この支持部材上に電気的に並列に分散配置された複数個の高温超電導導体とからなり、前記支持部材と高温超電導導体とは、導電性樹脂材により接着してなり、前記高温超電導導体は、はんだにより接合された少なくとも2つの電極を備えた超電導電流リードの製造方法において、下記の工程を含むことを特徴とする(請求項1の発明)。
(a)前記高温超電導導体と前記支持部材との間に前記導電性樹脂材を塗布して加熱硬化させて接着する工程。
(b)前記高温超電導導体と前記支持部材との間の接着部を前記導電性樹脂材の加熱硬化温度より低い温度に冷却する工程。
(c)前記冷却中に、前記高温超電導導体と前記電極とをはんだにより接合する工程。
In order to solve the above-described problems, the present invention supplies power from a power source installed in a room temperature environment to a superconducting device installed in a cryogenic container, and at least a part of the low temperature side is superconducting oxide. comprising a high temperature superconducting conductor portion using a high-temperature superconducting wire made of a material, prior Symbol HTS conductor portion includes a support member in comparison with the copper comprising a small low thermal conductivity metal material thermal conductivity, on the support member The support member and the high-temperature superconductor are bonded by a conductive resin material , and the high-temperature superconductor is joined by solder. A method for manufacturing a superconducting current lead having at least two electrodes includes the following steps (invention of claim 1).
(A) The process of apply | coating the said conductive resin material between the said high temperature superconducting conductor and the said supporting member, heat-hardening, and adhere | attaching.
(B) The process of cooling the adhesion part between the said high-temperature superconducting conductor and the said supporting member to temperature lower than the heat-hardening temperature of the said conductive resin material.
(C) A step of joining the high-temperature superconducting conductor and the electrode with solder during the cooling.

また、前記請求項1に記載の超電導電流リードの製造方法において、前記支持部材は板状部材からなり、前記高温超電導導体は、前記板状支持部材の一方の主面の長手方向に設けた複数の溝内にそれぞれ配置され、前記支持部材と高温超電導導体とは、前記溝の底面において導電性樹脂材により接着するものとする(請求項2の発明)。 Further, in the method of manufacturing a superconducting current lead according to claim 1, the support member is made of a plate-like member, and the high-temperature superconducting conductor is a plurality provided in the longitudinal direction of one main surface of the plate-like support member. The support member and the high-temperature superconducting conductor are disposed in each groove, and are bonded to each other by a conductive resin material on the bottom surface of the groove (invention of claim 2).

さらに、前記請求項1または2に記載の超電導電流リードの製造方法において、前記導電性樹脂材は、エポキシ樹脂に銀の粒子を導電性フィラーとして混入してなる導電性樹脂ペーストとする(請求項3の発明)。 Further, in the method of manufacturing a superconducting current lead according to claim 1 or 2, wherein the conductive resin material shall be the conductive resin paste made by mixing a silver particle as a conductive filler in an epoxy resin (according Item 3).

前記発明によれば、導電性樹脂材を高温超電導導体と支持部材との間に容易に塗布することが可能となり、特にエポキシ樹脂の場合、常温で塗布後、電気炉等に入れて100℃以下の熱で接着させることができるので、作業性の向上と作業時間の短縮化を図ることができる According to the invention, it becomes possible to easily apply the conductive resin material between the high-temperature superconducting conductor and the support member, particularly in the case of an epoxy resin, after application at room temperature, put it in an electric furnace or the like at 100 ° C. or less. Therefore, the workability can be improved and the working time can be shortened .

また、ペースト状の導電性樹脂材は薄く延ばせるので、熱侵入量増加を抑制することができ、かつ特性の安定化を図ることができる。詳細は後述する。 Further, since the paste-like conductive resin material can be extended thinly, an increase in the amount of heat penetration can be suppressed, and the characteristics can be stabilized. Details will be described later.

この発明によれば、電流リード低温端への熱侵入量増加を抑制し、特性の安定化を図り、かつ作業性の向上を図った、高温超電導導体と支持部材との接続構成を備えた超電導電流リードとその製造方法を提供することができる。   According to the present invention, a superconducting device having a connection structure between a high-temperature superconducting conductor and a support member that suppresses an increase in the amount of heat penetration into the low temperature end of the current lead, stabilizes characteristics, and improves workability. A current lead and a method for manufacturing the current lead can be provided.

図面に基づき、本発明の実施の形態について以下に述べる。   Embodiments of the present invention will be described below with reference to the drawings.

図3は本発明の実施の形態を示す超電導電流リードの模式的構成を示す要部断面図であり、図4に対応する断面図である。なお、図4に示した部材と同一部材には同一番号を付して、詳細説明を省略する。図3において、図4に示したものと異なる点は、高温超電導導体2と支持部材3とを導電性樹脂材6によって接続した点である。   FIG. 3 is a cross-sectional view of the principal part showing a schematic configuration of the superconducting current lead showing the embodiment of the present invention, and is a cross-sectional view corresponding to FIG. The same members as those shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted. 3 is different from that shown in FIG. 4 in that the high-temperature superconducting conductor 2 and the support member 3 are connected by the conductive resin material 6.

高温超電導導体2は、通電仕様と、超電導線材1の特性から必要本数を決定する。複数本の場合、経験磁場を考慮して、横に並べたり、積層したりする。図3では、4枚積層したものを1セットの高温超電導導体2とし、3セット横並びした例を示す。高温超電導線材1としては、例えばBi2223系線材を使用する。この場合、線材単体では銀合金の母材に超電導フィラメントが囲まれている。積層する場合は、予め、複数の高温超電導線材をさらに、銀合金で包んでおり、いずれにしても表面は銀合金となっている。   The required number of high-temperature superconducting conductors 2 is determined from the energization specifications and the characteristics of the superconducting wire 1. In the case of multiple pieces, they are arranged side by side or stacked in consideration of the empirical magnetic field. FIG. 3 shows an example in which three sets are arranged side by side as one set of high-temperature superconducting conductors 2 formed by stacking four sheets. As the high-temperature superconducting wire 1, for example, a Bi2223 series wire is used. In this case, the superconducting filament is surrounded by a silver alloy base material in the wire itself. In the case of stacking, a plurality of high-temperature superconducting wires are further wrapped with a silver alloy in advance, and in any case, the surface is a silver alloy.

支持部材3は保護導体としての機能も必要となるため、ステンレス鋼など、万一のとき、電気を高温超電導導体から転流でき、強度のある材料が望ましい。形状は、図3に示すように板状でも、特許文献3に開示されたような円管状でもよい。円管状の場合、円管の表面に高温超電導導体を並べる。また、支持部材3には、高温超電導導体2が収まる溝4を設けて、接続作業時に導体が動かないようにする方が作業性が良い。   Since the support member 3 also needs a function as a protective conductor, in the unlikely event of stainless steel, a material that can commutate electricity from the high-temperature superconducting conductor and is strong is desirable. The shape may be a plate as shown in FIG. 3 or a circular tube as disclosed in Patent Document 3. In the case of a circular tube, a high-temperature superconducting conductor is arranged on the surface of the circular tube. In addition, it is more workable to provide the support member 3 with a groove 4 in which the high-temperature superconducting conductor 2 is accommodated so that the conductor does not move during connection work.

導電性樹脂材6は、平均直径10μm程度の銀などの粒子(フィラー)を、エポキシ樹脂に混入させたもので、常温ではペースト状になっている。電気炉などで被接着物ごと一定条件で加熱させることで硬化して接着する。導電性樹脂材6としては、市販のものが使用できる。上記導電性ペースト以外に、用途に応じて、上記とは異なる樹脂や導電性フィラーを用いた種々のものが市販されており、熱伝導率、機械強度ともはんだ相当の性能を有するものがある。しかしながら、電気的特性、熱的特性および作業性の観点から、上記の銀の粒子とエポキシ樹脂とを組み合わせたものが好ましい。   The conductive resin material 6 is made by mixing particles (filler) such as silver having an average diameter of about 10 μm with an epoxy resin, and is in a paste form at room temperature. Curing and bonding are performed by heating the object to be bonded under certain conditions in an electric furnace or the like. As the conductive resin material 6, a commercially available product can be used. In addition to the above conductive paste, various types using resins and conductive fillers different from those described above are commercially available, and some have thermal conductivity and mechanical strength equivalent to solder. However, from the viewpoint of electrical characteristics, thermal characteristics, and workability, a combination of the above silver particles and an epoxy resin is preferable.

次に、上記電流リードの製作方法について述べる。支持部材3の溝4の底部に、上記の導電性樹脂材を一定量だけ塗布し、長手方向にムラなく延ばす。場合によっては、高温超電導導体2側にも塗布する。高温超電導導体2を支持部材の溝4にはめ込み、高温超電導導体2が浮かないよう軽く加圧する。冶具を用いて均一な圧力で押さえるのが望ましい。 Next, a method for manufacturing the current lead will be described. A predetermined amount of the above-mentioned conductive resin material is applied to the bottom of the groove 4 of the support member 3, and extends uniformly in the longitudinal direction. In some cases, it is also applied to the high-temperature superconducting conductor 2 side. The high temperature superconducting conductor 2 is fitted into the groove 4 of the support member, and light pressure is applied so that the high temperature superconducting conductor 2 does not float. It is desirable to hold down with uniform pressure using a jig.

次に、導電性樹脂材を硬化させるため、電気炉で加熱する。エポキシ樹脂のガラス転位温度は低く、50℃〜60℃付近であるので、それ以上の温度であればよく、温度を高くすることで、加熱時間は短縮できる。例えば、100℃で1時間、80℃で3時間くらいの目安で加熱する。   Next, in order to cure the conductive resin material, it is heated in an electric furnace. Since the glass transition temperature of the epoxy resin is low and is around 50 ° C. to 60 ° C., the temperature may be higher than that, and the heating time can be shortened by increasing the temperature. For example, heating is performed for about 1 hour at 100 ° C and for about 3 hours at 80 ° C.

以上の実施形態によれば、超電導電流リードの高温超電導導体と支持部材との接続の作業性が向上し、導電性樹脂材の塗布量を調整することで、ばらつきが少なく安定した特性を有し、電流リードの熱侵入量増加を抑えた超電導電流リードが提供できる。   According to the above embodiment, the workability of the connection between the high-temperature superconducting conductor of the superconducting current lead and the support member is improved, and by adjusting the coating amount of the conductive resin material, there is little variation and stable characteristics. A superconducting current lead that suppresses an increase in the amount of heat penetration of the current lead can be provided.

次に、高温超電導導体が、はんだにより接合された2つの電極を備える超電導電流リードの構成とその製造方法について述べる。   Next, a configuration of a superconducting current lead including a high-temperature superconducting conductor having two electrodes joined by solder and a manufacturing method thereof will be described.

図1は2つの電極を備える超電導電流リードの構成を模式的に示した図であり、図2は図1の超電導電流リードの製造方法の手順を概念的に説明する模式図である。図1によれば、3本の高温超電導導体2は、図1におけるA−A断面を模式的に示した前記図3に示すように、それぞれ複数の超電導線材1から構成され、2つの電極11と支持部材3の上に配置され、高温超電導導体2と支持部材3との間は、図1には図示しない導電性樹脂で接続され、高温超電導導体2と電極11との間は、図示しない半田で接続される。なお、使用条件によっては、高温超電導導体はひとつの超電導線材から構成されることもある。   FIG. 1 is a diagram schematically showing the configuration of a superconducting current lead having two electrodes, and FIG. 2 is a schematic diagram conceptually illustrating the procedure of the method for manufacturing the superconducting current lead of FIG. According to FIG. 1, the three high-temperature superconducting conductors 2 are each composed of a plurality of superconducting wires 1 as shown in FIG. 3 schematically showing the AA cross section in FIG. The high temperature superconductor 2 and the support member 3 are connected by a conductive resin not shown in FIG. 1, and the high temperature superconductor 2 and the electrode 11 are not shown. Connected with solder. Depending on the use conditions, the high-temperature superconducting conductor may be composed of a single superconducting wire.

このような超電導電流リードの製造方法の手順を示したのが図2(a),(b)である。まず、図2(a)に示すように、高温超電導導体2と支持部材3との間に導電性樹脂材6を塗布し、この状態で加熱硬化させる。硬化温度で一定時間保持したときに、高温超電導導体2と支持部材3とは導電性樹樹脂により接着される。この状態から室温に戻すと熱収縮率の差により高温超電導導体2に応力が加わる。従って、高温超電導導体2と支持部材3の熱収縮率は極力合わせることが重要になるが、一致させることは非常に困難である。一方、電極11と高温超電導導体2はこの段階では接続されていないので、加熱硬化時の熱収縮には無関係である。   FIGS. 2A and 2B show the procedure of the method of manufacturing such a superconducting current lead. First, as shown to Fig.2 (a), the conductive resin material 6 is apply | coated between the high temperature superconducting conductor 2 and the supporting member 3, and it heat-hardens in this state. When kept at the curing temperature for a certain time, the high-temperature superconducting conductor 2 and the support member 3 are bonded together by a conductive resin. When the temperature is returned from this state to room temperature, stress is applied to the high-temperature superconducting conductor 2 due to the difference in thermal shrinkage rate. Therefore, it is important to match the heat shrinkage rates of the high-temperature superconducting conductor 2 and the support member 3 as much as possible, but it is very difficult to match them. On the other hand, since the electrode 11 and the high-temperature superconducting conductor 2 are not connected at this stage, they are irrelevant to the heat shrinkage during heat curing.

次の製造手順を示したのが図2(b)である。電極11と高温超電導導体2の間に半田12を溶かし込む。この際に、支持部材3と高温超電導導体2との導電性樹脂による接合部の少なくとも電極近傍付近の冷却部13を加熱硬化の温度以下に冷却することにより、導電性樹脂材6は硬化した状態を保持できる。冷却は、例えば、前記冷却部13に、水などの冷媒で冷却された図示しない冷却体を当接することにより、冷却部13を所望の温度以下とすることができる。   FIG. 2B shows the next manufacturing procedure. Solder 12 is melted between the electrode 11 and the high-temperature superconducting conductor 2. At this time, the conductive resin material 6 is cured by cooling at least the cooling portion 13 in the vicinity of the electrode in the vicinity of the joint portion of the support member 3 and the high-temperature superconducting conductor 2 with the conductive resin. Can be held. For cooling, for example, by bringing a cooling body (not shown) cooled by a coolant such as water into contact with the cooling unit 13, the cooling unit 13 can be brought to a desired temperature or lower.

上記により、高温超電導導体2と、支持部材3及び電極11を、融点の異なる導電性樹脂材6及び半田11により接続でき、本発明に係る超電導電流リードを、容易かつ安全に製造することができる。   As described above, the high-temperature superconducting conductor 2, the support member 3, and the electrode 11 can be connected by the conductive resin material 6 and the solder 11 having different melting points, and the superconducting current lead according to the present invention can be manufactured easily and safely. .

本発明の2つの電極を備える超電導電流リードの実施の形態に係る模式的構成図。The typical block diagram which concerns on embodiment of a superconducting electric current lead provided with two electrodes of this invention. 図1の超電導電流リードの製造方法の手順を概念的に説明する模式図。FIG. 2 is a schematic diagram conceptually illustrating a procedure of a method for manufacturing the superconducting current lead of FIG. 1. 本発明の実施の形態に係る超電導電流リードの模式的構成を示す要部断面図。FIG. 3 is a cross-sectional view of a main part showing a schematic configuration of the superconducting current lead according to the embodiment of the present invention. 従来の超電導電流リードの構成例を示す要部断面図。The principal part sectional drawing which shows the structural example of the conventional superconducting electric current lead. 伝導冷却方式を採用した高温超電導電流リードを備えた超電導装置の模式的構成の一例を示す図。The figure which shows an example of the typical structure of the superconducting apparatus provided with the high temperature superconducting current | flow lead which employ | adopted the conduction cooling system.

1:高温超電導線材、2:高温超電導導体、3:支持部材、4:溝、6:導電性樹脂材、11:電極、12:半田、13:冷却部、21:超電導装置、22:極低温容器、23:電流リード、24:電源、25:冷凍機、26:銅導体部、27:高温超電導導体部、28:冷却導体。
1: High-temperature superconducting wire, 2: High-temperature superconducting conductor, 3: Support member, 4: Groove, 6: Conductive resin material, 11: Electrode, 12: Solder, 13: Cooling unit, 21: Superconducting device, 22: Cryogenic temperature Container, 23: current lead, 24: power supply, 25: refrigerator, 26: copper conductor part, 27: high-temperature superconducting conductor part, 28: cooling conductor.

Claims (3)

極低温容器内に設置された超電導装置に対して、室温環境下に設置された電源から電力を供給し、低温側の少なくとも一部に酸化物超電導材料からなる高温超電導線材を用いた高温超電導導体部を備え
前記高温超電導導体部は、銅に比較して熱伝導率が小さい低熱伝導性金属材料からなる支持部材と、この支持部材上に電気的に並列に分散配置された複数個の高温超電導導体とからなり、前記支持部材と高温超電導導体とは、導電性樹脂材により接着してなり、前記高温超電導導体は、はんだにより接合された少なくとも2つの電極を備えた超電導電流リードの製造方法において、下記の工程を含むことを特徴とする超電導電流リードの製造方法。
(a)前記高温超電導導体と前記支持部材との間に前記導電性樹脂材を塗布して加熱硬化させて接着する工程。
(b)前記高温超電導導体と前記支持部材との間の接着部を前記導電性樹脂材の加熱硬化温度より低い温度に冷却する工程。
(c)前記冷却中に、前記高温超電導導体と前記電極とをはんだにより接合する工程。
High-temperature superconducting conductors that use high-temperature superconducting wires made of oxide superconducting material at least partially on the low-temperature side to supply power from a power source installed in a room-temperature environment to a superconducting device installed in a cryogenic container with a part,
The high-temperature superconducting conductor portion is composed of a supporting member made of a low thermal conductive metal material having a thermal conductivity smaller than that of copper, and a plurality of high-temperature superconducting conductors electrically distributed in parallel on the supporting member. The supporting member and the high-temperature superconducting conductor are bonded by a conductive resin material , and the high-temperature superconducting conductor is a method of manufacturing a superconducting current lead having at least two electrodes joined by soldering, as described below. A method of manufacturing a superconducting current lead comprising the steps of:
(A) The process of apply | coating the said conductive resin material between the said high temperature superconducting conductor and the said supporting member, heat-hardening, and adhere | attaching.
(B) The process of cooling the adhesion part between the said high-temperature superconducting conductor and the said supporting member to temperature lower than the heat-hardening temperature of the said conductive resin material.
(C) A step of joining the high-temperature superconducting conductor and the electrode with solder during the cooling.
請求項1に記載の超電導電流リードの製造方法において、前記支持部材は板状部材からなり、前記高温超電導導体は、前記板状支持部材の一方の主面の長手方向に設けた複数の溝内にそれぞれ配置され、前記支持部材と高温超電導導体とは、前記溝の底面において導電性樹脂材により接着することを特徴とする超電導電流リードの製造方法2. The method of manufacturing a superconducting current lead according to claim 1, wherein the support member is made of a plate-like member, and the high-temperature superconducting conductor is in a plurality of grooves provided in a longitudinal direction of one main surface of the plate-like support member. A method of manufacturing a superconducting current lead, wherein the supporting member and the high-temperature superconducting conductor are bonded to each other by a conductive resin material on a bottom surface of the groove. 請求項1または2に記載の超電導電流リードの製造方法において、前記導電性樹脂材は、エポキシ樹脂に銀の粒子を導電性フィラーとして混入してなる導電性樹脂ペーストとすることを特徴とする超電導電流リードの製造方法The method of manufacturing a superconducting current lead according to claim 1 or 2, wherein the conductive resin material, characterized by a conductive resin paste made by mixing a silver particle in the epoxy resin as the conductive filler superconducting Current lead manufacturing method .
JP2008052864A 2008-03-04 2008-03-04 Superconducting current lead manufacturing method Expired - Fee Related JP5005582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052864A JP5005582B2 (en) 2008-03-04 2008-03-04 Superconducting current lead manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052864A JP5005582B2 (en) 2008-03-04 2008-03-04 Superconducting current lead manufacturing method

Publications (2)

Publication Number Publication Date
JP2009211899A JP2009211899A (en) 2009-09-17
JP5005582B2 true JP5005582B2 (en) 2012-08-22

Family

ID=41184858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052864A Expired - Fee Related JP5005582B2 (en) 2008-03-04 2008-03-04 Superconducting current lead manufacturing method

Country Status (1)

Country Link
JP (1) JP5005582B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233391B2 (en) * 2008-04-28 2013-07-10 新日鐵住金株式会社 Oxide superconductor conducting element
JP5055348B2 (en) * 2009-12-25 2012-10-24 株式会社日立製作所 Superconducting magnet
KR101642878B1 (en) * 2010-05-20 2016-07-27 연세대학교 산학협력단 Conductor terminal and conducting device for high current
JP5675232B2 (en) * 2010-09-07 2015-02-25 昭和電線ケーブルシステム株式会社 Superconducting current lead
EP2717342B9 (en) 2011-05-24 2018-06-06 Furukawa Electric Co., Ltd. Superconducting element for superconducting current limiter, method for manufacturing superconducting element for superconducting current limiter, and superconducting current limiter
JP2013187405A (en) * 2012-03-08 2013-09-19 Toshiba Corp Connection conductor of superconductive magnet apparatus and superconductive magnet apparatus
JP2014179526A (en) * 2013-03-15 2014-09-25 Toshiba Corp Current lead
CN104733151B (en) * 2013-12-20 2019-03-15 通用电气公司 For storing the device and method of superconductor line and using the superconducting magnet system of the device
JP6392028B2 (en) * 2014-08-25 2018-09-19 住友重機械工業株式会社 Superconducting electromagnet
JP6548292B2 (en) * 2015-03-18 2019-07-24 昭和電線ケーブルシステム株式会社 Current lead and method of manufacturing current lead

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064014A (en) * 2000-08-16 2002-02-28 Japan Atom Energy Res Inst Superconductive current lead
JP4599807B2 (en) * 2003-05-01 2010-12-15 富士電機システムズ株式会社 Current leads for superconducting equipment
JP4402928B2 (en) * 2003-09-22 2010-01-20 新日本製鐵株式会社 Oxide superconductor conducting element

Also Published As

Publication number Publication date
JP2009211899A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5005582B2 (en) Superconducting current lead manufacturing method
JP5697161B2 (en) Current lead
JP2008251564A (en) High-temperature superconducting current lead and method for increasing critical current density
JP2005012915A (en) Connection structure of superconductive cable and insulated spacer for connecting superconductive cable
JP5531664B2 (en) Superconducting current lead
CN112997260B (en) Flexible HTS current lead
GB2476716A (en) Current lead assembly and its cooling method, suitable for a superconducting magnet
JP5022279B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
Zhou et al. Design and development of 16-kA HTS current lead for HMFL 45-T magnet
JP5266852B2 (en) Superconducting current lead
JP6738720B2 (en) Superconducting wire connection structure
KR101343887B1 (en) Splicing method for superconductive wires containing mg and b
US20120007703A1 (en) Current lead assembly for superconducting magnet
JP2000114027A (en) Superconducting coil device
JP6548292B2 (en) Current lead and method of manufacturing current lead
RU2795238C2 (en) Flexible high-temperature superconductors
KR101642591B1 (en) High temperature superconductive current lead structure
JPH06163095A (en) Superconducting connection lead provided with thermal plug
KR102154674B1 (en) Method of bonding superconducting wire
WO2013073146A1 (en) Electric current lead
Martino et al. Assembly and soldering procedure of nonstabilized YBCO coils for 1000 A SFCL
CN118507193A (en) Tokamak magnet system and manufacturing method thereof
WO2024086765A1 (en) Superconducting cable comprising solder channel
JP2016178112A (en) Flange unit for fixing current lead and flange unit with current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees