JP4885749B2 - Manufacturing method of ceramic laminated substrate - Google Patents

Manufacturing method of ceramic laminated substrate Download PDF

Info

Publication number
JP4885749B2
JP4885749B2 JP2007016578A JP2007016578A JP4885749B2 JP 4885749 B2 JP4885749 B2 JP 4885749B2 JP 2007016578 A JP2007016578 A JP 2007016578A JP 2007016578 A JP2007016578 A JP 2007016578A JP 4885749 B2 JP4885749 B2 JP 4885749B2
Authority
JP
Japan
Prior art keywords
firing
ceramic
laminate
laminated substrate
densification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016578A
Other languages
Japanese (ja)
Other versions
JP2008186840A (en
Inventor
伸行 小林
七瀧  努
勝之 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007016578A priority Critical patent/JP4885749B2/en
Publication of JP2008186840A publication Critical patent/JP2008186840A/en
Application granted granted Critical
Publication of JP4885749B2 publication Critical patent/JP4885749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、セラミックス積層基板の製造方法に関し、更に詳しくは、緻密度が高く且つ焼成にともなう面内の位置ズレが小さいセラミックス積層基板を、低い焼成温度で拘束焼成することにより製造することができるセラミックス積層基板の製造方法に関する。   The present invention relates to a method for producing a ceramic laminated substrate, and more specifically, can be produced by subjecting a ceramic laminated substrate having a high density and a small in-plane positional deviation due to firing to restrained firing at a low firing temperature. The present invention relates to a method for manufacturing a ceramic laminated substrate.

誘電体積層フィルター、多層配線基板、誘電体アンテナ、誘電体カプラー、誘電体複合モジュールなどに用いられるLTCC基板(Low−Temperature Co−fired Ceramics)は、ガラスおよびセラミックスを主成分とした誘電層と、内部の導体層からなる積層構造を有するセラミックス積層基板であり、一般にセラミックスグリーンシートに導体を配設したものを積層し、焼成することにより形成される。しかし、上記製法では、焼成収縮に伴って、XY面(LTCC基板の表面に平行な面)に歪みが生じ、導体等の配置(パターン)にバラツキが生じる(面位置精度が低い)という問題があった。そして、このバラツキは、LTCC基板の寸法が大きくなるほど顕著となるため、上記製法では、多個取り可能なシートの大判化は困難であるという問題があった。   An LTCC substrate (Low-Temperature Co-fired Ceramics) used for dielectric multilayer filters, multilayer wiring boards, dielectric antennas, dielectric couplers, dielectric composite modules, and the like includes a dielectric layer mainly composed of glass and ceramics, A ceramic laminated substrate having a laminated structure composed of internal conductor layers, generally formed by laminating and firing a ceramic green sheet having conductors disposed thereon. However, the above-described manufacturing method has a problem in that the XY plane (a plane parallel to the surface of the LTCC substrate) is distorted due to firing shrinkage, and the arrangement (pattern) of conductors and the like varies (the surface position accuracy is low). there were. And this variation becomes more conspicuous as the size of the LTCC substrate becomes larger. Therefore, there is a problem that it is difficult to increase the size of a sheet that can be obtained in large numbers.

上記バラツキを抑える方法の一つとして拘束焼成法がある(例えば、特許文献1〜4参照)。この方法は、内部に導体層を有する、ガラスセラミックスを主成分とするグリーンシート積層体を、当該基板の焼結温度では収縮しないセラミックス拘束層で挟んで焼成することにより、XY面内の収縮を抑制しながら基板を作製することができる、いわゆる無収縮焼成法である。この方法においては、緻密度が100%近くになるまで緻密化を進行させると、基板表面の外縁部において拘束層剥離が生じ、部分的に拘束焼成がなされないという問題が生じることがあった。   As one of the methods for suppressing the variation, there is a constrained firing method (see, for example, Patent Documents 1 to 4). In this method, a green sheet laminate having a conductive layer inside and mainly composed of glass ceramics is sandwiched and fired by a ceramic constraining layer that does not shrink at the sintering temperature of the substrate, thereby reducing shrinkage in the XY plane. This is a so-called non-shrinkage firing method in which a substrate can be produced while suppressing. In this method, when the densification is advanced until the density becomes close to 100%, there is a problem that the constraining layer is peeled off at the outer edge portion of the substrate surface and the constrained firing is not partially performed.

また、最近はフィルタ等の電子部品の小型化を実現するため、グリーンシート積層体の主成分を誘電率の高いセラミックスとすることがある。通常、セラミックスが焼結する場合には、焼結に伴って、内部の気孔が減少しながら(緻密化が進行しながら)セラミックス全体が収縮(焼成収縮)するものであるが、XY面内の収縮が抑制されてZ方向にのみ焼成収縮する場合には、セラミックス全体としては収縮し難い状態であり、そのため焼成も進行し難い状態となる。このような材料に拘束焼成を適用すると、グリーンシート積層体の緻密化が不十分になり、特に拘束層と密着するグリーンシート積層体の表層部分において、緻密化が不十分となる傾向があった。より高温で焼成することで表層部分の緻密化は進むものの、積層体全体が均一な緻密組織となるまで焼成温度を上げると、内部導体層を形成する材料の拡散が生じるなどの問題があった。この場合、内部導体層の耐熱温度の問題により、内部導体層の材料が制限されるという問題があった。
特許2554415号公報 特許2617643号公報 特開2001−210951号公報 特開2004−165295号公報
Recently, in order to achieve downsizing of electronic components such as filters, the main component of the green sheet laminate may be ceramics having a high dielectric constant. Normally, when ceramics are sintered, the whole ceramics shrink (fire shrinkage) while the pores in the inside decrease (dense as the densification proceeds), but in the XY plane When the shrinkage is suppressed and the firing shrinks only in the Z direction, the ceramic as a whole is in a state where it is difficult to shrink, and therefore firing is also difficult to proceed. When constrained firing is applied to such a material, densification of the green sheet laminate is insufficient, and in particular, in the surface layer portion of the green sheet laminate that is in close contact with the constraining layer, densification tends to be insufficient. . Although the surface layer portion becomes denser by firing at a higher temperature, raising the firing temperature until the entire laminate has a uniform dense structure causes problems such as the diffusion of the material forming the internal conductor layer. . In this case, there is a problem that the material of the inner conductor layer is limited due to the problem of the heat resistant temperature of the inner conductor layer.
Japanese Patent No. 2554415 Japanese Patent No. 2617643 JP 2001-210951 A JP 2004-165295 A

上記拘束焼成において拘束層剥離が生じるのは、以下の理由による。拘束焼成においては、誘電層(基板)のXY面内における収縮を、セラミックス拘束層が拘束しているため、焼成収縮がZ方向(基板の厚さ方向)に制限される。そして、XY面内において収縮しようとする誘電層(基板)を、セラミックス拘束層が拘束しているため、セラミックス拘束層と誘電層(基板)との界面にせん断応力が発生する。そのため、拘束焼成において、緻密度が100%近くになるまで緻密化を進行させると、セラミックス拘束層と基板の界面に大きなせん断応力がかかる。とくに基板側面には拘束層が存在しないため、中央部と比べ、XY面内での収縮が起こりやすく、それを拘束する、基板表面の外縁部において、剪断力が大きく働き、拘束層剥離が生じるのである。   The constrained layer peeling occurs in the constrained firing for the following reason. In constrained firing, the shrinkage in the XY plane of the dielectric layer (substrate) is constrained by the ceramic constraining layer, so that the firing shrinkage is limited in the Z direction (thickness direction of the substrate). Since the ceramic constraining layer constrains the dielectric layer (substrate) that is to shrink in the XY plane, shear stress is generated at the interface between the ceramic constraining layer and the dielectric layer (substrate). For this reason, in densification firing, if densification proceeds until the density becomes close to 100%, a large shear stress is applied to the interface between the ceramic constraining layer and the substrate. In particular, since there is no constraining layer on the side surface of the substrate, contraction in the XY plane is likely to occur compared to the central portion, and the shearing force acts greatly at the outer edge portion of the substrate surface that constrains it, resulting in constraining layer peeling. It is.

また、グリーンシート積層体の主成分を誘電率の高いセラミックスとした場合に、グリーンシート積層体の表層部分において、緻密化が不十分となるのは、誘電率の高いセラミックスは、焼成時の粘性流動が起こり難いため、XY面内の収縮が抑えられてZ方向に収縮する場合には、XY面内における収縮が最も抑えられるセラミックス拘束層との界面付近(グリーンシート積層体の表層部分)が十分に焼成収縮されないためである。   Also, when the main component of the green sheet laminate is a ceramic with a high dielectric constant, the surface layer portion of the green sheet laminate is insufficiently densified because the ceramic with a high dielectric constant has a viscosity during firing. Since the flow hardly occurs, when the shrinkage in the XY plane is suppressed and contracts in the Z direction, the vicinity of the interface with the ceramic constraining layer that suppresses the shrinkage most in the XY plane (the surface layer portion of the green sheet laminate) is This is because it is not sufficiently fired and shrunk.

本発明は、上述の問題に鑑みてなされたものであり、緻密度が高く且つ焼成にともなう面内の位置ズレが小さいセラミックス積層基板を、低い焼成温度で拘束焼成することにより製造することができるセラミックス積層基板の製造方法を提供することを特徴とする。   The present invention has been made in view of the above-described problems, and can be manufactured by subjecting a ceramic laminated substrate having a high density and a small in-plane positional shift accompanying firing to a low firing temperature. A method for producing a ceramic laminated substrate is provided.

上記課題を達成するため、本発明によって以下のセラミックス積層基板の製造方法が提供される。   In order to achieve the above object, the present invention provides the following method for producing a ceramic laminated substrate.

[1] セラミックス及びガラスを含有する複数の誘電体グリーンシートを形成し、少なくとも一の前記誘電体グリーンシートの少なくとも一方の表面に導電体を配設し、前記複数の誘電体グリーンシートを積層して積層体を形成するとともに、前記積層体の両面に、前記積層体の焼成温度では焼結しないセラミックス拘束層を配設して複合体を形成し、前記複合体の焼成(第1の焼成)を開始し、前記積層体の緻密化が完了する前に前記第1の焼成を終了させて、前記複合体中の前記積層体を緻密化前積層体とし、前記複合体から前記セラミックス拘束層を取り除き、得られた前記緻密化前積層体を、前記第1の焼成における焼成温度(第1の焼成温度)以下の温度(第2の焼成温度)で焼成して(第2の焼成)、前記緻密化前積層体の緻密化を完了させてセラミックス積層基板とするセラミックス積層基板の製造方法。 [1] Forming a plurality of dielectric green sheets containing ceramics and glass, disposing a conductor on at least one surface of the at least one dielectric green sheet, and laminating the plurality of dielectric green sheets. And forming a composite body by disposing a ceramic constrained layer that is not sintered at the firing temperature of the multilayer body on both surfaces of the multilayer body, and firing the composite body (first firing). The first firing is completed before the densification of the laminate is completed, and the laminate in the composite is used as a pre-densification laminate, and the ceramic constraining layer is removed from the composite. The resulting pre-densified laminate is removed and fired at a temperature (second firing temperature) equal to or lower than the firing temperature (first firing temperature) in the first firing (second firing), Density of the laminate before densification Method of manufacturing a ceramic multilayer substrate to the ceramic multilayer substrate to complete the reduction.

[2] 前記緻密化前積層体の緻密度が85〜95体積%である[1]に記載のセラミックス積層基板の製造方法。 [2] The method for producing a ceramic laminated substrate according to [1], wherein the density of the laminate before densification is 85 to 95% by volume.

[3] 前記第1の焼成温度と前記第2の焼成温度との温度差が、50℃以下である[1]又は[2]に記載のセラミックス積層基板の製造方法。 [3] The method for producing a ceramic laminated substrate according to [1] or [2], wherein a temperature difference between the first firing temperature and the second firing temperature is 50 ° C. or less.

[4] 前記緻密化前積層体の緻密度と前記セラミックス積層基板の緻密度との差が、2〜12体積%である[1]〜[3]のいずれかに記載のセラミックス積層基板の製造方法。 [4] The production of the ceramic laminated substrate according to any one of [1] to [3], wherein a difference between the density of the pre-densified laminate and the density of the ceramic laminated substrate is 2 to 12% by volume. Method.

[5] 前記誘電体グリーンシートのセラミックス含有量が、90質量%以上である[1]〜[4]のいずれかに記載のセラミックス積層基板の製造方法。 [5] The method for producing a ceramic laminated substrate according to any one of [1] to [4], wherein the ceramic content of the dielectric green sheet is 90% by mass or more.

[6] 複数の前記誘電体グリーンシートの中の少なくとも一つが、他の誘電体グリーンシートと異なる材料で形成されるものである[1]〜[5]のいずれかに記載のセラミックス積層基板の製造方法。 [6] The ceramic laminated substrate according to any one of [1] to [5], wherein at least one of the plurality of dielectric green sheets is formed of a material different from that of the other dielectric green sheets. Production method.

[7] 前記セラミックス積層基板の誘電率が2〜10である層を含む[1]〜[6]のいずれかに記載のセラミックス積層基板の製造方法。 [7] The method for producing a ceramic multilayer substrate according to any one of the dielectric constant of the ceramic multilayer substrate comprising a layer of 2 5-1 5 0 [1] to [6].

本発明のセラミックス積層基板の製造方法によれば、第1の焼成において、複合体を構成する積層体を、緻密化完了前の緻密化前積層体とし、その後、セラミックス拘束層を取り除き、第2の焼成において、緻密化前積層体の緻密化を完了させてセラミックス積層基板とするため、複合体を形成して(セラミックス拘束層で積層体を挟んで)緻密化前積層体を形成することより面位置精度の高いセラミックス積層基板を製造でき、最後の緻密化完了のための第2の焼成時においてセラミックス拘束層を取り除くことより低い焼成温度で緻密度の高いセラミックス積層基板を製造することができる。   According to the method for producing a ceramic laminated substrate of the present invention, in the first firing, the laminated body constituting the composite is used as a pre-densified laminated body before completion of densification, and then the ceramic constraining layer is removed, In the firing of, in order to complete the densification of the laminate before densification to obtain a ceramic laminate substrate, by forming a composite (by sandwiching the laminate with a ceramic constraining layer) and forming the laminate before densification A ceramic multilayer substrate with high surface position accuracy can be manufactured, and a ceramic multilayer substrate with high density can be manufactured at a lower firing temperature than removing the ceramic constraining layer in the second firing for the final densification completion. .

以下、本発明を実施するための最良の形態を、図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the following embodiment and does not depart from the spirit of the present invention. Therefore, it should be understood that design changes, improvements, and the like can be made as appropriate based on ordinary knowledge of those skilled in the art.

図1は、本発明のセラミックス積層基板の製造方法の一の実施形態を説明する模式図であり、図1(a)は、積層体とセラミックス拘束層とを示し、図1(b)は、第1の焼成時の複合体を示し、図1(c)は、第2の焼成時の緻密化前積層体(セラミックス積層基板)を示す。本実施の形態のセラミックス積層基板の製造方法は、図1(a)〜図1(c)に示すように、セラミックス及びガラスを含有する複数の誘電体グリーンシート1を形成し、少なくとも一の誘電体グリーンシート1の少なくとも一方の表面に導電体2を配設し、複数の誘電体グリーンシート1を積層して積層体3を形成するとともに、積層体3の両面に、積層体3の焼成温度では焼結しないセラミックス拘束層4を配設して複合体5を形成し、複合体5の焼成(第1の焼成)を開始し、積層体3の緻密化が完了する前に第1の焼成を終了させて、複合体5中の積層体3を緻密化前積層体6とし、複合体5からセラミックス拘束層4を取り除いて緻密化前積層体6を取り出し、得られた緻密化前積層体6を、第1の焼成における焼成温度(第1の焼成温度)以下の温度(第2の焼成温度)で焼成して(第2の焼成)、緻密化前積層体6の緻密化を完了させてセラミックス積層基板7とするものである。   FIG. 1 is a schematic diagram for explaining one embodiment of a method for producing a ceramic laminated substrate of the present invention. FIG. 1 (a) shows a laminate and a ceramic constrained layer, and FIG. The composite body at the time of the 1st baking is shown, and FIG.1 (c) shows the laminated body (ceramics laminated substrate) before densification at the time of the 2nd baking. As shown in FIGS. 1 (a) to 1 (c), a method for manufacturing a ceramic laminated substrate according to the present embodiment forms a plurality of dielectric green sheets 1 containing ceramics and glass, and at least one dielectric. A conductor 2 is disposed on at least one surface of the green body 1 and a plurality of dielectric green sheets 1 are laminated to form a laminate 3, and the firing temperature of the laminate 3 is formed on both sides of the laminate 3. Then, the ceramic constrained layer 4 that is not sintered is disposed to form the composite 5, the firing of the composite 5 (first firing) is started, and the first firing is completed before the densification of the laminate 3 is completed. And the laminate 3 in the composite 5 is used as the pre-densified laminate 6, the ceramic constraining layer 4 is removed from the composite 5 and the pre-densified laminate 6 is taken out, and the resulting pre-densified laminate 6 is a firing temperature in the first firing (first firing Forming temperature) below the temperature (by firing at a second baking temperature) (second baking), in which to complete the densification front densification of the laminate 6 and the ceramic multilayer substrate 7.

このように、本実施形態のセラミックス積層基板の製造方法は、セラミックス拘束層4で積層体3が挟まれた構造の複合体5を形成し、複合体5を焼成して緻密化前積層体を形成するため、無拘束状態で緻密化を完了した場合のようなXY面(セラミックス積層基板の表面に平行な面)における歪みの発生を抑制することができ、面位置精度の高いセラミックス積層基板を製造できる。ここで、面位置精度とは、基板面内における、任意の2点間距離の、焼成による寸法変化のばらつきをいう。また、緻密化完了のための第2の焼成時に、セラミックス拘束層を取り除くことにより、低い焼成温度で、第1の焼成で不完全であった緻密化を進行させることができるため、面位置精度を保持したまま、緻密度の高いセラミックス積層基板を製造することができる。   As described above, in the method for manufacturing a ceramic laminated substrate according to the present embodiment, the composite body 5 having the structure in which the multilayer body 3 is sandwiched between the ceramic constraining layers 4 is formed, and the composite body 5 is fired to form the laminated body before densification. Therefore, it is possible to suppress the generation of distortion on the XY plane (surface parallel to the surface of the ceramic multilayer substrate) as in the case where the densification is completed in an unconstrained state. Can be manufactured. Here, the surface position accuracy refers to a variation in dimensional change due to firing at an arbitrary distance between two points in the substrate surface. Further, by removing the ceramic constraining layer during the second firing for completing the densification, it is possible to advance the densification that was incomplete in the first firing at a low firing temperature. A ceramic laminated substrate with a high density can be manufactured while maintaining the above.

本実施形態のセラミックス積層基板の製造方法は、まずセラミックス及びガラスを含有する複数の誘電体グリーンシート1を形成する。誘電体グリーンシート1の作製方法は、特に限定されず、公知の誘電体グリーンシートの作製方法で作製することができる。例えば、誘電体原料、ガラス、バインダー等の有機材料、有機溶媒等の分散媒等を混合し、スラリー状になったものをドクターブレード法等により誘電体グリーンシートに成形する方法を挙げることができる。誘電体グリーンシート1の厚さは、30〜150μmが好ましく、40〜80μmが更に好ましい。30μmより薄いと、導体との同時焼成時における、導体元素(たとえばAg)の拡散が無視できず、品質特性が劣化することがあり、150μmより厚いと、デバイス寸法が大きくなることがある。誘電体グリーンシートの大きさは、用途に合わせて適宜決定することができる。   In the method for manufacturing a ceramic multilayer substrate according to this embodiment, first, a plurality of dielectric green sheets 1 containing ceramics and glass are formed. The method for producing dielectric green sheet 1 is not particularly limited, and can be produced by a known method for producing dielectric green sheet. For example, a dielectric material, glass, an organic material such as a binder, a dispersion medium such as an organic solvent, etc. are mixed, and a slurry is formed into a dielectric green sheet by a doctor blade method or the like. . The thickness of the dielectric green sheet 1 is preferably 30 to 150 μm, and more preferably 40 to 80 μm. When the thickness is smaller than 30 μm, the diffusion of the conductor element (for example, Ag) at the time of co-firing with the conductor cannot be ignored and the quality characteristics may be deteriorated. When the thickness is larger than 150 μm, the device size may be increased. The size of the dielectric green sheet can be appropriately determined according to the application.

誘電体原料は、用途に合わせて適宜決定することができるが、セラミックスを90質量%以上含有し、ガラス成分を10質量%以下含有するものであることが好ましい。また、セラミックスを95〜98質量%含有し、ガラス成分を2〜5質量%含有するものであることが更に好ましい。ガラス成分は焼結助剤として機能する。ガラス成分が10質量%より多いと、セラミックス積層基板の誘電率や、無負荷Qが低下するため好ましくない。また、ガラス成分は、2質量%以上含有されることが焼結を促進する観点より好ましい。誘電体原料としては、例えば、BaO−TiO−Re系組成(Re:レアア−ス成分)に若干のガラス粉末を添加したもの、BaO−TiO−ZnO系組成に若干のガラス形成成分及び/又はガラス粉末を添加したもの、BaO−Al−SiO−Bi系組成に若干のガラス形成成分及び/又はガラス粉末を添加し必要に応じて酸化亜鉛、酸化ビスマス、又は酸化銅を含むもの、MgO−CaO−TiO−ZnO−Al−SiO−B系組成、BaO−TiO系組成に若干のガラス形成成分及び/又はガラス粉末を添加したもの、BaO−TiO−Nd−Bi系組成に若干のガラス粉末を添加したもの、BaO−TiO−ZnO−MnO−Al系組成に若干のガラス形成成分及び/又はガラス粉末を添加したもの、(Ba1−aSrNdYi1854(aは0.20以上、0.50以下)の組成のもの、BaSr(Nd1−bTi1854(bは0以上、0.40以下)の組成のもの等を挙げることができる。ここで、ガラス形成成分及び/又はガラス粉末がガラス成分である。これらの中から、誘電率の高い組成からなる層と、誘電率の低い組成からなる層を積層する構成(高誘電率材料と低誘電率材料を組み合わせた積層体)が好ましく(参考:特開2001−267805(日本碍子))、たとえば誘電率の高い組成(比誘電率で85程度)としては、BaO−TiO−Nd−Bi系組成にZnO−SiO−B系ガラスを2〜5wt%配合した組成が好ましい。誘電率の低い組成(比誘電率で7程度)としては、BaO−Al−SiO−Bi系組成にZnO−SiO−B系ガラスを2〜5wt%配合した組成が好ましい。 The dielectric material can be appropriately determined according to the application, but preferably contains 90% by mass or more of ceramics and 10% by mass or less of glass components. Further, it is more preferable that the ceramic content is 95 to 98% by mass and the glass component is 2 to 5% by mass. The glass component functions as a sintering aid. When the glass component is more than 10% by mass, the dielectric constant and unloaded Q of the ceramic laminated substrate are lowered, which is not preferable. The glass component is preferably contained in an amount of 2% by mass or more from the viewpoint of promoting the sintering. Examples of the dielectric material include a BaO—TiO 2 —Re 2 O 3 system composition (Re: rare earth component) with some glass powder added, and a BaO—TiO 2 —ZnO system composition containing a little glass. Components and / or glass powder added, BaO—Al 2 O 3 —SiO 2 —Bi 2 O 3 system composition with some glass forming components and / or glass powder added and zinc oxide, bismuth oxide as required Or containing copper oxide, MgO—CaO—TiO 2 —ZnO—Al 2 O 3 —SiO 2 —B 2 O 3 based composition, BaO—TiO 2 based composition with some glass forming components and / or glass powder those obtained by adding, that the addition of some of the glass powder in BaO-TiO 2 -Nd 2 O 3 -Bi 2 O 3 based compositions, BaO-TiO 2 -ZnO-MnO -Al 2 O 3 Those obtained by adding a small amount of glass-forming components and / or glass powder in the composition, having composition of (Ba 1-a Sr a) 6 Nd 8 Yi 18 O 54 (a 0.20 or more, 0.50 or less), Examples thereof include those having a composition of Ba 4 Sr 2 (Nd 1-b Y b ) 8 Ti 18 O 54 (b is 0 or more and 0.40 or less). Here, the glass forming component and / or the glass powder is a glass component. Among these, a structure in which a layer having a high dielectric constant composition and a layer having a low dielectric constant composition are laminated (a laminated body in which a high dielectric constant material and a low dielectric constant material are combined) is preferable (Reference: JP 2001-267805 (Nippon Isogo)), for example, a composition having a high dielectric constant (relative dielectric constant of about 85) has a BaO—TiO 2 —Nd 2 O 3 —Bi 2 O 3 composition and ZnO—SiO 2 —B 2. the O 3 based glass composition obtained by blending 2-5 wt% is preferred. As a composition having a low dielectric constant (relative dielectric constant of about 7), 2 to 5 wt% of ZnO—SiO 2 —B 2 O 3 glass is added to the BaO—Al 2 O 3 —SiO 2 —Bi 2 O 3 composition. The composition is preferred.

複数の上記誘電体グリーンシート1の中の少なくとも一つが、他の誘電体グリーンシート1と異なる材料(誘電体原料)で形成されていてもよい。各誘電体グリーンシート1を構成する材料(誘電体原料)を異ならせる場合、その材料の組み合わせは、用途によって適宜決定することができる。   At least one of the plurality of dielectric green sheets 1 may be formed of a material (dielectric material) different from the other dielectric green sheets 1. When the materials (dielectric raw materials) constituting each dielectric green sheet 1 are different, the combination of the materials can be appropriately determined depending on the application.

次に、得られた誘電体グリーンシート1の中の少なくとも一つについて、少なくとも一方の面に導電体2を配設する。誘電体グリーンシート1の両面に導電体2を配設してもよいし、全ての誘電体グリーンシート1に導電体2を配設してもよい。導電体2の配設方法は、特に限定されず、例えば、導電体材料を誘電体グリーンシートの表面に印刷する方法を挙げることができる。導電体2の形成パターンは特に限定されず、用途に合わせて適宜決定することができる。例えば、作製するセラミックス積層基板を、高周波フィルタなどに用いられるLTCC基板として使用する場合には、フィルタ、ダイプレクサ、共振器、コンデンサ等を形成するように各導電体2を配置し、更に、配線となる部分等を導電体2により形成することが好ましい。導電体材料としては、金属、サーメット等を挙げることができ、特に、銀(Ag)、銅(Cu)等が好ましい。また、これら材料に、耐熱性向上、誘電体層への成分拡散の抑制などを目的とした、合金化させる添加材料として、Pd、Ag、Au、Ru、Rh、Re、Os、Ir、Pt、Ti、Cr、Mn、Fe、Co、Ni、Zn、Zr、Nb、Mo、Ta、Wなどを配合してもよい。印刷などで形成する場合は、金属粉末を酸化物などでコーティングした複合粒子を用いてもよい。これにより、誘電体と、導電体の焼成収縮挙動をあわせ、良好な接合状態を得ることができる。   Next, the conductor 2 is disposed on at least one surface of at least one of the obtained dielectric green sheets 1. The conductor 2 may be disposed on both surfaces of the dielectric green sheet 1, or the conductor 2 may be disposed on all the dielectric green sheets 1. The arrangement method of the conductor 2 is not particularly limited, and examples thereof include a method of printing a conductor material on the surface of the dielectric green sheet. The formation pattern of the conductor 2 is not particularly limited, and can be appropriately determined according to the application. For example, when the ceramic laminated substrate to be produced is used as an LTCC substrate used for a high frequency filter or the like, the respective conductors 2 are arranged so as to form a filter, a diplexer, a resonator, a capacitor, etc. It is preferable to form the portion to be formed of the conductor 2. Examples of the conductor material include metals and cermets, and silver (Ag), copper (Cu), and the like are particularly preferable. In addition, Pd, Ag, Au, Ru, Rh, Re, Os, Ir, Pt, and Pd, Ag, Au, Ru, Rh, and the like are added to these materials for the purpose of improving heat resistance and suppressing component diffusion into the dielectric layer. Ti, Cr, Mn, Fe, Co, Ni, Zn, Zr, Nb, Mo, Ta, W, or the like may be blended. In the case of forming by printing or the like, composite particles obtained by coating a metal powder with an oxide or the like may be used. As a result, a good bonding state can be obtained by combining the firing shrinkage behavior of the dielectric and the conductor.

次に、導電体2が配設された誘電体グリーンシート1を含む複数の誘電体グリーンシート1を積層して積層体3を形成するとともに、積層体3の両面に、積層体3の焼成温度では焼結しないセラミックス拘束層4,4を配設して複合体5を形成する。ここでは、図1(a)に示すようにまず積層体3を作製し、その後に、セラミックス拘束層4,4を配設(積層)してもよいし、誘電体グリーンシート1及びセラミックス拘束層4,4の全てを一度に積層して、積層体3の作製と同時に複合体5を作製してもよい。誘電体グリーンシート1を積層するときは、圧力をかけて圧着させることが好ましい。加圧には一軸加圧、静水圧加圧等が利用できる。また、誘電体グリーンシート1及びセラミックス拘束層4,4の全てを一度に積層する場合も、同様に、積層したもの全体に力をかけて圧着させることが好ましい。   Next, a plurality of dielectric green sheets 1 including the dielectric green sheet 1 provided with the conductor 2 are laminated to form a laminate 3, and the firing temperature of the laminate 3 is formed on both sides of the laminate 3. Then, the ceramic constraining layers 4 and 4 that are not sintered are disposed to form the composite 5. Here, as shown in FIG. 1 (a), the laminate 3 may be prepared first, and then the ceramic constraining layers 4 and 4 may be disposed (laminated), or the dielectric green sheet 1 and the ceramic constraining layer may be provided. 4 and 4 may be laminated all at once, and the composite 5 may be produced simultaneously with the production of the laminate 3. When laminating the dielectric green sheets 1, it is preferable to press and apply pressure. Uniaxial pressurization, hydrostatic pressure pressurization, etc. can be used for pressurization. Similarly, when all of the dielectric green sheet 1 and the ceramic constraining layers 4 and 4 are laminated at a time, it is also preferable to apply pressure to the entire laminated body and press-bond it.

上記積層体3の焼成温度とは、次の工程で複合体5を焼成するときの温度(第1の焼成温度)のことを意味する。セラミックス拘束層4を構成するセラミックスとしては、積層体3を構成する誘電体材料によって適宜決定することができるが、積層体3の焼結温度では焼結しない材料であれば何を選んでもよく、例えば、アルミナ、マグネシア、スピネル等を挙げることができる。セラミックス拘束層4の厚さは、特に限定されないが、50〜500μmが好ましく、100〜400μmが更に好ましい。   The firing temperature of the laminate 3 means a temperature when firing the composite 5 in the next step (first firing temperature). The ceramic constituting the ceramic constraining layer 4 can be appropriately determined depending on the dielectric material constituting the laminate 3, but any material that does not sinter at the sintering temperature of the laminate 3 may be selected. For example, alumina, magnesia, spinel and the like can be mentioned. The thickness of the ceramic constraining layer 4 is not particularly limited, but is preferably 50 to 500 μm, and more preferably 100 to 400 μm.

セラミックス拘束層4(拘束層用シート)の作製方法は、上記誘電体グリーンシート1を作製するのと同様の方法で拘束層用シートを作製することが好ましい。このとき、上記誘電体グリーンシート1の作製に用いた誘電体原料の代わりに、アルミナ、マグネシア、スピネル等の材料を用いることが好ましい。誘電体材料の熱膨張曲線に近い材料が好ましい。   As a method for producing the ceramic constraining layer 4 (constraint layer sheet), it is preferable to produce a constraining layer sheet in the same manner as the dielectric green sheet 1 is produced. At this time, it is preferable to use materials such as alumina, magnesia, and spinel in place of the dielectric material used for the production of the dielectric green sheet 1. A material close to the thermal expansion curve of the dielectric material is preferred.

次に、複合体5の焼成(第1の焼成)を開始し、積層体3の緻密化が完了する前に第1の焼成を終了させて、複合体5中の積層体3を緻密化前積層体6とする。このように、積層体3の両面にセラミックス拘束層4を配設した状態(拘束状態)で焼成するため、XY面内の収縮が小さく、面位置精度の高い緻密化前積層体6を得ることができる。これは、第1の焼成において、セラミックス拘束層4は、焼結せず、収縮が起こらないため、間に挟んだ積層体3の収縮を抑制する働きをするためである。緻密化前積層体6の緻密度は85〜95体積%であることが好ましく、90〜94体積%であることが更に好ましい。第1の焼成において、緻密化を完了させずに、緻密化前積層体6の緻密度をこのような範囲とすることにより、拘束状態で緻密化を完了させたときに生じる拘束層剥離の発生を防止することができる。緻密度が85体積%より低いと、第2の焼成時にXY面内の収縮が大きくなり、面位置精度が低下することがあり、96体積%より高いと、第1の焼成時に拘束層剥離等が生じることがある。ここで、「緻密度」とは、「100(体積%)−気孔率(体積%)」のことをいい、「気孔率(体積%)」は、基板の断面研磨面を走査型電子顕微鏡(SEM)で観察したときの、縦横50μm内に観察される気孔の面積比から測定した値である。また、ここでいう「気孔」は、緻密化前積層体6の内部に形成され、焼結が進むに従って、なくなっていく気孔である。従って、気孔が全くない(気孔率=0体積%)場合に、緻密度が100体積%となる。また、「緻密化が完了する」というときは、緻密度が97体積%以上になることをいう。   Next, firing of the composite 5 (first firing) is started, the first firing is finished before the densification of the laminate 3 is completed, and the laminate 3 in the composite 5 is before densification. Let it be the laminated body 6. In this way, since firing is performed with the ceramic constraining layers 4 disposed on both surfaces of the laminate 3 (constrained state), the pre-densification laminate 6 with small surface shrinkage and high surface position accuracy is obtained. Can do. This is because in the first firing, the ceramic constrained layer 4 does not sinter and does not shrink, and thus functions to suppress the shrinkage of the laminated body 3 sandwiched therebetween. The density of the pre-densified laminate 6 is preferably 85 to 95% by volume, and more preferably 90 to 94% by volume. Generation of constrained layer peeling that occurs when densification is completed in a constrained state by setting the density of the layered product 6 before densification within such a range without completing densification in the first firing. Can be prevented. If the density is lower than 85% by volume, the shrinkage in the XY plane may increase during the second baking, and the surface position accuracy may decrease. If it is higher than 96% by volume, the constrained layer peels off during the first baking. May occur. Here, “dense” means “100 (volume%) − porosity (volume%)”, and “porosity (volume%)” refers to the cross-sectional polished surface of the substrate by a scanning electron microscope ( It is a value measured from the area ratio of pores observed within 50 μm in length and width when observed with SEM. Further, the “pores” referred to here are pores that are formed inside the pre-densified laminate 6 and disappear as the sintering progresses. Accordingly, when there are no pores (porosity = 0% by volume), the density becomes 100% by volume. In addition, when “densification is completed”, it means that the density becomes 97% by volume or more.

第1の焼成における焼成温度(第1の焼成温度)は、導電体2を構成する金属等の拡散温度より低い温度であって、緻密化前積層体6の緻密度を上記範囲にすることが可能な温度とすることが好ましい。例えば、導電体2を構成する金属の中で、拡散温度が最も低いものが銀であって、誘電体原料が上記記載の「高誘電率材料と低誘電率材料を組み合わせた積層体」である場合には、第1の焼成温度は、880〜920℃が好ましく、910〜920℃が更に好ましい。880℃より低いと、緻密化前積層体6の緻密度を85体積%以上とすることが難しくなり、920℃より高いと、銀が拡散する可能性がある。第1の焼成温度は、導電体2及び誘電体原料の種類によって適宜決定することができ、上記例示に限定されるものではない。   The firing temperature (first firing temperature) in the first firing is a temperature lower than the diffusion temperature of the metal or the like constituting the conductor 2, and the density of the pre-densified laminate 6 is set in the above range. It is preferable to set the temperature as possible. For example, among the metals constituting the conductor 2, the one having the lowest diffusion temperature is silver, and the dielectric material is the “laminated body combining the high dielectric constant material and the low dielectric constant material” described above. In such a case, the first baking temperature is preferably 880 to 920 ° C, and more preferably 910 to 920 ° C. If it is lower than 880 ° C., it becomes difficult to make the density of the laminate 6 before densification 85% by volume or more, and if it is higher than 920 ° C., silver may diffuse. The first firing temperature can be appropriately determined depending on the types of the conductor 2 and the dielectric material, and is not limited to the above examples.

次に、複合体5からセラミックス拘束層4を取り除いて、緻密化前積層体6を取り出す。セラミックス拘束層4を取り除く方法は、特に限定されず、ウェットブラスト、サンドブラスト、ウォータージェット、超音波洗浄等を用いることができる。   Next, the ceramic constrained layer 4 is removed from the composite 5, and the pre-densified laminate 6 is taken out. The method for removing the ceramic constraining layer 4 is not particularly limited, and wet blasting, sand blasting, water jet, ultrasonic cleaning, or the like can be used.

次に、得られた緻密化前積層体6を、「第1の焼成」における焼成温度(第1の焼成温度)以下の温度(第2の焼成温度)で焼成して(第2の焼成)、緻密化前積層体6の緻密化を完了させてセラミックス積層基板7を得る。セラミックス拘束層4を除去した状態で、緻密化前積層体6について第2の焼成を行うため、緻密化前積層体6(セラミックス積層基板7)の表面の剥離等の発生を防止しながら緻密度の高い(97体積%以上の)セラミックス積層基板7を得ることができる。そして、セラミックス拘束層4による拘束がないため、拘束がある場合と比較して、低い温度で緻密化を完了させることが可能となる。また、緻密化前積層体6は、その厚さ方向における中央部分の緻密化が、表層部分の緻密化と比較して、より進行しているため、第2の焼成時においては、中央部分の収縮が少ないため拘束層としての役割を果たし、表層部分の緻密化が進行するときの焼成収縮を抑制する働きをする。そのため、第2の焼成時において、よりXY面内の収縮を小さくし易くなり、面位置精度の高い状態を維持し易くなる。   Next, the obtained pre-densified laminate 6 is fired at a temperature (second firing temperature) equal to or lower than the firing temperature (first firing temperature) in “first firing” (second firing). Then, the densification of the laminate 6 before densification is completed to obtain the ceramic multilayer substrate 7. Since the second firing is performed on the pre-densification laminate 6 with the ceramic constrained layer 4 removed, the density is reduced while preventing the surface of the laminate 6 (ceramic laminate substrate 7) from peeling off. Ceramic laminated substrate 7 having a high (97 volume% or more) can be obtained. And since there is no restraint by the ceramic restraint layer 4, it becomes possible to complete densification at a low temperature compared with the case where there is restraint. Further, in the laminate 6 before densification, the densification of the central part in the thickness direction is more advanced than the densification of the surface layer part. Since there is little shrinkage | contraction, it plays the role as a constrained layer, and the function which suppresses baking shrinkage when the densification of a surface layer part advances. Therefore, at the time of the second firing, the shrinkage in the XY plane can be easily reduced, and a state with high surface position accuracy can be easily maintained.

第2の焼成温度が、第1の焼成温度以下とすることで、寸法変化、基板の反りが抑えられる。第1の焼成温度と第2の焼成温度との温度差が、50℃以下であることが好ましく、0〜20℃であることが更に好ましい。上記温度差が、50℃より大きいと、第2の焼成において、緻密化を完了させる時間が長くなることがあり、また、緻密化を完了させることができないことがある。   By setting the second baking temperature to be equal to or lower than the first baking temperature, dimensional change and substrate warpage can be suppressed. The temperature difference between the first firing temperature and the second firing temperature is preferably 50 ° C. or less, and more preferably 0 to 20 ° C. When the temperature difference is larger than 50 ° C., the time for completing the densification may be long in the second baking, and the densification may not be completed.

緻密化前積層体6の緻密度と、セラミックス積層基板7の緻密度との差が、2〜12体積%であることが好ましく、3〜8体積%であることが更に好ましい。上記緻密度の差をこの様な小さな範囲とすることにより、緻密度の変化が少ないために、拘束状態で第2の焼成を行っていなくても、XY面内の収縮が小さくなり、面位置精度の高い状態を維持することが可能となる。緻密化前積層体6の緻密度と、セラミックス積層基板7の緻密度との差が、2体積%より小さい場合には、得られるセラミックス積層基板7の緻密化が完了していることを前提にすると、緻密化前積層体6の緻密度が高いことになり、緻密化前積層体6の拘束層剥離が生じることがある。12体積%より大きいと、緻密度の変化が大きいため、第2の焼成時に緻密化前積層体6(セラミックス積層基板7)のXY面内の収縮が大きくなり、面位置精度の高い状態を維持することができないことがある。   The difference between the density of the pre-densified laminate 6 and the density of the ceramic laminated substrate 7 is preferably 2 to 12% by volume, and more preferably 3 to 8% by volume. By setting the difference in the fine density in such a small range, the change in the fine density is small, so that the shrinkage in the XY plane is reduced even if the second firing is not performed in a restrained state, and the surface position is reduced. It becomes possible to maintain a highly accurate state. When the difference between the density of the pre-densification laminate 6 and the density of the ceramic laminate substrate 7 is less than 2% by volume, it is assumed that the resulting ceramic laminate substrate 7 has been densified. Then, the density of the laminate 6 before densification is high, and the constrained layer peeling of the laminate 6 before densification may occur. If the volume is larger than 12% by volume, the change in density is large, so that the shrinkage in the XY plane of the pre-densification laminate 6 (ceramic laminate substrate 7) becomes large during the second firing, and the surface position accuracy is maintained high. There are things you can't do.

得られるセラミックス積層基板7は、誘電率が25〜150の層を含むことが好ましく、40〜100の層を含むことがさらに好ましい。セラミックス等の誘電率が高い材料を焼結する場合、ガラス等の誘電率の低い材料を焼結する場合と比較して、焼結が進行し難く、緻密化させ難いという特性がある。そのため、本発明のセラミックス積層体の製造方法は、上記誘電率範囲のような、誘電率の高いセラミックス積層基板を製造するときに、特に有効である。誘電率が25より低い層のみからなる積層基板を製造する場合には、焼結が進行し易いため、拘束状態でも、低温で、拘束層剥離等の問題が生ずることなく緻密な積層基板を製造することができ、そのため、本発明のように第1の焼成と第2の焼成とに分けて焼成を行う必要がない。また、誘電率が150より高い場合は、高周波回路の設計上、導体配線がファインライン化しすぎるため、印刷などの量産性に優れたプロセスでの作製が困難となることがある。 The obtained ceramic laminated substrate 7 preferably includes a layer having a relative dielectric constant of 25 to 150, and more preferably includes a layer of 40 to 100. In the case of sintering a material having a high relative dielectric constant such as ceramics, there is a characteristic that sintering is difficult to proceed and densification is difficult compared to the case of sintering a material having a low relative dielectric constant such as glass. Therefore, the method for producing a ceramic laminate of the present invention is particularly effective when producing a ceramic laminated substrate having a high relative dielectric constant such as the above-mentioned relative dielectric constant range. In the case of manufacturing a multilayer substrate consisting of only layers having a relative dielectric constant lower than 25, sintering is easy to proceed. Therefore, even in a constrained state, a dense multilayer substrate can be obtained without causing problems such as constrained layer peeling at a low temperature. Therefore, unlike the present invention, it is not necessary to perform the firing separately in the first firing and the second firing. On the other hand, when the relative dielectric constant is higher than 150, the conductor wiring becomes too fine for the design of the high-frequency circuit, so that it may be difficult to manufacture by a process excellent in mass productivity such as printing.

本実施形態のセラミックス積層基板の製造方法によりセラミック積層基板を製造した場合に、積層体の状態からセラミックス積層基板になるまでの間のXY面内の収縮は、5%以下であることが好ましく、3%以下であることが更に好ましい。XY面内の収縮は、150mmの基板サイズにおいて、測定点として、コーナーから10mm内側の位置を規定し、隣り合う測定点間の寸法を測り、その寸法変化を平均した値である。このように、本実施の形態のセラミックス積層基板の製造方法によれば、XY面内の収縮を小さくすることができるため、一枚のセラミックス積層基板の大きさを大きくすることが可能となる。すなわち、一枚のセラミックス積層基板の大きさを大きくしても、例えば、LTCC基板として使用する場合に、XY面内の収縮による内部配線パターン等の変形の問題を回避することが可能となる。これにより、多数の大型LTCC基板を一枚のセラミックス積層基板内に形成することが可能となる。一枚のセラミックス積層基板の大きさは、形状が正方形であるとした場合に、一辺の長さが、500mm以下であることが好ましく、100〜300mmであることが更に好ましく、150〜250mmであることが特に好ましい。   When the ceramic laminated substrate is produced by the method for producing a ceramic laminated substrate of the present embodiment, the shrinkage in the XY plane from the state of the laminated body to the ceramic laminated substrate is preferably 5% or less, More preferably, it is 3% or less. The shrinkage in the XY plane is a value obtained by defining a position 10 mm inside from a corner as a measurement point in a substrate size of 150 mm, measuring a dimension between adjacent measurement points, and averaging the dimensional change. Thus, according to the manufacturing method of the ceramic laminated substrate of this Embodiment, since shrinkage | contraction in XY plane can be made small, it becomes possible to enlarge the magnitude | size of one ceramic laminated substrate. That is, even when the size of one ceramic laminated substrate is increased, for example, when used as an LTCC substrate, it is possible to avoid the problem of deformation such as an internal wiring pattern due to contraction in the XY plane. Thereby, a large number of large LTCC substrates can be formed in one ceramic laminated substrate. As for the size of one ceramic laminated substrate, when the shape is a square, the length of one side is preferably 500 mm or less, more preferably 100 to 300 mm, and more preferably 150 to 250 mm. It is particularly preferred.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(成形原料の調製)
誘電体グリーンシートの成形原料:
(高誘電率材料粉末の調製)
高純度の炭酸バリウム,酸化チタン,酸化ネオジウム,酸化ビスマスの各粉末を、0.16BaO−0.67TiO−0.14NdO1.5−0.03BiO1.5のモル比になるように秤量し、湿式混合した。この粉末を1250℃で4時間仮焼し、仮焼粉体を得た。仮焼物の結晶相と結晶性を調べるために、粉末X線回折測定を行った。その後、仮焼粉末を、ボールミルにて、メディアン径が0.8μm以下になるまで粉砕し、粉末を乾燥し、セラミック粉末(高誘電率材料粉末)を得た。粒度測定は、大塚電子社製 ダイナミック光散乱光度計 DSL7000)を用いて、動的光散乱法により測定した。
(Preparation of molding raw materials)
Dielectric green sheet forming raw materials:
(Preparation of high dielectric constant material powder)
High purity barium carbonate, titanium oxide, neodymium oxide, each powder of bismuth oxide, were weighed to a molar ratio of 0.16BaO-0.67TiO 2 -0.14NdO 1.5 -0.03BiO 1.5 Wet mixed. This powder was calcined at 1250 ° C. for 4 hours to obtain a calcined powder. In order to investigate the crystal phase and crystallinity of the calcined product, powder X-ray diffraction measurement was performed. Thereafter, the calcined powder was pulverized with a ball mill until the median diameter became 0.8 μm or less, and the powder was dried to obtain ceramic powder (high dielectric constant material powder). The particle size was measured by a dynamic light scattering method using a dynamic light scattering photometer DSL7000 manufactured by Otsuka Electronics Co., Ltd.

(低誘電率材料粉末の調製)
高純度の炭酸バリウム、アルミナ、シリカ、酸化ビスマスの各粉末を、0.27BaO−0.03AlO1.5−0.64SiO−0.06BiO1.5のモル比になるように秤量した。あとは、高誘電率材料と同じ方法で低誘電率材料粉末を作製した。
(Preparation of low dielectric constant material powder)
High purity barium carbonate, alumina, silica, powders of bismuth oxide were weighed so that the molar ratio of 0.27BaO-0.03AlO 1.5 -0.64SiO 2 -0.06BiO 1.5 . After that, a low dielectric constant material powder was produced by the same method as the high dielectric constant material.

(ガラス粉末の調製)
酸化亜鉛、酸化ホウ素およびシリカの各粉末を秤量し、乾式混合し、混合粉末を白金ルツボ中で溶融させ、溶融物を水中に投下して急速冷却し、塊状のガラスを得た。このガラスをメディアン径が4μm以下になるまで湿式粉砕し、低融点ガラス粉末を得た。酸化亜鉛、酸化ホウ素および酸化珪素の重量比率は、62:29:9重量%であった。
(Preparation of glass powder)
Each powder of zinc oxide, boron oxide and silica was weighed and dry-mixed, the mixed powder was melted in a platinum crucible, and the melt was dropped into water and rapidly cooled to obtain a massive glass. This glass was wet pulverized until the median diameter became 4 μm or less to obtain a low-melting glass powder. The weight ratio of zinc oxide, boron oxide and silicon oxide was 62: 29: 9% by weight.

(実施例1)
分散媒としてのトルエン、イソプロパノールを等量混合したものに、上記の誘電体原料(高誘電率材料粉)、ガラス粉末、バインダーとしてポリビニルブチラールをそれぞれ混合して、スラリー状の誘電体グリーンシート用の成形原料を作製した。各原料の使用量は、誘電体原料100質量部に対して、ガラス2.5質量部、バインダー7.5質量部、分散媒1.5質量部とした。次に、得られた成形原料を、減圧下で撹拌して脱泡し、粘度1500〜2000cPとなるように調製した。スラリーの粘度は、ブルックフィールド社製LVT型粘度計で測定した。
Example 1
To a mixture of equal amounts of toluene and isopropanol as a dispersion medium, the above-mentioned dielectric raw material (high dielectric constant material powder), glass powder, and polyvinyl butyral as a binder are mixed, respectively. A forming raw material was produced. The amount of each raw material used was 2.5 parts by mass of glass, 7.5 parts by mass of the binder, and 1.5 parts by mass of the dispersion medium with respect to 100 parts by mass of the dielectric material. Next, the obtained forming raw material was stirred and defoamed under reduced pressure to prepare a viscosity of 1500 to 2000 cP. The viscosity of the slurry was measured with an LVT viscometer manufactured by Brookfield.

セラミックス拘束層用の成形原料:
分散媒としてのトルエン、イソプロパノールを等量混合したものに、セラミックス原料としてアルミナ、バインダーとしてポリビニルブチラールをそれぞれ混合して、スラリー状のセラミックス拘束層用の成形原料を作製した。各原料の使用量は、セラミックス原料100質量部に対して、バインダー7.5質量部、分散媒1.5質量部とした。次に、得られた成形原料を、減圧下で撹拌して脱泡し、粘度1500〜2000cPとなるように調製した。スラリーの粘度は、ブルックフィールド社製LVT型粘度計で測定した。
Molding raw material for ceramic constrained layer:
To a mixture of equal amounts of toluene and isopropanol as a dispersion medium, alumina as a ceramic material and polyvinyl butyral as a binder were mixed, respectively, to prepare a forming material for a slurry-like ceramic constraining layer. The amount of each raw material used was 7.5 parts by mass of the binder and 1.5 parts by mass of the dispersion medium with respect to 100 parts by mass of the ceramic raw material. Next, the obtained forming raw material was stirred and defoamed under reduced pressure to prepare a viscosity of 1500 to 2000 cP. The viscosity of the slurry was measured with an LVT viscometer manufactured by Brookfield.

成形加工:
次に、上記方法により得られた、スラリー状の誘電体グリーンシート用の成形原料、及びセラミックス拘束層用の成形原料をドクターブレード法を用いて、それぞれシート状に成形加工した。得られた誘電体グリーンシートの厚さは、40μmおよび80μmとした。また、得られた拘束層用シートの厚さは、125μmとした。
Molding:
Next, the forming raw material for the slurry-like dielectric green sheet and the forming raw material for the ceramic constraining layer obtained by the above method were each formed into a sheet using the doctor blade method. The thickness of the obtained dielectric green sheet was 40 μm and 80 μm. Moreover, the thickness of the obtained sheet | seat for constrained layers was 125 micrometers.

得られた誘電体グリーンシートの表面に導電体を配設した。銀粉末に溶媒としてテルピネオール、バインダーとしてポリビニルブチラールを加えて十分に混練して導電体ペーストを調製した。得られた導電体ペーストを、誘電体グリーンシートの表面にスクリーン印刷を用いて印刷して、コンデンサ電極パターン及び共振器パターンの形状の導電体を形成した。   A conductor was disposed on the surface of the obtained dielectric green sheet. To the silver powder, terpineol as a solvent and polyvinyl butyral as a binder were added and sufficiently kneaded to prepare a conductor paste. The obtained conductor paste was printed on the surface of the dielectric green sheet using screen printing to form a conductor in the shape of a capacitor electrode pattern and a resonator pattern.

次に、厚さ40μmおよび80μmのシートを素子設計に合わせて適宜選択し、10枚の誘電体グリーンシートを積層し、誘電体グリーンシートを積層したものの両面に拘束層用シートを積層して、一軸プレス機の装置を用いて加圧した。これにより、積層体の両面にセラミックス拘束層が配設された複合体を得た。   Next, sheets having a thickness of 40 μm and 80 μm are appropriately selected according to the element design, 10 dielectric green sheets are laminated, and a sheet for a constraining layer is laminated on both sides of the laminated dielectric green sheets, Pressurization was performed using a uniaxial press machine. Thereby, the composite_body | complex with which the ceramic constrained layer was arrange | positioned on both surfaces of the laminated body was obtained.

第1の焼成:
得られた、複合体を400℃で5時間脱脂し、さらに920℃で1.5時間焼成し、複合体中の積層体を緻密化前積層体とした。第1の焼成後の緻密化前積層体の気孔率は12体積%であった。従って、緻密度は88体積%であった。第1の焼成後の緻密化前積層体の気孔率は、第1の焼成後の複合体の一部を切り取って測定した。気孔率の測定は、基板の断面研磨面を走査型電子顕微鏡(日本電子製 JSM−6390)で観察したときの、縦横50μm内に観察される気孔の面積比から測定した。焼成は、電気炉を用いて行った。
First firing:
The obtained composite was degreased at 400 ° C. for 5 hours, and further fired at 920 ° C. for 1.5 hours, whereby the laminate in the composite was used as a pre-densified laminate. The porosity of the laminate before densification after the first firing was 12% by volume. Accordingly, the density was 88% by volume. The porosity of the laminate before densification after the first firing was measured by cutting out a part of the composite after the first firing. The porosity was measured from the area ratio of the pores observed within 50 μm in length and breadth when the cross-section polished surface of the substrate was observed with a scanning electron microscope (JSM-6390 manufactured by JEOL). Firing was performed using an electric furnace.

(セラミックス拘束層の除去)
第1の焼成後の複合体から、水による洗い流し、および超音波洗浄の方法を用いて、セラミックス拘束層を取り除いて緻密化前積層体を取り出した。
(Removal of ceramic constrained layer)
From the first fired composite, the ceramic constrained layer was removed using a method of washing with water and ultrasonic cleaning, and the pre-densified laminate was taken out.

第2の焼成:
緻密化前積層体を、920℃で1.5時間焼成して緻密化を完了させ、セラミックス積層基板を得た。セラミックス積層基板の気孔率は3体積%であった。従って、緻密度は97体積%であった。
Second firing:
The laminated body before densification was fired at 920 ° C. for 1.5 hours to complete the densification, and a ceramic multilayer substrate was obtained. The porosity of the ceramic laminated substrate was 3% by volume. Accordingly, the density was 97% by volume.

(評価方法)
得られたセラミックス積層基板(積層基板)について、以下の方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。表1において、第1の焼成の欄の「緻密度」は、緻密化前積層体の緻密度であり、第2の焼成の欄の「緻密度」は、セラミックス積層基板の緻密度である。
(Evaluation methods)
About the obtained ceramic laminated substrate (laminated substrate), “peripheral peeling” and “dimensional accuracy” were evaluated by the following methods. The results are shown in Table 1. In Table 1, “Dense” in the first firing column is the density of the pre-densification laminate, and “Density” in the second firing column is the density of the ceramic laminated substrate.

(外周剥離)
拘束層を剥離後、外周部が内部に比べて、拘束層の構成粒子の付着が少なく、さらに、焼成中に拘束されなかったことによると考えられる、基板反りが発生した場合、不良とした。反りとは、接触式表面粗さ計(テーラーホブソン社製 フォームタリサーフPGI1240)で基板表面を計測したとき、基板中央の水平面に対して、外周部が1mm以上ズレていることとした。同水準の基板5枚中、剥離が発生した基板の数で、ゼロを合格とした。
(Peripheral peeling)
After peeling the constraining layer, the outer peripheral portion was less adhered to the constituent particles of the constraining layer than the inside, and further, when the substrate warp was considered to be caused by the fact that it was not constrained during firing, it was determined as defective. Warpage is defined as a deviation of the outer peripheral portion by 1 mm or more with respect to a horizontal plane at the center of the substrate when the surface of the substrate is measured with a contact surface roughness meter (Form Talysurf PGI 1240 manufactured by Taylor Hobson). Of the five substrates of the same level, the number of substrates on which peeling occurred and zero was accepted.

(寸法精度)
XY面内の収縮は、150mmの基板サイズにおいて、測定点として、外周から10mm内側の位置を規定し、X方向に4箇所、Y方向も4箇所を測定し、焼成前寸法との比率を算出し、寸法変化率とする。評価基板を5枚としたとき、全計測数40についての、寸法変化率の最大値と最小値の差を寸法精度(%)とし、0.05%以下を合格とした。
(Dimensional accuracy)
The shrinkage in the XY plane is defined as a measurement point 10 mm inward from the outer periphery at a substrate size of 150 mm, measuring four locations in the X direction and four locations in the Y direction, and calculating the ratio with the dimensions before firing. And the dimensional change rate. When the number of evaluation substrates was five, the difference between the maximum value and the minimum value of the dimensional change rate with respect to a total number of measurements of 40 was defined as dimensional accuracy (%), and 0.05% or less was accepted.

Figure 0004885749
Figure 0004885749

(実施例2)
第1の焼成の焼成温度を950℃とすることにより、緻密化前積層体の緻密度を95体積%とし、第2の焼成の焼成温度を950℃とすることにより、セラミックス積層基板の緻密度を99体積%とした以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Example 2)
By setting the firing temperature of the first firing to 950 ° C., the density of the laminate before densification is set to 95% by volume, and by setting the firing temperature of the second firing to 950 ° C., the density of the ceramic laminate substrate A ceramic laminated substrate was produced in the same manner as in Example 1 except that the content was changed to 99% by volume. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(実施例3)
誘電体原料を上記低誘電率材料とした以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Example 3)
A ceramic laminated substrate was produced in the same manner as in Example 1 except that the low dielectric constant material was used as the dielectric material. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(実施例4)
第2の焼成の焼成温度を870℃とした以外は、実施例3と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
Example 4
A ceramic laminated substrate was produced in the same manner as in Example 3 except that the firing temperature of the second firing was 870 ° C. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(実施例5)
第2の焼成の焼成温度を860℃とした以外は、実施例3と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Example 5)
A ceramic laminated substrate was produced in the same manner as in Example 3 except that the firing temperature of the second firing was 860 ° C. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(実施例6)
第1の焼成の焼成温度を940℃とした以外は、実施例3と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Example 6)
A ceramic laminated substrate was produced in the same manner as in Example 3 except that the firing temperature of the first firing was 940 ° C. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(実施例7)
第1の焼成の焼成温度を860℃とし、第2の焼成の焼成温度を870℃とした以外は、実施例3と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Example 7)
A ceramic laminated substrate was produced in the same manner as in Example 3 except that the firing temperature for the first firing was 860 ° C. and the firing temperature for the second firing was 870 ° C. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(比較例1)
第1の焼成の焼成温度を980℃とすることにより、緻密化前積層体の緻密度を97体積%とし、第2の焼成を行わなかった以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Comparative Example 1)
By setting the firing temperature of the first firing to 980 ° C., the density of the laminate before densification was set to 97% by volume, and the second firing was not performed, in the same manner as in Example 1, except that the ceramic laminate was laminated. A substrate was produced. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(比較例2)
第1の焼成の焼成温度を880℃とすることにより、緻密化前積層体の緻密度を84体積%とした以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Comparative Example 2)
A ceramic laminated substrate was produced in the same manner as in Example 1 except that the firing temperature of the first firing was 880 ° C., so that the density of the laminate before densification was 84% by volume. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(比較例3)
誘電体原料を上記低誘電率材料とし、第1の焼成の焼成温度を950℃とすることにより、緻密化前積層体の緻密度を96体積%とし、第2の焼成を行わなかった以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Comparative Example 3)
The dielectric material is the low dielectric constant material, and the firing temperature of the first firing is 950 ° C., so that the density of the laminate before densification is 96% by volume and the second firing is not performed. In the same manner as in Example 1, a ceramic laminated substrate was produced. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

(比較例4)
誘電体原料を上記低誘電率材料とし、第1の焼成の焼成温度を840℃とすることにより、緻密化前積層体の緻密度を84体積%とし、第2の焼成の焼成温度を870℃とすることにより、セラミックス積層基板の緻密度を98体積%とした以外は、実施例1と同様にして、セラミックス積層基板を作製した。得られたセラミックス積層基板について、上記方法で、「外周剥離」及び「寸法精度」の評価を行った。結果を表1に示す。
(Comparative Example 4)
By using the dielectric material as the low dielectric constant material and setting the firing temperature of the first firing to 840 ° C., the density of the laminate before densification is 84% by volume, and the firing temperature of the second firing is 870 ° C. Thus, a ceramic laminated substrate was produced in the same manner as in Example 1 except that the density of the ceramic laminated substrate was 98% by volume. About the obtained ceramic laminated substrate, "peripheral peeling" and "dimensional accuracy" were evaluated by the above methods. The results are shown in Table 1.

本発明のセラミックス積層基板の製造方法は、高周波フィルタなどに用いられるLTCC基板等の製造に好適に利用することが可能である。   The method for producing a ceramic laminated substrate of the present invention can be suitably used for producing an LTCC substrate used for a high frequency filter or the like.

本発明のセラミックス積層基板の製造方法の一の実施形態を説明する模式図であり、図1(a)は、積層体とセラミックス拘束層(拘束層用シート)とを示し、図1(b)は、第1の焼成時の複合体を示し、図1(c)は、第2の焼成時の緻密化前積層体(セラミックス積層基板)を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining one Embodiment of the manufacturing method of the ceramic laminated substrate of this invention, Fig.1 (a) shows a laminated body and a ceramic constrained layer (sheet | seat for constrained layers), FIG.1 (b) Shows the composite at the time of the first firing, and FIG. 1C shows the pre-densified laminate (ceramic laminate substrate) at the time of the second firing.

符号の説明Explanation of symbols

1:誘電体グリーンシート、2:導電体、3:積層体、4:セラミックス拘束層(拘束層用シート)、5:複合体、6:緻密化前積層体、7:セラミックス積層基板。 1: dielectric green sheet, 2: conductor, 3: laminate, 4: ceramic constrained layer (constraint layer sheet), 5: composite, 6: pre-densified laminate, 7: ceramic laminated substrate.

Claims (7)

セラミックス及びガラスを含有する複数の誘電体グリーンシートを形成し、
少なくとも一の前記誘電体グリーンシートの少なくとも一方の表面に導電体を配設し、
前記複数の誘電体グリーンシートを積層して積層体を形成するとともに、前記積層体の両面に、前記積層体の焼成温度では焼結しないセラミックス拘束層を配設して複合体を形成し、
前記複合体の焼成(第1の焼成)を開始し、前記積層体の緻密化が完了する前に前記第1の焼成を終了させて、前記複合体中の前記積層体を緻密化前積層体とし、
前記複合体から前記セラミックス拘束層を取り除き、
得られた前記緻密化前積層体を、前記第1の焼成における焼成温度(第1の焼成温度)以下の温度(第2の焼成温度)で焼成して、前記緻密化前積層体の緻密化を完了させてセラミックス積層基板とするセラミックス積層基板の製造方法。
Forming a plurality of dielectric green sheets containing ceramics and glass;
A conductor is disposed on at least one surface of the at least one dielectric green sheet;
A laminate is formed by laminating the plurality of dielectric green sheets, and a composite body is formed on both surfaces of the laminate by disposing ceramic constraining layers that are not sintered at the firing temperature of the laminate,
Firing of the composite (first firing) is started, and before the densification of the laminate is completed, the first firing is finished, and the laminate in the composite is pre-densified. age,
Removing the ceramic constraining layer from the composite;
The obtained layered body before densification is fired at a temperature (second firing temperature) that is equal to or lower than the firing temperature (first firing temperature) in the first firing, so that the layered body before densification is densified. A method for manufacturing a ceramic laminated substrate that is completed by completing the process.
前記緻密化前積層体の緻密度が85〜95体積%である請求項1に記載のセラミックス積層基板の製造方法。   The method for producing a ceramic laminated substrate according to claim 1, wherein the density of the laminate before densification is 85 to 95% by volume. 前記第1の焼成温度と前記第2の焼成温度との温度差が、50℃以下である請求項1又は2に記載のセラミックス積層基板の製造方法。   The method for producing a ceramic laminated substrate according to claim 1 or 2, wherein a temperature difference between the first firing temperature and the second firing temperature is 50 ° C or less. 前記緻密化前積層体の緻密度と前記セラミックス積層基板の緻密度との差が、2〜12体積%である請求項1〜3のいずれかに記載のセラミックス積層基板の製造方法。   The method for producing a ceramic laminated substrate according to any one of claims 1 to 3, wherein a difference between the density of the pre-densified laminate and the density of the ceramic laminated substrate is 2 to 12% by volume. 前記誘電体グリーンシートのセラミックス含有量が、90質量%以上である請求項1〜4のいずれかに記載のセラミックス積層基板の製造方法。   The method for producing a ceramic laminated substrate according to any one of claims 1 to 4, wherein a ceramic content of the dielectric green sheet is 90% by mass or more. 複数の前記誘電体グリーンシートの中の少なくとも一つが、他の誘電体グリーンシートと異なる材料で形成されるものである請求項1〜5のいずれかに記載のセラミックス積層基板の製造方法。   The method for producing a ceramic laminated substrate according to claim 1, wherein at least one of the plurality of dielectric green sheets is formed of a material different from that of other dielectric green sheets. 前記セラミックス積層基板の誘電率が2〜10である層を含む請求項1〜6のいずれかに記載のセラミックス積層基板の製造方法。 The method for producing a ceramic laminated substrate according to claim 1, comprising a layer having a relative dielectric constant of 2 5 to 1 5 0.
JP2007016578A 2007-01-26 2007-01-26 Manufacturing method of ceramic laminated substrate Expired - Fee Related JP4885749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016578A JP4885749B2 (en) 2007-01-26 2007-01-26 Manufacturing method of ceramic laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016578A JP4885749B2 (en) 2007-01-26 2007-01-26 Manufacturing method of ceramic laminated substrate

Publications (2)

Publication Number Publication Date
JP2008186840A JP2008186840A (en) 2008-08-14
JP4885749B2 true JP4885749B2 (en) 2012-02-29

Family

ID=39729706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016578A Expired - Fee Related JP4885749B2 (en) 2007-01-26 2007-01-26 Manufacturing method of ceramic laminated substrate

Country Status (1)

Country Link
JP (1) JP4885749B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608721B2 (en) * 1987-05-12 1997-05-14 旭光学工業株式会社 Method for producing calcium phosphate-based material
JP3591437B2 (en) * 2000-09-07 2004-11-17 株式会社村田製作所 Multilayer ceramic substrate, method of manufacturing the same, and electronic device
JP4059063B2 (en) * 2002-11-11 2008-03-12 株式会社村田製作所 Ceramic multilayer substrate and manufacturing method thereof
JP2005217170A (en) * 2004-01-29 2005-08-11 Murata Mfg Co Ltd Composite multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP2008186840A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4507012B2 (en) Multilayer ceramic substrate
JP5645136B2 (en) Dielectric porcelain composition, multilayer dielectric substrate, electronic component, and method for producing dielectric porcelain composition
JP5435176B2 (en) Composite multilayer ceramic electronic components
JP5821975B2 (en) Composite multilayer ceramic electronic components
WO1993008672A1 (en) Manufacture of multilayer ceramic part, and multilayer ceramic part
JPWO2005039263A1 (en) MULTILAYER CERAMIC SUBSTRATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE USING THE SAME
JPWO2013121929A1 (en) Composite multilayer ceramic electronic components
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
WO2019059017A1 (en) Method for producing ceramic substrate, ceramic substrate and module
US8231961B2 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
WO2014196348A1 (en) Composition for ceramic substrates and ceramic circuit component
JP4885749B2 (en) Manufacturing method of ceramic laminated substrate
JP4773485B2 (en) Manufacturing method of ceramic laminate
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP5110420B2 (en) Ag powder, conductor paste, multilayer ceramic substrate and manufacturing method thereof
JP2008031005A (en) Multilayered ceramic substrate and composite green sheet for manufacturing multilayered ceramic substrate
JP2005039164A (en) Method for manufacturing glass ceramic wiring board
JP2004355862A (en) Paste for conductor, ceramic wiring board, and its manufacturing method
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP4110536B2 (en) Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate
JP4645962B2 (en) Multilayer ceramic substrate
JP2860734B2 (en) Multilayer ceramic component, method for manufacturing the same, and internal conductor paste
JP2003026472A (en) Method for producing multilayer ceramic electronic parts, multilayer ceramic electronic parts and raw composite multilayer body for producing multilayer ceramic electronic parts
JP3850245B2 (en) Manufacturing method of glass ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees