JP4779321B2 - Microwave heating method for thin film - Google Patents

Microwave heating method for thin film Download PDF

Info

Publication number
JP4779321B2
JP4779321B2 JP2004241158A JP2004241158A JP4779321B2 JP 4779321 B2 JP4779321 B2 JP 4779321B2 JP 2004241158 A JP2004241158 A JP 2004241158A JP 2004241158 A JP2004241158 A JP 2004241158A JP 4779321 B2 JP4779321 B2 JP 4779321B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
microwave
film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241158A
Other languages
Japanese (ja)
Other versions
JP2006060064A (en
Inventor
研吾 松尾
聡 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004241158A priority Critical patent/JP4779321B2/en
Publication of JP2006060064A publication Critical patent/JP2006060064A/en
Application granted granted Critical
Publication of JP4779321B2 publication Critical patent/JP4779321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、色素増感太陽電池の半導体電極にて所要の色素を吸着させるための半導体粒子薄膜の焼成時等の如き半導体の薄膜をマイクロ波の照射により加熱する際に用いる薄膜のマイクロ波加熱方法に関するものである。   The present invention relates to microwave heating of a thin film used for heating a semiconductor thin film by microwave irradiation, such as during firing of a semiconductor particle thin film for adsorbing a required dye on a semiconductor electrode of a dye-sensitized solar cell. It is about the method.

従来、太陽電池は、光電変換材料として結晶性シリコンやアモルファスシリコン等を用いたシリコン系太陽電池が主流であったが、近年、光電変換材料として、上記シリコン系材料に代えて、色素で増感された半導体薄膜を用いるようにした色素増感太陽電池が開発されてきており、かかる色素増感太陽電池は、上記シリコン系太陽電池に比して製造コストの低減化を図ることができるものとして注目されてきている。   Conventionally, silicon solar cells using crystalline silicon, amorphous silicon, or the like as the photoelectric conversion material have been the mainstream, but in recent years, the photoelectric conversion material has been sensitized with a dye instead of the silicon material. Dye-sensitized solar cells that have been made to use the prepared semiconductor thin film have been developed, and such dye-sensitized solar cells can be manufactured at a lower cost than the silicon-based solar cells. Has attracted attention.

上記色素増感太陽電池の基本的構造は、図2(イ)にその一例の概略を示す如き構成としてある。すなわち、ガラス製の基板2の片面に、たとえば、フッ素ドープ酸化スズ(FTO)あるいは酸化インジウムと酸化スズからなる化合物(ITO)等による透明な導電性膜(半導体)3を、蒸着等により設けて導電性ガラス基板である透明電極1を形成する。該透明電極1における上記透明導電性膜3の表面には、酸化チタン(TiO)の微粒子を焼結してなる多孔質の半導体粒子薄膜4を設け、更に、該半導体粒子薄膜4に、増感用の色素を吸着させて、上記透明電極1上に色素吸着した半導体粒子薄膜4を備えてなる半導体電極5を形成する。更に、上記半導体電極5における色素吸着させた半導体粒子薄膜4側に、上記透明電極1と同様に基板2とITO等の透明導電性膜3とからなる透明電極1における該透明導電性膜3の表面にPt(図示せず)を蒸着した対向電極6を重ね、両電極5と6の隙間に、ヨウ素−ヨウ素化合物や臭素−臭素化合物等の酸化還元対を含んだ電解質溶液7を含浸させて、上記半導体電極5と対向電極6の周縁部を、上記電解質溶液7が外部へ漏れないように図示しないシール部材にてシールした構成としてある。 The basic structure of the dye-sensitized solar cell is configured as shown in FIG. That is, a transparent conductive film (semiconductor) 3 made of, for example, fluorine-doped tin oxide (FTO) or a compound made of indium oxide and tin oxide (ITO) is provided on one side of a glass substrate 2 by vapor deposition or the like. The transparent electrode 1 which is a conductive glass substrate is formed. On the surface of the transparent conductive film 3 in the transparent electrode 1, a porous semiconductor particle thin film 4 formed by sintering fine particles of titanium oxide (TiO 2 ) is provided. A sensitive dye is adsorbed to form a semiconductor electrode 5 including the semiconductor particle thin film 4 adsorbed with the dye on the transparent electrode 1. Further, the transparent conductive film 3 in the transparent electrode 1 composed of the substrate 2 and the transparent conductive film 3 made of ITO or the like is formed on the semiconductor particle thin film 4 side on which the dye is adsorbed in the semiconductor electrode 5. A counter electrode 6 deposited with Pt (not shown) on the surface is overlapped, and an electrolyte solution 7 containing an oxidation-reduction pair such as iodine-iodine compound or bromine-bromine compound is impregnated in the gap between the electrodes 5 and 6. The periphery of the semiconductor electrode 5 and the counter electrode 6 is sealed with a sealing member (not shown) so that the electrolyte solution 7 does not leak outside.

これにより、図2(ロ)に発電機構の概要を示す如く、上記色素増感太陽電池に光8を当てると、半導体電極5の半導体粒子薄膜4に吸着されている色素9が、上記光8を吸収して電子を放出し、この放出された電子が、半導体粒子薄膜4を形成している酸化チタンへ素早く受けられて、該半導体薄膜4より透明電極1の透明導電性膜3へ伝えられる。この透明導電性膜3へ達した電子は、半導体電極5と対向電極6との間に接続されている外部負荷10を経た後、対向電極6へ伝えられ、該対向電極6の部分にて、たとえば、酸化還元物としてヨウ素−ヨウ素化物を含んだ電解質溶液7中の三ヨウ化物イオン(I )を還元してヨウ化物イオン(I)とさせる。この生成したヨウ化物イオン(I)は、上記半導体電極5の半導体粒子薄膜4に吸着されている上記電子を放出した色素9により酸化され、このヨウ化物イオン(I)と三ヨウ化物イオン(I )が半導体電極5と対向電極6の間をサイクルすることにより、電池としての機能が発揮されることとなる。 As a result, as shown in FIG. 2 (b), when the light 8 is applied to the dye-sensitized solar cell, the dye 9 adsorbed on the semiconductor particle thin film 4 of the semiconductor electrode 5 is converted into the light 8. The electrons are absorbed and emitted, and the emitted electrons are quickly received by the titanium oxide forming the semiconductor particle thin film 4 and transmitted from the semiconductor thin film 4 to the transparent conductive film 3 of the transparent electrode 1. . The electrons reaching the transparent conductive film 3 are transmitted to the counter electrode 6 after passing through an external load 10 connected between the semiconductor electrode 5 and the counter electrode 6, and at the portion of the counter electrode 6, For example, triiodide ions (I 3 ) in the electrolyte solution 7 containing iodine-iodide as an oxidation-reduction product are reduced to iodide ions (I ). The generated iodide ions (I ) are oxidized by the dye 9 that has released the electrons adsorbed on the semiconductor particle thin film 4 of the semiconductor electrode 5, and the iodide ions (I ) and triiodide ions are oxidized. When (I 3 ) cycles between the semiconductor electrode 5 and the counter electrode 6, the function as a battery is exhibited.

ところで、上記色素増感太陽電池に用いる半導体電極5を製造する場合、従来は、金属酸化物として、ナノオーダーの超微粒子状の酸化チタン粉末、好ましくは、アナターゼ型の酸化チタン粉末を、ポリエチレングリコール等の所要の分散媒に分散してペースト(スラリー)としたり、コロイド溶液とし、該ペーストやコロイド溶液を、透明電極1における透明な透明導電性膜3の表面に、たとえば、スキージ法、スクリーン印刷、ドクターブレード法、スピンコート等により厚さ10μm程度となるように塗布し、その後、乾燥させることにより半導体粒子としての酸化チタン粉末の集合体である薄膜を形成し、しかる後、上記透明電極1ごと電気炉に入れて400℃程度という高温に加熱して焼結させることにより、上記酸化チタン粉末の集合体である薄膜中の超微粒子状酸化チタン粉末の粒子同士を機械的、電気的に結合させて、透明電極1の透明導電性膜3の表面に、実効表面積が1000倍程度となる多孔質の半導体粒子薄膜4を形成させ、これにより、半導体粒子薄膜4へ多量の色素を吸着させることができるようにして、色素増感太陽電池の単位面積当りの発生させる電流値を大きくすることができるようにしていた。   By the way, when manufacturing the semiconductor electrode 5 used for the dye-sensitized solar cell, conventionally, nano-order ultrafine titanium oxide powder, preferably anatase-type titanium oxide powder, is used as the metal oxide. A paste (slurry) or a colloidal solution dispersed in a required dispersion medium such as squeegee method, screen printing, etc. on the surface of the transparent transparent conductive film 3 in the transparent electrode 1 Then, a thin film which is an aggregate of titanium oxide powder as semiconductor particles is formed by applying to a thickness of about 10 μm by a doctor blade method, spin coating, and the like, and thereafter, the transparent electrode 1 Each of these titanium oxide powders is put into an electric furnace and heated to a high temperature of about 400 ° C. and sintered. Porous whose effective surface area is about 1000 times on the surface of the transparent conductive film 3 of the transparent electrode 1 by mechanically and electrically bonding particles of ultrafine titanium oxide powder in a thin film as an aggregate. Thus, a large amount of dye can be adsorbed to the semiconductor particle thin film 4 and the current value generated per unit area of the dye-sensitized solar cell can be increased. It was like that.

しかし、上記のように、半導体粒子薄膜4の焼結作業を電気炉を用いて行う場合は、半導体粒子薄膜4のみを加熱することはできず、炉体全体の加熱を伴うため、昇温及び降温に時間がかかるという問題があると共に、処理に要する電力が嵩むという問題もある。   However, as described above, when the sintering operation of the semiconductor particle thin film 4 is performed using an electric furnace, the semiconductor particle thin film 4 alone cannot be heated, and the entire furnace body is heated. There is a problem that it takes time to cool down, and there is also a problem that electric power required for processing increases.

そこで、半導体粒子薄膜4の焼結時に要する昇温時間、降温時間の短縮化を図るための手法の1つとして、半導体粒子薄膜4の加熱を、マイクロ波の照射によって行なうようにすることが考えられてきている。   Therefore, as one of the techniques for shortening the temperature raising time and temperature lowering time required for sintering the semiconductor particle thin film 4, the semiconductor particle thin film 4 may be heated by microwave irradiation. It has been.

すなわち、マイクロ波は、周波数2.45GHzのものが一般の電子レンジでも用いられ、又、セラミックスのバルク体の焼結等に均一加熱のため高周波の28GHzのものの応用が試みられているように、誘電体に照射すると、マイクロ波が電界と磁界をもつ電磁波であるため、該マイクロ波のもつ電界に応じて、誘電体物質の電子双極子が向きを揃えようとする。しかしながら、周波数が高くなるにつれて追従することができなくなり、振動や回転による分子相互の摩擦が生じるようになることから、誘電体物質自体を発熱させることができる。このエネルギー損失が所謂、誘電損失であり、これが、マイクロ波加熱の原理となる。したがって、かかるマイクロ波加熱によれば、誘電損失の大きい部分を選択的に加熱できると共に、電気炉のように炉体等の昇温を待つことなく、加熱対象となる誘電体を直接加熱できることから、短時間で昇温でき、又、昇温するのが誘電体と、該誘電体より熱伝導を受ける周辺部に限られるため、短時間で降温できるという効果を備えている。   That is, a microwave having a frequency of 2.45 GHz is also used in a general microwave oven, and an application of a high-frequency 28 GHz is attempted for uniform heating in sintering of a ceramic bulk body. When the dielectric is irradiated, since the microwave is an electromagnetic wave having an electric field and a magnetic field, the electronic dipoles of the dielectric material try to align the direction according to the electric field of the microwave. However, it becomes impossible to follow as the frequency increases, and friction between molecules due to vibration and rotation occurs, so that the dielectric substance itself can generate heat. This energy loss is so-called dielectric loss, which is the principle of microwave heating. Therefore, according to such microwave heating, a portion having a large dielectric loss can be selectively heated, and a dielectric to be heated can be directly heated without waiting for a temperature rise of a furnace body or the like as in an electric furnace. The temperature can be raised in a short time, and since the temperature rise is limited to the dielectric and the peripheral portion that receives heat conduction from the dielectric, the temperature can be lowered in a short time.

よって、図3(イ)に示す如く、ガラスの基板2と透明導電性膜3とからなる透明電極1における透明導電性膜3の表面に、上記と同様に酸化チタン粉末のペーストを塗布して乾燥させて酸化チタン粉末の集合体である薄膜(以下、酸化チタン粒子集合体薄膜という)4aを形成した後、アルミナの架台11上に、上記透明電極1の基板2側を下に、酸化チタン粒子集合体薄膜4a側を上に配置した姿勢で載置して、該酸化チタン粒子集合体薄膜4a側より、たとえば、周波数28GHzのマイクロ波12を照射したり、あるいは、図3(ロ)に示す如く、上記と同様に、透明電極1の透明導電性膜3の表面に、酸化チタン粒子集合体薄膜4aを形成した後、アルミナの架台11上に、酸化チタン粒子集合体薄膜4a側を下に、透明電極1の基板2側を上に配置した姿勢で載置して、上記透明電極1の基板2側より上記と同様のマイクロ波12を照射し、これにより、上記酸化チタン粒子集合体薄膜4aをマイクロ波加熱して焼結させるようにすることが提案されている。   Therefore, as shown in FIG. 3A, a titanium oxide powder paste is applied to the surface of the transparent conductive film 3 in the transparent electrode 1 composed of the glass substrate 2 and the transparent conductive film 3 in the same manner as described above. After drying, a thin film (hereinafter referred to as a titanium oxide particle aggregate thin film) 4a that is an aggregate of titanium oxide powder is formed, and then the titanium oxide oxide 11 is placed on the substrate 2 side of the transparent electrode 1 on the alumina mount 11. The particle assembly thin film 4a side is placed in a position where it is placed on top and irradiated with, for example, a microwave 12 having a frequency of 28 GHz from the titanium oxide particle assembly thin film 4a side, or as shown in FIG. As shown, after the titanium oxide particle assembly thin film 4a is formed on the surface of the transparent conductive film 3 of the transparent electrode 1, the titanium oxide particle assembly thin film 4a side is placed on the alumina mount 11 as shown above. In addition, the transparent electrode 1 The plate 2 is placed in an upside position, and the same microwave 12 as above is irradiated from the substrate 2 side of the transparent electrode 1, whereby the titanium oxide particle aggregate thin film 4a is heated by microwaves. It has been proposed to sinter.

この場合、図3(イ)に示した姿勢では、透明電極1の透明導電性膜3と酸化チタン粒子集合体薄膜4aからの発熱は、ガラス製としてある基板2と大気へ放熱されるのに対し、図3(ロ)に示した姿勢では、上記透明導電性膜3と酸化チタン粒子集合体薄膜4aからの発熱は、ガラス製の基板2とアルミナの架台11へ伝達されてから大気へ放熱されるため、より放熱を速く行わせることができる。このために、上記図3(イ)に示した姿勢で酸化チタン粒子集合体薄膜4aの加熱、焼結を行う場合には、昇温途中でガラス製の基板2が割れることが多い。これは、酸化チタン粒子集合体薄膜4aに直にマイクロ波12が照射されるため、急激な熱応力が作用してガラス製の基板2が破損するものと推測されるが、図3(ロ)に示した姿勢で加熱を行う場合には、酸化チタン粒子集合体薄膜4aとガラス製の基板2とが比較的均一に加熱されると考えられるため、ガラス製の基板2の破損防止に有利になるということが報告されている。図中の符号11aは熱電対を示す。   In this case, in the posture shown in FIG. 3A, heat generated from the transparent conductive film 3 and the titanium oxide particle aggregate thin film 4a of the transparent electrode 1 is radiated to the substrate 2 made of glass and the atmosphere. On the other hand, in the posture shown in FIG. 3B, the heat generated from the transparent conductive film 3 and the titanium oxide particle aggregate thin film 4a is transferred to the glass substrate 2 and the alumina gantry 11 and then radiated to the atmosphere. Therefore, heat dissipation can be performed more quickly. For this reason, when the titanium oxide particle aggregate thin film 4a is heated and sintered in the posture shown in FIG. 3 (a), the glass substrate 2 is often broken during the temperature rise. This is presumed that since the microwave 12 is directly irradiated to the titanium oxide particle aggregate thin film 4a, the glass substrate 2 is damaged due to a sudden thermal stress. FIG. When the heating is performed in the posture shown in FIG. 2, since it is considered that the titanium oxide particle aggregate thin film 4a and the glass substrate 2 are heated relatively uniformly, it is advantageous for preventing the glass substrate 2 from being damaged. It has been reported that Reference numeral 11a in the figure indicates a thermocouple.

更に、透明電極1として、ガラス製の基板2に代えて、樹脂製、たとえば、PET製のフィルム状の基板2に、ITOによる透明導電性膜3を付着させてなる透明電極1を用いることも提案されている(たとえば、非特許文献1参照)。   Furthermore, instead of the glass substrate 2, a transparent electrode 1 in which a transparent conductive film 3 made of ITO is attached to a film substrate 2 made of resin, for example, PET may be used as the transparent electrode 1. It has been proposed (see Non-Patent Document 1, for example).

なお、上記と同様の色素増感太陽電池の半導体電極における半導体粒子薄膜を製造すべく微粒子酸化チタン粉末の粒子同士を焼結する際の処理温度を低減させるための手法として、高周波プラズマ、マイクロ波プラズマ、又は、これらのハイブリッド型のプラズマ処理によって焼結作業を行わせたり(たとえば、特許文献1参照)、半導体粒子としての酸化チタンの粒子の集合体である薄膜の加熱操作を行うときに、紫外線、可視光線、赤外線、マイクロ波等の電磁波の照射を併用すること(たとえば、特許文献2参照)が従来提案されている。   As a method for reducing the processing temperature when sintering the particles of the fine particle titanium oxide powder in order to produce a semiconductor particle thin film in the semiconductor electrode of the dye-sensitized solar cell similar to the above, high frequency plasma, microwave When performing a sintering operation by plasma or a hybrid type plasma treatment thereof (for example, see Patent Document 1), or when performing a heating operation of a thin film that is an aggregate of titanium oxide particles as semiconductor particles, It has been conventionally proposed to use irradiation of electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, and microwaves (see, for example, Patent Document 2).

特開2003−308893号公報JP 2003-308893 A 特開2002−134435号公報JP 2002-134435 A 富羽、内田、滝沢,「28GHzマイクロ波による酸化チタン膜の焼成と色素増感太陽電池への応用」,機能材料,2003年6月,Vol23,No.6,p.58−63Tomi, Uchida, Takizawa, “Sintering of titanium oxide film by 28 GHz microwave and application to dye-sensitized solar cell”, Functional Materials, June 2003, Vol 23, No. 6, p. 58-63

ところが、マイクロ波加熱は、投入エネルギーの熱に変換される効率としての誘電損失係数が温度の関数であることから、熱暴走が生じ易く、幅広い応用の妨げになっているというのが現状である。   However, microwave heating is a function of temperature because the dielectric loss coefficient as an efficiency converted to heat of input energy is a function of temperature. .

すなわち、図3(イ)(ロ)に示した如く、マイクロ波12の照射により酸化チタン粒子集合体薄膜4aの加熱を行う手法では、焼結により形成される半導体粒子薄膜4(図2(イ)(ロ)参照)に割れが生じたり、透明電極1の基板2を樹脂製とした場合には、該樹脂製の基板2がプラズマ着火することが多く、実用的な応用が困難であるのが現状である。これらの損傷は、いずれも上記のようなマイクロ波加熱に伴う熱暴走が原因であると考えられていたため、対策としては、放熱の工夫により熱暴走を防止するしかないと考えられてきていた。   That is, as shown in FIGS. 3A and 3B, in the method of heating the titanium oxide particle aggregate thin film 4a by the irradiation of the microwave 12, the semiconductor particle thin film 4 formed by sintering (FIG. ) (See (b)), or when the substrate 2 of the transparent electrode 1 is made of resin, the resin substrate 2 often ignites plasma, making practical application difficult. Is the current situation. All of these damages are thought to be caused by the thermal runaway associated with microwave heating as described above, and as a countermeasure, it has been considered that thermal runaway can only be prevented by devising heat dissipation.

なお、特許文献1及び特許文献2には、色素増感太陽電池の半導体電極を構成する酸化チタンの半導体粒子薄膜を、高周波プラズマ、マイクロ波プラズマ、又は、これらのハイブリッド型のプラズマ処理によって焼結したり、半導体粒子薄膜の加熱操作を行うときに、紫外線、可視光線、赤外線、マイクロ波等の電磁波の照射を併用することは記載されているが、半導体粒子薄膜の割れや樹脂製としてある基板のプラズマ着火等の損傷の発生を防止するための具体的な対策は何ら示されておらず、示唆すらされるものではない。   In Patent Document 1 and Patent Document 2, a titanium oxide semiconductor particle thin film constituting a semiconductor electrode of a dye-sensitized solar cell is sintered by high-frequency plasma, microwave plasma, or a hybrid plasma treatment thereof. However, it is described that the irradiation of electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, and microwaves is used in combination when the semiconductor particle thin film is heated. No specific measures for preventing the occurrence of damage, such as plasma ignition, are shown and are not even suggested.

そこで、本発明者等は、従来、マイクロ波加熱を行う場合に生じていた如き半導体粒子薄膜4の割れや、樹脂製の基板2のプラズマ着火といった損傷を生じさせることなく、マイクロ波照射によって半導体粒子薄膜4の加熱を行って焼結を行なうことができるようにするための工夫、研究を重ねた結果、上記半導体粒子薄膜4の割れや、樹脂製の基板2のプラズマ着火等の損傷原因は、熱暴走ではなく、絶縁破壊及び放電着火に主因があることを見出した。   Therefore, the present inventors have been able to perform semiconductor irradiation by microwave irradiation without causing damage such as cracking of the semiconductor particle thin film 4 and plasma ignition of the substrate 2 made of resin as has conventionally occurred when performing microwave heating. As a result of repeated efforts and research for heating the particle thin film 4 to enable sintering, the cause of damage such as cracking of the semiconductor particle thin film 4 and plasma ignition of the resin substrate 2 is as follows. It was found that the main cause was not dielectric breakdown but electrical breakdown and discharge ignition.

すなわち、本発明者等は、マイクロ波照射による半導体粒子薄膜4の加熱、焼成を行う過程で生じる半導体粒子薄膜4の損傷の状態を詳しく観察したところ、半導体粒子薄膜4に生じる割れは、網目状に広がるという知見を得て、このことから、上記マイクロ波の照射によって半導体粒子薄膜4に生じる損傷は、その根本原因が沿面放電現象にあると推察した。つまり、上記半導体粒子薄膜4を焼結するためにマイクロ波を照射すると、半導体粒子薄膜4の内部に部分的な電位差が生じ、この際、上記半導体粒子薄膜4は、厚さ10μm程度と極めて薄い薄膜としてあるために、半導体であることから内部に所要の電気伝導率を備えており、且つ透明電極1の透明導電性膜3上に付着して設けられている状態にもかかわらず、上記膜内部に生じた電位差により、膜内部を通電するよりも外部空間を流れる沿面放電現象が生じてしまい、このため絶縁破壊により半導体粒子薄膜4に割れが生じると考えられた。又、基板2を樹脂製の基板2としている場合には、上記沿面放電現象に伴い、基板2の樹脂がプラズマによってガス化され、このガスが燃えることで、樹脂製基板2のプラズマ着火が生じてしまうと考えられた。   That is, the present inventors have observed in detail the state of damage to the semiconductor particle thin film 4 that occurs in the process of heating and firing the semiconductor particle thin film 4 by microwave irradiation. From this, it was inferred that the damage caused to the semiconductor particle thin film 4 by the microwave irradiation was caused by the creeping discharge phenomenon. That is, when microwave irradiation is performed to sinter the semiconductor particle thin film 4, a partial potential difference is generated inside the semiconductor particle thin film 4. At this time, the semiconductor particle thin film 4 is as thin as about 10 μm. In spite of being a thin film, it is a semiconductor and therefore has the required electrical conductivity inside, and the above film regardless of the state of being attached on the transparent conductive film 3 of the transparent electrode 1. It was considered that a creeping discharge phenomenon that flows in the external space occurs rather than energizing the inside of the film due to the potential difference generated inside, and thus the semiconductor particle thin film 4 is cracked due to dielectric breakdown. Further, when the substrate 2 is made of resin, the resin on the substrate 2 is gasified by plasma along with the creeping discharge phenomenon, and this gas burns to cause plasma ignition of the resin substrate 2. It was thought that.

これらの考えに鑑みて、本発明者等は、マイクロ波による半導体の薄膜の加熱を行うときに、沿面放電現象が発生することを未然に防止することにより、上記半導体の薄膜の割れや、樹脂製の基板のプラズマ着火等の損傷が発生する虞を防止できることを見出して、本発明をなした。   In view of these ideas, the present inventors have prevented the occurrence of creeping discharge phenomenon when heating a semiconductor thin film by microwaves, thereby preventing the cracking of the semiconductor thin film or the resin. The present invention has been made by finding that it is possible to prevent the possibility of damage such as plasma ignition of a manufactured substrate.

したがって、本発明の目的とするところは、半導体の薄膜に損傷を生じることなくマイクロ波の照射によって加熱を行なうことができるようにするための薄膜のマイクロ波加熱方法を提供しようとするものである。   Accordingly, an object of the present invention is to provide a microwave heating method for a thin film so that heating can be performed by microwave irradiation without causing damage to the semiconductor thin film. .

本発明は、上記課題を解決するために、請求項1に係る発明に対応して、ガラス又は樹脂製基板と該基板の表面に設けた透明導電性膜とからなる透明電極における上記透明導電性膜の表面に半導体粒子の集合体としての薄膜を形成させ、該薄膜の反透明導電性膜側表面の全体に亘り導電体の表面を接触させ、しかる後、マイクロ波を照射して上記薄膜を加熱する方法とする。 In order to solve the above-mentioned problems, the present invention corresponds to the invention according to claim 1, wherein the transparent conductivity in a transparent electrode comprising a glass or resin substrate and a transparent conductive film provided on the surface of the substrate is provided. the surface of the membrane to form a thin film as an aggregate of semiconductor particles, by contacting the surface of the conductor over the entire anti-transparent conductive film side surface of the thin film, and thereafter, the thin film is irradiated with microwaves A method of heating is used.

又、請求項2に係る発明に対応して、ガラス又は樹脂製基板と該基板の表面に設けた透明導電性膜とからなる透明電極における上記透明導電性膜の表面に半導体粒子の集合体としての薄膜を形成させ、該薄膜の反透明導電性膜側表面の全体に亘り導電体の表面を接触させ、しかる後、反導電体側よりマイクロ波を照射して上記薄膜を加熱する方法とする。 Further, in correspondence with the invention according to claim 2, as an aggregate of semiconductor particles on the surface of the transparent conductive film in a transparent electrode comprising a glass or resin substrate and a transparent conductive film provided on the surface of the substrate. films were formed of contacting a surface of the conductor over the entire anti-transparent conductive film side surface of the thin film, and thereafter, a method of heating the thin film by irradiating microwave from Hanshirubeden side.

更に、上記請求項1又は2に係る発明における薄膜の表面に接触させる側の導電体の表面を、平滑な面とする。 Further, the surface on the side of the conductor into contact with the surface of the thin film in the invention according to the claim 1 or 2, and smooth surface.

更に又、上記請求項1又は2に係る発明における薄膜の表面に接触させる側の導電体の表面を、ポーラスな面として、該導電体の表面を薄膜の表面に対し全体に亘り点接触させるようにする。 Furthermore, the surface on the side of the conductor into contact with the surface of the thin film in the invention according to the claim 1 or 2, as the porous surface, Ru surface of the conductive member is contacted points throughout the surface of the thin film Like that.

上述した構成における半導体粒子を微粒子酸化チタンとする。 The semiconductors particles child in the structure described above and fine particles of titanium dioxide.

本発明の薄膜のマイクロ波加熱方法によれば、以下の如き優れた効果を発揮する。
(1)ガラス又は樹脂製基板と該基板の表面に設けた透明導電性膜とからなる透明電極における上記透明導電性膜の表面に半導体粒子の集合体としての薄膜を形成させ、該薄膜の反透明導電性膜側表面の全体に亘り導電体の表面を接触させ、しかる後、マイクロ波を照射して上記薄膜を加熱するようにしてあるので、該マイクロ波が照射される薄膜の内部に部分的な電位差が生じたとしても、電位の高い部分と低い部分とを薄膜表面に接している導電体を通して通電させることができることから、薄膜内に生じる部分的な電位差を解消できる。したがって、薄膜の外部空間を流れる沿面放電現象が発生する虞を未然に防止できることから、該沿面放電現象の発生を根本原因とする薄膜の割れや、薄膜を樹脂製基板に支持させている場合における該基板のプラズマ着火等の損傷の発生を防止しながら、薄膜の加熱を行うことができる。
(2)上記において、マイクロ波の照射を反導電体側より行うようにすることにより、導電体を透過することによるマイクロ波の損失を回避できる。
(3)薄膜の表面に接触させる側の導電体の表面を、平滑な面にすることにより、薄膜と導電体との接触面積を広くして薄膜から導電体へ効率よく熱を逃すことができるため、マイクロ波照射による薄膜の加熱時に熱暴走が生じる虞を抑制する場合に有利となる。
(4)薄膜の表面に接触させる側の導電体の表面をポーラスな面として、該導電体の表面を薄膜の表面に対し全体に亘り点接触させるようにすることにより、薄膜から導電体への熱の逃げを抑えることができるため、出力の弱いマイクロ波であっても、薄膜の加熱を効率よく行なうことができる。
(5)上記構成において、薄膜を、透明電極の透明導電性膜の表面に付着させた半導体粒子の集合体である薄膜としてあるので、該薄膜中の各半導体粒子を焼結させることで、色素増感太陽電池の半導体電極にて増感用の色素を吸着、保持させるための多孔質な半導体粒子薄膜を形成させることができる。
(6)半導体粒子を微粒子酸化チタンとすることにより、色素増感太陽電池の半導体電極の透明電極の透明導電性膜表面に、酸化チタンによる多孔質な半導体粒子薄膜を焼結して設けることができる。
According to the microwave heating method of a thin film of the present invention, the following excellent effects are exhibited.
(1) to form a thin film as a collection surface to the semiconductor particles of the transparent conductive film of the transparent electrode comprising a transparent conductive film provided on the surface of the glass or plastic substrate and the substrate, the anti of the film contacting the surface of the conductor over the entire transparent conductive film surface, and thereafter, since the microwave irradiation are as for heating the thin film, the portion in the interior of the thin film the microwave is irradiated Even if a potential difference occurs, the high potential portion and the low potential portion can be energized through the conductor in contact with the surface of the thin film, so that the partial potential difference generated in the thin film can be eliminated. Therefore, it is possible to prevent the occurrence of a creeping discharge phenomenon that flows in the outer space of the thin film, so in the case where the thin film is cracked due to the occurrence of the creeping discharge phenomenon or the thin film is supported on a resin substrate. The thin film can be heated while preventing the occurrence of damage such as plasma ignition of the substrate.
(2) In the above, by irradiating microwaves from the side of the anticonductor, loss of microwaves due to transmission through the conductor can be avoided.
(3) By making the surface of the conductor on the side in contact with the surface of the thin film a smooth surface , the contact area between the thin film and the conductor can be widened to efficiently release heat from the thin film to the conductor. Therefore, it is advantageous when suppressing the possibility of thermal runaway when the thin film is heated by microwave irradiation.
(4) The surface of the conductor on the side contacting the surface of the thin film, as a porous surface, the surface of the conductive body by so as to contact points throughout the surface of the thin film, the conductive thin film Therefore, even when the microwave is weak, the thin film can be efficiently heated.
(5) In the above configuration, thin films, so are a thin film is an aggregate of semiconductors grains element attached to the surface of the transparent conductive film of the transparent electrode, the semiconductive material particles children in the thin film By sintering, a porous semiconductor particle thin film for adsorbing and holding the sensitizing dye at the semiconductor electrode of the dye-sensitized solar cell can be formed.
(6) the semiconductors grain child by the fine particles of titanium dioxide, a transparent conductive film surface of the transparent electrode of the semiconductor electrode of the dye-sensitized solar cell, by sintering the porous semiconductor particle thin film by a titanium oxide Can be provided.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の薄膜のマイクロ波加熱方法の実施の一形態として、図2(イ)(ロ)に示したのと同様の色素増感太陽電池における半導体電極5の構成要素である半導体粒子薄膜4を、透明電極1に設けてある透明導電性膜(半導体)3の表面にて焼結する場合への適用例を示すものである。すなわち、図3(イ)(ロ)に示したと同様に、基板2とその表面に設けた透明導電性膜3とからなる透明電極1における該透明導電性膜3の表面に、微粒子酸化チタン粉末のペーストを塗布し、乾燥させて酸化チタン粒子集合体薄膜4aを形成させた後、トレイ状、又は、シート状としてある導電体13上に、上記酸化チタン粒子集合体薄膜4aが下になるようにして載置して、上記導電体13に、酸化チタン粒子集合体薄膜4aの膜表面が接するようにする。更に、必要に応じて、図1に二点鎖線で示す如く、上記基板2上に押え板14を載置して上方より抑えることにより、上記導電体13と酸化チタン粒子集合体薄膜4aとを接触状態で確実に保持させるようにする。しかる後、反導電体13側となる押え板14の上方よりマイクロ波12を照射して、上記酸化チタン粒子集合体薄膜4aを加熱して、焼結させることで、半導体粒子薄膜4を形成させるようにする。なお、図1は、半導体粒子薄膜4の焼結後の状態を示すもので、焼結前の酸化チタン粒子集合体の薄膜は括弧内の符号4aとして示してある。   FIG. 1 shows a semiconductor particle which is a component of a semiconductor electrode 5 in a dye-sensitized solar cell similar to that shown in FIGS. An example of application to the case where the thin film 4 is sintered on the surface of the transparent conductive film (semiconductor) 3 provided on the transparent electrode 1 is shown. That is, as shown in FIGS. 3 (a) and 3 (b), fine titanium oxide powder is formed on the surface of the transparent conductive film 3 in the transparent electrode 1 composed of the substrate 2 and the transparent conductive film 3 provided on the surface thereof. After the paste is applied and dried to form the titanium oxide particle assembly thin film 4a, the titanium oxide particle assembly thin film 4a is placed on the tray 13 or the conductor 13 in the form of a sheet. Then, the surface of the titanium oxide particle assembly thin film 4 a is brought into contact with the conductor 13. Further, if necessary, as shown by a two-dot chain line in FIG. 1, the holding plate 14 is placed on the substrate 2 and restrained from above, so that the conductor 13 and the titanium oxide particle aggregate thin film 4a are bonded. Make sure to keep it in contact. After that, the semiconductor particle thin film 4 is formed by irradiating the microwave 12 from above the holding plate 14 on the side of the anticonductor 13 to heat and sinter the titanium oxide particle aggregate thin film 4a. Like that. FIG. 1 shows a state after sintering of the semiconductor particle thin film 4, and the thin film of the titanium oxide particle aggregate before sintering is indicated by reference numeral 4a in parentheses.

上記導電体13は、酸化チタンによる半導体粒子薄膜4の電気伝導率よりも大きな電気伝導率を有する、たとえば、ニッケルやアルミ、鉄、ステンレス等の金属体を使用すればよい。   The conductor 13 may be a metal body such as nickel, aluminum, iron, or stainless steel having an electrical conductivity greater than that of the semiconductor particle thin film 4 made of titanium oxide.

更に、マイクロ波加熱時に、熱暴走を効率よく抑えることができるようにするためには、上記導電体13を、表面が酸化チタン粒子集合体薄膜4aの膜表面に全面に亘って接触するような平滑な表面を備えてなるものとして、焼結される酸化チタンの半導体粒子薄膜4から導電体13へ効率よく熱を逃すことができるようにすればよい。この場合、上記導電体13に、たとえば、反薄膜接触面側の形状を、外部空間等へ積極的に放熱を図ることが可能な形状とすること等により放熱機能を持たせるようにして、熱暴走の防止効果を積極的に得るようにしてもよい。一方、照射するマイクロ波12の出力が弱い等の理由から、加熱すべき酸化チタン粒子集合体薄膜4aからの熱の逃げを抑制したい場合には、上記導電体13を、ポーラスな表面を有するものとして、導電体13を、酸化チタン粒子集合体薄膜4aの膜表面に対して全面接触ではなく、両者間の通電を確保できる範囲内において、全面に亘り均等に点接触させるようにすればよい。   Furthermore, in order to efficiently suppress thermal runaway during microwave heating, the surface of the conductor 13 is in contact with the entire surface of the titanium oxide particle aggregate thin film 4a. What is necessary is just to be able to escape heat efficiently to the conductor 13 from the semiconductor particle thin film 4 of the titanium oxide sintered as what is provided with the smooth surface. In this case, the conductor 13 is provided with a heat radiation function by, for example, making the shape on the anti-thin film contact surface side into a shape that can actively dissipate heat to the external space, etc. You may make it acquire the runaway prevention effect positively. On the other hand, when it is desired to suppress the escape of heat from the titanium oxide particle aggregate thin film 4a to be heated because the output of the microwave 12 to be irradiated is weak, the conductor 13 has a porous surface. As a matter of course, the conductor 13 may be brought into point contact evenly over the entire surface within a range in which energization between the two can be ensured, not the entire surface contact with the film surface of the titanium oxide particle aggregate thin film 4a.

上記押え板14は、誘電損失係数が加熱を所望する酸化チタン粒子集合体薄膜4aよりも十分小さくて、照射するマイクロ波12を透過する材質のもので、且つ所要の耐熱性を備えた材質であれば、任意の材質のものとしてよい。   The holding plate 14 is made of a material that has a dielectric loss coefficient sufficiently smaller than the titanium oxide particle aggregate thin film 4a that is desired to be heated, transmits the microwave 12 to be irradiated, and has a required heat resistance. Any material may be used.

基板2は、誘電損失係数が十分小さくて、マイクロ波の吸収が加熱対象である酸化チタン粒子集合体薄膜4aよりも小さい材質であれば、ガラスあるいはPETやその他の樹脂製のものとしてよい。   The substrate 2 may be made of glass, PET, or other resin as long as the dielectric loss coefficient is sufficiently small and the microwave absorption is smaller than that of the titanium oxide particle aggregate thin film 4a to be heated.

上記本発明の薄膜のマイクロ波加熱方法にしたがって透明電極1の透明導電性膜3の表面に設けられた酸化チタン粒子集合体薄膜4aにマイクロ波12を照射すると、誘電体物質である該酸化チタン粒子集合体薄膜4aが加熱されることにより焼結されて、酸化チタンの半導体粒子薄膜4とされる。   When the titanium oxide particle aggregate thin film 4a provided on the surface of the transparent conductive film 3 of the transparent electrode 1 is irradiated with the microwave 12 according to the above-described microwave heating method of the thin film of the present invention, the titanium oxide which is a dielectric substance The particle aggregate thin film 4a is heated to be sintered to form a semiconductor particle thin film 4 of titanium oxide.

この際、形成される上記半導体粒子薄膜4の厚みが非常に薄いことに起因して、マイクロ波照射時に該半導体粒子薄膜4の内部に電位差が生じたとしても、電位の高い部分と電位の低い部分が、上記導電体13を介して接続されて導通されるようになるため、半導体粒子薄膜4の内部に生じる電位差を解消でき、このため、該半導体粒子薄膜4に沿面放電現象が発生する虞を未然に防止できる。   At this time, even if a potential difference occurs inside the semiconductor particle thin film 4 during microwave irradiation due to the very thin thickness of the semiconductor particle thin film 4 to be formed, a portion having a high potential and a potential having a low potential are generated. Since the portions are connected and conducted through the conductor 13, the potential difference generated in the semiconductor particle thin film 4 can be eliminated, and therefore a creeping discharge phenomenon may occur in the semiconductor particle thin film 4. Can be prevented.

したがって、薄膜表面に導電体13を接触させるという簡便な方法により、形成される半導体粒子薄膜4が割れを生じたり、基板2が樹脂の場合であってもプラズマ着火する等の損傷が発生する虞を未然に防止した状態で薄膜のマイクロ波加熱を行なうことができる。   Accordingly, the simple method of bringing the conductor 13 into contact with the surface of the thin film may cause breakage of the formed semiconductor particle thin film 4 or damage such as plasma ignition even when the substrate 2 is a resin. It is possible to perform microwave heating of the thin film in a state where the above is prevented.

又、マイクロ波12としては、特殊な周波数28GHzのものではなく、一般の電子レンジに採用されている汎用的な周波数2.45GHzのマイクロ波12であっても安定した薄膜の加熱を行なうことができる。   Further, the microwave 12 is not a special frequency of 28 GHz, and a stable thin film can be heated even with the microwave 12 of a general frequency of 2.45 GHz employed in a general microwave oven. it can.

更に、酸化チタン粒子集合体薄膜4aをマイクロ波12により直接的に加熱できることから、焼結作業に電気炉を用いていた場合に比して、昇温、降温に要する時間を短縮できると共に、処理に要する電力の引き下げを図ることができる。   Furthermore, since the titanium oxide particle aggregate thin film 4a can be directly heated by the microwave 12, the time required for temperature increase and decrease can be reduced as compared with the case where an electric furnace is used for the sintering operation. It is possible to reduce the power required for this.

更に又、マイクロ波12の照射は、酸化チタン粒子集合体薄膜4aに対して反導電体13側より行うようにしてあるため、照射されるマイクロ波12の損失を回避できる。   Furthermore, since the irradiation of the microwave 12 is performed from the side of the anticonductor 13 with respect to the titanium oxide particle assembly thin film 4a, loss of the irradiated microwave 12 can be avoided.

マイクロ波加熱による半導体粒子薄膜4の焼結処理が終わった後は、押え板14を取り外した後、導電体13上より、透明導電性膜3の表面に半導体粒子薄膜4の形成された透明電極1を回収して、その後の色素吸着工程へ送るようにすればよい。   After the sintering process of the semiconductor particle thin film 4 by microwave heating is finished, the pressing plate 14 is removed, and then the transparent electrode on which the semiconductor particle thin film 4 is formed on the surface of the transparent conductive film 3 from the conductor 13. 1 may be collected and sent to the subsequent dye adsorption step.

なお、本発明は上記実施の形態のみに限定されるものではなく、導電体13は、マイクロ波照射時に、加熱、焼結すべき半導体粒子薄膜4の内部に生じる電位差を解消できるように薄膜表面にほぼ全体に亘り均等に接触できるような面を備えていれば、トレイやシート状以外のいかなる形状のものを採用してもよく、更には、マイクロ波照射時に該マイクロ波を遮ることなく薄膜表面と導電体13との接触状態を保持できれば、導電体13と薄膜を接触状態で保持する手段はいかなる手段を採用してもよいこと、酸化チタン粒子集合体薄膜4aに対するマイクロ波12の照射は、反導電体13側より行うものとして示したが、導電体13が、たとえば、アルミ箔程度の薄さとしてあって、所要のマイクロ波透過性を備えていれば、マイクロ波12を導電体13側より照射するようにしてもよいこと、照射するマイクロ波は、加熱対象となる薄膜が誘電損失を持つ領域であれば、一般の電子レンジに用いられる2.45GHz、あるいは、28GHz、その他いかなる周波数のマイクロ波を用いてもよいこと、本発明の薄膜のマイクロ波加熱方法は、マイクロ波の照射により加熱可能な誘電損失係数を備え、且つマイクロ波照射時に膜内部に電位差が生じて沿面放電を引き起こす虞が生じるような半導体等の薄膜であれば、図1に示した如き薄膜の積層構造に限定されることはなく、更に、色素増感太陽電池の半導体電極に用いる半導体粒子薄膜以外の薄膜の加熱にも適用できること、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ること等は勿論である。   The present invention is not limited only to the above-described embodiment, and the conductor 13 has a thin film surface so that a potential difference generated inside the semiconductor particle thin film 4 to be heated and sintered can be eliminated during microwave irradiation. Any shape other than a tray or a sheet may be used as long as it has a surface that can be contacted evenly over almost the entire surface, and further, the thin film without blocking the microwave during microwave irradiation. As long as the contact state between the surface and the conductor 13 can be maintained, any means may be adopted as the means for holding the conductor 13 and the thin film in contact with each other, and the irradiation of the microwave 12 on the titanium oxide particle assembly thin film 4a However, if the conductor 13 is as thin as, for example, an aluminum foil and has a required microwave transmission property, the microwave is used. 2 may be irradiated from the conductor 13 side, and the irradiated microwave may be 2.45 GHz used for a general microwave oven if the thin film to be heated has a dielectric loss, or The microwave heating method for the thin film according to the present invention may have a dielectric loss coefficient that can be heated by microwave irradiation, and there is a potential difference inside the film during microwave irradiation. As long as it is a thin film such as a semiconductor that may cause creeping discharge, it is not limited to the laminated structure of the thin film as shown in FIG. 1, and further, a semiconductor used for a semiconductor electrode of a dye-sensitized solar cell Needless to say, the present invention can be applied to heating of a thin film other than the particle thin film, and various modifications can be made without departing from the scope of the present invention.

本発明の薄膜のマイクロ波加熱方法の実施の一形態を示す概略側面図である。It is a schematic side view which shows one Embodiment of the microwave heating method of the thin film of this invention. 色素増感太陽電池の一例を示すもので、(イ)は概略切断側面図、(ロ)は発電機構の概要を示す図である。An example of a dye-sensitized solar cell is shown, (A) is a schematic cut side view, (B) is a figure which shows the outline | summary of an electric power generation mechanism. 透明電極の透明導電性膜表面にて、酸化チタンの半導体粒子薄膜の焼結を行わせるために従来提案されているマイクロ波照射による薄膜加熱方法を示すもので、(イ)はマイクロ波を酸化チタン粒子集合体薄膜側より照射する場合を、(ロ)はマイクロ波を基板側より照射する場合をそれぞれ示す概略側面図である。In order to sinter the semiconductor particle thin film of titanium oxide on the surface of the transparent conductive film of the transparent electrode, this shows a thin film heating method that has been proposed by microwave irradiation. (B) is a schematic side view showing the case where irradiation is performed from the titanium particle aggregate thin film side, and (b) is the case where irradiation is performed from the substrate side.

符号の説明Explanation of symbols

1 透明電極
2 基板
3 透明導電性膜(半導体)
4 半導体粒子薄膜(薄膜)
4a 酸化チタン粒子集合体薄膜(薄膜)
12 マイクロ波
13 導電体
1 Transparent electrode 2 Substrate 3 Transparent conductive film (semiconductor)
4 Semiconductor particle thin film (thin film)
4a Titanium oxide particle aggregate thin film (thin film)
12 Microwave 13 Conductor

Claims (5)

ガラス又は樹脂製基板と該基板の表面に設けた透明導電性膜とからなる透明電極における上記透明導電性膜の表面に半導体粒子の集合体としての薄膜を形成させ、該薄膜の反透明導電性膜側表面の全体に亘り導電体の表面を接触させ、しかる後、マイクロ波を照射して上記薄膜を加熱することを特徴とする薄膜のマイクロ波加熱方法。 The transparent electrode comprising a transparent conductive film provided on a glass or plastic substrate and the substrate surface to form a thin film as an aggregate of semiconductor particles to the surface of the transparent conductive film, anti transparent conductive the film A method for heating a thin film by microwaves , wherein the surface of the conductor is brought into contact over the entire surface on the film side , and then the thin film is heated by irradiation with microwaves. ガラス又は樹脂製基板と該基板の表面に設けた透明導電性膜とからなる透明電極における上記透明導電性膜の表面に半導体粒子の集合体としての薄膜を形成させ、該薄膜の反透明導電性膜側表面の全体に亘り導電体の表面を接触させ、しかる後、反導電体側よりマイクロ波を照射して上記薄膜を加熱することを特徴とする薄膜のマイクロ波加熱方法。 The transparent electrode comprising a transparent conductive film provided on a glass or plastic substrate and the substrate surface to form a thin film as an aggregate of semiconductor particles to the surface of the transparent conductive film, anti transparent conductive the film A method for heating a thin film by microwaves , wherein the surface of the conductor is brought into contact over the entire surface of the film side , and then the microwave is irradiated from the side of the non-conductor to heat the thin film. 薄膜の表面に接触させる側の導電体の表面を、平滑なとした請求項1又は2記載の薄膜のマイクロ波加熱方法。 The microwave heating method for a thin film according to claim 1 or 2, wherein the surface of the conductor on the side in contact with the surface of the thin film is a smooth surface . 薄膜の表面に接触させる側の導電体の表面を、ポーラスなとして、該導電体の表面を薄膜の表面に対し全体に亘り点接触させるようにした請求項1又は2記載の薄膜のマイクロ波加熱方法。 The surface on the side of the conductor into contact with the surface of the thin film, and a porous surface, the thin film according to claim 1 or 2, wherein was set to the surface of the conductive member contacting points throughout the surface of the thin film micro Wave heating method. 半導体粒子を微粒子酸化チタンとした請求項1,2,3又は4記載の薄膜のマイクロ波加熱方法。 Microwave heating method of a thin film according to claim 1, 2, 3 or 4, wherein the semiconductor body particles child was fine particles of titanium dioxide.
JP2004241158A 2004-08-20 2004-08-20 Microwave heating method for thin film Expired - Fee Related JP4779321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241158A JP4779321B2 (en) 2004-08-20 2004-08-20 Microwave heating method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241158A JP4779321B2 (en) 2004-08-20 2004-08-20 Microwave heating method for thin film

Publications (2)

Publication Number Publication Date
JP2006060064A JP2006060064A (en) 2006-03-02
JP4779321B2 true JP4779321B2 (en) 2011-09-28

Family

ID=36107272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241158A Expired - Fee Related JP4779321B2 (en) 2004-08-20 2004-08-20 Microwave heating method for thin film

Country Status (1)

Country Link
JP (1) JP4779321B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993187A4 (en) 2006-03-06 2009-04-22 Honda Motor Co Ltd Motor
JP5310559B2 (en) * 2007-10-03 2013-10-09 コニカミノルタ株式会社 Electrode manufacturing method, electronic circuit pattern, thin film transistor element and organic electroluminescence element
US9136569B2 (en) 2008-05-21 2015-09-15 Applied Materials, Inc. Microwave rapid thermal processing of electrochemical devices
JP5578078B2 (en) * 2008-09-30 2014-08-27 コニカミノルタ株式会社 Method for producing functional layer
JP5508730B2 (en) * 2009-02-02 2014-06-04 日立造船株式会社 Method for forming photocatalytic film on transparent electrode
KR101152357B1 (en) 2010-01-29 2012-06-11 주식회사 엘지화학 Method for preparing conductive pattern using microwave
EP2865042B1 (en) * 2012-06-26 2018-05-16 Applied Materials, Inc. Microwave rapid thermal processing of electrochemical devices
CN114007292B (en) * 2021-11-12 2022-10-04 四川大学 Microwave heating film device and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690864B2 (en) * 1996-03-29 2005-08-31 株式会社ティオテクノ Production method of photocatalyst
JP3521207B2 (en) * 1997-06-30 2004-04-19 独立行政法人産業技術総合研究所 Method for manufacturing titanium oxide film
JP5081345B2 (en) * 2000-06-13 2012-11-28 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP4559035B2 (en) * 2002-07-24 2010-10-06 関西ペイント株式会社 Semiconductor fine particle dispersion, method for producing semiconductor fine particle dispersion, method for forming semiconductor fine particle film, and photoelectrode
JP4461691B2 (en) * 2003-02-28 2010-05-12 東洋インキ製造株式会社 Method for producing inorganic oxide semiconductor electrode for photoelectric conversion
JP2004342319A (en) * 2003-03-19 2004-12-02 Kansai Paint Co Ltd Method for sintering semiconductor particulate dispersion solution on polymer film surface, and photocell
JP2005023416A (en) * 2003-07-04 2005-01-27 Hitachi Powdered Metals Co Ltd Manufacturing method of metal-ceramic sintered laminate
JP4479221B2 (en) * 2003-11-05 2010-06-09 株式会社ブリヂストン Thin film processing method

Also Published As

Publication number Publication date
JP2006060064A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4523549B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP2008192603A (en) Photovoltaic cell
JP4779321B2 (en) Microwave heating method for thin film
WO2012105581A1 (en) Method for producing oxide semiconductor layer
JP2005353588A (en) Flexible dye sensitized solar cell including conductive metal substrate
EP2214250A1 (en) Electrode substrate for photoelectric conversion device, method for manufacturing electrode substrate for photoelectric conversion device, and photoelectric conversion device
JP2011165641A (en) Wet solar cell and wet solar cell module
JP4479221B2 (en) Thin film processing method
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP2006134870A (en) Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
US8263905B2 (en) Heat generation sheet and method of fabricating the same
JP6192135B2 (en) Heating method of composite
JP4269595B2 (en) Oxide semiconductor electrode and manufacturing method thereof
JP4461691B2 (en) Method for producing inorganic oxide semiconductor electrode for photoelectric conversion
JP4680490B2 (en) Method for forming porous semiconductor layer and method for producing electrode substrate for dye-sensitized solar cell
JP2010020938A (en) Dye-sensitized solar battery
JP7295957B2 (en) Dye-sensitized solar cell
WO2016017353A1 (en) Photoelectric conversion element and photoelectric conversion element module comprising same
JP2010205581A (en) Manufacturing method of photoelectric conversion element using conductive mesh
KR20220023021A (en) Radiant film heater
KR101896728B1 (en) Vertical electrical connection of photoelectrochemical cells
CN105097992B (en) A kind of preparation method of photosensitive capacitor device
JP2009277625A (en) Manufacturing method for action electrode, action electrode, and photoelectric conversion element
EP2837008A1 (en) Counter electrode for a dye sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees